立体立体图形的展开图及三视图

合集下载

小学六年级立体图形三视图及展开图

小学六年级立体图形三视图及展开图

立体图形三视图及展开图一、知识点(一)三视图在观察物体的时候,我们往往可以从不同的角度进行观察,角度不同,看到的风景就会不同。

比如:我们可以从正面看、上面看、左面看,看到的图形分别称为正视图、俯视图和左视图,并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的。

对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积(二)正方体的展开图展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等,我们采用不同的剪开方法,共可以得到下面(三)长方体的展开图:观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即S上=S下=长×宽,S左=S右=宽×高,S前=S后=长×高。

(四)判断图形折叠后能否围成长方体或正方体的方法判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断。

二、题型(一)展开图与对立面【例1.1】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。

则“祝”、“你”、“前”分别表示正方体的________________________。

【答案】后面、上面、左面【解析】易知“你”、“程”相对,“前”、“锦”相对,“祝”、“似”相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面。

【例1.2】一个数学玩具的包装盒是正方体,其表面展开图如下。

现在每方格内都填上相应的数字。

已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是___________。

【答案】3、1、2【解析】面上的数是“0”,与“B”相对的面上的数是“2”,与“C"相对的面上的数是“1”。

4.1.3展开

4.1.3展开

-2
3
-4Leabharlann 1A 3x-2第二类,中间三连方,两侧各有一、二个,共三种。
考考你
1、如果“你”在前面,那么谁在后面? 了 太 你 们 棒 !
KEY: 棒
第三类,中间二连方,两侧各有二个,只有一种。
练习3. 如图是一个小正方体的展开图,把展开图 折叠成小正方体后,与有“建”字的一面相对的那一面 上的字是( D ). 建 设 和 谐
第一类,中间四连方,两侧各一 个,共六种。
1 2 3
4
5
6
第二类,中间三连方,两侧各有一、二个,共三种。
第三类,中间二连方,两侧各有二个,只有一种。
第四类,两排各三个,只有一种。
结果: 共有 11 种情况
用它们能围成什么样的立体图形? 先想一想, 再折一折。
长方体
展开
试一试
1、如图,第一行的几何体表面展开后得 到的第二行的某个平面图形,请用线连一连。
1 2
3
4 5
A
B
C
D
E
2、(1)判断下面一些平面图形是哪个立 体图形的展开图?
(2)观察下图经过折叠能否围成一个正方体。
连一连
请将下列的平面图形和将它如图绕虚线旋转 一周后得到的几何体连线.
找朋友
如图是一个立方体纸盒的展开图,使 展开图沿虚线折叠成正方体后相对面上的两 个数互为相反数,求: -7 1 a ___, b ___, c ____ -2
展 立体图形 围
开 平面图形 成
试一试
1. 下面六个正方形连在一起的图形,经折 叠后能围成正方体的图形有哪几个?(动手试 试)
A C
B
D
E
F

2020年中考数学必考考点专题27三视图与展开图(含解析)

2020年中考数学必考考点专题27三视图与展开图(含解析)

专题13 三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。

2.物体的三视图特指主视图、俯视图、左视图。

(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。

(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。

(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。

物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。

3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。

【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.从左面看可得到从左到右分别是3,1个正方形.专题知识回顾专题典型题考法及解析【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.【答案】(18+2)cm2.【解析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A. B. C. D.【答案】B【解析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.由题意可知,该几何体为四棱锥,所以它的底面是四边形.专题典型训练题一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A.B. C.D.【答案】B【解析】立体图形的展开图B中图形符合“一四一”模型,是正方体的展开图.故选B.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.【答案】B.【解析】考点是几何体的展开图。

经典:高中数学(超全面的)-三视图课件

经典:高中数学(超全面的)-三视图课件

3.右图是由一些相同的小正方体构成的几何体的三视图,则
构成这个几何体的小正方体的个数是【 D 】
A.5
B.6
C.7
D.8
11
122 1
47
下列是一个物体的三视图,请描述出它的形 状
主视图 左视图
俯视图
48
我思我进步
(2).右图是由一些相同的小正方体构成的几何
体的三视图,则构成这个几何体的小正方体的
上部圆锥侧面积
下部圆柱侧面积
圆柱底面积
=πa· 2a+2πa·2a+πa2=(5+ 2)πa2.
84
10、
❖ (文)(2010·湖南文,13)如下图中的三个直 角三角形是一个体积20cm3的几何体的三 视图,则h=________ cm.
❖ [答案] 4
85
[解析] 该几何体是一个底面为直角三角形、一条侧 棱垂直于底面的三棱锥,如图,V=13×12×5×6×h=20, ∴h=4 cm.
(超全面) 三视 图
横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。
1
猜 猜 他 们 是 什 么 关 系 ?
2
看 问 题 不 能 只 看 单 方 面
3
4
几种基本几何体三视图 1.圆柱、圆锥、球的三视图
知识
回顾
·
5
1、球的三视图 2、圆柱的三视图
3、圆锥的三视 图
6
柱、锥、台、球的三视图
26
解法二:
不用摆出这个几何体,你能画出 这个几何体的主视图与侧视图吗?
21
思考方法
12
先根据俯视图确定正视图有 列,再根据数字确定每列的方块 有 个。(取最多个数)
正视图

(完整版)五年级立体几何拓展----三视图专属奥数讲义

(完整版)五年级立体几何拓展----三视图专属奥数讲义

学科教师辅导讲义班级:年 级: 五年级 辅导科目:小学思维学科教师:上课时间授课主题 立体几何拓展----三视图一.三视图在观察物体的时候,我们往往可以从不同的角度进行观察.角度不同,看到的风景就会不同.比如:我们可以从正面看,上面看,左面看,看到的图形分别称为正视图,俯视图和左视图.并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是知识图谱错题回顾三视图知识精讲相同的.对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积. 二.正方体的展开图我们采用不同的剪开方法,共可以得到下面11种展开图.三.长方体的展开图观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即上面=下面=长×宽,左面=右面=宽×高,前面=后面=长×高. 四.判断图形折叠后能否围成长方体或正方体的方法.判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断.重难点:展开图、三视图及三视图求个数和表面积.上 后 前右左下 展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等.高宽长右面左面 后面下面 前面 上面三点剖析题模精选题模一:展开图与对立面例1.1.1 一个正方体的六个面上分别写着A ,B ,C ,D ,E ,F 六个字母.请你根据图中的三种摆放情况,判断每个字母的对面是______________,______________,______________【答案】 B 与D 相对,E 与A 相对,C 与F 相对 【解析】 由于正方体的6个面上写了6个不同的字母,那么每个字母在正方体的面上只能出现1次,如果2个字母在相邻的面上出现,那么它们一定不能相对.第一步,先看前2种摆放情况:在这2种摆放情况中,只有字母B 出现了2次,那么由第一种摆放可知,B 不与A 相对,也不与F 相对;由第二种摆放可知,B 不与C 相对,也不与E 相对.那么在所有的字母中,B 只能与D 相对.第二步,再看后2种摆放情况:在这2种摆放情况中,只有字母E 出现了2次,那么由第二种摆放可知,E 不与B 相对,也不与C 相对;由第三种摆放可知,E 不与D 相对,也不与F 相对.那么在所有的字母中,E 只能与A 相对.正方体有三个对面,因B 与D 相对,E 与A 相对,那么第三组对面上一定是C 与F 相对.例1.1.2 图中的四个正方体标字母的方式是完全相同的,请你利用图中已知的信息,判断A 、B 、C 的对面分别标的是哪个字母?【答案】 A 的对面标有D ,B 的对面标有F ,C 的对面标有E【解析】 由已知条件,标有C ,D 的两个面不能相对,那么或A 的对面标有D ,或B 的对面标有D .如果标有D ,A 的两个面相对,那么“标有C ,D 的两个面不能相对”,“标有E ,A 的两个面也不能相对”这两个条件都可以满足.注意到当D 在朝右的面,E 在朝上的面时,F 在朝前的面上,那么只能是标有E ,C 的两个面相对,而标有F ,B 的两个面相对.经检验,这种情况满足题目要求.如果标有D ,B 的两个面相对,那么由于标有E ,A 的两个面也不能相对,于是标有A 的对面就是标有F 的面,而标有C 的对面就是标有E 的面.此时D 在朝后的面上,E 在朝左的面上,F 在朝下的面上.我们把六面体旋转,把D 转到朝右的面,并把E 转到朝上的面,BFA EBC FED A BCD CCEAEF D此时朝前的面上标的是A ,而朝后的面上标的是F ,与题意不符.综上所述,满足题意的答案只有一个:A 的对面标有D ,B 的对面标有F ,C 的对面标有E .例1.1.3 如图,第1个方格内放着一个正方体木块,木块六个面上分别写着ABCDEF 六个字母.其中A 与D 相对,B 与E 相对,C 与F 相对.现在将木块标有字母A 的那个面朝上,标有字母D 的那个面朝下放在第1个方格内,然后让木块按照箭头指向,沿着图中方格滚动,当木块滚到21格时,木块向上的面上写的是哪个字母?【答案】 字母A【解析】 发现木块向左滚4格后,各个面上标的字母与初始时的情况完全一致.那么木块朝其它方向滚时也有类似的情况,即木块向任意方向连滚4格,它的各个面上标的字母不变. 所以木块向左滚4格到第5格时,各个面上标的字母与在第1格时的情况完全一致.再向下滚4格到第9格,再向右滚4格到第13格,再向下滚4格到第17格,最后向左滚4格到第21格,每次都是朝同一方向滚4格,因此在第5格,第9格,第13格,第17格,第21格木块向上的面上总是写的字母A .例1.1.4 如图,在一个正方体的表面上写着1~6这6个自然数,并且1对着4,2对着5,3对着6.现在将正方体的一些棱剪开,使它的表面展开图如图所示.如果只知道1和2所在的面,那么6应该在哪个面上(写出字母代号)?【答案】 A【解析】 对于立方体展开图,我们可以把任一个面当作底面,把它还原成立方体的表面.如图1,观察虚线圈住的部分,可以发现写有1,A ,B 的三个面两两相邻;再观察图2的虚线圈住的部分,发现写有A ,B ,C 的三个面也两两相邻.此时,写有1的面与A 面,B 面都相邻,C 面也与A 面,B 面都相邻,因此写有1的面与C 面相对,即C 面上写的是4.1 AB C 2D 3 121A B C 2D1A B C 2D1与C 相对,C 面上写的是421 5920 19观察图3中的虚线圈住的部分,容易看出写有2的面与B 面相对,因此B 面上写的是5.则立方体展开图就如图4所示.还剩下A 面与D 面上的数字没有确定,这两个面上分别写有3和6.由于写有1的面,写有5的面与A 面两两相邻,把这三个面还原到立方体中.在图2所示的立方体中,5与2相对,在立方体朝左的侧面上;1在朝前的侧面上.在展开图中以写有1的面为朝前的侧面,A 面为下底面,则写有5的面恰好在朝左的侧面上.此时写有1的面,写有5的面都对齐了,而原立方体中下底面写有数字6,因此A 面上就是6.例1.1.5 下图是正方体,四边形APQC 是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来.【答案】 见解析【解析】 截线在展开图中如图所示:例1.1.6 右图是一个立体图形的平面展开图,图中的每个小方格都是边长为1的正方形.现在将其沿实线...折叠,还原成原来的立体图形,那么立体图形的体积等于_________. 图3 1A B 4 2D2与B 相对, B 面上写的是5图41 A 54 2DBPEAD CB GHQFAEDCB HGFA . 3B . 4C . 5D . 6 【答案】B【解析】 根据实线还原,体积为4. 题模二:三视图求表面积例1.2.1 下图是由5个相同的正方体木块搭成的,从上面看到的图形是( ).A . A 图B . B 图C . C 图D . D 图【答案】C【解析】 5个在原图均已看到,易知C 符合要求.例1.2.2 右图是由18个棱长为1cm 的小正方形拼成的立体图形,它的表面积是( )平方厘米.A . 44B . 46C . 48D . 50【答案】C【解析】 从正面、左面、上面分别可看见8、7、9块,故表面积为()21879248cm ⨯++⨯=.例1.2.3 右图中的一些积木是由16块棱长为2cm 的正方体堆成的,它的表面积是________2cm .【答案】 200D .B .C .A .【解析】 从前到后的3面依次有2块、5块、7块,因此还剩162572---=块,为可看见的1块与其下方的1块.由此易知正视图、俯视图、左视图分别能看到7块、9块、8块,此外离我们最近的2块有两个面从6个方向均无法看到,综上共可看到()7982250++⨯+=个面,表面积为22250200cm ⨯=.例 1.2.4 图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少【答案】 37;三视图如下图所示;102【解析】 将此图分为从左到右的5层,分别有16、9、5、6、1块,故共有16956137++++=块.三视图见答案,分别可看见17、15、16块,其中左视图有3块“被遮挡”,因此表面积为()17151632102+++⨯=⎡⎤⎣⎦.例1.2.5 图中的立体图形由11个棱长为1的立方块搭成,这个立体图形的表面积为_______.【答案】34【解析】 按一定的顺序,从不同的角度来看这个立体图形的表面的面积. 题模三:已知三视图反推个数例1.3.1 这个图形最少是由( )个正方体整齐堆放而成的.正视图 俯视图 左视图A.12B.13C.14D.15【答案】B【解析】从上面看下去,最少需要:122412113++++++=.例1.3.2此图是某几何体从正面和左面看到的图形.若该几何体是由若干个棱长为1的正方体垒成的,则这个几何体的体积最小是________.【答案】6【解析】根据正视图,理论上最少需要6块.而6块可以构造出来,例如,其俯视图如下图所示.因此,体积最小为3166⨯=.例 1.3.3一个立体图形,从前面,上面,右边三个方向看到的图形都如图所示,是一个样的,那么该立体图形最多由__________块小立方体组成.【答案】23【解析】按由上到下逐层分析,各层的小立方体数目分别不超过1个、4个、8个、10个,所以该立体图形最多由23个小立方体组成.例 1.3.4有一些大小相同的正方形木块堆成一堆,从上往下看是图3-1,从前往后看是图3-2,从左往右看是图3-3,那么这堆木块最多有多少块?最少有多少块?1412212从正面看从左面看【答案】16,13【解析】43416+⨯=块,424113+⨯+=块.这堆木块最多有16块,最少有13块.例1.3.5地上有一堆小立方体,从上面看时如图1所示,从前面看时如图2所示,从左边看时如图3所示.这一堆立方体一共有几个?如果每个小立方体的棱长为1厘米,那么这堆立方体所堆成的立体图形表面积为多少平方厘米?【答案】10个;42平方厘米【解析】采用在俯视图上标数的方法来求解,只要知道俯视图上的每格有几块小立方体,就可以很轻松的得到这堆立方体所形成的立体图形的样子.首先从俯视图很容易看出,有3个格子里是没有小立方体的,而其他6个格子里至少有一个小立方体.如下图,将所得信息填入俯视图中.结合俯视图和主视图,不难看出,有两格只有1块小立方体.将所得信息填入俯视图中.同样的,结合俯视图和左视图,又可以知道有一格只有1块小立方体.将所得信息填入俯视图中.图1 图2 图3从前面看1001我们来继续考虑,左视图中最左边一排有2块小立方体,所以俯视图左上角处有2块小立方体.将所得信息填入俯视图中.同理,主视图最右边一排有2块小立方体,所以俯视图最右边中间处有2块小立方体.将所得信息填入俯视图中.不难看出,俯视图中最后剩下的那块有3个小立方体,所以俯视图中每格的小立方体数如下:于是这一堆立方体一共有21321110+++++=个. 接着很容易得到这个立体图形的样子,如下图.上下各能看到6个面,前后各能看到6个面,左右各能看到6个面,同时注意到立体图形的中间共有6个会互相遮挡的面,所以表面积是()2666642⨯+++=平方厘米.从左边看1 0 0 012 1 0 0 012 1 0 0 2 0 112 1 03 0 2 011随练1.1将一正方体纸盒沿右图所示的粗实线剪开,展开成平面图,其展开图的形状为().A.A图B.B图C.C图D.D图【答案】B【解析】竖向只剪了1刀,故前、后、左、右四个面应在一条线上,排除A、D.易知上、下两面不在一条线上,排除C,故选B.随练1.2水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的________________________.【答案】后面、上面、左面【解析】易知你、程相对,前、锦相对,祝、似相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面.随练1.3小明把五颗完全相同的骰子拼摆成一排(如图),那么这五颗骰子底面上的点数之和是__________.【答案】16【解析】根据已知推出(4,5)(1,3)(2,6)互为对立面,所以这五颗骰子底面上的点数之和是6152216++++=.随练1.4右图是由八个相同的小正方体组成而成的几何体,则从正面观察,得到的平面图随堂练习形是__________.序号)【答案】 ②【解析】 从正面看到图②,从上面看到图①,从右面看到图③.所以正确答案是图②.随练1.5 由棱长为1的正方体搭成如图所示的图形,共有__________个正方体,它的表面积是__________.【答案】 10;34【解析】 第一层有8个,第二层有2个,共10个.其三视图分别能看到4、5、8个,故表面积为()11458234⨯⨯++⨯=.随练1.6 如图,有9个边长为1米的正方体,如图所示堆成一个立体图形.该立体图形的表面积等于__________平方米.【答案】 38【解析】 利用三视图.从前面、右面、上面看依次如图所示.所以该立体图形的表面积是()26672138++⨯⨯=平方米.随练1.7 如图6,用若干个棱长为1的小正方体堆成一个大的几何体,这个几何体的表面积(含底面积)是__________.① ② ③ ④【答案】90【解析】根据三视图,大的几何体的表面积等于正视图面积+俯视图面积+右视图面积的2倍,所以是()2++⨯⨯=.1415162190随练 1.8用棱长是1厘米的小立方体拼成如图所示的立体图形,这个图形的表面积是__________平方厘米.【答案】46平方厘米【解析】如图1,从立体图形上方和下方看去,看到的都是9块小正方形.面积是9平方厘米.图1图2从四个侧面看去,看到的是图2形式的7块小正方形,面积是7平方厘米.所以立体图形的表面积为927446⨯+⨯=平方厘米.随练1.9把若干个棱长为1厘米的小正方体木块搭成一个图形,从上面和前面看到的都是如图所示的情形,这个图形最多需要__________个这样的小正方体,最少需要__________个这样的小正方体.【答案】9;7【解析】由从上方看到的结果可知第一层必有5个,且第二层至多5个;由从前面看到的结果可知共有2层,且第二层至少2个.再结合两个视图可知第二层至多4个.综上,最多9个,最少7个.作业1一个数学玩具的包装盒是正方体,其表面展开图如下.现在每方格内都填上相应的数字.已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是_____________.【答案】3,1,2【解析】正方体的平面展开图中,相对面之间一定隔着一个正方形,所以在此正方体上与“A”相对的面上的数是“0”.与“B”相对的面上的数是“2”.与“C”相对的面上的数是“1”.所以A、B、C内的三个数字依次是3,1,2.作业2把1至6各一个分别写在正方形的六个面上,每个面只写一个数字,且1与4相对,2与5相对,3与6相对,从某个角度看到的三个面上的数字如图(a)所示,从另一个角度看到的三个面如图(b)所示,那么图(b)中的“?”代表的数字是___________.A.2B.3C.4D.5【答案】A【解析】如图,4对面是1,所以在图a中把4翻到底面,顶部变成了1,如图b,而5C 2B 0A 1自我总结课后作业对面是2,所以当6转到正面时,5在左侧,右侧自然是2了,故答案是2..作业3下图由一个正五边形,五个长方形,五个等边三角形组成,它是一个立体图形的平面展开图,那么这个立体图形有__________条棱.【答案】20【解析】此立体图形,示意图如上:共20条棱.作业4用若干个棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于___________2cm.【答案】60【解析】根据三视图,我们可知,此立体图形的前面与后面,左面与右面,上面与下面的表面积分别相等.所以我们只要知道前面有11个正方形,右面有8个正方形,上面有11个面,就可求出它露在外面的面共计()11811260++⨯=个正方形,所以它的表面积是2260160cm⨯=.作业5如图,把19个边长为1厘米正方体重叠起来堆成如图所示的立方体,这个立方体的表面积是______平方厘米.【答案】54【解析】从上下左右前后六个方向看,分别可以看到9、9、8、8、10、10个小正方形面,所以总的表面积为54平方厘米.作业6图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少块?画出它的三视图,表面积是多少?【答案】30;三视图如下图所示;76【解析】将此图分为从左到右的4层,分别有11、7、5、7块,故共有1175730+++=块.三视图见答案,分别可看见13、12、11块,其中左视图有2块“被遮挡”,因此表面积为()1312112276+++⨯=⎡⎤⎣⎦.作业7由若干个相同的正方体木块搭成的立体,从正面和左面看到的图形都是右图,搭这样的立体,最少用()个这样的木块.A.4B.5C.6D.8【答案】A【解析】按如图方式摆放即可.正视图俯视图左视图作业8由若干个棱长为1的正方体堆成的立体图形,其正视图、俯视图和左视图如下所示,请问这个立体图形体积是________.正视图俯视图左视图【答案】5【解析】由正视图和左视图可知共两层,且顶层只有1块,由俯视图可知底层有4块,故共有5块,体积为5.作业9一仓库里堆放着若干个完全相同的正方体货箱,这堆货箱的三视图如图所示,这堆真方体货箱共有______________个.【答案】9【解析】俯视图确定基座,分析每块上的高度.。

初中数学精品课件: 三视图与表面展开图

初中数学精品课件: 三视图与表面展开图

A. 国 C. 中
【答案】 B
图 33-4
B. 的 D. 梦
5.(2019·淄博)下列几何体中,其主视图、左视图和俯视图完
全相同的是
()
A.
B
C.
D.
【答案】 D
题型一 判断物体的三视图
三视图是分别从正面、左面、上面三个方向看同一个物体 所得到的平面图形,判断三视图时应注意尺寸的大小,即三个 视图的特征:主视图体现物体的长和高,左视图体现物体的宽 和高,俯视图体现物体的长和宽.
【典例 2】 (2018·青岛)一个由 16 个完全相同的小立方
体搭成的几何体,其最下面一层摆放了 9 个小立方体,
它的主视图和左视图如图 33-7 所示,则这个几何体的
搭法共有
种.
图 33-7
【解析】 这个几何体的搭法共有 10 种,如解图所示.
【答案】 10
(典例 2 解)
【类题演练 2】 如图 33-8 所示的三视图所对应的几何体是 ( )
图 33-9
A. 25π
B. 24π
C. 20π
D. 15π
【解析】 由主视图可知圆锥的底面直径为 8,
∴底面半径 r=4.
由左视图可知圆锥的高为 3,
∴母线长 l= 32+42=5,
∴S 圆锥侧=πrl=20π.
【答案】 C
【类题演练 3】 (2019·甘肃)已知某几何体的三视图如图 33-10 所示,其
的小立方体搭成,下列说法正确的是
()
A. 主视图的面积为 4
B. 左视图的面积为 4
C. 俯视图的面积为 3
D. 三种视图的面积都为 4
【答案】 A
图 33-18
4.若一个几何体的三视图如图 33-19 所示,则该几何 ( ) A. 直三棱柱 B. 长方体 C. 圆锥 D. 立方体

初中九年级数学教案-例立体图形展开图三视图-“黄冈赛”一等奖

初中九年级数学教案-例立体图形展开图三视图-“黄冈赛”一等奖

2 三视图第4课时由三视图确定几何体的表面积或体积石河子第十六中学张保樱教学目标知识技能1能根据三视图想象出基本几何体的展开图;2在探究由三视图想象出立体图形的过程中,初步建立空间观念,发展几何直觉和形象思维,培养空间想象能力情感目标通过观察和动手实践,体会立体图形的三视图与立体图形的密切关系,并能根据这些关系画出立体图形的展开图。

问题解决会根据三视图想象出基本几何体,并画出展开图情感态度1了解将三视图转换成立体图形在生产中的应用,使学生体会到所学知识有重要的实用价值;2在探究由三视图想象出立体图形并画出展开图的过程中,使学生感受到数学的和谐美和奇异美重点:根据三视图描述基本几何体和实物原型及计算几何体的表面积等.难点:根据三视图想象出立体图形的表面展开图,计算立体图形的表面积、体积等教学过程一、复习引入完成下列练习(1)、如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。

(2)、一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子。

(3)、某几何体的三种视图分别如下图所示,那么这个几何体可能是()。

(A)长方体(B)圆柱(C)圆锥(D)球二、讲授新课例6某工厂要加工一批密封罐,设计者给出了密封罐的三视图如下图,请你按照三视图确定制作每个密封罐所需钢板的面积分析:对于某些立体图形,若沿其中一些线例如棱柱的棱剪开,可以把立体图形的表面展开成一个平面图形——展开图在实际的生产中三视图和展开图往往结合在一起使用解决本题的思路是,由视图想象出密封罐的立体形状,再进一步画出展开图从而计算面积解:由三视图可知,密封罐的形状是正六棱柱如图左密封罐的高为50mm,底面正六边形的直径为100mm边长为50mm,图右是它的展开图由展开图可知,制作一个密封罐所需钢板的面积为三、练习巩固某工厂加工一批无底帐篷,设计者给出了帐篷的三视图请按照三视图确定每顶帐篷的表面积(图中尺寸单位:cm)四、随堂演练1右图是一个多面体的表面展开图,那么这个多面体是()A四棱柱 B四棱锥C三棱柱 D三棱锥2一个几何体的三视图如图所示,那么这个几何体的侧面积是() A cm2 B cm2C cm2D cm23如图是一个包装盒的三视图,则这个包装盒的体积是()A cm3B cm3C cm3D cm34根据三视图,画出这个几何体的展开图,并求几何体的表面积五、小结根据物体的三视图想像物体的形状一般是由俯视图确定物体在平面上的形状然后再根据左视图、主视图嫁接出它在空间里的形状,从而确定物体的形状由三视图如何确定几何体的表面积或体积①想象:根据各视图想象从各个方向看到的几何体形状;② 定形:综合确定几何体(或实物原型)的形状;8π12π19231152328833843③ 展开图:画出展开图,求展开面积六、作业1课后习题;2完成练习册本课时的习题七、板书设计2 三视图第4课时由三视图确定几何体的表面积或体积一、复习引入二、讲授新课三、练习巩固四、随堂演练五、小结六、作业八、教学反思本节课由学生日常生活中的实例引入,让学生在认识三视图、探索由三视图求物体表面积或体积的过程中,深切体会到数学知识学生进行合理的探索,培养学生的空间想象能力和整体思维能力。

三视图和展开图的认识

三视图和展开图的认识

三视图和展开图的认识1.定义:三视图是指一个物体在三个不同方向上的投影,包括正视图、俯视图和侧视图。

2.作用:通过三视图可以全面了解物体的形状和结构,是工程制图和建筑设计中必不可少的一部分。

3.绘制方法:(1)正视图:物体正面朝向观察者,投影在水平面上。

(2)俯视图:物体上方朝向观察者,投影在垂直于水平面的竖直面上。

(3)侧视图:物体左侧或右侧朝向观察者,投影在垂直于水平面和俯视图所在平面的斜面上。

4.定义:展开图是将一个立体图形展开成平面图形,以便于观察和计算。

(1)矩形展开图:最常见的展开图类型,适用于各种矩形容器、包装盒等。

(2)圆形展开图:适用于圆形或近似圆形的物体,如圆筒、圆盘等。

(3)三角形展开图:适用于三角形的物体,如三角尺、三角形的包装盒等。

(4)其他多边形展开图:适用于各种多边形的物体,如六边形、八边形等。

5.绘制方法:(1)矩形展开图:将立体图形的侧面沿着高展开,得到一个长方形或正方形。

(2)圆形展开图:将立体图形的侧面沿着直径展开,得到一个扇形。

(3)三角形展开图:将立体图形的侧面沿着高展开,得到一个三角形。

(4)其他多边形展开图:根据立体图形的形状和结构,选择合适的方法将其展开。

三、三视图与展开图的相互关系1.展开图可以转化为三视图:通过观察展开图,可以确定物体的正视图、俯视图和侧视图。

2.三视图可以转化为展开图:根据三视图,可以绘制出物体的展开图。

3.展开图中的信息可用于三视图的绘制:展开图中的边长、角度等信息可以用于确定三视图中的尺寸和形状。

四、实际应用1.工程制图:在建筑设计、机械设计等领域,三视图和展开图是表达物体形状和结构的重要手段。

2.制造业:在制造过程中,通过三视图和展开图可以方便地切割、加工和组装物体。

3.教育:在三视图和展开图的教学中,有助于培养学生的空间想象能力和逻辑思维能力。

4.日常生活中:展开图在包装、折叠等方面有广泛应用,如纸箱、衣物等。

五、注意事项1.准确绘制:在绘制三视图和展开图时,要注意尺寸、形状和位置的准确性。

三视图与表面展开图—知识讲解

三视图与表面展开图—知识讲解

三视图与表面展开图—知识讲解责编:康红梅【学习目标】1.了解平行投影和中心投影的基本概念及主要特征,会在简单情况下画出投影示意图;2.了解三视图的概念,会画直棱柱、圆柱、圆锥等简单几何体的三视图,并会根据视图描述简单的几何体;3.了解直棱柱、圆柱和圆锥的表面展开图,会计算直棱柱、圆柱和圆锥的侧面积和全面积,能根据展开图想象和制作实物模型;4.了解直棱柱、圆柱和圆锥的三视图和表面展开图在现实生活中的应用.【要点梳理】要点一、平行投影1.基本概念物体在光线的照射下,在某个平面内形成的影子叫做投影.这时,光线叫做投射线,投影所在的平面叫做投影面.由平行的投射线所形成的投影叫做平行投影. 例如,太阳光线、探照灯的光线都可以看成平行光线,由此我们可得出这样两个结论:(1)等高的物体垂直地面放置时,如图1 所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2 所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.2.物高与影长的关系( 1)在不同时刻,同一物体的影子的方向和大小可能不同. 不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.(2)在同一时刻,不同物体的物高与影长成正比例.即:. 利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长. 要点诠释:1.平行投影是物体投影的一种,是在平行光线的照射下产生的. 利用平行投影知识解题要分清不同时刻和同一时刻.2.物体与影子上的对应点的连线是平行的就说明是平行光线.要点二、中心投影由同一点出发的投射线所形成的投影叫做中心投影.这个“点”就是中心,相当于物理上学习的“点光源” . 生活中能形成中心投影的点光源主要有手电筒、路灯、台灯、投影仪的灯光、放映机的灯光等. 相应地,我们会得到两个结论:(1) 等高的物体垂直地面放置时,如图 1 所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长越远,影子越短,但不会比物体本身的长度还短在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点 在同一条直线上,根据其中两个点,就可以求出第三个点的位置 要点诠释:光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方 向也发生变化,但光源、物体的影子始终分离在物体的两侧 . 要点三、中心投影与平行投影的区别与联系1. 联系:(1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投 影,通常的平行光线有太阳光线、 月光等, 而中心投影是从一点发出的光线所形成的投影, 通常状况下, 灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线 .(2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中, 同一灯光下,改变物体的位置和方向,其投影也跟着发生变化 . 在中心投影中,固定物体的位置和方向, 改变灯光的位置,物体投影的方向和位置也要发生变化 .2. 区别:(1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的 影子与物体高度不一定成比例 .(2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能 在不同方向 . 要点诠释:在解决有关投影的问题时必须先判断准是平行投影还是中心投影,然后再根据它们的具体特点进一 步解决问题 .要点四、正投影正投影的定义:如图所示,图 (1) 中的投影线集中于一点,形成中心投影;图 (2)(3) 中,投影线互相平行,形成平 行投影;图 (2) 中,投影线斜着照射投影面;图 (3) 中投影线垂直照射投影面 ( 即投影线正对着投影面 ), 我们也称这种情形为投影线垂直于投影面 .像图(3) 这样,如果投射线垂直于投影面,那么这种投影就称为 正投影.(2) 等长的物体平行于地面放置时,如图2 所示 . 般情况下,离点光源越近,影子越长;离点光源(1) 线段的正投影分为三种情况: 如图所示 .(2) 平面图形正投影也分三种情况,如图所示Q 时,它的正投影与这个平面图形的形状、大小完全相同,即正投影与 Q 时,平面图形的正投影与这个平面图形的形状、大小发生变化,即会 Q 时,它的正投影是直线或直线的一部分 .物体的正投影的形状、大小与物体相对于投影面的位置有关,立体图形的正投影与平行于投影面且 过立体图形的最大截面全等 要点诠释:(1) 正投影是特殊的平行投影,它不可能是中心投影 .(2) 由线段、平面图形和立体图形的正投影规律,可以识别或画出物体的正投影 .(3) 由于正投影的投影线垂直于投影面,一个物体的正投影与我们沿投影线方向观察这个物体看到 的图象之间是有联系的 .要点五、简单几何体的三视图1. 三视图的概念(1)视图 从某一角度观察一个物体时,所看到的图象叫做物体的一个视图 .(2)正面、水平面和侧面 用三个互相垂直的平面作为投影面,其中正对我们的面叫做正面,正面下面的面叫做水平面,右边 的面叫做侧面 .(3)三视图物体在正投影面上的正投影叫做 主视图 ;在水平投影面上的正投影叫做 俯视图 ;在侧投影面上的正 投影叫做 左视图 . 产生主视图的投射线方向也叫做主视方向 . 主视图、左视图、俯视图叫做物体的三视 图.2. 三视图之间的关系①线段 AB 平行于投影面②线段 AB 倾斜于投影面P 时,它的正投影是线段 P 时,它的正投影是线段A 1B 1,与线段 AB 的长相等; A 2B 2,长小于线段 AB 的长;③线段 AB 垂直于投影面 P 时,它的正投影是一个点①当平面图形平行于投影面 这个平面图形全等;②当平面图形倾斜于投影面 缩小,是类似图形但不一定相似③当平面图形垂直于投影面(3) 立体图形的正投影 .1)位置关系三视图的位置是有规定的,主视图要在左边,它的下方应是俯视图,左视图在其右边,如图(2)大小关系 三视图之间的大小是相互联系的, 遵循主视图与俯视图的 “长对正”,主视图与左视图的 “高平齐”, 左视图与俯视图的“宽相等”的原则 . 如图 (2) 所示 .要点诠释:物体的三视图的位置是有严格规定的,不能随意乱放 . 三视图把物体的长、宽、高三个方面反映到 各个视图上,具体地说,主视图反映物体的长和高;俯视图反映物体的长和宽,左视图反映物体的高和 宽,抓住这些特征能为画物体的三视图打下坚实的基础 .3. 画几何体的三视图 画一个几何体的三视图时,要从三个方面观察几何体,具体画法如下:(1) 确定主视图的位置,画出主视图;(2) 在主视图的正下方画出俯视图,注意与主视图“ 长对正 ”;(3) 在主视图的正右方画出左视图,注意与主视图“高平齐 ”,与俯视图“ 宽相等 ” .几何体上被其他部分遮挡而看不见的部分的轮廓线应画成虚线 .要点诠释: 画一个几何体的三视图,关键是把从正面、上方、左边三个方向观察时所得的视图画出来,所以, 首先要注意观察时视线与观察面垂直,即观察到的平面图是该图的正投影;其二,要注意正确地用虚线 表示看不到的轮廓线;其三,要充分发挥想象,多实践,多与同学交流探讨,多总结;最后,按三视图 的位置和大小要求从整体上画出几何体的三视图 . 要点六、由三视图描述几何体 由三视图描述几何体,一般先根据各视图想象从各个方向看到的几何体形状,然后综合起来确定几 何体的形状,再根据三个视图“长对正、高平齐、宽相等”的关系,确定轮廓线的位置以及各个方向的 尺寸 .要点诠释:由物体的三视图想象几何体的形状有一定的难度,可以从如下途径进行分析: (1) 根据主视图、俯 视图和左视图想象几何体的前面、上面和左侧面的形状以及几何体的长、宽、高;(2) 根据实线和虚线想象几何体看得见和看不见的轮廓线; (3) 熟记一些简单的几何体的三视图会对复杂几何体的想象有帮 助; (4) 利用由三视图画几何体与由几何体画三视图为互逆过程,反复练习,不断总结方法 . 要点七、简单几何体的表面展开图1. 表面展开图将几何体沿着某些棱“剪开” ,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展 开图 .示.(1) 所2. 圆柱的表面展开图如下左图,圆柱可以看做由一个矩形绕它的一条边(BC)旋转一周,其余各边所成的面围成的几何体.AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆.AD 旋转所成的面就是圆柱的侧面,AD不论旋转到哪个位置,都是圆柱的母线.如果沿着圆柱的任意一条母线把圆柱的侧面“剪开”,铺平,那么就得到圆柱的侧面展开图. 一般地,一个底面半径为r ,母线长为l 的圆柱的表面展开图如上右图所示.由图可知,圆柱的侧面积公式为:S侧=2 rl . 全面积公式为:S全=2 r2+2 rl .3.圆锥的表面展开图圆锥可以看做将一个直角三角形绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体.直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面.斜边AB 不论旋转到哪一个位置,都叫做圆锥的母线.一般地,一个底面半径为r ,母线长为l 的圆锥的侧面展开图是一个半径为母线长l ,弧长为底面圆周长2π r 的扇形,如图,由此我们可以得到圆锥的侧面积和全面积公式:S侧= rl .2S全= r 2+ rl .l若设圆锥的侧面展开图扇形的圆心角为,则由0 2 r ,得到圆锥侧面展开图扇形的圆心角1800度数的计算公式:类型一、投影的作图问题1.如何才能使如图所示的两棵树在同一时刻的影长分别与它们的原长相等,试画图说明.答案与解析】(1) 如图所示.可在同一方向上画出与原长相等的影长,此时为平行投影.(2) 如图所示,可在两树外侧不同方向上画出与原长相等的影子,连结影子的顶点与树的顶点.相交于点P.此时为中心投影,P 点即为光源位置.总结升华】连结物体顶点与其影长的顶点,如果得到的是平行线,即为平行投影;如果得到相交直线,则为中心投影,这是判断平行投影与中心投影的方法,也是确定中心投影光源位置的基本做法.但若中心投影光源在两树同侧时,图中的两棵树的影长不可能同时与原长相等,所以点光源可以选在两树之间.特别提醒:易错认为只有平行投影才能使两棵树在同一时刻的影长分别 与它们的原长相等,从而漏掉上图这一情形.举一反三:【 变式】 与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花 CD 和一棵树 AB .晚上,幕墙反射路灯,灯光形成那盆花的影子 DF ,树影 BE 是路灯灯光直接形成的,如图所示,你能确定此时路灯光源的位置吗 ?思路点拨】1)连结 AC ,过 D 点作 DG ∥AC 交 BC 于 G 点,则 GE 为所求; 2)先证明 Rt △ABC ∽△ RtDEG ,然后利用相似比计算DE 的长.答案与解析】 解:( 1)影子 EG 如图所示;2)∵DG ∥AC ,∴∠ G=∠C ,∴Rt △ABC ∽△RtDEG ,= ,即 = ,解得 DE=,答案】 作法如下:① 连结 FC 并延长交玻璃幕墙于 O 点; ② 过点 O 作直线 OG 垂直于玻璃幕墙面;③ 在 OC 另一侧作∠ POG =∠ FOG 且交 EA 延长线于点 P 点即此时路灯光源位置,如图所示.类型二、投影的应用2015·盐城校级模拟)如图,小明与同学合作利用太阳光线测量旗杆的高度,身高明落在地面上的影长为 BC=2.4m .1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子 EG ;2)若小明测得此刻旗杆落在地面的影长EG=16m ,请求出旗杆 DE 的高度.P .类型三、由三视图描述几何体位置小立方体的个数,请画出这个几何体的主视图和左视图.思路点拨】由已知条件可知,主视图有3 列,每列小正方数形数目分别为每列小正方形数目分别为1,3,2.据此可画出图形.如图所示:总结升华】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.类型四、三视图的有关计算4.(2016春?潮南区月考)如图所示的是某个几何体的三视图.1)说出这个立体图形的名称;2)根据图中的有关数据,求这个几何体的表面积.3.(2015·惠州校级月考)如图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示该2,2,3,左视图有3 列,∴旗杆的高度为m.总结升华】本题考查了平行投影,也考查了相似三角形的判定与性质.答案与解析】解:【思路点拨】(1)从三视图的主视图看这是一个矩形,而左视图是一个扁平的矩形,俯视图为一个三角形,故可知道这是一个直三棱柱;(2)根据直三棱柱的表面积公式计算即可.【答案与解析】解:(1)这个立体图形是直三棱柱;(2)表面积为:×3× 4× 2+15× 3+15× 4+15×5=192 .【总结升华】本题主要考查由三视图确定几何体和求几何体的表面积等相关知识,考查学生的空间想象能力.举一反三:高清课程名称:投影与视图高清ID 号:398414 关联的位置名称(播放点名称):课题学习】变式】某工厂要加工一批密封罐,设计者给出了密封罐的三视图作每个密封罐所需钢板的面积(单位:mm).(如图所示),请你按照三视图确定制密封罐的高为50mm,底面正六边形的对角线为100mm,边长为50 mm,如图(2) 所示.由展开图可知,制作一个密封罐所需钢板的面积为1S=6× 50×50+2×6× ×50×50×sin60 °2=6× 50°× 1 3≈27990(mm2).2类型五、简单几何体的表面展开图5.小红为了迎接圣诞节而准备做一顶圣诞帽.如图所示,圆锥的母线长为26cm,高24cm,求它的底面半径及做这样一顶帽子需要的布料面积(接缝忽略不计) .答案与解析】如图所示,在Rt △ SOA中,r SA2 SO2262 242cm 10cm .即圆锥底面半径为10cm,做这样的圣诞帽需布料πRr=260 πcm2.点评】本题考查的是圆锥母线R,高h,底面半径r 三者的关系,及利用圆锥侧面积解决实际问题的方法.根据圆锥母线R,高h,底面半径r 的关系,可求r R2 h2,所需布料即为圆锥侧面积π Rr.。

七年级苏教版数学复习要点考点专题四:立体图形及三视图(教师用,附答案分析)

七年级苏教版数学复习要点考点专题四:立体图形及三视图(教师用,附答案分析)

七年级苏教版数学复习要点考点专题四:立体图形及三视图知识点一常见立体图形1.立体图形与平面图形①有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形.②有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形.3.常见立体图形的分类曲面体圆柱、圆锥、球体按是否有顶点是棱柱、棱锥、圆锥否圆柱、球体总结:在对几何体分类时首先确定分类的标准,分类标准不同,结果也就不同,不论选择哪种分类标准,都要做到不重、不漏.4、点、线、面、体体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥都是几何体,几何体也称体.面:包围着体的是面.面有平面和曲面两种.线:面和面相交的地方形成线.点:线和线相交的地方是点.用运动的观点来看:点动成线、线动成面、面动成体.例1(中山区期末)三角形ABC绕BC旋转一周得到的几何体为()A.B.C.D.【解答】解:由图形的旋转性质,可知ABC旋转后的图形为C,故选:C.例2(邳州市期末)如图,在下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是()A.B.C.D.【解答】解:A、是直角梯形绕高旋转形成的圆台,故A正确;B、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B错误;C、绕直径旋转形成球,故C错误;D、绕直角边旋转形成圆锥,故D错误.故选:A.例3(皇姑区期末)下面是一个正方体,用一个平面去截这个正方体截面形状不可能为下图中的()A.B.C.D.【解答】解:无论如何去截,截面也不可能有弧度,因此截面不可能是圆.故选:D.知识点二几何体的表面展开图1.展开图:有些几何体的表面可以展开成平面图形,这个平面图形称为相应几何体的表面展开图.2.常见立体图形的平面展开图(1)圆柱的表面展开图是两个相同的圆面和一个长方形组成的;(2)圆锥的表面展开图是由一个圆面和一个扇形组成的;(3)棱柱的表面展开图是由两个相同的多边形和一个长方形组成的,侧面展开图是一个长方形。

专题27 三视图与展开图(解析版)

专题27  三视图与展开图(解析版)

专题13 三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。

2.物体的三视图特指主视图、俯视图、左视图。

(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。

(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。

(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。

物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。

3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。

【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.从左面看可得到从左到右分别是3,1个正方形.专题知识回顾专题典型题考法及解析【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.【答案】(18+2)cm2.【解析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【答案】B【解析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.由题意可知,该几何体为四棱锥,所以它的底面是四边形.专题典型训练题一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A. B.C.D.【答案】B【解析】立体图形的展开图B中图形符合“一四一”模型,是正方体的展开图.故选B.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.【答案】B.【解析】考点是几何体的展开图。

七年级数学上册专题训练四立体图形的三视图及展开图课件新版华东师大版

七年级数学上册专题训练四立体图形的三视图及展开图课件新版华东师大版

14.如图是一个几何体从三个方向看所得到的形状图. (1)写出这个几何体的名称; (2)若从正面看到的长为10 cm,从上面看到的圆的直径为4 cm,求这 个几何体的表面积(结果保留π).
解:(1)该几何体是圆柱. (2)因为从正面看的长为10 cm,从上面看的圆的直径为4 cm,所 以该圆柱的底面直径为4 cm,高为10 cm, 所以该几何体的侧面积为2πrh=2π×2×10=40π(cm2), 该几何体的表面积为40π+8π=48π(cm2).
三、正方体的表面展开图 15.(2016·枣庄)有3块积木,每一块的各面都涂上不同的颜色,3 块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根 据图形判断涂成绿色一面的对面的颜色是( C )(导学号 40324174) A.白 B.红 C.黄 D.黑
16.(2016·连云港)如图是一个正方体的平面展开图,把展开图折叠成 正方体后,“美”字一面相对面的字是( D ) A.丽 B.连 C.云 D.港
5.观察下面的几何体,从上面、从左面、从正面看到的依次是 ___③__②__①_____.
6.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图 所示.方格中的数字表示该位置的小立方块的个数. (1)请在下面方格纸中分别画出这个几何体的主视图和左视图.
(2)根据三视图,请你求出这个组合几何体的表面积(包括底面积).
解:(1)图形如下所示: (2)几何体的表面积为:(3+4+5)×2=24.
7.如图是用10块完全相同的小正方体搭成的几何体. (1)请在空白的方格中画出它的三个视图; (2)若保持主视图和俯视图不变,最多还可以再搭__3__块小正方 体. 解:(1)如图所示.
二、由三视图判断立体图形
8.如图是某个几何体的三视图,该几何体是( C ) A.圆锥 B.三棱锥 C.四棱锥 D.四棱柱

立体图形的三视图和展开图

立体图形的三视图和展开图

用剪刀把正方体纸盒按任意方式沿棱 展开,你能得到哪些不同的展开图?
精选课件
25
第一类,中间四连方,两侧各一 个,共六种。
1
2
3
4
5
6
精选课件
26
第二类,中间三连方,两侧各有一、二个,共三种。
精选课件
27
第三类,中间二连方,两侧各有二个,只有一种。
精选课件
28
第四类,两排各三个,只有一种。
结果: 共有 11 种情况
(2)观察下图经过折叠能否围成一个正方体。
精选课件
32
考考你
1、如果“你”在前面,那么谁在后面?
了!
太棒
你们
精选课件
KEY: 棒
33
2、“坚”在下,“就”在后,胜利在哪里?

持就是


精选课件
34
下图是一个正方体的展开图,标注了字母 A的面是正方体的正面,如果正方体的左面与
右面所标注代数式的值相等,求 x 的值.
-2
3 -4 1
A 3x-2
精选课件
35
1、学会了从不同方向观察立体图形。
2、 学会了简单几何体(如棱柱,正方体 等)的平面展开图,知道按不同的方式展 开会得到不同的展开图。
3、学会了动手实践,与同学合作。
4、友情提醒:不是所有立体图形都有平面展 开图,比如球体。
精选课件
36
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
8
俯视图
左视图
主视图
精选课件
9Байду номын сангаас
正视图
左精视选课图件
俯视图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下列展开图能折叠成什么立体图形?
圆 柱
棱 柱 棱 柱
圆 锥
想一想: 下面几个图形是一些常见几何 体的展开图,你能正确说出这些几何 体的名字么?
把下面的正三角形沿虚线折叠后 的几何体是什么?
将下图中五角星状的图形沿虚线折叠,得 到一个什么几何体?
俯视图
从上面看
左视图
从左边看
长方体
从正面看
主视图
俯视图
左视图
主视图
俯视图
左视图
主视图
俯视图
左视图
主视图
从上面看
从左面看
从正面看
主视图
左视图
俯视图
分别从正面、左面、上面观察这个图 形,各能得到什么平面图形?
从正面看
从左面看
从上面 看
1、 学会了简单几何体(如棱柱,正 方体等)的平面展开图。 2、学会了物体的三视图。 3、友情提醒:不是所有立体图形都有 比如球体。 平面展开图,
特殊类:两种
222型和33型。
将相对的两个面涂上相同的颜色, 正方体的平面展开图共有以下11种:
将一个正方体的表面 沿某些棱剪开,展成一 个平面图形,应该剪开 几条棱?
试一试
下面六个正方形连在一起的图形,经折 叠后能围成正方体的图形有哪几个
E
F
G
三 棱 柱 的 展 开 图
立体图形的展开图
活动一
把你所做的立体图形展开, 看它的平面展开图是什么。
圆 柱
展开
长方体
展开
棱柱
展开
圆锥
展开
练习:
活动二 用剪刀把桌上的正方体纸盒按任意方式沿 棱展开,你能得到哪些不同的展开图?比 比哪一小组的展开图更与众不同。
第一类,1+4+1型,共六种。
第二类,2+3+1型,共三种。
相关文档
最新文档