2020年度上海市高考数学试卷(理科)

合集下载

2020年普通高等学校招生全国统一考试数学理(上海卷,解析版)

2020年普通高等学校招生全国统一考试数学理(上海卷,解析版)

2020年普通高等学校招生全国统一考试数学理(上海卷,解析版)考生注意:1. 答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码 .2. 本试卷共有23道试题,满分150分 .考试时间20分钟 .一.真空题 (本大题满分56分)本大题有14题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分 .1. 若复数 z 满足z (1+i) =1-i (I 是虚数单位),则其共轭复数z =__________________ . 1.【答案】i【解析】设z =a +bi ,则(a +bi )(1+i) =1-i ,即a -b +(a +b )i =1-i ,由⎩⎨⎧-=+=-11b a b a ,解得a =0,b =-1,所以z =-i ,z =i2. 已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是______________________ . 2.【答案】a ≤1【解析】因为A ∪B=R ,画数轴可知,实数a 必须在点1上或在1的左边,所以,有a ≤1。

3. 若行列式417 5 xx 3 8 9中,元素4的代数余子式大于0,则x 满足的条件是________________________ . 3.【答案】83x >【解析】依题意,得: (-1)2×(9x-24)>0,解得:83x >4.某算法的程序框如右图所示,则输出量y 与输入量x满足的关系式是____________________________ .4.【答案】2,12,1x x y x x ⎧<=⎨->⎩【解析】当x >1时,有y =x -2,当x <1时有y =x 2,所以,有分段函数。

5.如图,若正四棱柱1111ABCD A B C D -的底面连长为2,高 为4,则异面直线1BD 与AD 所成角的大小是______________(结果用反三角函数表示). 5.【答案】arctan 5【解析】因为AD ∥A 1D 1,异面直线BD 1与AD 所成角就是BD 1与A 1D 1所在角,即∠A 1D 1B , 由勾股定理,得A 1B =25,tan ∠A 1D 1B =5,所以,∠A 1D 1B =arctan 5。

2020年上海市高考数学试卷(含答案)

2020年上海市高考数学试卷(含答案)

2020年上海市高考数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共4小题,共20.0分) 1. 下列等式恒成立的是( )A. a 2+b 2≤2abB. a 2+b 2≥−2abC. a +b ≥2√|ab|D. a 2+b 2≤−2ab2. 已知直线方程3x +4y +1=0的一个参数方程可以是( )A. { x =1+3ty =−1−4tB. {x =1−4ty =−1+3t C. {x =1−3ty =−1+4t D. {x =1+4ty =1−3t3. 在棱长为10的正方体ABCD −A 1B 1C 1D 1中,P 为左侧面ADD 1A 1上一点,已知点P 到A 1D 1的距离为3,P 到AA 1的距离为2,则过点P 且与A 1C 平行的直线交正方体于P,Q 两点,则Q 点所在的平面是( )A. AA 1B 1BB. BB 1C 1CC. CC 1D 1DD. ABCD 4. 命题p :存在a ∈R 且a ≠0,对于任意的x ∈R ,使得f(x +a)<f(x)+f(a);命题q 1:f(x)单调递减且f(x)>0恒成立; 命题q 2:f(x)单调递增,存在x 0<0使得f(x 0)=0, 则下列说法正确的是( )A. 只有q 1是p 的充分条件B. 只有q 2是p 的充分条件C. q 1,q 2都是p 的充分条件D. q 1,q 2都不是p 的充分条件二、填空题(本大题共12小题,共54.0分)5. 已知集合A ={1,2,4},集合B ={2,4,5},则A ∩B = .6. 计算:lim n→∞ n+13n−1= 7. 已知复数z =1−2i(i 为虚数单位),则|z|= .8. 已知函数f(x)=x 3,f′(x)是f(x)的反函数,则f′(x)= 。

9. 已知x 、y 满足{x +y −2≥0x +2y −3≤0y ≥0,则z =y −2x 的最大值为10. 已知行列式|1ab2cd 30|=6,则|abcd|= 11. 已知有四个数1,2,a ,b ,这四个数的中位数是3,平均数是4,则ab = . 12. 已知数列{a n }是公差不为零的等差数列,且a 1+a 10=a 9,则a 1+a 2+⋯+a 9a 10= .13. 从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有 种安排情况.第3题14.已知椭圆C:x24+y23=1的右焦点为F,直线l经过椭圆右焦点F,交椭圆C于P、Q两点(点P在第二象限),若点Q关于x轴对称点为Q′,且满足PQ⊥FQ′,求直线l的方程是.15.设a∈R,若存在定义域为R的函数f(x)同时满足下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的方程f(x)=a无实数解,则a的取值范围是.16.已知a1⃗⃗⃗⃗ ,a2⃗⃗⃗⃗ ,b1⃗⃗⃗ ,b2⃗⃗⃗⃗ ,…,b k⃗⃗⃗⃗ (k∈N∗)是平面内两两互不相等的向量,满足|a1⃗⃗⃗⃗ −a2⃗⃗⃗⃗ |=1,且|a i⃗⃗⃗ −b j⃗⃗⃗ |∈{1,2}(其中i=1,2,j=1,2,…,k),则k的最大值是.三、解答题(本大题共5小题,共76.0分)17.已知ABCD是边长为1的正方形,正方形ABCD绕AB旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD绕AB逆时针旋转π2至ABC1D1,求线段CD1与平面ABCD所成的角.18. 已知函数f(x)=sinωx ,ω>0.(1)f(x)的周期是4π,求ω,并求f(x)=12的解集;(2)已知ω=1,g(x)=f 2(x)+√3f(−x)f(π2−x),x ∈[0,π4],求g(x)的值域.19. 在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为v =qx ,x 为道路密度,q 为车辆密度.v =f(x)={100−135⋅(13)x ,0<x <40−k(x −40)+85,40≤x ≤80.(1)若交通流量v >95,求道路密度x 的取值范围;(2)已知道路密度x =80,交通流量v =50,求车辆密度q 的最大值.20.已知双曲线Γ1:x24−y2b2=1与圆Γ2:x2+y2=4+b2(b>0)交于点A(x A,y A)(第一象限),曲线Γ为Γ1、Γ2上取满足x>|x A|的部分.(1)若x A=√6,求b的值;(2)当b=√5,Γ2与x轴交点记作点F1、F2,P是曲线Γ上一点,且在第一象限,且|PF1|=8,求∠F1PF2;(3)过点D(0,b22+2)斜率为−b2的直线l与曲线Γ只有两个交点,记为M、N,用b表示OM⃗⃗⃗⃗⃗⃗⃗ ⋅ON⃗⃗⃗⃗⃗⃗ ,并求OM⃗⃗⃗⃗⃗⃗⃗ ⋅ON⃗⃗⃗⃗⃗⃗ 的取值范围.21.已知数列{a n}为有限数列,满足|a1−a2|≤|a1−a3|≤⋯≤|a1−a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m−1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.答案和解析1.【答案】B解:A.显然当a <0,b >0时,不等式a 2+b 2≤2ab 不成立,故A 错误;B .∵(a +b)2≥0,∴a 2+b 2+2ab ≥0,∴a 2+b 2≥−2ab ,故B 正确,D 错误; C.显然当a <0,b <0时,不等式a +b ≥2√|ab|不成立,故C 错误;故选:B .2.【答案】B解:{ x =1+3ty =−1−4t 的普通方程为:x−1y+1=−34,即4x +3y −1=0,不正确; {x =1−4t y =−1+3t的普通方程为:x−1y+1=−43,即3x +4y +1=0,正确; {x =1−3t y =−1+4t的普通方程为:x−1y+1=−34,即4x +3y −1=0,不正确; {x =1+4t y =1−3t的普通方程为:x−1y−1=−43,即3x +4y −7=0,不正确;故选:B . 3.【答案】D解:如图,由点P 到A 1D 1的距离为3,P 到AA 1的距离为2,可得P 在△AA 1D 内,过P 作EF//A 1D ,且EF ∩AA 1于E ,EF ∩AD 于F ,在平面ABCD 中,过F 作FG//CD ,交BC 于G ,则平面EFG//平面A 1DC . 连接AC ,交FG 于M ,连接EM ,∵平面EFG//平面A 1DC ,平面A 1AC ∩平面A 1DC =A 1C ,平面A 1AC ∩平面EFM =EM ,∴EM//A 1C .在ΔEFM 中,过P 作PN//EM ,且PN ∩FM 于N ,则PN//A 1C . ∵线段FM 在四边形ABCD 内,N 在线段FM 上,∴N 在四边形ABCD 内.∴点N 即为过点P 且与A 1C 平行的直线与正方体的交点,即与点Q 重合∴点Q 在平面ABCD 内故选:D .4.【答案】C解:对于命题q 1:当f(x)单调递减且f(x)>0恒成立时,当a >0时,此时x +a >x ,又因为f(x)单调递减,所以f(x +a)<f(x)又因为f(x)>0恒成立时,所以f(x)<f(x)+f(a), 所以f(x +a)<f(x)+f(a),所以命题q 1⇒命题p , 对于命题q 2:当f(x)单调递增,存在x 0<0使得f(x 0)=0,当a =x 0<0时,此时x +a <x ,f(a)=f(x 0)=0,又因为f(x)单调递增,所以f(x +a)<f(x),所以f(x +a)<f(x)+f(a),所以命题p 2⇒命题p , 所以q 1,q 2都是p 的充分条件,故选:C .5.【答案】{2,4}解:因为A ={1,2,4},B ={2,4,5},则A ∩B ={2,4}.故答案为:{2,4}.6.【答案】13解:,故答案为:13.7.【答案】√5解:由z =1−2i ,得|z|=√12+(−2)2=√5.故答案为:√5.8.【答案】√x 3【解答】解:由y =f(x)=x 3,得x =√y 3,把x 与y 互换,可得f(x)=x 3的反函数为f −1(x)=√x 3.故答案为:√x 3.9.【答案】−1解:由约束条件{x +y −2≥0x +2y −3≤0y ≥0作出可行域如图阴影部分,化目标函数z =y −2x 为y =2x +z ,由图可知,当直线y =2x +z 过A 时,直线在y 轴上的截距最大, 联立{x +y −2=0x +2y −3=0,解得{x =1y =1,即A(1,1).z 有最大值为1−2×1=−1.故答案为:−1. 10.【答案】2解:行列式|1a b2cd 30|=6,可得3|ab cd |=6,解得|a bcd|=2.故答案为:2. 11.【答案】36解:因为四个数的平均数为4,所以a +b =4×4−1−2=13,因为中位数是3,所以2+a 2=3,解得a =4,代入上式得b =13−4=9,所以ab =36,故答案为:36.12.【答案】278解:根据题意,等差数列{a n }满足a 1+a 10=a 9,即a 1+a 1+9d =a 1+8d ,变形可得a 1=−d , 所以a 1+a 2+⋯+a 9a 10=9a 1+9×8d 2a 1+9d=9a 1+36d a 1+9d=−9d+36d −d+9d=278.故答案为:278.13.【答案】180解:根据题意,可得排法共有C 61C 51C 42=180种.故答案为:180.14.【答案】x +y −1=0解:椭圆C:x 24+y 23=1的右焦点为F(1,0),直线l 经过椭圆右焦点F ,交椭圆C 于P 、Q 两点(点P 在第二象限),若点Q 关于x 轴对称点为Q′,且满足PQ ⊥FQ′, 可知直线l 的斜率为−1,所以直线l 的方程是:y =−(x −1), 即x +y −1=0. 故答案为:x +y −1=0.15.【答案】(−∞,0)∪(0,1)∪(1,+∞)解:根据条件(1)可得x 0=0或1,又因为关于x 的方程f(x)=a 无实数解,所以a ≠0或1, 故a ∈(−∞,0)∪(0,1)∪(1,+∞),故答案为:(−∞,0)∪(0,1)∪(1,+∞).16.【答案】6解:如图,设OA 1⃗⃗⃗⃗⃗⃗⃗⃗ =a 1⃗⃗⃗⃗ ,OA 2⃗⃗⃗⃗⃗⃗⃗⃗ =a 2⃗⃗⃗⃗ , 由|a 1⃗⃗⃗⃗ −a 2⃗⃗⃗⃗ |=1,且|a i ⃗⃗⃗ −b j ⃗⃗⃗ |∈{1,2}, 分别以A 1,A 2为圆心,以1和2为半径画圆, 其中圆的公共点共有6个.故满足条件的k 的最大值为6.故答案为:6.17.【答案】解:(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,∴S =2×π×12+2π×1=4π.故该圆柱的表面积为4π.(2)∵正方形ABC1D1,∴AD1⊥AB,又∠DAD1=π2,∴AD1⊥AD,∵AD∩AB=A,且AD、AB⊂平面ADB,∴AD1⊥平面ADB,即D1在面ADB上的投影为A,连接CD1,则∠D1CA即为线段CD1与平面ABCD所成的角,而cos∠D1CA=ACCD1=√2√3=√63,∴线段CD1与平面ABCD所成的角为arccos√63.【解析】本题考查圆柱的表面积、空间线面夹角问题,熟练掌握线面垂直的判定定理是解题的关键,考查学生的空间立体感和运算能力,属于中档题.(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,依次求出圆面和矩形的面积,相加即可;(2)先利用线面垂直的判定定理证明AD1⊥平面ADB,连接CD1,则∠D1CA即为线段CD1与平面ABCD所成的角,再利用三角函数的知识求出cos∠D1CA即可.18.【答案】解:(1)由于f(x)的周期是4π,所以ω=2π4π=12,所以f(x)=sin12x.令sin12x=12,故12x=2kπ+π6或2kπ+5π6,整理得x=4kπ+π3或x=4kπ+5π3.故解集为{x|x=4kπ+π3或x=4kπ+5π3,k∈Z}.(2)由于ω=1,所以f(x)=sinx.所以g(x)=sin2x+√3sin(−x)sin(π2−x)=1−cos2x2−√32sin2x=−√32sin2x−12cos2x+12=12−sin(2x+π6).由于x∈[0,π4],所以π6≤2x+π6≤2π3.12≤sin(2x+π6)≤1,故−1≤−sin(2x+π6)≤−12,故−12≤g(x)≤0.所以函数g(x)的值域为[−12,0].【解析】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.(1)直接利用正弦型函数的性质的应用求出结果.(2)利用三角函数关系式的变换和正弦型函数的性质的应用求出函数的值域.19.【答案】解:(1)∵v=qx,∴v越大,x越小,∴v=f(x)是单调递减函数,k>0,当40≤x ≤80时,v 最大为85,于是只需令100−135⋅(13)x >95,解得x >3, 故道路密度x 的取值范围为(3,40).(2)把x =80,v =50代入v =f(x)=−k(x −40)+85中,得50=−k ⋅40+85,解得k =78.∴q =vx ={100x −135⋅(13)x ⋅x,0<x <40−78(x −40)x +85x,40≤x ≤80, 当0<x <40时,q 单调递增,q <100×40−135×(13)40×40≈4000;当40≤x ≤80时,q 是关于x 的二次函数,开口向下,对称轴为x =4807,此时q 有最大值,为−78×(4807)2+120×4807=288007>4000.故车辆密度q 的最大值为288007.【解析】本题考查分段函数的实际应用,考查学生分析问题和解决问题的能力,以及运算能力,属于中档题.(1)易知v 越大,x 越小,所以v =f(x)是单调递减函数,k >0,于是只需令100−135⋅(13)x >95,解不等式即可;(2)把x =80,v =50代入v =f(x)的解析式中,求出k 的值,利用q =vx 可得到q 关于x 的函数关系式,分段判断函数的单调性,并求出各自区间上q 的最大值,取较大者即可. 20.【答案】解:(1)由x A =√6,点A 为曲线Γ1与曲线Γ2的交点,联立{x A 24−y A 2b 2=1x A 2+y A 2=4+b2,解得y A =√2,b =2; (2)由题意可得F 1,F 2为曲线Γ1的两个焦点,由双曲线的定义可得|PF 1|−|PF 2|=2a ,又|PF 1|=8,2a =4, 所以|PF 2|=8−4=4,因为b =√5,则c =√4+5=3,所以|F 1F 2|=6, 在△PF 1F 2中,由余弦定理可得cos∠F 1PF 2=|PF 1|2+|PF 2|2−|F 1F 2|22|PF 1|⋅|PF 2|=64+16−362×8×4=1116,由0<∠F 1PF 2<π,可得∠F 1PF 2=arccos 1116;(3)设直线l:y =−b2x +4+b 22,可得原点O 到直线l 的距离d =|4+b 22|√1+24=√4+b 2,所以直线l 是圆的切线,设切点为M ,所以k OM =2b ,并设OM:y =2b x 与圆x 2+y 2=4+b 2联立,可得x 2+4b 2x 2=4+b 2, 可得x =b ,y =2,即M(b,2),注意直线l 与双曲线的斜率为负的渐近线平行,所以只有当y A >2时,直线l 才能与曲线Γ有两个交点,由{x A 24−y A 2b 2=1x A 2+y A 2=4+b2,可得y A 2=b 4a+b 2,所以有4<b 44+b 2,解得b 2>2+2√5或b 2<2−2√5(舍去),因为OM ⃗⃗⃗⃗⃗⃗⃗ 为ON ⃗⃗⃗⃗⃗⃗ 在OM ⃗⃗⃗⃗⃗⃗⃗ 上的投影可得,OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ =4+b 2,所以OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ =4+b 2>6+2√5, 则OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON⃗⃗⃗⃗⃗⃗ ∈(6+2√5,+∞). 【解析】本题考查双曲线与圆的定义和方程、性质,考查直线和圆的方程、双曲线的方程的联立,以及向量的数量积的几何意义,考查方程思想和化简运算能力,属于较难题. (1)联立曲线Γ1与曲线Γ2的方程,以及x A =√6,解方程可得b ; (2)由双曲线的定义和三角形的余弦定理,计算可得所求角; (3)设直线l:y =−b2x +4+b 22,求得O 到直线l 的距离,判断直线l 与圆的关系:相切,可设切点为M ,考虑双曲线的渐近线方程,只有当y A >2时,直线l 才能与曲线Γ有两个交点,解不等式可得b 的范围,由向量投影的定义求得OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON⃗⃗⃗⃗⃗⃗ ,进而得到所求范围. 21.【答案】解:(1)对于数列3,2,5,1,有|2−3|=1,|5−3|=2,|1−3|=2,满足题意,该数列满足性质P ;对于第二个数列4、3、2、5、1,|3−4|=1,|2−4|=2,|5−4|=1.不满足题意,该数列不满足性质P .(2)由题意:|a 1−a 1q n |≥|a 1−a 1q n−1|,可得:|q n −1|≥|q n−1−1|,n ∈{2,3,…,9}, 两边平方可得:q 2n −2q n +1≥q 2n−2−2q n−1+1,整理可得:(q −1)q n−1[q n−1(q +1)−2]≥0,当q ≥1时,得q n−1(q +1)−2≥0此时关于n 恒成立,所以等价于n=2时,q(q+1)−2≥0,所以,(q+2)(q−1)≥0,所以q≤−2,或q≥1,所以取q≥1,当0<q≤1时,得q n−1(q+1)−2≤0,此时关于n恒成立,所以等价于n=2时,q(q+1)−2≤0,所以(q+2)(q−1)≤0,所以−2≤q≤1,所以取0<q≤1.当−1≤q<0时:q n−1[q n−1(q+1)−2]≤0,当n为奇数时,得q n−1(q+1)−2≤0,恒成立,当n为偶数时,q n−1(q+1)−2≥0,不恒成立;故当−1≤q<0时,矛盾,舍去.当q<−1时,得q n−1[q n−1(q+1)−2]≤0,当n为奇数时,得q n−1(q+1)−2≤0,恒成立,当n为偶数时,q n−1(q+1)−2≥0,恒成立;故等价于n=2时,q(q+1)−2≥0,所以(q+2)(q−1)≥0,所以q≤−2或q≥1,所以取q≤−2,综上.(3)设a1=p,p∈{3,4,…,m−3,m−2},因为a1=p,a2可以取p−1,或p+1,a3可以取p−2,或p+2,如果a2或a3取了p−3或p+3,将使{a n}不满足性质P;所以{a n}的前5项有以下组合:①a1=p,a2=p−1;a3=p+1;a4=p−2;a5=p+2;②a1=p,a2=p−1;a3=p+1;a4=p+2;a5=p−2;③a1=p,a2=p+1;a3=p−1;a4=p−2;a5=p+2;④a1=p,a2=p+1;a3=p−1;a4=p+2;a5=p−2;对于①,b1=p−1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;对于②,b1=p−1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=2与{b n}满足性质P矛盾,舍去;对于③,b1=p+1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=1与{b n}满足性质P矛盾,舍去;对于④b1=p+1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;所以P∈{3,4,…,m−3,m−2},均不能同时使{a n}、{b n}都具有性质P.当p=1时,有数列{a n}:1,2,3,…,m−1,m满足题意.当p=m时,有数列{a n}:m,m−1,…,3,2,1满足题意.当p=2时,有数列{a n}:2,1,3,…,m−1,m满足题意.当p=m−1时,有数列{a n}:m−1,m,m−2,m−3,…,3,2,1满足题意.所以满足题意的数列{a n}只有以上四种.【解析】本题考查数列的综合应用,不等式以及不等关系,二次函数的性质以及函数的相关性质的综合应用,考查分析问题解决问题的能力是难度大的题目,必须由高的数学思维逻辑修养才能解答.(1)根据定义,验证两个数列3、2、5、1和4、3、2、5、1是否具有性质P即可;(2)假设公比q的等比数列满足性质P,可得:|a1−a1q n|≥|a1−a1q n−1|,推出(q−1)q n−1[q n−1(q+1)−2]≥0,通过q≥1,0<q≤1时,−1≤q<0时:q<−1时,四种情况讨论求解即可.(3)设a1=p,分p=1时,当p=m时,当p=2时,当p=m−1时,以及P∈{3,4,…,m−3,m−2},五种情况讨论,判断数列{a n}的可能情况,分别推出{b n}判断是否满足性质P即可.。

2020年上海高考数学试题真题及答案

2020年上海高考数学试题真题及答案

2020年上海高考数学试题真题及答案填空题(本题共12小题,满分54分,其中1-6题每题4分,7-12题每题5分)1. 已知集合{}1,2,4A =,{}2,3,4B =,求A B =_______【分值】4分 【答案】{}2,42. 1lim31n n n →∞+=-________【分值】4分【答案】133. 已知复数z 满足12z i =-(i 为虚数单位),则z =_______【分值】4分4. 已知行列式126300a cd b =,则行列式a c d b=_______【分值】4分 【答案】25. 已知()3f x x =,则()1f x -=_______【分值】4分 【答案】()13xx R ∈6.已知a 、b 、1、2的中位数为3,平均数为4,则ab= 【分值】4分 【答案】367.已知20230x y y x y +≥⎧⎪≥⎨⎪+-≤⎩,则2z y x =-的最大值为【分值】5分【答案】-18.已知{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋅⋅⋅=【分值】5分 【答案】2789.从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有种排法。

【分值】5分 【答案】18010.椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为【分值】5分【答案】10x y +-=11、设a R ∈,若存在定义域R 的函数()f x 既满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”又满足“关于x 的方程()f x a =无实数解”,则α的取值范围为【分值】5分【答案】()()(),00,11,-∞⋃⋃+∞【解析】题目转换为是否为实数a ,使得存在函数()f x满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”,又满足“关于的方程()f x a =无实数解”构造函数;()2,,x x af x x x a≠⎧=⎨=⎩,则方程()f x a =只有0,1两个实数解。

2020年普通高等学校招生全国统一考试 数学(上海卷)word版 含答案

2020年普通高等学校招生全国统一考试 数学(上海卷)word版 含答案

2020年普通高等学校招生全国统一考试(上海卷) 数学一、填空题(本题共12小题,满分54分,其中1-6题每题4分,7-12题每题5分)1. 已知集合{}1,2,4A =,{}2,3,4B =,求A B =_______ 【分值】4分【答案】{}2,42. 1lim31n n n →∞+=-________【分值】4分【答案】133. 已知复数z 满足12z i =-(i 为虚数单位),则z =_______ 【分值】4分 54. 已知行列式126300a cd b =,则行列式a c d b=_______【分值】4分 【答案】25. 已知()3f x x =,则()1f x -=_______ 【分值】4分 【答案】()13xx R ∈6. 已知a 、b 、1、2的中位数为3,平均数为4,则ab= 【分值】4分 【答案】367.已知20230x y y x y +≥⎧⎪≥⎨⎪+-≤⎩,则2z y x =-的最大值为【分值】5分 【答案】-18. 已知{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋅⋅⋅=【分值】5分 【答案】2789.从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有 种排法。

【分值】5分 【答案】18010. 椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为 【分值】5分 【答案】10x y +-=11、设a R ∈,若存在定义域R 的函数()f x 既满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”又满足“关于x 的方程()f x a =无实数解”,则α的取值范围为【分值】5分【答案】()()(),00,11,-∞⋃⋃+∞【解析】题目转换为是否为实数a ,使得存在函数()f x满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”,又满足“关于的方程()f x a =无实数解”构造函数;()2,,x x a f x x x a ≠⎧=⎨=⎩,则方程()f x a =只有0,1两个实数解。

2020上海市普通高校招生统一文化考试数学卷(2020上海高考数学卷)

2020上海市普通高校招生统一文化考试数学卷(2020上海高考数学卷)

8、已知数列 an为不等于零的等差数列,且 a1 a10
a9 ,则
a1 a2 a9 a10
_________
9、从 6 个人选 4 个人去值班,每人值班一天,第一天安排 1 个人,第二天安排 1 个人,第三天安排 2 个人,则共 有__________种安排情况。
10、已知椭圆 C : x2 y2 1 右焦点,直线 l 经过椭圆右焦点 F ,交椭圆 C 于 P、Q 两点(点 P 在第二象限),若 43

4、已知函数 f x x3 , f 'x是 f x 的反函数,则 f 'x ______
x y 2 0
5、已知
x、y
满足
x
2
y
3
0
,则
z
y
2x
的最大值为____________
y 0
1ab 6、已知行列式 2 c d 6 ,则 a b ________
cd 300
7、已知有四个数12, a, b ,这四个数的中位数是 3,平均数是 4,则 ab ______
则 a 的取值范围为______________
12、已知 a1, a2 , b1, b2 bk k N * 是平面内两两互不相等的向量,满足 a1 a2 1,且 ai bj 1,2(其中 i 1,2 ,
j 1,2,k ),则 k 的最大值为__________ 二、选择题(本大题共 4 题,每题 5 分,共 20 分) 13、下列等式恒成立的是( )
b 0交于点 AxA, yA (第一象限),曲线 在 C1、C2
上取满足 x xA 的部分
(1)若 xA 6 ,求 b 的值;
(2)若 b 5 , C2 与 x 轴交点记作点 F1、F2 , P 在第一象限内,且 PF1 8 ,求 F1PF2

2020年上海市高考数学试卷

2020年上海市高考数学试卷

=

9.(5 分)从 6 个人挑选 4 个人去值班,每人值班一天,第一天安排 1 个人,第二天安排 1
个人,第三天安排 2 个人,则共有 种安排情况. 10. (5 分)已知椭圆 C : x2 + y2 = 1 的右焦点为 F ,直线 l 经过椭圆右焦点 F ,交椭圆 C 于 P 、
43 Q 两点(点 P 在第二象限),若点 Q 关于 x 轴对称点为 Q ,且满足 PQ ⊥ FQ ,求直线 l 的
【分析】由已知直接利用复数模的计算公式求解.
【解答】解:由 z = 1 − 2i ,得 | z |= 12 + (−2)2 = 5 .
故答案为: 5 .
【点评】本题考查复数模的求法,是基础的计算题.
1
4.(4 分)已知函数 f (x) = x3 , f (x) 是 f (x) 的反函数,则 f (x) = x3 , x R . 【分析】由已知求解 x ,然后把 x 与 y 互换即可求得原函数的反函数.
(1)求该圆柱的表面积;
(2)正方形
ABCD绕ABFra bibliotek逆时针旋转
2

ABC1D1
,求线段
CD1
与平面
ABCD
所成的角.
第2页(共19页)
18.(14 分)已知函数 f (x) = sinx , 0 .
(1) f (x) 的周期是 4 ,求 ,并求 f (x) = 1 的解集; 2
(2)已知 = 1 , g(x) = f 2 (x) + 3 f (−x) f ( − x) , x [0 , ] ,求 g(x) 的值域.
【解答】解: lim
n +1
=
1+ lim

普通高等学校招生全国统一考试上海卷理科数学试题及答案

普通高等学校招生全国统一考试上海卷理科数学试题及答案

2020年一般高等学校招生上海卷理工类数学试题一、填空(本大分 48分,每小4分)11.若tgα=,tg(α+)= .242.抛物的点坐(2,0),准方程x=-1,它的焦点坐.3.会合A={5,log2(a+3)},会合B={a,b}.若A∩B={2},A∪B= .1 84.等比数列{an }(n∈N)的公比q=- ,且lim(a1+a3+a5+⋯+a2n-1)=,a1=.2 n 35.奇函数 f(x)的定域[-5,5].若当x∈[0,5] ,f(x)的象如右,不等式 f(x)<0的解是 . yy=f(x)6.已知点A(1, -2),若向量AB 与a={2,3}同向, AB=213, 点B 的坐.O25x7.在极坐系中,点M(4,)到直l:ρ(2cos θ+sin 的θ距)=4离3d= .8.心在直2x -y -7=0上的C 与y 交于两点A(0,-4),B(0,-2),C的方程.9.若在二式(x+1)10的睁开式中任取一,的系数奇数的概率是.(果用分数表示)10.若函数f(x)=axb2在[0,+∞)上增函数,数a 、b 的取范是.11.教材中“坐平面上的直”与“曲”两章内容体出分析几何的本是.12.若干个能独一确立一个数列的量称数列的“基本量”.{a n}是公比q的无等比数列,以下{an}的四量中,必定能成数列“基本量”的是第.(写出全部切合要求的号)①S 1与S2; ②a 2与S3; ③a 1与an; ④q 与an.此中n 大于1的整数,Sn{an}的前n 和.二、(本大分 16分,每小4分)13.在以下对于直 l 、m 与平面α、β的命中,真命是()若l β且α⊥β,l ⊥α.(B)若l ⊥β且α∥β,l ⊥α.若l ⊥β且α⊥β,l ∥α.(D)若α∩β=m 且l ∥m,l ∥α.14.三角方程2sin(-x)=1的解集()25(A){x │x=2kπ+,k∈Z}.(B){x│x=2kπ+,k∈Z}.33 (C){x │x=2kπ±,k∈Z}. (D){xK│x=kπ-1)+(,k∈Z}.315.若函数 y=f(x)的象可由函数y=lg(x+1)的象坐原点O 逆旋获得,2f(x)=( )-x(B)10x-x x(A)10-1.-1.(C)1-10.(D)1-10.16.某地2004年第一季度应聘和招聘人数排行榜前5个行业的状况列表以下行业名称计算机机械营销物流贸易应聘人数2158302002501546767457065280行业名称计算机营销机械建筑化工招聘人数124620102935891157651670436若用同一行业中应聘人数与招聘人数比值的大小来权衡该行业的就业状况,则依据表中数据,就业局势必定是()计算机行业好于化工行业.(B)建筑行业好于物流行业.(C)机械行业最紧张.(D)营销行业比贸易行业紧张.三、解答题(本大题满分86分)17.(此题满分12分)已知复数z1知足(1+i)z1=-1+5i,z2=a-2-i,此中i为虚数单位,a∈R,若z1z2<z1,求a的取值范围.18.(此题满分12分)某单位用木材制作以下图的框架,框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形.要求框架围成的总面积8cm2.问x、y分别为多少(精准到0.001m)时用料最省?yx19.(此题满分14分)第1小题满分6分,第2小题满分8分记函数f(x)=2x3的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.(1)x1求A;若BA,务实数a的取值范围.20.(此题满分14分)第1小题满分6分,第2小题满分8分已知二次函数y=f1(x)的图象以原点为极点且过点(1,1),反比率函数y=f2(x)的图象与直线y=x的两个交点距离8,f(x)=f1(x)+f2(x).求函数f(x)的表达式;明:当a>3,对于x的方程f(x)=f(a)有三个数解.21.(安分16分)第1小分4分,第2小分6分,第3小分6分如,P-ABC是底面1的正三棱,D、E、F分棱PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF-ABC与棱P-ABC的棱和相等.(棱和是指多面体中全部棱的度之和)明:P-ABC正四周体;1(2)若PD=PA,求二面角D-BC-A的2大小;(果用反三角函数表示)棱台DEF-ABC的体V,是否存在体V且各棱均相等的直平行六面体,使得它与棱台DEF-ABC有同样的棱和?若存在,详细结构出的一个直平行六面体,并出明;若不存在,明原因.22.(安分18分)第1小分6分,第2小分4分,第3小分8分P1(x1,y1), P1(x2,y2),⋯,P n(x n,y n)(n≥3,n∈N)是二次曲C上的点,且a1=OP12,a2=OP22,⋯,a n=OP n2组成了一个公差d(d≠0)的等差数列,此中O是坐原点.S n=a1+a2+⋯+a n.(1) 若C的方程x2y2=1,n=3.点P1(3,0)及S3=255,求点P3的坐;100 25(只要写出一个)x2y21(a>b>0).点P1(a,0),于定的自然数n,当公差d化,(2)若C的方程b2a2求S n的最小;.(3)定一条除外的二次曲C及C上的一点P1,于定的自然数n,写出切合条件的点P,⋯P存在的充要条件,并明原因.1,P2n符号意本卷所用符号等同于《教材》符号向量坐标a ={x,y}a =(x,y)正切 tgtan2004年一般高等学校招生上海卷理工类数学试题参照答案一、填空题(本大题满分48 分,每题4分)1.32.(5,0)3.{1,2,5}5.(-2,0)∪(2,5]6.(5,4)2 15229.410.a>0且b ≤07.58.(x -2)+(y+3)=51111.用代数的方法研究图形的几何性质 12.①、④ 二、选择题(本大题满分16分,每题4分)三、解答题(本大题满分86 分)17.【解】由题意得z 1= 1 5i =2+3i,1i于是z 1z 2=4a2i =(4a)24,z 1=13.(4 a)2 4< 13,得a 2-8a+7<0,1<a<7.18.【解】由题意得18 x 2 8 x(0<x<44=xy+ x 2=8,∴y=x 2).4x 4于定, 框架用料长度为l=2x+2y+2(2x )=( 3 + 2)x+ 16 ≥4 642 .2 2 x 当(316 ,即x=8-4 2时等号建立.2+2)x=x此时,x ≈2.343,y=22≈2.828. 故当x 为2.343m,y 为时,用料最省.x 3x 1 19.【解】(1)2-1≥0,得≥0,x<-1或x ≥1x x 1即A=(-∞,-1)∪[1,+ ∞)(2)由(x -a -1)(2a -x)>0, 得(x -a -1)(x -2a)<0.a<1,∴a+1>2a,∴B=(2a,a+1). ∵BA,∴2a ≥1或a+1≤-1,即a ≥1或a ≤-2,而a<1,2∴1≤a<1或a ≤-2,故当BA 时,实数a 的取值范围是21 (-∞,-2]∪[,1)220.【解】(1)由已知,设f 1(x)=ax 2,由f 1(1)=1,得a=1,∴f 1(x)=x 2.k设f 2(x)=(k>0),它的图象与直线 y=x 的交点分别为xA(k , k )B(- k ,- k )由AB =8,得k=8,.∴f 2(x)=8.故f(x)=x 2+8.xxx【证法一】f(x)=f(a),得x 2+8=a 2+,a 882 28即=-x+a+.xa8和 在同一坐标系内作出f 2(x)=8xf 3(x)= -x 2+a 2+a的大概图象,此中f 2(x)的图象是以坐标轴为渐近线 ,且位于第一、三象限的双曲线,f 3(x)与的图象是以(0,a 2 + 8 )为极点,张口向下的抛物线.a所以,f 2(x)与f 3(x)的图象在第三象限有一个交点 , 即f(x)=f(a)有一个负数解 . 又∵f 2(2)=4,f 3(2)=-4+a 2+8a当a>3时,.f 3(2)-f 2(2)=a 2+8-8>0,a∴当a>3时,在第一象限 f 3(x)的图象上存在一点 (2,f(2))在f 2(x)图象的上方. ∴f 2(x)与f 3(x)的图象在第一象限有两个交点 ,即f(x)=f(a)有两个正数解 . 所以,方程f(x)=f(a)有三个实数解.【证法二】由 f(x)=f(a),得x 2+8=a 2+8,x a8即(x -a)(x+a -)=0,得方程的一个解x 1=a.ax方程x+a -8=0化为ax 2+a 2x -8=0,ax 4由a>3,△=a+32a>0,得a 2a 4 32aa 2 a 4 32a ,x 2=2a,x 3=2a∵x 2<0,x 3>0,∴x 1≠x≠x2,且x 23.a 2a 4 32a2a 432a 4若x 1=x 3,即a=,则3a=,a=4a,2a得a=0或a=34,这与a>3矛盾,∴x1≠x3.故原方程f(x)=f(a)有三个实数解.21.【证明】(1)∵棱台DEF-ABC与棱锥P-ABC的棱长和相等,DE+EF+FD=PD+OE+PF.又∵截面DEF∥底面ABC,DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60°,∴P-ABC是正四周体.【解】(2)取BC的中点M,连拉PM,DM.AM.BC⊥PM,BC⊥AM,∴BC⊥平面PAM,BC⊥DM,则∠DMA为二面角D-BC-A的平面角.由(1)知,P-ABC的各棱长均为1,3∴PM=AM=,由D是PA的中点,得2AD33sin∠DMA=,∴∠DMA=arcsin.AM33(3)存在知足条件的直平行六面体.棱台DEF-ABC的棱长和为定值6,体积为V.1,底面相邻两边夹角为α,设直平行六面体的棱长均为21则该六面体棱长和为sinα=V.6,体积为8∵正四周体P-ABC的体积是22,∴0<V<,0<8V<1.可知α=arcsim(8V) 1212故结构棱长均为1,底面相邻两边夹角为arcsim(8V)的直平行六面体即知足要求.2。

2020年上海卷数学高考真题(一)(一)

2020年上海卷数学高考真题(一)(一)

普通高等学校招生2020年全国统一考试
数学卷(上海卷)
一、 填空题(本题共12小题,满分54分,其中1-6题每题4分,7-12题每
题5分)
1. 已知集合{}1,2,4A =,{}2,3,4B =,求A B =
2. 1lim 31
n n n →∞+=-( ) 3. 已知复数z 满足12z i =-(i 为虚数单位),则z =
4. 已知行列式126300
a c
d b =,则行列式a c d b = 5. 已知()3f x x =,则()1f x -=
6. 已知a 、b 、1、2的中位数为3,平均数为4,则ab=()
7.已知20230x y y x y +≥⎧⎪≥⎨⎪+-≤⎩
,则2z y x =-的最大值为()
8. 已知{}n a 是公差不为零的等差数列,且1109a a a +=,则12910
a a a a ++⋅⋅⋅=() 9.从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有()种排法。

10. 椭圆22
143
x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为()
11、设a R ∈,若存在定义域R 的函数()f x 既满足“对于任意0x R ∈,()0f x 的
值为20x 或0x ”又满足“关于x 的方程()f x a =无实数解”,则α的取值范围为()。

2020年上海高考数学试题(试卷版+解析版)

2020年上海高考数学试题(试卷版+解析版)

2020上海高考数学试题(试卷版+解析版)
1.已知集合{1A =,2,4},集合{2B =,4,5},则A B = .
2.计算:1lim 31
n n n →∞+=- . 3.已知复数12(z i i =-为虚数单位),则||z = .
4.已知函数3
()f x x =,()f x '是()f x 的反函数,则()f x '= . 5.已知x 、y 满足202300x y x y y +-⎧⎪+-⎨⎪⎩
,则2z y x =-的最大值为 .
6.已知行列式126300
a b c d =,则a b c d = . 7.已知有四个数1,2,a ,b ,这四个数的中位数是3,平均数是4,则ab = .
8.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则12910
a a a a ++⋯+= . 9.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有 种安排情况.
10.已知椭圆22
:143
x y C +=的右焦点为F ,直线l 经过椭圆右焦点F ,交椭圆C 于P 、Q 两点(点P 在第二象限),若点Q 关于x 轴对称点为Q ',且满足PQ FQ ⊥',求直线l 的方程是 .
11.设a R ∈,若存在定义域为R 的函数()f x 同时满足下列两个条件:
(1)对任意的0x R ∈,0()f x 的值为0x 或20x ;
(2)关于x 的方程()f x a =无实数解,
则a 的取值范围是 .。

2020年普通高等学校招生全国统一考试数学理试题(上海卷,含解析)

2020年普通高等学校招生全国统一考试数学理试题(上海卷,含解析)

2020年上海高考数学(理科)真题一、解答题(本大题共有14题,满分56分)1. 设x ∈R ,则不等式31x -<的解集为________________ 【答案】(2,4)【解析】131x -<-<,即24x <<,故解集为(2,4)2. 设32iiz +=,其中i 为虚数单位,则Im z =_________________【答案】3-【解析】i(32i)23i z =-+=-,故Im 3z =-3. 1l :210x y +-=, 2l :210x y ++=, 则12,l l 的距离为__________________25【解析】22112521d +==+4. 某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是___ (米) 【答案】1.765. 已知点(3,9)在函数()1x f x a =+的图像上,则()f x 的反函数1()f x -=____________【答案】2log (1)x -【解析】319a +=,故2a =,()12x f x =+∴2log (1)x y =-∴12()log (1)f x x -=-6. 如图,在正四棱柱1111ABCD A B C D -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为2arctan 3, 则该正四棱柱的高等于____________________ 【答案】2【解析】32BD =12223DD BD =⋅=7. 方程3sin 1cos2x x =+在区间[0,2π]上的解为________________【答案】π5π,66x =【解析】23sin 22sin x x =-,即22sin 3sin 20x x +-=∴(2sin 1)(sin 2)0x x -+=∴1sin 2x =∴π5π,66x =8. 在2n x ⎫⎪⎭-的二项式中,所有项的二项式系数之和为256,则常数项等于_______________【答案】112【解析】2256n =, 8n =通项88433882()(2)r rr r r rC x C x x--⋅⋅-=-⋅取2r =常数项为228(2)112C -=9. 已知ABC V 的三边长为3,5,7,则该三角形的外接圆半径等于________________【解析】3,5,7a b c ===,2221cos 22a b c C ab +-==-∴sin C∴2sin c R C ==10. 设0,0a b >>,若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,则a b +的取值范围是_____________【答案】(2,)+∞【解析】由已知,1ab =,且a b ≠,∴2a b +>11. 无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和,若对任意*n ∈N ,{2,3}n S ∈,则k 的最大值为___________ 【答案】412. 在平面直角坐标系中,已知(1,0)A , (0,1)B -, P 是曲线y =BP BA ⋅u u u r u u u r的取值范围是____________【答案】[0,1+【解析】设(cos ,sin )P αα, [0,π]α∈,(1,1)BA =u u u r, (cos ,sin 1)BP αα=+u u u rπcos [0,1sin 1)14BP BA ααα⋅=++=+∈+u u u r u u u r13. 设,,a b ∈R , [0,2π)c ∈,若对任意实数x 都有π2sin(3)sin()3x a bx c -=+,则满足条件的有序实数组(,,)a b c 的组数为______________ 【答案】4【解析】(i)若2a =若3b =,则5π3c =; 若3b =-,则4π3c =(ii)若2a =-,若3b =-,则π3c =;若3b =,则2π3c =共4组14. 如图,在平面直角坐标系xOy 中,O 为正八边形128A A A L 的中心,1(1,0)A ,任取不同的两点,i j A A ,点P 满足0i j OP OA OA ++=u u u r u u u r u u u u r r,则点P 落在第一象限的概率是_______________【答案】528 【解析】285528C =二、选择题(本大题共有4题,满分20分) 15. 设a ∈R ,则“1a >”是“21a >”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件 【答案】A16. 下列极坐标方程中,对应的曲线为右图的是( ) A. 65cos ρθ=+ B. 65sin ρθ=+ C. 65cos ρθ=- D. 65sin ρθ=- 【答案】D【解析】π2θ=-时,ρ达到最大17. 已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S →∞=,下列条件中,使得*2()n S S n <∈N 恒成立的是( )A. 10a >, 0.60.7q <<B. 10a <, 0.70.6q -<<-C. 10a >, 0.70.8q <<D. 10a <, 0.80.7q -<<-【答案】B【解析】1(1)1n n a q S q-=-, 11a S q =-, 11q -<<2n S S <,即1(21)0n a q -> 若10a >,则12nq >,不可能成立若10a <,则12nq <,B 成立18. 设(),(),()f x g x h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +,()()f x h x +,()()g x h x +均为增函数,则(),(),()f x g x h x 中至少有一个为增函数;②若()()f x g x +,()()f x h x +,()()g x h x +均是以T 为周期的函数,则(),(),()f x g x h x 均是以T 为周期的函数,下列判断正确的是( ) A. ①和②均为真命题 B. ①和②均为假命题C. ①为真命题,②为假命题D. ①为假命题,②为真命题 【答案】D【解析】①不成立,可举反例2,1)1(3,x x f x x x ≤-+>⎧=⎨⎩, 03,023,21()1,x x x x x x g x ≤-+<+⎧≥=<⎪⎨⎪⎩, 0(0)2,,x h x x x x -=≤>⎧⎨⎩②()()()()f x g x f x T g x T +=+++()()()()f x h x f x T h x T +=+++ ()()()()g x h x g x T h x T +=+++前两式作差,可得()()()()g x h x g x T h x T -=+-+ 结合第三式,可得()()g x g x T =+, ()()h x h x T =+ 也有()()f x f x T =+ ∴②正确 故选D三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)将边长为1的正方形11AA O O (及其内部)绕1OO 旋转一周形成圆柱,如图,»AC 长为23π,¼11A B 长为3π,其中1B 与C 在平面11AA O O 的同侧 (1) 求三棱锥111C O A B -的体积(2) 求异面直线1B C 与1AA 所成角的大小【解析】(1) 连11O B ,则¼111113AO A B B π∠== ∴111O A B V 为正三角形∴1113O A B S =V ∴1111111133C O A B O A B V OO S -=⋅=V(2) 设点1B 在下底面圆周的射影为B ,连1BB ,则11BB AA ∥ ∴1BB C ∠为直线1B C 与1AA 所成角(或补角)111BB AA ==连,,BC BO OC»¼113AB A B π==, »23AC π= ∴»3BCπ=∴3BOC π∠=∴BOC V 为正三角形 ∴1BC BO ==∴11tan 1BCBB C BB ∠== ∴145BB C ∠=︒∴直线1B C 与1AA 所成角大小为45︒20.(本题满分14分)有一块正方形菜地EFGH , EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。

2020年高考数学上海卷附答案解析版

2020年高考数学上海卷附答案解析版

.
x 2 y 3≤0
a a a

8.已知an是公差不为零的等差数列,且 a 1 a10 a ,9 则 1
2
a10
9
.
9.从 6 人中挑选 4 人去值班,每人值班 1 天,第一天需要 1 人,第二天需要 1 人,第三
天需要 2 人,则有
种排法.

10.椭圆 x2 y2 1 ,过右焦点F 作直线 l 交椭圆于P 、 Q 两点, P 在第二象限已知 43
性质 p . (1)判断数列 3,2,5,1 和 4,3,2,5,1 是否具有性质 p ,请说明理由. (2)若 a1 1 ,公比为q 的等比数列,项数为 10,具有性质 p ,求 q 的取值范围.
(3)若 an 是 1,2,…, m 的一个排列m≥4, bk ak1 k 1, 2 m 1 ,an, bn,都具有性质 p ,求所有满足条件的an .
PF1 8 ,求∠F1PF2 ;
(3)过点 S
0, 2
b2 2
且斜率为
b的直线l 2
交曲线 于 M
、N
两点,用 b
的代数式
表示OM ON,并求出OM ON的取值范围。
21.有限数列an,若满足 a1 a2 ≤ a1 a3 ≤≤ a1 an , m 是项数,则称an满足
数学试卷 第 3 页(共 4 页)
2 /6
18.【答案】(1)
1, 2
x
x∣x
3
4k或x
5
3
4k
,
k
Z;
(2)
1 2
,
0
19.【答案】(1)
x
0,
80 3

(2)
x

2020年上海市高考数学卷

2020年上海市高考数学卷

2020年上海秋季高考数学试卷2020.7.7一、填空题1.已知集合{}{}5,4,2,4,2,1==B A ,则=B A2.求极限=++∞→231lim n n n 3.已知复数i z 21-=,求=z4.已知函数3)(x x f =,则=-)(1x f5.已知600321=d c ba ,求=d cb a 6.已知y x ,满足条件⎪⎩⎪⎨⎧≥≤-+≥-+003202y y x y x ,则x y z 2-=最大值为7.已知一组数据b a ,,2,1,这四个数的中位数为3,平均数为4,则=ab8.{}n a 为各项不为零的等差数列,且9101a a a =+,求=+⋅⋅⋅++10921a a a a 9.抗击疫情期间,要从6位志愿者中挑选4位去值班,每人值班一天,第一天1个人,第二天1个人,第三天2个人,问共有 种排法.10.已知椭圆13422=+y x ,第二象限有一点P ,点P 与右焦点F 的连线所在直线与椭圆有一交点为Q ,点Q 与点Q '关于x 轴对称,且Q F PF '⊥,则PQ 直线方程是11.设R a ∈,若存在定义域为R 的函数)(x f 满足①对任意R x ∈0,)(0x f 的值为0x 或20x ,②关于x 的方程a x f =)(无实数解,求a 取值范围12.已知平面向量1a ,2a ,12,,k b b b ⋅⋅⋅⋅()*∈N k 是平面内两两互不相等的向量,121a a -=,且对任意的2,1=i 及k j ,,2,1⋅⋅⋅=,{1,2}i j a b -∈,则k 最大值为二、选择题13.下列不等式恒成立的是( )A.ab b a 222≤+B.ab b a 222-≥+C.ab b a 2≤+D.ab b a 2-≥+14.直线0143=++y x 的一个参数方程可以是( )A.1314x t y t =+⎧⎨=-+⎩B.⎩⎨⎧--=-=t y t x 3141 C.1314x t y t =-⎧⎨=-+⎩ D.1413x t y t =+⎧⎨=--⎩ 15.在棱长为10的正方体1111D C B A ABCD -中,P 为左侧面11A ADD 上一点,已知点P 到11D A 的距离为3,P 到1AA 的距离为2,则过点P 且与C A 1平行的直线相交的面是( )A.平面ABCDB.平面11CC BBC.平面11CC D DD.平面11AA B B16.命题p :若存在R a ∈且0≠a ,对任意的R x ∈,有)()()(a f x f a x f +<+恒成立;已知命题1q :)(x f 单调递减,且0)(>x f 恒成立;命题2q :)(x f 单调递增,且存在00<x 使0)(0=x f .则下列说法正确的是( )A.1q ,2q 都是p 的充分条件B. 只有1q 是p 的充分条件C. 只有2q 是p 的充分条件D. 1q ,2q 都不是p 的充分条件三、解答题17.已知边长为1的正方形ABCD ,正方形ABCD 绕AB 旋转形成一个圆柱.(1)求该圆柱表面积;(2)正方形ABCD 绕AB 逆时针旋转2π到11ABC D ,求直线1C D 与平面ABCD 所成的夹角18.已知)0(sin )(>=ωωx x f(1)若)(x f 的周期为π4,求ω以及21sin =x ω的解集; (2)设1=ω,[]2()()3()(),0,24g x f x x f x x ππ⎡⎤=+--∈⎢⎥⎣⎦,求)(x g 值域.19.在研究某市交通情况时发现,道路密度是指该路段上一定时间内用过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量xq v =,x 为道路密度, q 车辆密度,(0,80]x ∈,且801100135()040,3(040)854080x x v k x x k ⎧-<<⎪=⎨⎪--+≤≤>⎩. (1) 当交通流量95v >时, 求道路密度x 的取值范围;(2) 若道路密度80x =时,测得交通流量50v =,求出车辆密度q 的最大值.20. 如图,已知双曲线)0(14:2221>=-b by x C 与圆22224:b y x C +=+交于点),(A A y x A (第一象限),曲线Γ满足A x x >,且在12C C 、上,2C 与x 轴的左、右交点分别记作12F F 、.(1)若6=A x ,求b 的值;(2)若5=b ,圆与x 轴交点分别为21,F F ,点P 在双曲线第一象限部分,且81=PF ,求21PF F ∠; (3)过点)22,0(2+b S 斜率为2b -的直线l 与曲线Γ交于M 、N 两点,用b 表示OM ON ⋅并求其取值范围.21. 已知有限数列{}n a 项数为m ,若其满足m a a a a a a -≤⋅⋅⋅≤-≤-13121,则称数列{}n a 满足性 质P .(1)判断数列1,5,2,3和1,5,2,3,4是否具有性质P ,请说明理由;(2)已知11=a ,公比为q 的等比数列,项数为10,具有性质P ,求q 的取值范围.(3)若n a 是m ,,2,1⋅⋅⋅的一个排列)4(≥m ,)1,,2,1(1-⋅⋅⋅==+m k a b k k ,若数列{}{}n n b a ,都具有性 质P ,求所有满足条件的{}n a .。

上海市2020〖人教版〗高考数学试卷理科8

上海市2020〖人教版〗高考数学试卷理科8

上海市2020年〖人教版〗高考数学试卷理科创作人:百里安娜创作日期:202X.04.01审核人:北堂王会创作单位:明德智语学校一、选择题:本大题共10小题,每小题5分,每小题给出的四个选项中,只有一个符合题目要求1.(5分)(•安徽)设i是虚数单位,是复数z的共轭复数,若(z•)i+2=2z,则z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(5分)(•安徽)如图所示,程序框图(算法流程图)的输出结果是()A.B.C.D.3.(5分)(•安徽)在下列命题中,不是公理的是()A.平行于同一个平面的两个平面平行B.过不在同一直线上的三个点,有且只有一个平面C.如果一条直线上的两点在同一个平面内,那么这条直线上所有点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线4.(5分)(•安徽)“a≤0”是“函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)(•安徽)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数大于该班女生成绩的平均数6.(5分)(•安徽)已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>},则f(10x)>0的解集为()A.{x|x<﹣1或x>﹣lg2} B.{x|﹣1<x<﹣lg2}C.{x|x>﹣lg2} D.{x|x<﹣lg2}7.(5分)(•安徽)在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1 D.θ=0(ρ∈R)和ρcosθ=18.(5分)(•安徽)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得=…=,则n的取值范围是()A.{3,4} B.{2,3,4} C.{3,4,5} D.{2,3}9.(5分)(•安徽)在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=•=2,则点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是()A.B.C.D.10.(5分)(•安徽)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A.3 B.4 C.5 D.6二、填空题:本大题共5小题,每小题5分,共25分,把答案填写在答题卡上11.(5分)(•安徽)若的展开式中x4的系数为7,则实数a= .12.(5分)(•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C= .13.(5分)(•安徽)已知直线y=a交抛物线y=x2于A,B两点,若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为.14.(5分)(•安徽)如图,互不相同的点A1,A2,…,A n,…和B1,B2,…,B n,…分别在角O的两条边上,所有A n B n相互平行,且所有梯形A n B n B n+1A n+1的面积均相等,设OA n=a n,若a1=1,a2=2,则数列{a n}的通项公式是.15.(5分)(•安徽)如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是(写出所有正确命题的编号).①当0<CQ<时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当<CQ<1时,S为六边形⑤当CQ=1时,S的面积为.三、解答题:本大题共6小题,共75分.解答时应写出文字说明、证明过程或演算骤16.(12分)(•安徽)已知函数f(x)=4cosωx•sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.17.(12分)(•安徽)设函数f(x)=ax﹣(1+a2)x2,其中a >0,区间I={x|f(x)>0}(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β﹣α);(Ⅱ)给定常数k∈(0,1),当1﹣k≤a≤1+k时,求I长度的最小值.18.(12分)(•安徽)设椭圆E:的焦点在x轴上(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.19.(13分)(•安徽)如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°,(1)证明:平面PAB与平面PCD的交线平行于底面;(2)求cos∠COD.20.(13分)(•安徽)设函数f n(x)=﹣1+x+++…+(x∈R,n∈N+),证明:(1)对每个n∈N+,存在唯一的x∈[,1],满足f n(x n)=0;(2)对于任意p∈N+,由(1)中x n构成数列{x n}满足0<x n﹣x n+p <.21.(13分)(•安徽)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k 都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.(I)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(II)求使P(X=m)取得最大值的整数m.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,每小题给出的四个选项中,只有一个符合题目要求1.(5分)(•安徽)设i是虚数单位,是复数z的共轭复数,若(z•)i+2=2z,则z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【分析】设出复数z=a+bi(a,b∈R),代入后整理,利用复数相等的条件列关于a,b的方程组求解a,b,则复数z 可求.【解答】解:设z=a+bi(a,b∈R),则,由,得(a+bi)(a﹣bi)i+2=2(a+bi),整理得2+(a2+b2)i=2a+2bi.则,解得.所以z=1+i.故选A.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.2.(5分)(•安徽)如图所示,程序框图(算法流程图)的输出结果是()A.B.C.D.【分析】分析程序中各变量、各语句的作用,分析可知:该程序的作用是计算并输出S=++的值,并输出.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出S=++的值∵S=++=.故选D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.3.(5分)(•安徽)在下列命题中,不是公理的是()A.平行于同一个平面的两个平面平行B.过不在同一直线上的三个点,有且只有一个平面C.如果一条直线上的两点在同一个平面内,那么这条直线上所有点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线【分析】根据公理的定义解答即可.经过人类长期反复的实践检验是真实的,不需要由其他判断加以证明的命题和原理就是公理.【解答】解:B,C,D经过人类长期反复的实践检验是真实的,不需要由其他判断加以证明的命题和原理故是公理;而A平行于同一个平面的两个平面平行是定理不是公理.故选A.【点评】本题考查了公理的意义,比较简单.4.(5分)(•安徽)“a≤0”是“函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】对a分类讨论,利用二次函数的图象与单调性、充要条件即可判断出.【解答】解:当a=0时,f(x)=|x|,在区间(0,+∞)内单调递增.当a<0时,,结合二次函数图象可知函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增.若a>0,则函数f(x)=|(ax﹣1)x|,其图象如图它在区间(0,+∞)内有增有减,从而若函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增则a≤0.∴a≤0是”函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增”的充要条件.故选:C.【点评】本题考查了二次函数的图象与单调性、充要条件,考查了数形结合的思想方法,考查了推理能力与计算能力,属于中档题.5.(5分)(•安徽)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数大于该班女生成绩的平均数【分析】根据抽样方法可知,这种抽样方法是一种简单随机抽样.根据平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数;方差公式:s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]求解即可.【解答】解:根据抽样方法可知,这种抽样方法是一种简单随机抽样.五名男生这组数据的平均数=(86+94+88+92+90)÷5=90,方差=×[(86﹣90)2+(94﹣90)2+(88﹣90)2+(92﹣90)2+(90﹣90)2]=8.五名女生这组数据的平均数=(88+93+93+88+93)÷5=91,方差=×[(88﹣91)2+(93﹣91)2+(93﹣91)2+(88﹣91)2+(93﹣91)2]=6.故这五名男生成绩的方差大于这五名女生成绩的方差.故选:C.【点评】本题考查了抽样方法、平均数以及方差的求法,要想求方差,必须先求出这组数据的平均数,然后再根据方差公式求解.6.(5分)(•安徽)已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>},则f(10x)>0的解集为()A.{x|x<﹣1或x>﹣lg2} B.{x|﹣1<x<﹣lg2}C.{x|x>﹣lg2} D.{x|x<﹣lg2}【分析】由题意可得f(10x)>0等价于﹣1<10x<,由指数函数的单调性可得解集.【解答】解:由题意可知f(x)>0的解集为{x|﹣1<x<},故可得f(10x)>0等价于﹣1<10x<,由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x<,即10x<10﹣lg2,由指数函数的单调性可知:x<﹣lg2故选:D【点评】本题考查一元二次不等式的解集,涉及对数函数的单调性及对数的运算,属中档题.7.(5分)(•安徽)在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1 D.θ=0(ρ∈R)和ρcosθ=1【分析】利用圆的极坐标方程和直线的极坐标方程即可得出.【解答】解:如图所示,在极坐标系中圆ρ=2cosθ是以(1,0)为圆心,1为半径的圆.故圆的两条切线方程分别为(ρ∈R),ρcosθ=2.故选B.【点评】正确理解圆的极坐标方程和直线的极坐标方程是解题的关键》8.(5分)(•安徽)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得=…=,则n的取值范围是()A.{3,4} B.{2,3,4} C.{3,4,5} D.{2,3}【分析】由表示(x,f(x))点与原点连线的斜率,结合函数y=f(x)的图象,数形结合分析可得答案.【解答】解:令y=f(x),y=kx,作直线y=kx,可以得出2,3,4个交点,故k=(x>0)可分别有2,3,4个解.故n的取值范围为2,3,4.故选B.【点评】本题考查的知识点是斜率公式,正确理解表示(x,f(x))点与原点连线的斜率是解答的关键.9.(5分)(•安徽)在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=•=2,则点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是()A.B.C.D.【分析】由两定点A,B满足==2,说明O,A,B 三点构成边长为2的等边三角形,设出两个定点的坐标,再设出P点坐标,由平面向量基本定理,把P的坐标用A,B的坐标及λ,μ表示,把不等式|λ|+|μ|≤1去绝对值后可得线性约束条件,画出可行域可求点集P所表示区域的面积.【解答】解:由两定点A,B满足==2,=﹣,则||2=(﹣)2=﹣2•+=4,则||=2,说明O,A,B三点构成边长为2的等边三角形.不妨设A(),B().再设P(x,y).由,得:.所以,解得①.由|λ|+|μ|≤1.所以①等价于或或或.可行域如图中矩形ABCD及其内部区域,则区域面积为.故选D.【点评】本题考查了平面向量的基本定理及其意义,考查了二元一次不等式(组)所表示的平面区域,考查了数学转化思想方法,解答此题的关键在于读懂题意,属中档题.10.(5分)(•安徽)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A.3 B.4 C.5 D.6【分析】求导数f′(x),由题意知x1,x2是方程3x2+2ax+b=0的两根,从而关于f(x)的方程3(f(x))2+2af(x)+b=0有两个根,作出草图,由图象可得答案.【解答】解:f′(x)=3x2+2ax+b,x1,x2是方程3x2+2ax+b=0的两根,由3(f(x))2+2af(x)+b=0,则有两个f(x)使等式成立,x1=f(x1),x2>x1=f(x1),如下示意图象:如图有三个交点,故选A.【点评】考查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想.二、填空题:本大题共5小题,每小题5分,共25分,把答案填写在答题卡上11.(5分)(•安徽)若的展开式中x4的系数为7,则实数a=.【分析】利用二项式定理的通项公式即可得出.【解答】解:由通项公式T r+1==,∵的展开式中x4的系数为7,∴,解得.故答案为.【点评】熟练掌握二项式定理的通项公式是解题的关键.12.(5分)(•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C=.【分析】由3sinA=5sinB,根据正弦定理,可得3a=5b,再利用余弦定理,即可求得C.【解答】解:∵3sinA=5sinB,∴由正弦定理,可得3a=5b,∴a=∵b+c=2a,∴c=∴cosC==﹣∵C∈(0,π)∴C=故答案为:【点评】本题考查正弦、余弦定理的运用,考查学生的计算能力,属于基础题.13.(5分)(•安徽)已知直线y=a交抛物线y=x2于A,B两点,若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为[1,+∞).【分析】如图所示,可知A,B,设C(m,m2),由该抛物线上存在点C,使得∠ACB为直角,可得=0.即可得到a的取值范围.【解答】解:如图所示,可知A,B,设C(m,m2),,.∵该抛物线上存在点C,使得∠ACB为直角,∴=.化为m2﹣a+(m2﹣a)2=0.∵m,∴m2=a﹣1≥0,解得a≥1.∴a 的取值范围为[1,+∞).故答案为[1,+∞).【点评】本题考查了如何表示抛物线上点的坐标、垂直于数量积得关系等基础知识,考查了推理能力和计算能力.14.(5分)(•安徽)如图,互不相同的点A1,A2,…,A n,…和B1,B2,…,B n,…分别在角O的两条边上,所有A n B n相互平行,且所有梯形A n B n B n+1A n+1的面积均相等,设OA n=a n,若a1=1,a 2=2,则数列{a n}的通项公式是.【分析】设,利用已知可得A 1B1是三角形OA2B2的中位线,得到==,梯形A1B1B2A2的面积=3S.由已知可得梯形A n B n B n+1A n+1的面积=3S.利用相似三角形的性质面积的比等于相似比的平方可得:,,,…,已知,,可得,….因此数列{}是一个首项为1,公差为3等差数列,即可得到a n.【解答】解:设,∵OA 1=a1=1,OA2=a2=2,A1B1∥A2B2,∴A1B1是三角形OA2B2的中位线,∴==,∴梯形A1B1B2A2的面积=3S.故梯形A n B n B n+1A n+1的面积=3S.∵所有A n B n相互平行,∴所有△OA n B n(n∈N*)都相似,∴,,,…,∵,∴,,….∴数列{}是一个等差数列,其公差d=3,故=1+(n﹣1)×3=3n﹣2.∴.因此数列{a n}的通项公式是.故答案为.【点评】本题综合考查了三角形的中位线定理、相似三角形的性质、等差数列的通项公式等基础知识和基本技能,考查了推理能力和计算能力.15.(5分)(•安徽)如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是①②③⑤(写出所有正确命题的编号).①当0<CQ<时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当<CQ<1时,S为六边形⑤当CQ=1时,S的面积为.【分析】由题意作出满足条件的图形,由线面位置关系找出截面可判断选项的正误.【解答】解:如图当CQ=时,即Q为CC1中点,此时可得PQ∥AD1,AP=QD1==,故可得截面APQD1为等腰梯形,故②正确;由上图当点Q向C移动时,满足0<CQ<,只需在DD1上取点M 满足AM∥PQ,即可得截面为四边形APQM,故①正确;③当CQ=时,如图,延长DD1至N,使D1N=,连接AN交A1D1于S,连接NQ交C1D1于R,连接SR,可证AN∥PQ,由△NRD1∽△QRC1,可得C1R:D1R=C1Q:D1N=1:2,故可得C1R=,故正确;④由③可知当<CQ<1时,只需点Q上移即可,此时的截面形状仍然上图所示的APQRS,显然为五边形,故错误;⑤当CQ=1时,Q与C1重合,取A1D1的中点F,连接AF,可证PC1∥AF,且PC1=AF,可知截面为APC1F为菱形,故其面积为AC1•PF==,故正确.故答案为:①②③⑤.【点评】本题考查命题真假的判断与应用,涉及正方体的截面问题,属中档题.三、解答题:本大题共6小题,共75分.解答时应写出文字说明、证明过程或演算骤16.(12分)(•安徽)已知函数f(x)=4cosωx•sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.【分析】(1)先利用和角公式再通过二倍角公式,将次升角,化为一个角的一个三角函数的形式,通过函数的周期,求实数ω的值;(2)由于x是[0,]范围内的角,得到2x+的范围,然后通过正弦函数的单调性求出f(x)在区间[0,]上的单调性.【解答】解:(1)f(x)=4cosωxsin(ωx+)=2sinωx•cosωx+2cos2ωx=(sin2ωx+cos2ωx)+=2sin(2ωx+)+,所以 T==π,∴ω=1.(2)由(1)知,f(x)=2sin(2x+)+,因为0≤x≤,所以≤2x+≤,当≤2x+≤时,即0≤x≤时,f(x)是增函数,当≤2x+≤时,即≤x≤时,f(x)是减函数,所以f(x)在区间[0,]上单调增,在区间[,]上单调减.【点评】本题考查三角函数的化简求值,恒等关系的应用,注意三角函数值的变换,考查计算能力,常考题型.17.(12分)(•安徽)设函数f(x)=ax﹣(1+a2)x2,其中a >0,区间I={x|f(x)>0}(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β﹣α);(Ⅱ)给定常数k∈(0,1),当1﹣k≤a≤1+k时,求I长度的最小值.【分析】(Ⅰ)解不等式f(x)>0可得区间I,由区间长度定义可得I的长度;(Ⅱ)由(Ⅰ)构造函数d(a)=,利用导数可判断d(a)的单调性,由单调性可判断d(a)的最小值必定在a=1﹣k或a=1+k处取得,通过作商比较可得答案.【解答】解:(Ⅰ)因为方程ax﹣(1+a2)x2=0(a>0)有两个实根x1=0,>0,故f(x)>0的解集为{x|x1<x<x2},因此区间I=(0,),区间长度为;(Ⅱ)设d(a)=,则d′(a)=,令d′(a)=0,得a=1,由于0<k<1,故当1﹣k≤a<1时,d′(a)>0,d(a)单调递增;当1<a≤1+k时,d′(a)<0,d(a)单调递减,因此当1﹣k≤a≤1+k时,d(a)的最小值必定在a=1﹣k或a=1+k处取得,而=<1,故d(1﹣k)<d(1+k),因此当a=1﹣k时,d(a)在区间[1﹣k,1+k]上取得最小值,即I长度的最小值为.【点评】本题考查二次不等式的求解,以及导数的计算和应用等基础知识和基本技能,考查分类讨论思想和综合运用数学知识解决问题的能力.18.(12分)(•安徽)设椭圆E:的焦点在x轴上(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.【分析】(1)利用椭圆的标准方程和几何性质即可得出,解出即可;(2)设P(x0,y0),F1(﹣c,0),F2(c,0),其中.利用斜率的计算公式和点斜式即可得出直线F 1P的斜率=,直线F 2P的方程为.即可得出Q.得到直线F 1Q的斜率=.利用F1Q⊥F1P,可得=.化为.与椭圆的方程联立即可解出点P的坐标.【解答】解:(1)∵椭圆E的焦距为1,∴,解得.故椭圆E的方程为.(2)设P(x0,y0),F1(﹣c,0),F2(c,0),其中.由题设可知:x 0≠c.则直线F1P的斜率=,直线F2P的斜率=.故直线F2P的方程为.令x=0,解得.即点Q.因此直线F 1Q的斜率=.∵F 1Q⊥F1P,∴=.化为.联立,及x0>0,y0>0,解得,.即点P在定直线x+y=1上.【点评】本题主要考查了椭圆的标准方程及其几何性质,直线和直线、直线和椭圆的位置关系等基础知识和基本技能,考查了数形结合的思想、推理能力和计算能力,属于难题.19.(13分)(•安徽)如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°,(1)证明:平面PAB与平面PCD的交线平行于底面;(2)求cos∠COD.【分析】(1)利用线面平行的判定与性质,可证平面PAB与平面PCD的交线平行于底面;(2)先作出OP与平面PCD所成的角,再求出OC,OF,求出cos ∠COF,利用二倍角公式,即可求得cos∠COD.【解答】(1)证明:设平面PAB与平面PCD的交线为l,则∵AB∥CD,AB⊄平面PCD,∴AB∥平面PCD∵AB⊂面PAB,平面PAB与平面PCD的交线为l,∴AB∥l∵AB在底面上,l在底面外∴l与底面平行;(2)解:设CD的中点为F,连接OF,PF由圆的性质,∠COD=2∠COF,OF⊥CD∵OP⊥底面,CD⊂底面,∴OP⊥CD∵OP∩OF=O∴CD⊥平面OPF∵CD⊂平面PCD∴平面OPF⊥平面PCD∴直线OP在平面PCD上的射影为直线PF∴∠OPF为OP与平面PCD所成的角由题设,∠OPF=60°设OP=h,则OF=OPtan∠OPF=∵∠OCP=22.5°,∴∵tan45°==1∴tan22.5°=∴OC==在Rt△OCF中,cos∠COF===∴cos∠COD=cos(2∠COF)=2cos2∠COF﹣1=17﹣12【点评】本题考查线面平行的判定与性质,考查空间角,考查学生的计算能力,正确找出线面角是关键.20.(13分)(•安徽)设函数f n(x)=﹣1+x+++…+(x∈R,n∈N+),证明:(1)对每个n∈N+,存在唯一的x∈[,1],满足f n(x n)=0;(2)对于任意p∈N+,由(1)中x n构成数列{x n}满足0<x n﹣x n+p <.【分析】(1)由题意可得f′(x)>0,函数f(x)在(0,+∞)上是增函数.求得f n(1)>0,f n()<0,再根据函数的零点的判定定理,可得要证的结论成立.(2)由题意可得f n+1(x n)>f n(x n)=f n+1(x n+1)=0,由 f n+1(x)在(0,+∞)上单调递增,可得 x n+1<x n,故x n﹣x n+p>0.用 f n (x)的解析式减去f n+p(x n+p)的解析式,变形可得x n﹣x n+p=+,再进行放大,并裂项求和,可得它小于,综上可得要证的结论成立.【解答】证明:(1)对每个n∈N+,当x>0时,由函数f n(x)=﹣1+x+),可得f′(x)=1+++…>0,故函数f(x)在(0,+∞)上是增函数.由于f1(x1)=0,当n≥2时,f n(1)=++…+>0,即f n (1)>0.又f n()=﹣1++[+++…+]≤﹣+•=﹣+×=﹣•<0,根据函数的零点的判定定理,可得存在唯一的x n,满足f n(x n)=0.(2)对于任意p∈N+,由(1)中x n构成数列{x n},当x>0时,∵f n+1(x)=f n(x)+>f n(x),∴f n+1(x n)>f n(x n)=f n+1(x n+1)=0.由 f n+1(x)在(0,+∞)上单调递增,可得 x n+1<x n,即 x n﹣x n+1>0,故数列{x n}为减数列,即对任意的 n、p∈N+,x n﹣x n+p>0.由于 f n(x n)=﹣1+x n+++…+=0 ①,f n+p(x n+p)=﹣1+x n+p+++…++[++…+]②,用①减去②并移项,利用 0<x n+p≤1,可得x n﹣x n+p=+≤≤<=<.综上可得,对于任意p∈N+,由(1)中x n构成数列{x n}满足0<x n ﹣x n+p<.【点评】本题主要考查函数的导数及应用,函数的零点的判定,等比数列求和以及用放缩法证明不等式,还考查推理以及运算求解能力,属于难题.21.(13分)(•安徽)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k 都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.(I)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(II)求使P(X=m)取得最大值的整数m.【分析】(I)由题设,两位老师发送信息是独立的,要计算该系学生甲收到李老师或张老师所发活动通知信息的概率可先计算其对立事件,该生没有接到任一位老师发送的信息的概率,利用概率的性质求解;(II)由题意,要先研究随机变量X的取值范围,由于k≤n故要分两类k=n与k<n进行研究,k=n时易求,k<n时,要研究出同时接受到两位老师信息的人数,然后再研究事件所包含的基本事件数,表示出P(X=m),再根据其形式研究它取得最大值的整数m即可.【解答】解:(I)因为事件A:“学生甲收到李老师所发信息”与事件B:“学生甲收到张老师所发信息”是相互独立事件,所以与相互独立,由于P(A)=P(B)==,故P()=P()=1﹣,因此学生甲收到活动信息的概率是1﹣(1﹣)2=(II)当k=n时,m只能取n,此时有P(X=m)=P(X=n)=1当k<n时,整数m满足k≤m≤t,其中t是2k和n中的较小者,由于“李老师与张老师各自独立、随机地发送活动信息给k 位”所包含的基本事件总数为()2,当X=m时,同时收到两位老师所发信息的学生人数为2k﹣m,仅收到李老师或张老师转发信息的学生人数为m﹣k,由乘法原理知:事件{X=m}所包含的基本事件数为P(X=m)==当k≤m<t时,P(X=M)<P(X=M+1)⇔(m﹣k+1)2≤(n﹣m)(2k﹣m)⇔m≤2k﹣假如k≤2k﹣<t成立,则当(k+1)2能被n+2整除时,k≤2k﹣<2k+1﹣<t,故P(X=M)在m=2k﹣和m=2k+1﹣处达到最大值;当(k+1)2不能被n+2整除时,P(X=M)在m=2k﹣[]处达到最大值(注:[x]表示不超过x的最大整数),下面证明k≤2k﹣<t因为1≤k<n,所以2k﹣﹣k=≥=≥0而2k﹣﹣n=<0,故2k﹣<n,显然2k﹣<2k因此k≤2k﹣<t综上得,符合条件的m=2k﹣[]【点评】本题主要考查古典概率模型,计数原理,分类讨论思想等基础知识和基本技能,考查抽象的思想,逻辑推理能力,运算求解能力,以及运用数学知识分析解决实际问题的能力,本题易因为审题时不明白事件的情形而导致无法下手,或者因为分类不清未能正确分类导致失分。

上海市2020〖西师大版〗高考数学试卷理科参考答案与试题解析3

上海市2020〖西师大版〗高考数学试卷理科参考答案与试题解析3

上海市2020年〖西师大版〗高考数学试卷理科参考答案与试题解析创作人:百里当手创作日期:202X.04.01审核人:北堂段对创作单位:明德智语学校一、选择题(共12小题,每小题5分,满分60分)1.(5分)(•辽宁)已知A、B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于()A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}【考点】Venn图表达集合的关系及运算.【分析】由韦恩图可知,集合A=(A∩B)∪(C U B∩A),直接写出结果即可.【解答】解:因为A∩B={3},所以3∈A,又因为C U B∩A={9},所以9∈A,选D.本题也可以用Venn图的方法帮助理解.故选D.【点评】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn图解决集合问题的能力.2.(5分)(•辽宁)设a,b为实数,若复数,则()A.B.a=3,b=1 C.D.a=1,b=3【考点】复数相等的充要条件.【分析】先化简,然后用复数相等的条件,列方程组求解.【解答】解:由可得1+2i=(a﹣b)+(a+b)i,所以,解得,,故选A.【点评】本题考查了复数相等的概念及有关运算,考查计算能力.是基础题.3.(5分)(•辽宁)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A. B.C. D.【考点】相互独立事件的概率乘法公式;互斥事件的概率加法公式.【专题】计算题.【分析】根据题意,分析可得,这两个零件中恰有一个一等品包含仅第一个实习生加工一等品与仅第二个实习生加工一等品两种互斥的事件,而两个零件是否加工为一等品相互独立,进而由互斥事件与独立事件的概率计算可得答案.【解答】解:记两个零件中恰好有一个一等品的事件为A,即仅第一个实习生加工一等品(A1)与仅第二个实习生加工一等品(A2)两种情况,则P(A)=P(A1)+P(A2)=,故选B.【点评】本题考查了相互独立事件同时发生的概率与互斥事件的概率加法公式,解题前,注意区分事件之间的相互关系(对立,互斥,相互独立).4.(5分)(•辽宁)如果执行右面的程序框图,输入正整数n,m,满足n≥m,那么输出的P等于()A.C n m﹣1B.A n m﹣1C.C n m D.A n m【考点】程序框图.【分析】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量P的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:第一次循环:k=1,p=1,p=n﹣m+1;第二次循环:k=2,p=(n﹣m+1)(n﹣m+2);第三次循环:k=3,p=(n﹣m+1)(n﹣m+2)(n﹣m+3)…第m次循环:k=m,p=(n﹣m+1)(n﹣m+2)(n﹣m+3)(n﹣1)n此时结束循环,输出p=(n﹣m+1)(n﹣m+2)(n﹣m+3)(n﹣1)n=A n m故选D【点评】要注意对第m次循环结果的归纳,这是本题的关键.5.(5分)(•辽宁)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A. B. C. D.3【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;待定系数法.【分析】求出图象平移后的函数表达式,与原函数对应,求出ω的最小值.【解答】解:将y=sin(ωx+)+2的图象向右平移个单位后为=,所以有=2kπ,即,又因为ω>0,所以k≥1,故≥,故选C【点评】本题考查了三角函数图象的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度.6.(5分)(•辽宁)设{a n}是有正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.【考点】等比数列的前n项和;等比数列的性质.【分析】先由等比中项的性质求得a3,再利用等比数列的通项求出公比q及首项a1,最后根据等比数列前n项和公式求得S5.【解答】解:由a2a4=a32=1,得a3=1,所以S3==7,又q>0,解得=2,即q=.所以a1==4,所以=.故选B.【点评】本题考查等比中项的性质、等比数列的通项公式及前n 项和公式.7.(5分)(•辽宁)设抛物线y2=8x的焦点为F,准线为l,P 为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为,那么|PF|=()A.B.8 C.D.16【考点】抛物线的简单性质;抛物线的定义.【分析】先根据抛物线方程求出焦点坐标,进而根据直线AF的斜率为求出直线AF的方程,然后联立准线和直线AF的方程可得点A的坐标,得到点P的坐标,根据抛物线的性质:抛物线上的点到焦点和准线的距离相等可得到答案.【解答】解:抛物线的焦点F(2,0),准线方程为x=﹣2,直线AF的方程为,所以点、,从而|PF|=6+2=8故选B.【点评】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想.8.(5分)(•辽宁)平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C.D.【考点】向量在几何中的应用.【专题】计算题.【分析】利用三角形的面积公式表示出面积;再利用三角函数的平方关系将正弦表示成余弦;再利用向量的数量积公式求出向量夹角的余弦化简即得.【解答】解:==•=;故选C.【点评】本题考查三角形的面积公式;同角三角函数的平方关系,利用向量的数量积求向量的夹角.9.(5分)(•辽宁)设双曲线的﹣个焦点为F,虚轴的﹣个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质;两条直线垂直的判定.【专题】计算题;压轴题.【分析】先设出双曲线方程,则F,B的坐标可得,根据直线FB 与渐近线y=垂直,得出其斜率的乘积为﹣1,进而求得b和a,c的关系式,进而根据双曲线方程a,b和c的关系进而求得a和c的等式,则双曲线的离心率可得.【解答】解:设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy﹣bc=0与渐近线y=垂直,所以,即b2=ac所以c2﹣a2=ac,即e2﹣e﹣1=0,所以或(舍去)【点评】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想.10.(5分)(•辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()A.[0,)B.C.D.【考点】导数的几何意义.【专题】计算题;压轴题.【分析】利用导数在切点处的值是曲线的切线斜率,再根据斜率等于倾斜角的正切值求出角的范围.【解答】解:因为y′===,∵,∴e x+e﹣x+2≥4,∴y′∈[﹣1,0)即tanα∈[﹣1,0),∵0≤α<π∴≤α<π故选:D.【点评】本题考查导数的几何意义及直线的斜率等于倾斜角的正切值.11.(5分)(•辽宁)已知a>0,则x0满足关于x的方程ax=b 的充要条件是()A.B.C.D.【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】初看本题,似乎无从下手,但从题目是寻求充要条件,再看选项会发现构造二次函数求最值.【解答】解:由于a>0,令函数,此时函数对应的开口向上,当x=时,取得最小值,而x0满足关于x的方程ax=b,那么x0═,y min=,那么对于任意的x∈R,都有≥=故选C.【点评】本题考查了二次函数的性质、全称量词与充要条件知识,考查了学生构造二次函数解决问题的能力.12.(5分)(•辽宁)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,)B.(1,)C.(,)D.(0,)【考点】棱锥的结构特征.【专题】计算题;压轴题.【分析】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力.我们可以通过分析确定当底面是边长为2的正三角形,三条侧棱长为2,a,a此时a取最大值,当构成三棱锥的两条对角线长为a,其他各边长为2,a有最小值,易得a的取值范围【解答】解:根据条件,四根长为2的直铁条与两根长为a的直铁条要组成三棱镜形的铁架,有以下两种情况①底面是边长为2的正三角形,三条侧棱长为2,a,a,如图,此时a可以取最大值,可知AD=,SD=,则有2﹣<<2+,即,即有<a<②构成三棱锥的两条对角线长为a,其他各边长为2,如图所示,此时0<a<2;综上分析可知a∈(0,);故选A.【点评】本题考查的知识点是空间想像能力,我们要结合分类讨论思想,数形结合思想,极限思想,求出a的最大值和最小值,进而得到a的取值范围二、填空题(共4小题,每小题5分,满分20分)13.(5分)(•辽宁)的展开式中的常数项为﹣5 .【考点】二项式定理.【分析】展开式的常数项为展开式的常数项与x﹣2的系数和;利用二项展开式的通项公式求出第r+1项,令x的指数分别为0,﹣2即得.【解答】解:的展开式的通项为T r+1=C6r(﹣1)r x6﹣2r,当r=3时,T4=﹣C63=﹣20,的展开式有常数项1×(﹣20)=﹣20,当r=4时,T5=﹣C64=15,的展开式有常数项x2×15x﹣2=15,因此常数项为﹣20+15=﹣5故答案为﹣5【点评】本题考查等价转化的能力;考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.14.(5分)(•辽宁)已知﹣1<x+y<4且2<x﹣y<3,则z=2x ﹣3y的取值范围是(3,8).(答案用区间表示)【考点】简单线性规划的应用.【专题】计算题;压轴题;数形结合.【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值和最小值,再根据最值给出目标函数的取值范围.【解答】解:画出不等式组表示的可行域如下图示:在可行域内平移直线z=2x﹣3y,当直线经过x﹣y=2与x+y=4的交点A(3,1)时,目标函数有最小值z=2×3﹣3×1=3;当直线经过x+y=﹣1与x﹣y=3的交点B(1,﹣2)时,目标函数有最大值z=2×1+3×2=8.z=2x﹣3y的取值范围是(3,8).故答案为:(3,8).【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.15.(5分)(•辽宁)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.【考点】简单空间图形的三视图;棱锥的结构特征.【专题】计算题;作图题;压轴题.【分析】结合题意及图形,可知几何体为一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,还原几何体,求解即可.【解答】解:由三视图可知,此多面体是一个底面边长为2的正方形,且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为.【点评】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力.16.(5分)(•辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.【考点】数列递推式;基本不等式在最值问题中的应用.【专题】计算题;压轴题.【分析】由累加法求出a n=33+n2﹣n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【解答】解:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=33+n2﹣n所以设f(n)=,令f′(n)=,则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为【点评】本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力.三、解答题(共8小题,满分90分)17.(12分)(•辽宁)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(Ⅱ)求sinB+sinC的最大值.【考点】余弦定理的应用.【分析】(Ⅰ)根据正弦定理,设,把sinA,sinB,sinC代入2asinA=(2b+c)sinB+(2c+b)sinC求出a2=b2+c2+bc再与余弦定理联立方程,可求出cosA的值,进而求出A的值.(Ⅱ)根据(Ⅰ)中A的值,可知c=60°﹣B,化简得sin (60°+B)根据三角函数的性质,得出最大值.【解答】解:(Ⅰ)设则a=2RsinA,b=2RsinB,c=2RsinC∵2asinA=(2b+c)sinB+(2c+b)sinC方程两边同乘以2R∴2a2=(2b+c)b+(2c+b)c整理得a2=b2+c2+bc∵由余弦定理得a2=b2+c2﹣2bccosA故cosA=﹣,A=120°(Ⅱ)由(Ⅰ)得:sinB+sinC=sinB+sin(60°﹣B)=cosB+sinB=sin(60°+B)故当B=30°时,sinB+sinC取得最大值1.【点评】本题主要考查了余弦函数的应用.其主要用来解决三角形中边、角问题,故应熟练掌握.18.(12分)(•辽宁)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表疱疹面积[60,65)[65,70)[70,75)[75,80)频数30 40 20 10表2:注射药物B后皮肤疱疹面积的频数分布表疱疹面积[60,65)[65,70)[70,75)[75,80)[80,85)频数10 25 20 30 15(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:疱疹面积小于70mm2疱疹面积不小于70mm2合计注射药物A a= b=注射药物B c= d=合计n=附:K2=.【考点】独立性检验的应用.【专题】应用题;图表型.【分析】(1)利用组合数找出所有事件的个数n,基本事件的个数m,代入古典概率计算公式p=(2)由频数分布表中的频数求出每组的,画出频率分布直方图,完成2×2列联表,代入计算随机变量值后与临界点比较判断两变量的相关性的大小.【解答】解:(Ⅰ)从200选100的组合数C00,记:“甲、乙两只家兔分在不同组”为事件A,则事件A包含的情况有2C19899∴(4分)(Ⅱ)(i)图Ⅰ注射药物A后皮肤疱疹面积的频率分布直方图图Ⅱ注射药物B后皮肤疱疹面积的频率分布直方图可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.(8分)(ii)表3:疱疹面积小于70mm2疱疹面积不小于70mm2合计注射药物A a=70 b=30 100注射药物B c=35 d=65 100合计105 95 n=200由于K2>10.828,所以有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.(12分)【点评】本题考查的内容为:利用组合数求古典概率,由频数分布表画频率分布直方图及2×2列联表,考查独立性检验的计算公式与临界值比较以判断两个变量的关联性.要注意频率分布直方图的纵轴是19.(12分)(•辽宁)已知三棱锥P﹣ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.【考点】平面与平面之间的位置关系;空间中直线与直线之间的位置关系.【专题】计算题;证明题.【分析】由PA=AC=AB,N为AB上一点,AB=4AN,我们不妨令PA=1,然后以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系.由此不难得到各点的坐标(1)要证明CM⊥SN,我们可要证明即可,根据向量数量积的运算,我们不难证明;(2)要求SN与平面CMN所成角的大小,我们只要利用求向量夹角的方法,求出SN和方向向量与平面CMN的法向量的夹角,再由它们之间的关系,易求出SN与平面CMN所成角的大小.【解答】证明:设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图.则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).(4分)(Ⅰ),因为,所以CM⊥SN(6分)(Ⅱ),设a=(x,y,z)为平面CMN的一个法向量,则令x=2,得a=(2,1,﹣2).因为,所以SN与片面CMN所成角为45°.【点评】如果已知向量的坐标,求向量的夹角,我们可以分别求出两个向量的坐标,进一步求出两个向量的模及他们的数量积,然后代入公式cosθ=即可求解20.(12分)(•辽宁)设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60°,.(1)求椭圆C的离心率;(2)如果|AB|=,求椭圆C的方程.【考点】椭圆的简单性质;直线的倾斜角;椭圆的标准方程;直线与圆锥曲线的综合问题.【专题】计算题.【分析】(1)点斜式设出直线l的方程,代入椭圆,得到A、B 的纵坐标,再由,求出离心率.(2)利用弦长公式和离心率的值,求出椭圆的长半轴、短半轴的值,从而写出标准方程.【解答】解:设A(x1,y1),B(x2,y2),由题意知y1>0,y2<0.(1)直线l的方程为,其中.联立得.解得,.因为,所以﹣y1=2y2.即﹣=2 ,解得离心率.(6分)(2)因为,∴•.由得,所以,解得a=3,.故椭圆C的方程为.(12分)【点评】本题考查椭圆的性质标和准方程,以及直线和圆锥曲线的位置关系,准确进行式子的变形和求值,是解题的难点,属于中档题.21.(12分)(•辽宁)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f (x2)|≥4|x1﹣x2|,求a的取值范围.【考点】利用导数研究函数的单调性.【专题】计算题;压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间.(2)根据第一问的单调性先对|f(x1)﹣f(x2)|≥4|x1﹣x2|进行化简整理,转化成研究g(x)=f(x)+4x在(0,+∞)单调减函数,再利用参数分离法求出a的范围.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞)..当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调增加;当a≤﹣1时,f′(x)<0,故f(x)在(0,+∞)单调减少;当﹣1<a<0时,令f′(x)=0,解得.则当时,f'(x)>0;时,f'(x)<0.故f(x)在单调增加,在单调减少.(Ⅱ)不妨假设x1≥x2,而a<﹣1,由(Ⅰ)知在(0,+∞)单调减少,从而∀x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|等价于∀x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1①令g(x)=f(x)+4x,则①等价于g(x)在(0,+∞)单调减少,即.从而故a的取值范围为(﹣∞,﹣2].(12分)【点评】本小题主要考查函数的导数,单调性,极值,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.22.(10分)(•辽宁)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.【考点】圆內接多边形的性质与判定.【专题】计算题;证明题.【分析】(1)要判断两个三角形相似,可以根据三角形相似判定定理进行证明,但注意观察已知条件中给出的是角的关系,故采用判定定理1更合适,故需要再找到一组对应角相等,由圆周角定理,易得满足条件的角.(2)根据(1)的结论,我们可得三角形对应对成比例,由此我们可以将△ABC的面积转化为S=AB•AC,再结合三角形面积公式,不难得到∠BAC的大小.【解答】证明:(1)由已知△ABC的角平分线为AD,可得∠BAE=∠CAD因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD故△ABE∽△ADC.解:(2)因为△ABE∽△ADC,所以,即AB•AC=AD•AE.又S=AB•ACsin∠BAC,且S=AD•AE,故AB•ACsin∠BAC=AD•AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】相似三角形有三个判定定理:判定定理1:两角对应相等的两个三角形相似;判定定理2:三边对应成比例的两个三角形相似;判定定理3:两边对应成比例,并且夹角相等的两个三角形相似.在证明三角形相似时,要根据已知条件选择适当的定理.23.(10分)(•辽宁)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.【考点】极坐标系;直线的参数方程;圆的参数方程.【专题】计算题;压轴题.【分析】(1)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.(2)先在直角坐标系中算出点M、A的坐标,再利用直角坐标的直线AM的参数方程求得参数方程即可.【解答】解:(Ⅰ)由已知,M点的极角为,且M点的极径等于,故点M的极坐标为(,).(5分)(Ⅱ)M点的直角坐标为(),A(1,0),故直线AM的参数方程为(t为参数)(10分)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.24.(10分)(•辽宁)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.【考点】基本不等式.【专题】证明题;压轴题.【分析】证法一:两次利用基本不等式放小,此处不用考虑等号成立的条件,因等号不成立不影响不等号的传递性.证法二:先用基本不等式推出a2+b2+c2≥ab+bc+ac与两者之和用基本不等式放小,整体上只用了一次放缩法.其本质与证法一同.【解答】证明:证法一:因为a,b,c均为正数,由平均值不等式得①所以②故.又③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立.当且仅当时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.证法二:因为a,b,c均为正数,由基本不等式得所以a2+b2+c2≥ab+bc+ac①同理②故③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.【点评】考查放缩法在证明不等式中的应用,本题在用缩法时多次用到基本不等式,请读者体会本题证明过程中不考虑等号是否成立的原理,并与利用基本不等式求最值再据最值成立的条件求参数题型比较.深入分析等号成立的条件什么时候必须考虑,什么时候可以不考虑.创作人:百里当手创作日期:202X.04.01审核人:北堂段对创作单位:明德智语学校。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年上海市高考数学试卷(理科)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)设x∈R,则不等式|x﹣3|<1的解集为.2.(4分)设z=,其中i为虚数单位,则Imz=.3.(4分)已知平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离.4.(4分)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是(米).5.(4分)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f﹣1(x)=.6.(4分)在正四棱柱ABCD﹣A1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan,则该正四棱柱的高等于.7.(4分)方程3sinx=1+cos2x在区间[0,2π]上的解为.8.(4分)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于.9.(4分)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.10.(4分)设a>0,b>0,若关于x,y的方程组无解,则a+b的取值范围为.11.(4分)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为.12.(4分)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.13.(4分)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.14.(4分)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A1(1,0)任取不同的两点A i,A j,点P满足++=,则点P落在第一象限的概率是.二、选择题(5&#215;4=20分)15.(5分)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)下列极坐标方程中,对应的曲线为如图所示的是()A.ρ=6+5cosθB.ρ=6+5sinθC.ρ=6﹣5cosθD.ρ=6﹣5sinθ17.(5分)已知无穷等比数列{a n}的公比为q,前n项和为S n,且=S,下列条件中,使得2S n<S(n∈N*)恒成立的是()A.a1>0,0.6<q<0.7 B.a1<0,﹣0.7<q<﹣0.6C.a1>0,0.7<q<0.8 D.a1<0,﹣0.8<q<﹣0.718.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f (x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题三、解答题(74分)19.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为π,长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥C﹣O1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.20.(14分)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F 的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.21.(14分)双曲线x2﹣=1(b>0)的左、右焦点分别为F1,F2,直线l过F2且与双曲线交于A,B两点.(1)直线l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且(+)•=0,求l的斜率.22.(16分)已知a∈R,函数f(x)=log2(+a).(1)当a=5时,解不等式f(x)>0;(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.(3)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.23.(18分)若无穷数列{a n}满足:只要a p=a q(p,q∈N*),必有a p+1=a q+1,则称{a n}具有性质P.(1)若{a n}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;(2)若无穷数列{b n}是等差数列,无穷数列{c n}是公比为正数的等比数列,b1=c5=1;b5=c1=81,a n=b n+c n,判断{a n}是否具有性质P,并说明理由;(3)设{b n}是无穷数列,已知a n+1=b n+sina n(n∈N*),求证:“对任意a1,{a n}都具有性质P”的充要条件为“{b n}是常数列”.2016年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)设x∈R,则不等式|x﹣3|<1的解集为(2,4).【分析】由含绝对值的性质得﹣1<x﹣3<1,由此能求出不等式|x﹣3|<1的解集.【解答】解:∵x∈R,不等式|x﹣3|<1,∴﹣1<x﹣3<1,解得2<x<4.∴不等式|x﹣3|<1的解集为(2,4).故答案为:(2,4).【点评】本题考查含绝对值不等式的解法,是基础题,解题时要认真审题,注意含绝对值不等式的性质的合理运用.2.(4分)设z=,其中i为虚数单位,则Imz=﹣3.【分析】利用复数代数形式的乘除运算法则,先求出复数z的最简形式,由此能求出Imz.【解答】解:∵Z====2﹣3i,∴Imz=﹣3.故答案为:﹣3.【点评】本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数的乘除运算法则的合理运用.3.(4分)已知平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离.【分析】直接利用平行线之间的距离公式求解即可.【解答】解:平行直线l1:2x+y﹣1=0,l2:2x+y+1=0,则l1,l2的距离:=.故答案为:.【点评】本题考查平行线之间的距离公式的应用,考查计算能力.4.(4分)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是 1.76(米).【分析】先把这组数据按从小到大排列,求出位于中间的两个数值的平均数,得到这组数据的中位数.【解答】解:∵6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,从小到大排列为:1.69,1.72,1.75,1.77,1.78,1.80,位于中间的两个数值为1.75,1.77,∴这组数据的中位数是:=1.76(米).故答案为:1.76.【点评】本题考查中位数的求法,是基础题,解题时要认真审题,注意中位数的定义的合理运用.5.(4分)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f﹣1(x)=log2(x﹣1)(x>1).【分析】由于点(3,9)在函数f(x)=1+a x的图象上,可得9=1+a3,解得a=2.可得f(x)=1+2x,由1+2x=y,解得x=log2(y﹣1),(y>1).把x与y互换即可得出f(x)的反函数f﹣1(x).【解答】解:∵点(3,9)在函数f(x)=1+a x的图象上,∴9=1+a3,解得a=2.∴f(x)=1+2x,由1+2x=y,解得x=log2(y﹣1),(y>1).把x与y互换可得:f(x)的反函数f﹣1(x)=log2(x﹣1).故答案为:log2(x﹣1),(x>1).【点评】本题考查了反函数的求法、指数函数与对数函数的互化,考查了推理能力与计算能力,属于中档题.6.(4分)在正四棱柱ABCD﹣A1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan,则该正四棱柱的高等于2.【分析】根据正四棱柱ABCD﹣A1B1C1D1的侧棱D1D⊥底面ABCD,判断∠D1BD为直线BD1与底面ABCD所成的角,即可求出正四棱柱的高.【解答】解:∵正四棱柱ABCD﹣A1B1C1D1的侧棱D1D⊥底面ABCD,∴∠D1BD为直线BD1与底面ABCD所成的角,∴tan∠D1BD=,∵正四棱柱ABCD﹣A1B1C1D1中,底面ABCD的边长为3,∴BD=3,∴正四棱柱的高=3×=2,故答案为:2.【点评】本题考查了正四棱柱的性质,正四棱柱的高的计算,考查了线面角的定义,关键是找到直线与平面所成的角.7.(4分)方程3sinx=1+cos2x在区间[0,2π]上的解为或.【分析】利用二倍角公式化简方程为正弦函数的形式,然后求解即可.【解答】解:方程3sinx=1+cos2x,可得3sinx=2﹣2sin2x,即2sin2x+3sinx﹣2=0.可得sinx=﹣2,(舍去)sinx=,x∈[0,2π]解得x=或.故答案为:或.【点评】本题考查三角方程的解法,恒等变换的应用,考查计算能力.8.(4分)在(﹣)n的二项式中,所有的二项式系数之和为256,则常数项等于112.【分析】根据展开式中所有二项式系数的和等于2n=256,求得n=8.在展开式的通项公式中,令x的幂指数等于0,求得r的值,即可求得展开式中的常数项.【解答】解:∵在(﹣)n的二项式中,所有的二项式系数之和为256,∴2n=256,解得n=8,∴(﹣)8中,T r==,+1∴当=0,即r=2时,常数项为T3=(﹣2)2=112.故答案为:112.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.9.(4分)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.【分析】可设△ABC的三边分别为a=3,b=5,c=7,运用余弦定理可得cosC,由同角的平方关系可得sinC,再由正弦定理可得该三角形的外接圆半径为,代入计算即可得到所求值.【解答】解:可设△ABC的三边分别为a=3,b=5,c=7,由余弦定理可得,cosC===﹣,可得sinC===,可得该三角形的外接圆半径为==.故答案为:.【点评】本题考查三角形的外接圆的半径的求法,注意运用正弦定理和余弦定理,考查运算能力,属于基础题.10.(4分)设a>0,b>0,若关于x,y的方程组无解,则a+b的取值范围为(2,+∞).【分析】根据方程组无解,得到两直线平行,建立a,b的方程关系,利用转化法,利用基本不等式的性质进行求解即可.【解答】解:∵关于x,y的方程组无解,∴直线ax+y=1与x+by=1平行,∵a>0,b>0,∴≠,即a≠1,b≠1,且ab=1,则b=,由基本不等式有:a+b=a+≥2=2,当且仅当a=1时取等,而a的范围为a>0且a≠1,不满足取等条件,∴a+b>2,故答案为:(2,+∞).【点评】本题主要考查直线平行的应用以基本不等式的应用,考查学生的计算能力.11.(4分)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为4.【分析】对任意n∈N*,S n∈{2,3},列举出n=1,2,3,4的情况,归纳可得n >4后都为0或1或﹣1,则k的最大个数为4.【解答】解:对任意n∈N*,S n∈{2,3},可得当n=1时,a1=S1=2或3;若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,﹣1;若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1;或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;或3,﹣1,1,0;或3,﹣1,1,﹣1;…即有n>4后一项都为0或1或﹣1,则k的最大个数为4,不同的四个数均为2,0,1,﹣1,或3,0,1,﹣1.故答案为:4.【点评】本题考查数列与集合的关系,考查分类讨论思想方法,注意运用归纳思想,属于中档题.12.(4分)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是[0,1+] .【分析】设P(cosα,sinα),α∈[0,π],则=(1,1),=(cosα,sinα+1),由此能求出•的取值范围.【解答】解:∵在平面直角坐标系中,A(1,0),B(0,﹣1),P是曲线y=上一个动点,∴设P(cosα,sinα),α∈[0,π],∴=(1,1),=(cosα,sinα+1),=cosα+sinα+1=,∴•的取值范围是[0,1+].故答案为:[0,1+].【点评】本题考查向量的数量积的取值范围的求法,是中档题,解题时要认真审题,注意平面向量数量积的性质的合理运用.13.(4分)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为4.【分析】根据三角函数恒成立,则对应的图象完全相同.【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.【点评】本题主要考查三角函数的图象和性质,结合三角函数恒成立,利用三角函数的性质,结合三角函数的诱导公式进行转化是解决本题的关键.14.(4分)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A1(1,0)任取不同的两点A i,A j,点P满足++=,则点P落在第一象限的概率是.【分析】利用组合数公式求出从正八边形A1A2…A8的八个顶点中任取两个的事件总数,满足++=,且点P落在第一象限,则需向量+的终点落在第三象限,列出事件数,再利用古典概型概率计算公式求得答案.【解答】解:从正八边形A1A2…A8的八个顶点中任取两个,基本事件总数为.满足++=,且点P落在第一象限,对应的A i,A j,为:(A4,A7),(A5,A8),(A5,A6),(A6,A7),(A5,A7)共5种取法.∴点P落在第一象限的概率是,故答案为:.【点评】本题考查平面向量的综合运用,考查了古典概型概率计算公式,理解题意是关键,是中档题.二、选择题(5&#215;4=20分)15.(5分)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<﹣1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.16.(5分)下列极坐标方程中,对应的曲线为如图所示的是()A.ρ=6+5cosθB.ρ=6+5sinθC.ρ=6﹣5cosθD.ρ=6﹣5sinθ【分析】由图形可知:时,ρ取得最大值,即可判断出结论.【解答】解:由图形可知:时,ρ取得最大值,只有D满足上述条件.故选:D.【点评】本题考查了极坐标方程、数形结合方法、三角函数的单调性,考查了推理能力与计算能力,属于中档题.17.(5分)已知无穷等比数列{a n}的公比为q,前n项和为S n,且=S,下列条件中,使得2S n<S(n∈N*)恒成立的是()A.a1>0,0.6<q<0.7 B.a1<0,﹣0.7<q<﹣0.6C.a1>0,0.7<q<0.8 D.a1<0,﹣0.8<q<﹣0.7【分析】由已知推导出,由此利用排除法能求出结果.【解答】解:∵,S==,﹣1<q<1,2S n<S,∴,若a1>0,则,故A与C不可能成立;若a1<0,则q n,在B中,a1<0,﹣0.7<q<﹣0.6故B成立;在D中,a1<0,﹣0.8<q<﹣0.7,此时q2>,D不成立.故选:B.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.18.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f (x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【分析】①不成立.可举反例:f(x)=.g(x)=,h(x)=.②由题意可得:f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),可得:g(x)=g(x+T),h(x)=h(x+T),f (x)=f(x+T),即可判断出真假.【解答】解:①不成立.可举反例:f(x)=.g(x)=,h(x)=.②∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),前两式作差可得:g(x)﹣h(x)=g(x+T)﹣h(x+T),结合第三式可得:g(x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),因此②正确.故选:D.【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.三、解答题(74分)19.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为π,长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥C﹣O1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.【分析】(1)连结O 1B1,推导出△O1A1B1为正三角形,从而=,由此能求出三棱锥C﹣O1A1B1的体积.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∠BB1C为直线B1C与AA1所成角(或补角),由此能求出直线B1C与AA1所成角大小.【解答】解:(1)连结O1B1,则∠O1A1B1=∠A1O1B1=,∴△O1A1B1为正三角形,∴=,==.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∴∠BB1C为直线B1C与AA1所成角(或补角),BB1=AA1=1,连结BC、BO、OC,∠AOB=∠A1O1B1=,,∴∠BOC=,∴△BOC为正三角形,∴BC=BO=1,∴tan∠BB1C=1,∴直线B1C与AA1所成角大小为45°.【点评】本题考查三棱锥的体积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(14分)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F 的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.【分析】(1)设分界线上任意一点为(x,y),根据条件建立方程关系进行求解即可.(2)设M(x0,y0),则y0=1,分别求出对应矩形面积,五边形FOMGH的面积,进行比较即可.【解答】解:(1)设分界线上任意一点为(x,y),由题意得|x+1|=,得y=2,(0≤x≤1),(2)设M(x0,y0),则y0=1,∴x0==,∴设所表述的矩形面积为S3,则S3=2×(+1)=2×=,设五边形EMOGH的面积为S4,则S4=S3﹣S△OMP+S△MGN=﹣××1+=,S1﹣S3==,S4﹣S1=﹣=<,∴五边形EMOGH的面积更接近S1的面积.【点评】本题主要考查圆锥曲线的轨迹问题,考查学生的运算能力,综合性较强,难度较大.21.(14分)双曲线x2﹣=1(b>0)的左、右焦点分别为F1,F2,直线l过F2且与双曲线交于A,B两点.(1)直线l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且(+)•=0,求l的斜率.【分析】(1)利用直线的倾斜角,求出AB,利用三角形是正三角形,求解b,即可得到双曲线方程.(2)求出左焦点的坐标,设出直线方程,推出A、B坐标,利用向量的数量积为0,即可求值直线的斜率.【解答】解:(1)双曲线x2﹣=1(b>0)的左、右焦点分别为F1,F2,a=1,c2=1+b2,直线l过F2且与双曲线交于A,B两点,直线l的倾斜角为,△F1AB是等边三角形,可得:A(c,b2),可得:,3b4=4(a2+b2),即3b4﹣4b2﹣4=0,b>0,解得b2=2.所求双曲线方程为:x2﹣=1,其渐近线方程为y=±x.(2)b=,双曲线x2﹣=1,可得F1(﹣2,0),F2(2,0).设A(x1,y1),B(x2,y2),直线的斜率为:k=,直线l的方程为:y=k(x﹣2),由题意可得:,消去y可得:(3﹣k2)x2+4k2x﹣4k2﹣3=0,△=36(1+k2)>0且3﹣k2≠0,可得x1+x2=,则y1+y2=k(x1+x2﹣4)=k(﹣4)=.=(x1+2,y1),=(x2+2,y2),(+)•=0可得:(x1+x2+4,y1+y2)•(x1﹣x2,y1﹣y2)=0,可得x1+x2+4+(y1+y2)k=0,得+4+•k=0可得:k2=,解得k=±.l的斜率为:±.【点评】本题考查双曲线与直线的位置关系的综合应用,平方差法以及直线与双曲线方程联立求解方法,考查计算能力,转化思想的应用.22.(16分)已知a∈R,函数f(x)=log2(+a).(1)当a=5时,解不等式f(x)>0;(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.(3)设a>0,若对任意t∈[,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.【分析】(1)当a=5时,解导数不等式即可.(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论a的取值范围进行求解即可.(3)根据条件得到f(t)﹣f(t+1)≤1,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.【解答】解:(1)当a=5时,f(x)=log2(+5),由f(x)>0;得log2(+5)>0,即+5>1,则>﹣4,则+4=>0,即x>0或x<﹣,即不等式的解集为{x|x>0或x<﹣}.(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2(+a)﹣log2[(a﹣4)x+2a ﹣5]=0.即log2(+a)=log2[(a﹣4)x+2a﹣5],即+a=(a﹣4)x+2a﹣5>0,①则(a﹣4)x2+(a﹣5)x﹣1=0,即(x+1)[(a﹣4)x﹣1]=0,②,当a=4时,方程②的解为x=﹣1,代入①,成立当a=3时,方程②的解为x=﹣1,代入①,成立当a≠4且a≠3时,方程②的解为x=﹣1或x=,若x=﹣1是方程①的解,则+a=a﹣1>0,即a>1,若x=是方程①的解,则+a=2a﹣4>0,即a>2,则要使方程①有且仅有一个解,则1<a≤2.综上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,则a 的取值范围是1<a≤2,或a=3或a=4.(3)函数f(x)在区间[t,t+1]上单调递减,由题意得f(t)﹣f(t+1)≤1,即log2(+a)﹣log2(+a)≤1,即+a≤2(+a),即a≥﹣=设1﹣t=r,则0≤r≤,==,当r=0时,=0,当0<r≤时,=,∵y=r+在(0,)上递减,∴r+≥=,∴==,∴实数a的取值范围是a≥.【点评】本题主要考查函数最值的求解,以及对数不等式的应用,利用换元法结合对勾函数的单调性是解决本题的关键.综合性较强,难度较大.23.(18分)若无穷数列{a n}满足:只要a p=a q(p,q∈N*),必有a p+1=a q+1,则称{a n}具有性质P.(1)若{a n}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;(2)若无穷数列{b n}是等差数列,无穷数列{c n}是公比为正数的等比数列,b1=c5=1;b5=c1=81,a n=b n+c n,判断{a n}是否具有性质P,并说明理由;(3)设{b n}是无穷数列,已知a n+1=b n+sina n(n∈N*),求证:“对任意a1,{a n}都具有性质P”的充要条件为“{b n}是常数列”.【分析】(1)利用已知条件通过a2=a5=2,推出a3=a6,a4=a7,转化求解a3即可.(2)设无穷数列{b n}的公差为:d,无穷数列{c n}的公比为q,则q>0,利用条件求出,d与q,求出b n,c n得到a n的表达式,推出a2≠a6,说明{a n}不具有性质P.(3)充分性:若{b n}是常数列,设b n=C,通过a n+1=C+sina n,证明a p+1=a q+1,得到{a n}具有性质P.必要性:若对于任意a1,{a n}具有性质P,得到a2=b1+sina1,设函数f(x)=x﹣b1,g(x)=sinx,说明b n+1=b n,即可说明{b n}是常数列.【解答】解:(1)∵a2=a5=2,∴a3=a6,a4=a7=3,∴a5=a8=2,a6=21﹣a7﹣a8=16,∴a3=16.(2)设无穷数列{b n}的公差为:d,无穷数列{c n}的公比为q,则q>0,b5﹣b1=4d=80,∴d=20,∴b n=20n﹣19,=q4=,∴q=,∴c n=∴a n=b n+c n=20n﹣19+.∵a1=a5=82,而a2=21+27=48,a6=101=.a1=a5,但是a2≠a6,{a n}不具有性质P.(3)充分性:若{b n}是常数列,设b n=C,则a n+1=C+sina n,若存在p,q使得a p=a q,则a p+1=C+sina p=C+sina q=a q+1,故{a n}具有性质P.必要性:若对于任意a1,{a n}具有性质P,则a2=b1+sina1,设函数f(x)=x﹣b1,g(x)=sinx,由f(x),g(x)图象可得,对于任意的b1,二者图象必有一个交点,∴一定能找到一个a1,使得a1﹣b1=sina1,∴a2=b1+sina1=a1,∴a n=a n+1,故b n=a n+2﹣sina n+1=a n+1﹣sina n=b n,+1∴{b n}是常数列.【点评】本题考查等差数列与等比数列的综合应用,充要条件的应用,考查分析问题解决问题的能力,逻辑思维能力,难度比较大.。

相关文档
最新文档