初中数学一元二次方程的实根分布
《一元二次方程的实根分布问题》(课堂PPT)
2.若方程2x²–(m–2)x–2m²–m=0的两根在区间[0,1] 之外两旁,求实数m的取值范围。
(, 2 ) (1 ,)
15
课堂练习:
3.关于x的方程2kx2-2x-3k-2=0的二根,一个小于1, 另一个大于1,则求实数k的取值范围。
(, 4 ) (0 ,)
2x
5
问题 已知方程x²+(m–3)x+m=0,求实数m的 取值范围。
条件5:若方程的两个根有且仅有一个在( 0,2)内。
分析 设f(x)=x²+(m–3)x+m
y
如右图知
1、f(0)0且 03m1
2
2、f(2)0且 13m2m
2
O
2 x
2
3
3、f(0 )f(2 ) m (3 m 2 ) 0 32 m 1
2 2a
13
注意:
由函数图象与x轴交点的位置写出相应的充要条件,一般 考虑以下三个方面:
①判别式 b24ac的符号; ②对称轴 x bk 的位置分布;
2a
③二次函数在实根分布界点处函数值的符号。
14
课堂练习:
1.若方程7x²–(m+13)x+m²–m–2=0在区间(0,1)、 (1,2)上各有一个实根,求实数m的取值范围。
条件2:若方程的两个根均小于1。
y
分析 设f(x)=x²+(m–3)x+m
如右图知
(m 3)2 4m 0
O
m 2
3
1
m9
f (1) 2m 2 0
1x
3
问题 已知方程x²+(m–3)x+m=0,求实数m的 取值范围。
周末培优8 第八周 一元二次方程根的分布
第八周 一元二次方程根的分布重点知识梳理设f (x )=ax 2+bx +c ,则1.二次方程ax 2+bx +c =0的根从几何意义上来说就是抛物线y =ax 2+bx +c 与x 轴交点的横坐标,所以研究方程ax 2+bx +c =0的实根的情况,可从y =ax 2+bx +c 的图象上进行研究.若在(-∞,+∞)内研究方程ax 2+bx +c =0的实根情况,只需考察函数y =ax 2+bx +c 与x 轴交点个数及交点横坐标的符号,根据判别式以及根与系数的关系,由y =ax 2+bx +c 的系数可判断出Δ,x 1+x 2,x 1x 2的符号,从而判断出实根的情况.若在区间(m ,n )内研究二次方程ax 2+bx +c =0,则需由二次函数图象与区间关系来确定.2.若m ,n 都不是方程ax 2+bx +c =0(a ≠0)的根,则f (x )=0有且只有一个实根属于(m ,n )的充要条件是f (m )f (n )<0.3.方程ax 2+bx +c =0(a ≠0)的两个实根都属于区间(m ,n )的充要条件是:⎩⎨⎧ b 2-4ac ≥0af (m )>0af (n )>0m <-b 2a <n .4.二次方程ax 2+bx +c =0的两个实根分别在区间(m ,n )的两侧(一根小于m ,另一根大于n )的充要条件是:⎩⎨⎧af (m )<0af (n )<0. 5.二次方程ax 2+bx +c =0的两个实根都在(m ,n )的右侧(两根都大于n )的充要条件是: ⎩⎪⎨⎪⎧b 2-4ac ≥0af (n )>0-b 2a >n , 二次方程ax 2+bx +c =0的两个实根都在(m ,n )的左侧(两根都小于m )的充要条件是:⎩⎪⎨⎪⎧ b 2-4ac ≥0af (m )>0-b 2a <m .6.求解一元二次方程根的分布问题时,可借助函数图象,数形结合来写出相应结论.典型例题剖析例1 已知二次方程(2m +1)x 2-2mx +(m -1)=0有一正根和一负根,求实数m 的取值范围.【解析】∵二次方程有一正根一负根,∴(2m +1)·f (0)<0,即(2m +1)(m -1)<0,解得-12<m <1, ∴m 的取值范围为(-12,1). 变式训练 已知二次函数y =(m +2)x 2-(2m +4)x +(3m +3)与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围.【解析】∵对应二次方程(m +2)x 2-(2m +4)x +(3m +3)=0的一根大于1,一根小于1, ∴(m +2)·f (1)<0,即(m +2)·(2m +1)<0,解得-2<m <-12, ∴m 的取值范围为(-2,-12). 【小结】一元二次方程ax 2+bx +c =0的一根大于m ,一根小于m ,若a >0,则只需f (m )<0;若a <0,则只需f (m )>0 .二者综合起来,即一元二次方程ax 2+bx +c =0的一根大于m ,一根小于m ,则只需af (m )<0.例2 已知关于x 的二次方程x 2+2mx +2m +1=0.(1) 若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.(2) 若方程两根均在区间(0,1)内,求m 的取值范围.【解析】(1)若抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,则 ⎩⎪⎨⎪⎧ f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0,∴⎩⎪⎨⎪⎧ m <-12m ∈R m <-12m >-56,故-56<m <-12, ∴实数m 的取值范围是(-56,-12).(2)若抛物线与x 轴交点落在区间 (0,1) 内,列不等式组⎩⎪⎨⎪⎧ f (0)>0,f (1)>0,Δ≥0,0<-m <1,∴⎩⎪⎨⎪⎧ m >-12,m >-12,m ≥1+2或m ≤1-2,-1<m <0,∴-12<m ≤1-2, ∴实数m 的取值范围是(-12,1- 2 ]. 变式训练 已知方程2x 2-2(2a -1)x +a +2=0的两个根在-3与3之间,求a 的取值范围.【解析】若抛物线与x 轴交点落在区间 (-3,3) 内,列不等式组⎩⎪⎨⎪⎧ f (-3)>0,f (3)>0,Δ≥0,-3<2a -12<3,∴⎩⎪⎨⎪⎧ 18+6(2a -1)+a +2>0,18-6(2a -1)+a +2>0,4(2a -1)2-8(a +2)≥0,-52<a <72,,解得-1413<a ≤3-214或3+214≤a <2611, 故a 的取值范围是(-1413,3-214]∪[3+214,2611). 例3 求实数m 的范围,使关于x 的方程x 2+2(m -1)x +2m +6=0(1)有两个实根,且一个比2大,一个比2小;(2)有两个实根α,β,且满足0<α<1<β<4;(3)至少有一个正根.【解析】设y =f (x )=x 2+2(m -1)x +2m +6.(1)依题意有f (2)<0,即4+4(m -1)+2m +6<0,得m <-1.(2)依题意有⎩⎪⎨⎪⎧ f (0)=2m +6>0f (1)=4m +5<0f (4)=10m +14>0,解得-75<m <-54. (3)方程至少有一个正根,则有三种可能: ①有两个正根,此时可得⎩⎪⎨⎪⎧ Δ≥0f (0)>02(m -1)-2>0, 即⎩⎪⎨⎪⎧m ≤-1或m ≥5m >-3m <1,∴-3<m ≤-1.②有一个正根,一个负根,此时可得f (0)<0,得m <-3.③有一个正根,另一根为0,此时可得⎩⎪⎨⎪⎧6+2m =0-2(m -1)>0, ∴m =-3.综上所述,得m ≤-1.变式训练 已知a 是实数,函数f (x )=2ax 2+2x -3-a ,如果函数y =f (x )在区间[]-1,1上有零点,求a 的取值范围.【解析】函数y =f (x )在区间[-1,1]上有零点,即方程2ax 2+2x -3-a =0在[-1,1]上有解,a =0时,不符合题意,所以a ≠0.方程2ax 2+2x -3-a =0在[-1,1]上有解,∴f (-1)·f (1)≤0或⎩⎪⎨⎪⎧ af (-1)≥0af (1)≥0Δ=4+8a (3+a )≥0-1<-12a <1,解得1≤a ≤5或a ≤-3-72或a ≥5, 即a ≤-3-72或a ≥1. 所以实数a 的取值范围是a ≤-3-72或a ≥1.跟踪训练1.对一元二次方程2 012(x -2)2=2 013的两个根的情况,判断正确的是( )A .一根小于1,另一根大于3B .一根小于-2,另一根大于2C .两根都小于0D .两根都大于22.若一元二次方程3x 2-5x +a =0的一根大于-2且小于0,另一根大于1而小于3, 则实数a 的取值范围是 ( )A .(-12,0)B .(-∞,1514)C .(1514,+∞)D .(12,2) 3.已知关于x 的方程(m +3)x 2-4mx +2m -1=0的两根异号,且负根的绝对值比正根大,那么实数m 的取值范围是( )A .-3<m <0B .m <-3或m >0C .0<m <3D .m <0 或m >34.方程x 2+(2m -1)x +4-2m =0的一根大于2,一根小于2,那么实数m 的取值范围是 ________________.5.若方程mx 2+2mx +1=0一根大于1,另一根小于1,则实数m 的取值范围为_______.6.已知方程4x 2+2(m -1)x +(2m +3)=0有两个负根,则实数m 的取值范围是________.7.一元二次方程x 2+(2a -1)x +a -2=0的一根比1大,另一根比-1小,则实数a 的取值范围是______________.8.已知方程7x 2-(m +13)x +m 2-m -2=0(m 为实数)有两个实数根,且一根在(0,1)上,一根在(1,2)上,则m 的取值范围是 _________________.9.若方程x 2+(k -2)x +2k -1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k 的取值范围是_________________.10.方程x 2-2ax +4=0的两根均大于1,则实数a 的取值范围是________________.11.已知关于x 的方程ax 2-2(a +1)x +a -1=0,探究a 为何值时,(1)方程有一正一负两根;(2)方程的两根都大于1;(3)方程的一根大于1,一根小于1.12.已知二次函数f(x)=x2+2bx+c(b,c∈R).(1)若f(x)≤0的解集为{x|-1≤x≤1},求实数b,c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b的取值范围.参考答案1.A ∵2 012(x -2)2=2 013,∴(x -2)2=2 0132 012>1, ∴x -2<-1或x -2>1,∴x <1或x >3,∴该方程的两个根一个小于1,一个大于3.2.A 设f (x )=3x 2-5x +a ,根据函数图象可知⎩⎪⎨⎪⎧ f (-2)>0f (0)<0f (1)<0f (3)>0即⎩⎪⎨⎪⎧ 12+10+a >0a <03-5+a <027-15+a >0,解此不等式组可得a ∈(-12,0),即实数a 的取值范围是(-12,0).故选A.3.A 由题意x 1x 2<0,x 1+x 2<0,Δ>0,由根与系数的关系x 1x 2=2m -1m +3,x 1+x 2=4m m +3,因此可知参数的范围选A.4.(-∞,-3)解析 设f (x )=x 2+(2m -1)x +4-2m ,其图象开口向上,由题意,得f (2)<0,即22+(2m -1)×2+4-2m <0,解得m <-3.5.(-13,0) 6.[11,+∞)解析 依题意得⎩⎪⎨⎪⎧ -2(m -1)4<0,2m +34>0,Δ=4(m -1)2-16(2m +3)≥0,-2(m -1)8<0,即⎩⎪⎨⎪⎧ m >1,m >-32,m ≥11或m ≤-1,m >1,故m 的取值范围是[11,+∞).7.(0,23) 8.(-2,-1)∪(3,4)解析 设f (x )=7x 2-(m +13)x +m 2-m -2,要使方程7x 2-(m +13)x +m 2-m -2=0(m 为实数)有两个实数根,且一根在(0,1)上,一根在(1,2)上,只需⎩⎪⎨⎪⎧ f (0)>0f (1)<0f (2)>0,即⎩⎪⎨⎪⎧ m >2或m <-1-2<m <4m >3或m <0,则m 的取值范围为(-2,-1)∪(3,4).9.(12,23) 解析 设f (x )=x 2+(k -2)x +2k -1,⎩⎪⎨⎪⎧ f (0)>0f (1)<0f (2)>0即⎩⎪⎨⎪⎧ 2k -1>03k -2<04k -1>0, ∴12<k <23. 10.[2,52) 解析 因为方程x 2-2ax +4=0的两根均大于1,所以⎩⎪⎨⎪⎧12-2a ×1+4>0(-2a )2-4×1×4≥0, 解得实数a 的取值范围是[2,52). 11.解析 (1)因为方程有一正一负两根,所以由根与系数的关系得⎩⎪⎨⎪⎧a -1a <0Δ=12a +4>0, 解得0<a <1.即当0<a <1时,方程有一正一负两根.(2)方法一:当方程两根都大于1时,函数y =ax 2-2(a +1)x +a -1的大致图象如图(1)(2)所示,所以必须满足⎩⎨⎧ a >0Δ>0a +1a >1f (1)>0或⎩⎨⎧ a <0Δ>0a +1a >1f (1)<0,不等式组无解.所以不存在实数a ,使方程的两根都大于1.方法二:设方程的两根分别为x 1,x 2,由方程的两根都大于1,得x 1-1>0,x 2-1>0, 即⎩⎪⎨⎪⎧ (x 1-1)(x 2-1)>0x 1-1+x 2-1>0⇒⎩⎪⎨⎪⎧x 1x 2-(x 1+x 2)+1>0x 1+x 2>2. 所以⎩⎨⎧ a -1a -2(a +1)a +1>02(a +1)a >2⇒⎩⎨⎧a <0a >0, 不等式组无解. 即不论a 为何值,方程的两根不可能都大于1.(3)因为方程有一根大于1,一根小于1,函数y =ax 2-2(a +1)x +a -1的大致图象如图(3)(4)所示,所以必须满足⎩⎨⎧ a >0f (1)<0或⎩⎨⎧a <0f (1)>0,解得a >0. ∴即当a >0时,方程的一个根大于1,一个根小于1.12.解析 (1)依题意,x 1=-1,x 2=1是方程x 2+2bx +c =0的两个根.由根与系数的关系,得⎩⎪⎨⎪⎧ x 1+x 2=-2b x 1x 2=c 即⎩⎪⎨⎪⎧-2b =0c =-1, 所以b =0,c =-1.(2)由题意知,f (1)=1+2b +c =0,所以c =-1-2b .记g (x )=f (x )+x +b =x 2+(2b +1)x +b +c =x 2+(2b +1)x -b -1,则⎩⎪⎨⎪⎧ g (-3)=5-7b >0g (-2)=1-5b <0g (0)=-1-b <0g (1)=b +1>0, 解得15<b <57, 所以实数b 的取值范围为(15,57).。
专题一元二次方程根的分布(解析版)
专题04 一元二次方程根的分布二次方程()200ax bx c a ++=≠的根从几何意义上来说就是二次函数()c bx ax x f ++=2与x 轴交点的横坐标,所以研究02=++c bx ax 的实根的情况,可从函数()c bx ax x f ++=2的图象上进行研究.若在()+∞∞-,内研究方程02=++c bx ax 的实根情况,只需考查()c bx ax x f ++=2与x 轴交点的个数以及交点横坐标的符号,根据判别式以及韦达定理,由∆、21x x +、21x x ⋅的值与符号,从而判断出实根的情况.若在区间()n m ,内研究二次方程02=++c bx ax ,则需由二次函数图象与区间关系来确定.知识梳理分布情况两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(0>a )知识结模块一:得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩()00<f大致图象(0<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩()00>f综合结论(不讨论)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩()00<⋅f a【例1】已知方程()2210x m x m -++=有两个不等正实根,求实数m 的取值范围. 【难度】★★ 【答案】见解析 【解析】由典例剖析()()0102200m f ∆>⎧⎪-+⎪->⎨⎪>⎪⎩⇒()218010m m m m ⎧+->⎪>-⎨⎪>⎩⇒330m m m ⎧<->+⎪⎨>⎪⎩⇒03m <<-3m >+即为所求的范围.【例2】若方程05)2(2=-+-+m x m x 的根满足下列条件,分别求出实数m 的取值范围. (1) 方程两实根均为正数; (2) 方程有一正根一负根. 【难度】★★ 【答案】见解析【解析】分析 讨论二次方程根的分布,应在二次方程存在实根的条件下进行.代数方法与图象法是研究二次方程根的分布问题的主要方法.解1 (1)由题意,得.45244050)2(0)5(4)2(00022121-≤⇒⎪⎩⎪⎨⎧<<≥-≤⇒⎪⎩⎪⎨⎧>->--≥---⇒⎪⎩⎪⎨⎧>>+≥∆m m m m m m m m m x x x x 或所以,当4-≤m 时,原方程两实根均为正数;(2)由题意,得.5050021>⇒<-⇒⎩⎨⎧<≥∆m m x x所以,当5>m 时,原方程有一正根一负根.解2 二次函数m x m x y -+-+=5)2(2的图象是开口向上的抛物线. (1)如图,由题意,得4052)2(4)2(022050)2(020)0(22-≤⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-+--->-->-⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧≤->->m m m m m m a b f a b f 。
二次函数图像解题——根的分布
其交点横坐标便是方程的解,由图知: k 4时, 无解; k = 4或k 3时,有两解; 4 k 3时有四个解; k 3时有三个解.
3
4
y
x
结论: 一元二次方程 ax2 bx c 0(a 0) 在区间上的
实根分布问题.
() 1 一元二次方程有且仅有一个实根属于(m, n)的 充要条件是: f (m) f (n) 0. b 2 4ac 0 a f ( m) 0 a f ( n) 0 m b n 2a
(6) x1,x2有且只有一个根在(k1 , k2)内
k1
k2
f (k1 ) f (k2 ) 0
k1
k2
0 或 b k1 k2 2a
k1
k2
f ( k1 ) 0 或 b k1 k2 k1 2a 2
k1
f ( k2 ) 0 或 k1 k2 b 2 2a k2 k2
(2) 一元二次方程两个实根都属于(m, n)的充要条件是:
(3) 一元二次方程两个实根分别在(m, n)两侧的
a f ( m) 0 充要条件是: a f ( n) 0 (4)一元二次方程两个实根分别在(m, n)同一侧的 充要条件是: 分两类: b 2 4ac 0 () 在(m, n)右侧 a f (n) 0 b n 注:前提 m,n 2a 不是方程(1) b 2 4ac 0 () 在(m, n)左侧 a f (m) 0 b m 2a
不等式组
2 x 变式题:m为何实数值时,关于x的方程 mx (3 m) 0
有两个大于1的根.
根的个数判定及一元二次方程根的分布
0 0
(1)已知方程 x2 (m 2)x 2m1 0 有一实根在0和1之间
练 另一实根在之外,求 m 的取值范围。 习 (2)已知关于 x 的方程 x2 (m 2)x 2m 0
的两根为 、 且满足 0 1 ,求 m的取值
范围。
(3)若方程 x2 (k 2)x k 0 的两实根均在区间
练习
已知关于x的一元二次 x2 2m x 2m 1 0
(1)若方程两根均为正,求m的取值范围; (2)若方程两根均为负,求m的取值范围; (3)若方程的一根为正另一根为负,求m范围;
(二)k分布
1.两根均大于k的条件
b2 4ac 0
b 2a
k
af (k ) 0
3.一根大于k一根小于k
比2小,求 m 的取值范围。
(三)区间分布
1. 一个根在区间内另一根在区间外
f (k1) f (k2) 0
2.两根均在区间内
b2 4ac 0
af (k1) 0
Байду номын сангаас
af k1
(k2) 0 b
2a
k2
3.两根分别位于两区间内
f f
(k1 ( p1
) )
f f
(k2 ) ( p2 )
2.两根均小于k的条件呢?
的条件
af (k) 0
练习
(1)已知方程 x2 11x m 2 0 的两实根都大于1,求
m 的取值范围。
(2)若一元二次方程 mx2 (m 1)x 3 0 的两实根都小于2,求 m 的取值范围。
(3)已知方程 x2 2m x 2m2 3 0 有一根大于2,另一根
在[-1,3]内有实根,求a的取值范围;
二、一元二次方程的根的分布
专题二次函数根的分布问题、含参数一元二次不等式(原卷版)
专题09 二次函数根的分布问题、含参数一元二次不等式【考点预测】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系 (1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=< 2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题 一般情况下需要从以下4个方面考虑: (1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示. 根的分布图像限定条件12m x x <<2()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩ 12x m x <<()0f m <12x x m <<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩ 在区间(,)m n 内 没有实根0∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩ Onm yxOnmyxOnm yxOnm yxOnm yx在区间(,)m n 内 有且只有一个实根()0()0f m f n >⎧⎨<⎩()0()0f m f n <⎧⎨>⎩在区间(,)m n 内 有两个不等实根02()0()0b m n a f m f n ∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩ 3、解含参数的一元二次不等式需要对字母的取值进行分类讨论,常用的分类方法有以下三种:(1)按二次项系数a 的符号分类,即0,0,0a a a >=<; (2)按判别式的符号分类,即0,0,0∆>∆=∆<;(3)按方程20ax bx c ++=的根1x 、2x 的大小分类,即121212,,x x x x x x >=<. 【典型例题】例1.(2022·辽宁·营口市第二高级中学高一期末)已知关于x 的不等式2320(R)ax x a ++>∈. (1)若2320ax x ++>的解集为{}1x b x <<,求实数,a b 的值; (2)求关于x 的不等式2321ax x ax -+>-的解集.例2.(2022·全国·高一专题练习)已知关于x 的不等式ax 2﹣x +1﹣a <0.OnmyxOn m yxOn myx(1)当a =2时,解关于x 的不等式; (2)当a >0时,解关于x 的不等式.例3.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113x x ⎧⎫-<<⎨⎬⎩⎭∣,求,a b的值;(2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围.例4.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=. (1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3? (3)当a 为何值时,方程的两个根都大于0?例5.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221?260.x m x m +-++= (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根 αβ,,且满足014αβ<<<<; (3)至少有一个正根.【过关测试】一、单选题1.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x ,那么a 的取值范围是( ) A .2275a -<<B .25a > C .27a <-D .2011a -<<2.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是( ) A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D .{}12,6723⎛⎤⋃- ⎥⎝⎦3.(2022·江苏·高一专题练习)关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为( ) A .1-B .4-C .4-或1D .1-或44.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是( ) A .-2B .23C .89D .15.(2022·全国·高一专题练习)已知方程240x x a -+=的两根都大于1,则a 的取值范围是( ) A .34a <≤ B .14a <≤ C .1a >D .4a ≤6.(2022·全国·高一期中)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为( ) A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-7.(2022·上海·高一专题练习)关于x 的不等式2320ax x -+>的解集为{|1x x <或}x b >,则关于x 的不等式2()0ax ac b x bx -++>,以下结论正确的是( ) A .当0c >时,解集为{}|0x x c << B .当0c 时,解集为R C .当0c <时,解集为{|x x c <或0}x >D .以上都不正确8.(2022·全国·高一课时练习)若关于x 的不等式()210x a x a -++<的解集中恰有两个整数,则实数a 的取值范围是 A .{}34a a << B .{|21a a -<<-或}34a << C .{}34a a < D .{|21a a -<-或}34a <二、多选题9.(2022·湖南·株洲二中高一开学考试)已知关于x 的不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩仅有一个整数解,则k 的值可能为( ) A .5-B .3-C .πD .510.(2022·江苏·高一专题练习)已知函数23y ax bx =+-,则下列结论正确的是( )A .关于x 的不等式230ax bx +-<的解集可以是{}3x x >B .关于x 的不等式230ax bx +->的解集可以是∅C .函数23y ax bx =+-在()0,∞+上可以有两个零点D .“关于x 的方程230ax bx +-=有一个正根和一个负根”的充要条件是“0a >”11.(2022·湖南·长沙市实验中学高一期中)已知关于x 的方程x 2+(m -3)x +m =0,下列结论正确的是( )A .方程x 2+(m -3)x +m =0有实数根的充要条件是m ∈{m |m <1或m >9}B .方程x 2+(m -3)x +m =0有一正一负根的充要条件是m ∈{m |m <0}C .方程x 2+(m -3)x +m =0有两正实数根的充要条件是m ∈{m |0<m ≤1}D .方程x 2+(m -3)x +m =0无实数根的必要条件是m ∈{m |m >1}12.(2022·湖南·新化县教育科学研究所高一期末)已知a Z ∈,关于x 的一元二次不等式x 2-8x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( ) A .13 B .14 C .15 D .17三、填空题13.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数a 的取值范围是_____.14.(2022·全国·高一专题练习)方程()2110mx m x --+=在区间()0,1内有两个不同的根,m 则的取值范围为__.15.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______.16.(2022·安徽·泾县中学高一开学考试)记关于x 的不等式220x x a a -+-≤的解集为A ,集合{}12B x x =-≤<,若A B ,则实数a 的取值范围为___________. 四、解答题17.(2022·四川成都·高一期末)设函数()()()3f x x x a =--,R a ∈. (1)解关于x 的不等式()0f x <;(2)当()3x ∈+∞,时,不等式()9f x ≥-恒成立,求a 的取值范围.18.(2022·全国·高一课时练习)已知函数()()21f x x x a a =++-,(1)当2a =时,求不等式()0f x <的解集.(2)求不等式()2f x x <的解集.19.(2022·江苏省天一中学高一期末)已知二次函数()()222,R f x ax bx b a a b =++-∈,当()1,3x ∈-时,()0f x >;当()(),13,x ∈-∞-⋃+∞,()0f x <. (1)求a ,b 的值;(2)解关于x 的不等式:()()220R ax b c x c c +-+>∈.20.(2022·湖南·高一课时练习)当k 为何值时,关于x 的方程()22340x k x k +-+=分别满足:(1)无实数根? (2)有两正实根?21.(2022·全国·高一单元测试)关于x 的方程2220x mx m +++=分别满足下列条件: (1)当4m =时,两根分别为1x 、2x ,求2212x x +的值; (2)m 为何值时,有一正根一负根; (3)m 为何值时,有两个不相等的正根.22.(2022·全国·高一专题练习)已知关于x 的方程2(21)70x m x m -+++=有两个不等的实根1x ,2x .(1)两根一个根大于1,一个根小于1,求参数m 的取值范围; (2)113x <<,24x >,求参数m 的取值范围.。
微专题11 二次函数根的分布问题(解析版)
微专题11 二次函数根的分布问题【方法技巧与总结】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系 (1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=< 2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题 一般情况下需要从以下4个方面考虑: (1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示. 根的分布图像限定条件12m x x <<2()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩ 12x m x <<()0f m <12x x m <<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩ 在区间(,)m n 内 没有实根0∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩ Onm yxOnmyxOnm yxOnm yxOnm yx在区间(,)m n 内 有且只有一个实根()0()0f m f n >⎧⎨<⎩()0()0f m f n <⎧⎨>⎩在区间(,)m n 内 有两个不等实根02()0()0b m n a f m f n ∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩【题型归纳目录】 题型一:正负根问题 题型二:根在区间的分布问题 题型三:整数根问题 题型四:范围问题【典型例题】 题型一:正负根问题例1.(2022·河南·郑州市回民高级中学高一阶段练习)已知m 为实数,命题甲:关于x 的不等式240mx mx +-<的解集为R ;命题乙:关于x 的方程22200x mx m -++=有两个不相等的负实数根.若甲、乙至少有一个为真命题,求实数m 的取值范围为_______. 【答案】(20,0]-【解析】由命题甲:关于x 的不等式240mx mx +-<的解集为R , 当0m =时,不等式40-<恒成立;OnmyxOn m yxOn myx当0m ≠时,则满足2160m m m <⎧⎨∆=+<⎩,解得160m -<<, 综上可得160m -<≤.由命题乙:关于x 的方程22200x mx m -++=有两个不相等的负实数根, 则满足2121244(20)020200m m x x m x x m ⎧∆=-+>⎪+=<⎨⎪=+>⎩,整理得2200020m m m m ⎧-->⎪<⎨⎪>-⎩,所以45020m m m m <->⎧⎪<⎨⎪>-⎩或,解得204m -<<-.所以甲、乙至少有一个为真命题时,有160m -<≤或204m -<<-, 可得200m -<≤,即实数m 的取值范围为(20,0]-. 故答案为:(20,0]-.例2.(2022·全国·高一单元测试)关于x 的方程2210ax x ++=的实数根中有且只有一个负实数根的充要条件为____________. 【答案】0a ≤或1a =【解析】若方程2210ax x ++=有且仅有一个负实数根,则当0a =时,12x =-,符合题意. 当0a ≠时,方程2210ax x ++=有实数根,则440a ∆=-≥,解得1a ≤, 当1a =时,方程有且仅有一个负实数根1x =-, 当1a <且0a ≠时,若方程有且仅有一个负实数根,则10a<,即0a <. 所以当0a ≤或1a =时,关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根.综上,“关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根”的充要条件为“0a ≤或1a =”. 故答案为:0a ≤或1a =.例3.(2022·甘肃·兰化一中高一阶段练习)若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围为___________. 【答案】125k ≤-或3k > 【解析】首先0k ≠,设方程2330kx kx k ++-=的两根为12,x x ,则1212120,00x x x x x x +<⎧<<⇔⎨>⎩,所以2Δ94(3)03030k k k k kk k⎧⎪=--≥⎪⎪-<⎨⎪-⎪>⎪⎩,又0k ≠,解得125k ≤-或3k >.故答案为:125k ≤-或3k >. 例4.(2022·全国·高一专题练习)已知关于x 的二次方程2(21)210m x mx m +-+-=有一正数根和一负数根,则实数m 的取值范围是_____. 【答案】112m -<<【解析】由题意知,二次方程有一正根和一负根, 得2101021m m m +≠⎧⎪-⎨<⎪+⎩,解得112m -<<.故答案为:112m -<<例5.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113xx ⎧⎫-<<⎨⎬⎩⎭∣,求,a b 的值; (2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围. 【解析】(1)由题意可得1-和13是方程210+-=ax bx 的两个实根,则11,3111,3b a a ⎧-+=-⎪⎪⎨-⎪-⨯=⎪⎩解得3,2a b ==.(2)因为31b a =--,所以()23110ax a x -+-=,由题可知Δ0>,则1a <-或19a >-,由题意,方程有两个负根,即310,10,a a a +⎧<⎪⎪⎨-⎪>⎪⎩解得103-<<a .综上,实数a 的取值范围是109aa ⎧⎫-<<⎨⎬⎩⎭∣. 例6.(2022·辽宁·沈阳市第八十三中学高一阶段练习)已知1x 、2x 是一元二次方程24410kx kx k -++=的两个实数根.(1)若1x 、2x 均为正根,求实数k 的取值范围;(2)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不能存在,请说明理由.【解析】(1)由题意,一元二次方程有两个正根1x 、2x 故20,(4)16(+1)0k k k k ≠∆=-≥,即0k ≤,且121210104x x k x x k +=>⎧⎪+⎨=>⎪⎩,解得:1k <-. (2)由题意,当0∆≥,即0k ≤时,有121211,4k x x x x k ++==()()2221212121212129(1)93222+252()92442k k x x x x x x x x x x x x k k ++--=-=+-=-=-=-解得:95k =,与0k ≤矛盾.故不存在实数k ,使得()()12123222x x x x --=-成立题型二:根在区间的分布问题例7.(2022·全国·高一专题练习)已知一元二次方程x 2+ax +1=0的一个根在(0,1)内,另一个根在(1,2)内,则实数a 的取值范围为________. 【答案】5(,2)2--【解析】设f (x )=x 2+ax +1,由题意知(0)10(1)20(2)520f f a f a =>⎧⎪=+<⎨⎪=+>⎩,解得-52<a <-2.故答案为:5(,2)2--.例8.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=. (1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3? (3)当a 为何值时,方程的两个根都大于0?【解析】(1)二次函数22y x x a =-+的图象是开口向上的抛物线,故方程220x x a -+=的一个根大于1,另一个根小于1, 则2120a -+<,解得1a <,所以a 的取值范围是{}1a a <.(2)方程220x x a -+=的一个根大于1-且小于1,另一个根大于2且小于3,作满足题意的二次函数22y x x a =-+的大致图象,由图知,120120440960a a a a ++>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩ , 解得30a -<<.所以a 的取值范围是{}30a a -<<.(3)方程220x x a -+=的两个根都大于0,则Δ4400a a =-≥⎧⎨>⎩,解得01a <≤,所以a 的取值范围是{}01a a <≤. 例9.(2022·全国·高一专题练习)已知关于x 的一元二次方程2220x ax a -++=,当a 为何值时,该方程:有不同的两根且两根在(1,3)内. 【解析】令2()22f x x ax a =-++,因为方程2220x ax a -++=有不同的两根且两根在(1,3)内, 所以213Δ44(2)0(1)30(3)1150a a a f a f a <<⎧⎪=-+>⎪⎨=->⎪⎪=->⎩ , 解得1125<<a , 故答案为:112,5⎛⎫⎪⎝⎭例10.(2022·江苏·高一专题练习)已知二次函数()2221R y x tx t t =-+-∈.(1)若该二次函数有两个互为相反数的零点,解不等式22210x tx t -+-≥;(2)若关于x 的方程22210x tx t -+-=的两个实根均大于2-且小于4,求实数t 的取值范围. 【解析】(1)设二次函数()2221y x tx t t =-+-∈R 的两个零点分别为1x ,2x ,由已知得120x x +=,而122x x t +=,所以20t =,故0=t ,不等式22210x tx t -+-≥即210x -≥,解得1≥x 或1x ≤-,故不等式的解集为{1x x ≥或}1≤-x .(2)因为方程22210x tx t -+-=的两个实根均大于2-且小于4,所以()()()()222222Δ2t 4t 102t 422t 2t 1042t 4t 10⎧=---≥⎪⎪-<<⎨⎪--⨯-+->⎪-⨯+->⎩,即2240244308150t t t t t ≥⎧⎪-<<⎪⎨++>⎪⎪-+>⎩,解得:13t -<<,即实数t 的取值范围为{}13t t -<<.例11.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221?260.x m x m +-++= (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根 αβ,,且满足014αβ<<<<; (3)至少有一个正根. 【答案】(1)1m <- (2)7554m -<<- (3)1m ≤- 【分析】设()()22126y f x x m x m ==+-++,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定. (1)设()()22126y f x x m x m ==+-++.依题意有()20f <,即()441260m m +-++<,得1m <-. (2)设()()22126y f x x m x m ==+-++.依题意有()()()02601450410140f m f m f m ⎧=+>⎪=+<⎨⎪=+>⎩,解得7554m -<<-.(3)设()()22126y f x x m x m ==+-++.方程至少有一个正根,则有三种可能:①有两个正根,此时可得()()Δ0002102f m ⎧⎪≥⎪⎪>⎨⎪-⎪>⎪-⎩,即153.311m m m m m ≤-≥⎧⎪>-∴-<≤-⎨⎪<⎩或.②有一个正根,一个负根,此时可得()00f <,得3m <-. ③有一个正根,另一根为0,此时可得()6203210m m m +=⎧∴=-⎨-<⎩,.综上所述,得1m ≤-.例12.(2022·上海市七宝中学高一阶段练习)方程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,则实数a 的取值范围为___________. 【答案】()()2,13,4--【解析】令()()227132f x x a x a a =-++--,因为程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()22220713202821320a a a a a a a a ⎧-->⎪--+--<⎨⎪-++-->⎩,解得21a -<<-或34a <<,所以实数a 的取值范围为()()2,13,4--. 故答案为:()()2,13,4--.例13.(2022·全国·高一专题练习)关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,则实数a 的取值范围是_____.【答案】16(5,]3【解析】关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,令()()214f x x a x =--+,则有()()()2Δ1160113216031630a a f a f a ⎧=-->⎪-⎪<<⎪⎨⎪=-≥⎪=-≥⎪⎩,解得1653a <≤, 所以实数a 的取值范围是16(5,]3. 故答案为:16(5,]3例14.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数a 的取值范围是_____. 【答案】54a -<≤-【解析】由题意,方程()2250x a x a +=---的两根都大于2,令()()225f x x a x a =+---,可得()020222f a⎧⎪≥⎪>⎨⎪-⎪>⎩,即2165024a a a ⎧≥⎪+>⎨⎪->⎩,解得54a <≤--.故答案为:54a -<≤-.例15.(2022·全国·高一专题练习)已知关于x 的方程220ax x ++=的两个实根一个小于0,另一个大于1,则实数a 的取值范围是_____. 【答案】3,0【解析】显然0a ≠,关于x 的方程220ax x ++=对应的二次函数()22f x ax x =++ 当0a >时,二次函数()22f x ax x =++的图象开口向上,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧<⎪⎨<⎪⎩,即2030a <⎧⎨+<⎩,解得a ∈∅;②当0a <时,二次函数()22f x ax x =++的图象开口向下,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧>⎪⎨>⎪⎩,即2030a >⎧⎨+>⎩,解得30a -<<.;综上所述,实数a 的范围是3,0.故答案为:3,0.例16.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______. 【答案】()0,1.【解析】方程()()()()2211010x a x a a x a x a ⎡⎤+++=⇒--+=⎣⎦-∴方程两根为12,1x a x a ==+,若要满足题意,则01113a a <<⎧⎨<+<⎩,解得01a <<,故答案为:()0,1.例17.(2022·上海·高一专题练习)方程2240x ax -+=的两根均大于1,则实数a 的取值范围是_______【答案】5[2,)2【解析】2240x ax -+=的两个根都大于121520Δ4160a a a >⎧⎪∴->⎨⎪=-≥⎩,解得522a ≤<可求得实数a 的取值范围为5[2,)2故答案为:5[2,)2例18.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x ,那么a 的取值范围是( ) A .2275a -<<B .25a > C .27a <-D .2011a -<< 【答案】D【解析】当0a =时,()2290ax a x a +++=即为20x =,不符合题意;故0a ≠,()2290ax a x a +++=即为22190x x a ⎛⎫+++= ⎪⎝⎭,令2219y x x a ⎛⎫=+++ ⎪⎝⎭,由于关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x , 则()229y ax a x a =+++与x 轴有两个交点,且分布在1的两侧,故1x =时,0y <,即211190a ⎛⎫++⨯+< ⎪⎝⎭,解得211a <-,故2011a -<<,故选:D例19.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是( ) A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D .{}12,6723⎛⎤⋃- ⎥⎝⎦【答案】D【解析】方程2(2)210x m x m +-+-=对应的二次函数设为:()2(2)21f x x m x m =+-+-因为方程2(2)210x m x m +-+-=恰有一根属于(0,1),则需要满足: ①()()010f f ⋅<,()()21320m m --<,解得:1223m <<;②函数()f x 刚好经过点()0,0或者()1,0,另一个零点属于(0,1),把点()0,0代入()2(2)21f x x m x m =+-+-,解得:12m =, 此时方程为2302x x -=,两根为0,32,而()30,12∉,不合题意,舍去把点()1,0代入()2(2)21f x x m x m =+-+-,解得:23m =, 此时方程为23410x x -+=,两根为1,13,而()10,13∈,故符合题意;③函数与x 轴只有一个交点,横坐标属于(0,1), ()2(2)4210m m ∆=---=,解得67m =±当67m =+2(2)210x m x m +-+-=的根为27-- 若627m =-2(2)210x m x m +-+-=72,符合题意综上:实数m 的取值范围为{}12,6723⎛⎤⋃- ⎥⎝⎦故选:D题型三:整数根问题例20.(2022·上海市实验学校高一开学考试)已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由;(2)求使12212x x x x +-的值为整数的实数k 的整数值. 【解析】(1)假设存在实数k ,使得()()12123222x x x x --=-成立,一元二次方程24410kx kx k -++=的两个实数根,()2400Δ(4)441160k k k k k k ≠⎧∴⇒<⎨=--⋅+=-⎩,(不要忽略判别式的要求), 由韦达定理得1212114x x k x x k +=⎧⎪+⎨=⎪⎩,()()()()2221212121212129322252942k x x x x x x x x x x x x k +∴--=+-=+-=-=-, 95k ⇒=但0k <,∴不存在实数k ,使得()()12123222x x x x --=-成立.(2)()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++,∴要使其值是整数,只需要1k +能被4整除,故1124k +=±±±,,,即021335k =---,,,,,, 0k <,235k ∴=---,,.例21.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线, 根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩, 解得58a <≤,又,a Z ∈所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21. 故选:C例22.(多选题)(2022·全国·高一课时练习)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( ) A .5 B .6 C .7 D .9【答案】BC【解析】设()26f x x x a =-+,函数图象开口向上,且对称轴为3x =,因此关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数时,需满足()()2010f f ⎧≤⎪⎨>⎪⎩,即2226201610a a ⎧-⨯+≤⎨-⨯+>⎩,解得58a <≤,又因为a ∈Z ,所以6a =或7或8,故选:BC.例23.(2022·全国·高一专题练习)若方程()22460x kx x --+=有两个不相等的实根,则k 可取的最大整数值是______. 【答案】1【解析】方程化为()221860k x x --+=,由()Δ6424210k =-->,12k ≠解得116k <, 所以k 最大整数值是1. 故答案为:1. 题型四:范围问题例24.(2022·上海·高一专题练习)已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则()()2211a b --的最小值是___________.【答案】3-【解析】a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根, ∴可得2a b +=,10ab t =-≥,1t ∴≥,又()4410t ∆=--≥ ,可得2t ≤,12t ∴≤≤,又()()()()()()222222211121a b ab a b ab a b ab --=-++=-+++()()()()2221114211a b t t ∴--=--+-+,24t =- ,又12t ≤≤, 2340t ∴-≤-≤,故答案为:3-.例25.(2022·吉林省实验中学高一阶段练习)设方程240x mx m -+=的两实根分别为12,x x . (1)当1m =时,求1211+x x 的值; (2)若120,0x x >>,求实数m 的取值范围及124x x +的最小值.【解析】(1)当1m =时,方程为2410x x -+=,2(4)4120∆=--=>,所以12124,1x x x x +=⋅=,122112114x x x x x x ∴+⋅+==. (2)因为240x mx m -+=两根120,0x x >>,所以21212Δ1640400m m x x m x x m ⎧=-≥⎪+=>⎨⎪⋅=>⎩,解得14m ≥.因为12124x x x x +=,120,0x x >>,所以12114x x +=,所以21211212121212441111194(4)()(5)524444x x x x x x x x x x x x x x ⎛+=++=++≥+⨯= ⎝, 当且仅当21124x x x x =,即1233,48x x ==时等号成立,此时91324m =>符合题意, 124x x ∴+的最小值为94. 例26.(2022·北京海淀·高一期末)已知函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=.若方程()0f x =有两个正实数根1x ,2x ,则1211+x x 的最小值是( ) A .4 B .2C .1D .12【答案】B【解析】因为函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=,所以1012200288b c b c +=++-, 解得4b =-,所以()224f x x x c -+=,因为方程()0f x =有两个正实数根1x ,2x ,所以()Δ168000c f c =-≥⎧⎨=>⎩,解得02c <≤,所以121212112422x x c x x x x c =++==≥, 当c =2时,等号成立,所以其最小值是2, 故选:B例27.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是( ) A .-2B .23C .89D .1【答案】B【解析】由题意可得∆2()4(3)0k k =--+, 解得6k 或2k ≤-,设两个为1x ,2x ,由两根为正根可得12120·30x x k x x k +=>⎧⎨=+>⎩,解得0k >, 综上知,6k . 故两个根的倒数和为12121211x x x x x x ++= 1331k k k==++,6k ,∴1106k <,3102k <, 故33112k <+, ∴12331k+,故两个根的倒数和的最小值是23. 故选:B例28.(2022·上海·华师大二附中高一期中)已知实数a b <,关于x 的不等式()210x a b x ab -+++<的解集为()12,x x ,则实数a 、b 、1x 、2x 从小到大的排列是( ) A .12a x x b <<< B .12x a b x <<< C .12a x b x <<< D .12x a x b <<<【答案】A【解析】由题可得:12x x a b +=+,121x x ab =+.由a b <,12x x <,设1x a m =+,则2x b m =-.所以212()()()1a m b m ab m b a m ab x x =+-=+--=+,所以2()1m b a m --=,21m m b a+=-.又a b <,所以0b a ->,所以0m >.故1x a >,2x b <.又12x x <,故12a x x b <<<. 故选:A.例29.(2022·福建厦门·高一期末)已知函数()()11f x x x a =-⋅--,a R ∈. (1)若0a =,解不等式()1f x <;(2)若函数()f x 恰有三个零点1x ,2x ,3x ,求123111x x x ++的取值范围.【解析】(1)当0a =时,原不等式可化为()120x x -⋅-<…①.(ⅰ)当0x ≥时,①式化为220x x --<,解得12x -<<,所以02x ≤<; (ⅰ)当0x <时,①式化为220x x -+>,解得x ∈R ,所以0x <. 综上,原不等式的解集为(),2-∞.(2)依题意,()()()2211,11,x a x a x af x x a x a x a ⎧-++--<⎪=⎨-++-≥⎪⎩.因为()10f a =-<,且二次函数()211y x a x a =-++-开口向上,所以当x a ≥时,函数()f x 有且仅有一个零点. 所以x a <时,函数()f x 恰有两个零点.所以()()()21,21410,10.a a a a f a +⎧<⎪⎪⎪=+-+>⎨⎪=-<⎪⎪⎩解得3a >.不妨设123x x x <<,所以1x ,2x 是方程()2110x a x a -++--=的两相异实根,则12121,1x x a x x a +=+⎧⎨=+⎩,所以121212111x x x x x x ++==.因为3x 是方程()2110x a x a -++-=的根,且312a x +>, 由求根公式得()23114a a x ++-+=因为函数()()2114a a g a ++-+在()3,+∞上单调递增,所以()3322x g >=31201x <<123111x x x ++.所以a 的取值范围是21,2⎛ ⎝⎭.【过关测试】一、单选题1.(2022·江苏·高一专题练习)已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为( ) A .1 B .0C .1-D .2【答案】C【解析】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <. 因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-. 故选:C2.(2022·江苏·高一专题练习)已知方程2(2)50x m x m +-+-=有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是( ) A .(5,4)(4,)--+∞ B .(5,)-+∞ C .(5,4)-- D .(4,2)(4,)--+∞【答案】C【解析】令()2(2)5m f x m x x =+-+-由题可知:()()()()2Δ02450442222242250520m m m m m m m m m m f >⎧⎧--⨯->><-⎧⎪⎪-⎪⎪>⇒<-⇒<-⎨⎨⎨⎪⎪⎪+-⨯+->>-⎩>⎩⎪⎩或 则54m -<<-,即(5,4)m ∈-- 故选:C3.(2021·北京·北师大实验中学高一期中)设方程2610x x -+=的两个不等实根分别为12,x x ,则12||x x -=( ) A .3 B .6C .22D .42【答案】D【解析】2610x x -+=,364320∆=-=>,故121261x x x x +=⎧⎨=⎩,()()2212121212||43642x x x x x x x x --=+--=故选:D.4.(2021·江苏·高一课时练习)设a 为实数,若方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解,则a 的取值范围是( ). A .(,0)(1,)-∞⋃+∞ B .(1,0)-C .1,03⎛⎫- ⎪⎝⎭D .1,0(1,)3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】令2()2g x x ax a =-+,由方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解可得244011(1)0(1)0a a a g g ⎧∆=->⎪-<<⎪⎨->⎪⎪>⎩,即011131a a a a <⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩或111131a a a a >⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩, 解得103-<<a , 故选:C5.(2022·全国·高一课时练习)一元二次方程()22100ax x a ++=≠有一个正实数根和一个负实数根的一个充分不必要条件是( ) A .0a < B .0a > C .1a <- D .2a <【答案】C【解析】由题意,不妨设2()21f x ax x =++,因为(0)10=>f ,且()22100ax x a ++=≠有一个正实数根和一个负实数根,所以2()21f x ax x =++的图像开口向下,即0a <, 故对于选项ABCD ,只有C 选项:1a <-是0a <的充分不必要条件. 故选:C.6.(2021·四川·树德中学高一阶段练习)设集合{}2320A x x x =-+<,集合{}2210B x ax x =--=,若A B ⋂≠∅,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .5,34⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .(1,)+∞【答案】B【解析】由题意,{}2320{|12}A x x x x x =-+<=<<若A B ⋂≠∅,即方程2210ax x --=存在根在区间(1,2)(1)若102102a x x =∴--=∴=-,不成立;(2)若0a ≠,由于0x =不为方程的根,故0x ≠,则222221211210(1)1x ax x a x x x x+--=⇔==+=+- 由于21115(1,2)(,1)(1)1(,3)24x x x ∈∴∈∴+-∈综上,实数a 的取值范围是5,34⎛⎫⎪⎝⎭故选:B7.(2022·全国·高一课时练习)要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则实数a 的取值范围是( ) A .{}12a a -<< B .{}21a a -<< C .{}2a a <- D .{}1a a >【答案】B【解析】由题意可得()2211220a a a a +-+-=+-<,解得21a -<<.故选:B.8.(2021·甘肃·天水市第一中学高一阶段练习)已知一元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,则m 的值为( )A .4-B .5-C .6-D .7-【答案】A【解析】因为元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,令2()(1)1f x x m x =+++,则由题意可得(0)0(1)0(3)0f f f >⎧⎪<⎨⎪>⎩,即10,30,1330,m m >⎧⎪+<⎨⎪+>⎩解得1333m -<<-,又m Z ∈,可得4m =-. 故选:A 二、多选题9.(2022·江苏南通·高一开学考试)已知不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,则下列四个结论中正确的是( ). A .24a b =B .若不等式2+x ax b c +<的解集为(3,1)-,则7a b c ++=C .若不等式20x ax b +-<的解集为12(,)x x ,则120x x >D .若不等式2x ax b c 的解集为12(,)x x ,且12||4x x -=,则4c = 【答案】ABD【解析】由题意,不等式20(0)x ax b a ++>>的解集是{}|x x d ≠, 所以240a b ∆=-=,24a b ∴=,所以A 正确;对于B :2+x ax b c +<变形为2+0x ax b c +-<,其解集为(3,1)-,所以231? 314? a b c a b -+=-⎧⎪-⨯=-⎨⎪=⎩,得214a b c =⎧⎪=⎨⎪=⎩,故7a b c ++=成立,所以B 正确;对于C :若不等式20x ax b +-<的解集为12(,)x x ,由韦达定理知:21204a x xb =-=-<,所以C 错误; 对于D :若不等式2x ax bc 的解集为12(,)x x ,即20x ax b c 的解集为12(,)x x ,由韦达定理知:21212,4a x x a x x b c c +=-=-=-, 则222121212||()44()244a x x x x x x a c c -+---=,解得4c =, 所以D 正确.故选:D.10.(2021·江苏·海安高级中学高一阶段练习)一元二次方程240x x m -+=有正数根的充分不必要条件是( ) A .4m =B .5m =C .1m =D .12=-m【答案】ACD【解析】设()24f x x x m =-+,则二次函数()f x 的图象的对称轴为2x =. 当4m =时,方程即()224420x x x -+=-=,求得2x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故4m =是方程240x x m -+=有正数根的充分不必要条件,故A 满足条件;当5m =时,方程即()224521x x x -+=-=-,求得x ∈∅,不满足方程有正实数根,故5m =不是方程240x x m -+=有正数根的充分条件,故排除B .当1m =时,方程即()224123x x x -+=-=,求得23=x但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故1m =方程240x x m -+=有正数根的充分不必要条件,故C 满足条件;当12=-m 时,方程即24120x x --=,求得2x =-,或6x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故12=-m 方程240x x m -+=有正数根的充分不必要条件,故D 满足条件,故选:ACD .11.(2022·湖南湖南·高一期末)若方程220x x λ++=在区间()1,0-上有实数根,则实数λ的取值可以是( ) A .3- B .18 C .14 D .1【答案】BC【解析】由题意22x x λ=--在(1,0)-上有解.∵(1,0)x ∈-,∴222(1)1(0,1)x x x λ=--=-++∈,故选:BC .12.(2021·全国·高一专题练习)已知关于x 的方程()230x m x m +-+=,则下列结论中正确的是( )A .方程()230x m x m +-+=有一个正根一个负根的充要条件是{}0m m m ∈<B .方程()230x m x m +-+=有两个正实数根的充要条件是{}01m m m ∈<≤C .方程()230x m x m +-+=无实数根的充要条件是{}1m m m ∈>D .当m =3时,方程()230x m x m +-+=的两个实数根之和为0【答案】AB【解析】对A ,当0x =时,函数2(3)y x m x m =+-+的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是{}|0m m m ∈<,故A 正确;对B ,若方程()230x m x m +-+=有两个正实数根1x ,2x ,即()2121234030,0,m m x x m x x m ⎧∆=--≥⎪+=->⎨⎪=>⎩解得:01m <≤,故B 正确;对C ,方程()230x m x m +-+=无实数根,即()2340m m ∆=--<,解得:19m <<,方程()230x m x m +-+=无实数根的充要条件是{}19m m m ∈<<,故C 错误; 对D ,当3m =时,方程为230x +=,无实数根,故D 错误.故答案为:AB.13.(2021·江苏·高一专题练习)已知一元二次方程()()21102x m x m Z +++=∈有两个实数根12,x x ,且12013x x <<<<,则m 的值为( )A .-2B .-3C .-4D .-5【答案】BC 【解析】设()()2112f x x m x =+++, 由12013x x <<<<,可得()()()()10200110110230193102f fm f m ⎧>⎪⎧>⎪⎪⎪<⇒+++<⎨⎨⎪⎪>⎩⎪+++>⎪⎩, 解得:25562m -<<-, 又因为m Z ∈,得3m =-或4m =-,故选:BC.三、填空题14.(2022·安徽省蚌埠第三中学高一开学考试)关于x 的方程210x ax ++=的一根大于1,一根小于1,则a 的取值范围是:__________________.【答案】a <-2【解析】∵关于x 的方程 210x ax ++=的一根大于1,另一根小于1,令2()1=++f x x ax ,则(1)20f a =+<,求得2a <- ,故答案为:2a <-15.(2021·北京师大附中高一期中)若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________.【答案】(52,+∞) 【解析】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >, 故答案为:5(,)2+∞. 16.(2021·上海·复旦附中高一期中)若关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,则实数k 的取值范围为______.【答案】(),3-∞-【解析】由题意,关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,设()22f x x kx =-+,根据二次函数的性质,可得()130f k -=+<,解得3k <-, 所以实数k 的取值范围为(),3-∞-.故答案为:(),3-∞-.17.(2020·上海·高一专题练习)已知集合()(){}2|320,A x x x x x R =-+-≤∈,{}2|120,B x x ax x R =--≤∈,若A B ⊆,则实数a 的取值范围是______________.【答案】[]1,1- 【解析】由()()2320x x x -+-≤,得 23020x x x ⎧-≥⎪⎨+-≤⎪⎩或 23020x x x ⎧-≤⎪⎨+-≥⎪⎩,解得 13x ≤≤,所以集合{|31A x x =-≤≤- 或}13x ≤≤,因为A B ⊆,令()212f x x ax =--,则 ()()3030f f ⎧-≤⎪⎨≤⎪⎩,即 9312093120a a +-≤⎧⎨--≤⎩,解得 11a -≤≤,所以实数a 的取值范围是[]1,1-故答案为:[]1,1-四、解答题18.(2022·全国·高一期中)命题:p 关于x 的方程20x x m ++=有两个相异负根;命题():0,q x ∃∈+∞,2390x mx -+<.(1)若命题q 为假命题,求实数m 的取值范围;(2)若这两个命题有且仅有一个为真命题,求实数m 的取值范围.【解析】(1)若命题q 为假命题,则对()0,x ∀∈+∞,2390x mx -+≥为真命题; 239mx x ∴≤+,即93m x x ≤+; 9926x x x x +≥⋅=(当且仅当9x x =,即3x =时取等号),36m ∴≤,解得:2m ≤,∴实数m 的取值范围为(],2-∞.(2)由(1)知:若命题q 为真命题,则2m >;若命题p 为真命题,则Δ1400m m =->⎧⎨>⎩,解得:104m <<;若p 真q 假,则104m <<;若p 假q 真,则2m >;综上所述:实数m 的取值范围为()10,2,4⎛⎫+∞ ⎪⎝⎭.19.(2022·湖南·高一课时练习)若一元二次方程2570x x a --=的一个根在区间()1,0-内,另一个根在区间()1,2内,求实数a 的取值范围.【解析】令2()57f x x x a =--, 则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-⇒⎪⎨<⇒--⇒-⎪⎪>⇒-->⇒<⎩, ∴06a <<.故实数a 的取值范围(0,6).20.(2021·辽宁·昌图县第一高级中学高一期中)1.已知()()2213f x x a x =+-+.(1)如果方程()0f x =在()0,3有两个根,求实数a 的取值范围;(2)如果[]1,2x ∃∈,()0f x >成立,求实数a 的取值范围.【解析】(1)()()2213f x x a x =+-+的对称轴为1x a =-要想方程()0f x =在()0,3有两个根,需要满足()()()100001330f a f a f ⎧-<⎪>⎪⎨<-<⎪⎪>⎩解得:(1,13a ∈-(2)[]1,2x ∃∈,()22130x a x +-+>成立, 即3122x a x ⎛⎫->-+ ⎪⎝⎭在[]1,2x ∈上有解,只需1a -大于()322x g x x ⎛⎫=-+ ⎪⎝⎭的最小值,其中()322x g x x ⎛⎫=-+ ⎪⎝⎭为对勾函数,在3x ⎡∈⎣上单调递增,在)3,2x ∈上单调递减,又()131222g ⎛⎫=-+=- ⎪⎝⎭,()2372244g ⎛⎫=-+=- ⎪⎝⎭,所以最小值为()12g =- 故12a ->-,解得:1a >-,实数a 的取值范围为()1,-+∞21.(2021·上海市七宝中学高一阶段练习)设二次函数()2f x ax bx c =++,其中R a b c ∈、、.(1)若()21,94b a c a =+=+,且关于x 的不等式()28200-+<x x f x 的解集为R ,求a 的取值范围; (2)若Z a b c ∈、、,且()()01f f 、均为奇数,求证:方程()0f x =无整数根;(3)若21,21,a b k c k ==-=,当方程()0f x =有两个大于1的不等根时求k 的取值范围.【解析】(1)∵()22820440x x x -+=-+>∴()()221940f x ax a x a =++++<在R 上恒成立∵0a ≠,则()()20Δ414940a a a a <⎧⎪⎨=+-+<⎪⎩,解得12a <-综上所述:a 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭.(2)∵()()0,1f c f a b c ==++,则c 为奇数,a b +为偶数 当Z x ∈时,则有:1.若a b 、均为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根2.若a b 、均为奇数时,则有①若x 为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根②若x 为奇数时,则()2ax bx x ax b +=+为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根综上所述:方程()0f x =无整数根(3)()()2221f x x k x k =+-+由题意可得()()222Δ21402112120k k k f k k ⎧=-->⎪-⎪->⎨⎪=+>⎪⎩,解得2k<-则k 的取值范围为(),2∞--.。
一元二次函数根的分布规律探究
一元二次函数根的分布规律探究发表时间:2013-01-21T09:26:17.043Z 来源:《新校园》学习版2012年第9期供稿作者:常庆[导读] 分两根分布在同一区间与两根分布在不同区间两种情况系统地介绍一元二次方程实根分布的充要条件及其运用,有助于学生掌握其精髓。
常庆(安徽师范大学,安徽芜湖241000)引例:方程x2-2ax+4=0 的两根均大于1,求实数的取值范围。
分析:此种解法思路简单,但是求解过程计算量太大。
此例属于一元二次函数根的实根分布问题。
一元二次函数根的实根分布问题是初高中数学衔接的一个重要问题,也是高考的一个热点问题。
一元二次方程根的分布也是二次函数中的重要内容,也是历来学生难以掌握的地方。
这部分知识在初中数学中虽有所涉及,但远远不够系统和完整。
而且解题方法多局限于应用判别式法和根与系数的关系。
本文通过“数形结合、函数与方程”浅显易懂的简析。
分两根分布在同一区间与两根分布在不同区间两种情况系统地介绍一元二次方程实根分布的充要条件及其运用,有助于学生掌握其精髓。
设方程ax2+bx+c=0(a>0)的不等两根为x1,x2 且x1<x2,相应的二次函数为f(x)=ax2+bx+c,方程的根即为二次函数图像与轴的交点.情况一:两根分布在同一区间情况二:两根分布在不同区间对表二的根的分布表中一些特殊情况作说明:(1)有且仅有一根在(m,n)内有以下特殊情况:1.若f(m)=0或f(n)=0,则此时f(m)·f(n)<0 不成立,但对于这种情况知道了方程有一根为m 或n,可以求出另外一根,然后可以根据另一根在区间(m,n)内,从而可以求出参数的值.求出参数值后需检验是否满足题意。
若不满足题意,则舍去所得参数值。
2.方程有且只有一根,且这个根在区间(m,n)内,只要满足驻=0,此时由驻=0 可以求出参数的值,然后再将参数的值代入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数. 练习:已知二次方程x2+(m-3)x=0,根据下列条件求m 的范围.。
一元二次方程根的分布
一元二次方程的形式为ax^2+bx+c=0,其中a、b、c为常数。
一元二次方程根的分布取决于方程的解的个数,有如下三种情况:1 两个不相等的实根:如果一元二次方程有两个不相等的实根,那么方程的解为x1=r1、x2=r2,其中r1和r2是方程的两个实根。
2 两个相等的实根:如果一元二次方程有两个相等的实根,那么方程的解为x1=x2=r,其中r是方程的两个相等的实根。
3 两个复数根:如果一元二次方程有两个复数根,那么方程的解为x1=r1+r2i、x2=r1-r2i,其中r1和r2是方程的两个复数根的实部和虚部。
一元二次方程的根分布可以通过求解方程的判别式来确定。
判别式为b^2-4ac,如果判别式>0,则方程有两个不相等的实根;如果判别式=0,则方程有两个相等的实根;如果判别式<0,则方程有两个复数根。
在数学中,一元二次方程是由一个二次项和一个一次项组成的方程。
它的形式为ax^2+bx+c=0,其中a、b、c为常数。
解决一元二次方程的方法有多种,常见的方法有求解公式法、因式分解法、二分法、牛顿迭代法等。
求解公式法是最常见的求解一元二次方程的方法,它的公式为:x1= (-b+sqrt(b^2-4ac))/(2a)x2= (-b-sqrt(b^2-4ac))/(2a)其中sqrt(b^2-4ac)表示根号内的值。
因式分解法是将一元二次方程写成两个一次方程的形式,然后分别求解两个一次方程的解。
二分法是一种数值解法,通过取方程的两个端点的中点来逐步缩小解的范围,最终得到方程的解。
牛顿迭代法是一种逐步迭代的方法,通过不断迭代来逼近方程的解,最终得到方程的解。
在解决一元二次方程时,应根据具体情况选择合适的方法。
一元二次方程实根的分布
一元二次方程实根的分布一元二次方程实根的分布是二次方程中的重要内容,在各类竞赛和中考中经常出现。
这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于一元二次方程根的判别式和根与系数关系(韦达定理)的运用。
本文将在前面方法的基础上,结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的情况及其运用。
一.一元二次方程实根的基本分布——零分布一元二次方程实根的零分布,指的是方程的根相对于零的关系。
比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。
对于这类问题,用一元二次方程根的判别式和根与系数关系(韦达定理)即可判别。
一元二次方程02=++c bx ax (0≠a )的两个实数根为1x 、2x ,则1x 、2x 均为正⇔△≥0,1x +2x >0,1x 2x >0; 1x 、2x 均为负⇔△≥0,1x +2x <0,1x 2x >0;1x 、2x 一正一负⇔1x 2x <0。
例1.关于x 的一元二次方程28(1)70x m x m +++-=有两个负数根,求实数m 取值范围。
解:设两个实数根为1x 、2x ,依题意有1212000x x x x ∆⎧⎪+< ⎨⎪> ⎩≥ ①②③由①得:2(1)32(7)0m m +--≥,2(15)0m -≥,恒成立。
由②得:18m +-<0,解之,m >1-。
由③得:78m ->0,解之,m >7。
综上,m 的取值范围是m >7。
例2.若n >0,关于x 的方程21(2)04x m n x mn --+=有两个相等的正实数根,求mn 的值。
解:设两个实数根为1x 、2x ,依题意有1212000x x x x ∆= ⎧⎪+⎨⎪> ⎩①> ②③由①得:2(2)0m n mn --=,()(4)0m n m n --=,∴m n =或4m n =。
若m n =,则1x +2x 22m n n n n =-=-=-<0,不符合②,舍去。
一元二次方程根的分布
一元二次方程ax2+bx+c=0 (a>0)的 根的分布
例:x2+(m-3)x+m=0 求m的范围
(6) 两个根都在(0 , 2)内
(m 3) 2 4m 0 3 m 0 2 2 f (0) m 0 f (2) 3m 2 0
例:x2+(m-3)x+m=0 求m的范围
(5) 一个根大于1,一个根小于1
f(1)=2m-2 <0
m m 1
b m< - 2a <n 7.方程 f(x)=0 的两实根都在区间(m, n)内 △=b2-4ac≥0 y f(m)>0 f(n)>0. m n
m n
x
8.方程 f(x)=0 的两实根中, 有且只有一个在区间(m, n)内. f(n)=0 f(m)=0 f(m)f(n)<0, 或 b m+n m< - 2a < 2 , 或 m+n < - b < n. 2a 2 思考 方程的两根有且只有一个在区间[m, n]上时等价于? 9.方程 f(x)=0 的两根分别在区间(m, n)和(p, q)(n<p)内. f(m)>0 x 1∈(m,n) x ∈(p,q) m n p q f(n)<0 2 f(p)<0 f(q)>0.
例:x2+(m-3)x+m=0 求m的范围
1 (4) 两个根都大于 2 ( m 3) 2 4m 0 b 3 m 1 m 2 2 2a 1 6m 5 0 f ( 2) 4
5 m 1 6
一元二次方程ax2+bx+c=0 (a>0)的 根的分布
广东省广州二中奥数培训讲义第4讲《一元二次方程根的分布》
第4讲一元二次方程根的分布一、内容提要二次方程问题其实质就是其相应二次函数的零点(图象与x轴的交点)问题,因此,二次方程的实根分布问题,即二次方程的实根在什么区间内的问题,借助于二次函数及其图象利用形数结合的方法来研究是非常有益的。
设f(x)=ax2+bx+c(a≠0)的二实根为x1,x2,(x1<x2),Δ=b2-4ac,且α、β(α<β)是预先给定的两个实数。
1.当两根都在区间(α,β)内,方程系数所满足的充要条件:∵α<x1<x2<β,对应的二次函数f (x)的图象有下列两种情形(图1)当a>0时的充要条件是:Δ>0,α<-b/2a<β,f(α)>0,f (β)>0当a<0时的充要条件是:Δ>0,α<-b/2a<β,f(α)<0,f (β)<0两种情形合并后的充要条件是:Δ>0,α<-b/2a<β,af(α)>0,af (β)>0 ①2.当两根中有且仅有一根在区间(α,β)内,方程系数所满足的充要条件:∵α<x1<β或α<x2<β,对应的函数f(x)的图象有下列四种情形(图2)从四种情形得充要条件是:f (α)·f (β)<0 ②3.当两根都不在区间[α,β]内方程系数所满足的充要条件:(1)两根分别在区间[α,β]之外的两旁时:∵x1<α<β<x2,对应的函数f (x)的图象有下列两种情形(图3):当a>0时的充要条件是:f (α)<0,f (β)<0当a>0时的充要条件是:f (α)>0,f (β)>0两种情形合并后的充要条件是:af (α)<0,af (β)<0 ③(2)两根分别在区间[α,β]之外的同旁时:∵x1<x2<α<β或α<β<x1<x2,对应函数f(x)的图象有下列四种情形(图4):当x1<x2<α时的充要条件是:Δ>0,-b/2a<α,af (α)>0 ④当β<x1<x2时的充要条件是:Δ>0,-b/2a>β,af (β)>0 ⑤二次函数与二次不等式前面提到,一元二次不等式的解集相应于一元二次函数的正值、负值区间。
一元二次方程实根的分布
x1 n x2 n
x1 n x2
b 2 4ac 0 ( x1 n)(x2 n) 0 ( x n) ( x n) 0 2 1
f ( n) 0
b 2 4ac 0 f ( n) 0 f ( m) 0 b n m 2a
1 1 . 2 4 1
问题的延伸:
x 2 (m 2) x 3 0 的两 1、若关于x的方程
个根都大于1,则实数 是 .
m 的取值范围
2、关于x的方程 x 2 2mx (m2 1) 0 的两个 根均大于 - 2小于4,求实数 m 的取值 范围.
问题的解决:
一元二次方程根的分布
令
f ( x) ax2 bx c(a 0)
,
方程 在给定区间 上有实根的条件,常见的几种情况列 f ( x) ax2 bx c(a 0) 0 表讨论如下: x1 , x2 (设是方程两个不相等的实根 且, x1 x 2 而 n, m 是常数,且 )
x 2 2mx (m2 1) 0 的两个根
所以,实数m的取值范围是 (1,3) .
问题的解决:其实,有那么复杂吗? x 2 2mx (m2 1) 0 的两 例2、关于x的方程 个根均大于 - 2小于4,求实数 m 的取值范围. 另解: 原方程的两个根分别为 m 1, m 1 而 m 1 m 1,
nm
根的分布
x1 n
x2 n
图形特征
充要条件
2 b 4ac 0 f ( n) 0 b n 2a 2 b 4ac 0 f ( n) 0 b n 2a
一元二次方程实根的分布
第24页
第七章
不等式及推理与证明
高考调研
新课标版 ·数学(文) ·高三总复习
(5) 已知方程 x2 + (m - 2)x + 2m - 1 = 0 有一实根在 0 和 1 之 间,求m的取值范围.
1 2 【答案】 2<m<3
(6)已知方程x2+(m-2)x+2m-1=0的较大实根在0和1之 间,求m的取值范围. 变式:改为较小实根.
【定理5】 k1<x1<k2≤p1<x2<p2⇔ a>0, fk1>0, fk2<0, fp1<0, fp2>0 a<0, fk1<0, 或fk2>0, fp1>0, 0 . fp2<
此定理可直接由定理4推出,请读者自证.
第 4页
第七章
不等式及推理与证明
高考调研
新课标版 ·数学(文) ·高三总复习
【定理1】 x1>0,x2>0(两个正根)⇔ Δ=b2-4ac≥0, x +x =-b>0, 1 2 a c x1x2= >0. a
第 5页
第七章
不等式及推理与证明
高考调研
新课标版 ·数学(文) ·高三总复习
推 论 : x1>0,x2>0⇔
Δ=b2-4ac≥0, a>0, f0=c>0, b<0
或
2 Δ = b -4ac≥0, a<0, f0=c<0, b>0.
上述推论结合二次函数图像不难得到.
第 6页
第七章
不等式及推理与证明
高考调研
新课标版 ·数学(文) ·高三总复习
一元二次方程根在区间的分布
一元二次方程根在区间的分布一元二次方程是数学中的一个重要概念,它表示为ax² + bx + c = 0。
在解析几何、物理学、经济学等领域中都有广泛的应用。
而方程的根是指使方程成立的未知数的值,解二次方程的根通常可以得到方程的图像、方程解的情况以及相关应用的启示。
首先,我们来探究一元二次方程根的分布情况。
方程根的分布与方程的判别式Δ = b² - 4ac有着密切的关联。
当Δ > 0时,方程有两个实数根;当Δ = 0时,方程有两个相等的实数根;当Δ < 0时,方程无实数根,而有两个复数根。
接下来,我们讨论根在区间的分布。
对于具有两个不同实数根的方程,我们可以通过求导的方法或者判别式的符号来确定它们的分布。
以方程的标准形式ax² + bx + c = 0为例,如果a > 0,则开口朝上,两个实根分布在抛物线的两侧;如果a < 0,则开口朝下,两个实根分布在抛物线的中间。
更进一步地,我们可以通过求解方程来确定根在区间的具体分布情况。
例如,将方程化简为标准形式后,我们可以通过配方法、因式分解或者公式法来求解方程,得到两个根x₁和x₂。
然后,我们可以将区间划分成三个部分:小于x₁的值、介于x₁和x₂之间的值,以及大于x₂的值。
然后,我们可以选择区间内的一些特定值,将其代入方程,判断方程是否成立,从而得到根在区间的分布情况。
此外,根在区间的分布还与一元二次方程图像的性质相关。
方程的图像是一个抛物线,对于a > 0的情况,图像开口朝上,两个实根分布在抛物线上方的部分;对于a < 0的情况,图像开口朝下,两个实根分布在抛物线下方的部分。
最后,了解一元二次方程根在区间的分布对我们在实际问题中的解题过程具有指导意义。
通过分析根的分布情况,我们可以确定方程解的数量及其位置,从而解决与方程相关的各种问题。
无论是在几何学中的求解平方根,还是在物理学中的运动问题,对方程根的区间分布的理解都能够帮助我们更好地解决问题。
一元二次方程实数根的分布
第一课时:一元二次方程实数根的分布教学目标:使学生掌握一元二次方程实根分布问题的处理,加强求解一元二次不等式及不等式组,初步训练学生的数形结合能力。
教学重点:利用二次函数的图象,把一元二次方程根的分布−−→−转化图形问题−−→−转化代数表达式(不等式组)−−→−计算参数取值范围。
教学难点:图形问题转化成代数表达式(不等式组)并求解。
一、问题的提出若方程0)5()2(2=++++m x m x 的两根均为正数,求实数m 的取值范围.变式1:两根一正一负时情况怎样?变式2:两实根均大于5时情况又怎样?变式3:一根大于2,另一根小于-1时情况又怎样?问题:能否从二次函数图形角度去观察理解?若能试比较两种方法的优劣.方程)0(02≠=++a c bx ax 的实根,如若从二次函数图形角度去观察理解,其实质就是对应的二次函数2()0(0)f x ax bx c a =++=≠ 的抛物线与x 轴交点的横坐标.一元二次方程实根分布,实质上就是方程的根与某些确定的常数大小关系比较.二、一元二次方程实根分布仿上完成下表一元二次方程)0(02≠=++a c bx ax 实根分布图解三、练习1.m 为何实数时,方程02)1(2=+++m x m x 的两根都在-1与1之间.2、若方程0)3()1(2=-++-a x a x 的两根中,一根小于0,另一根大于2,求a 的取值范围.四、小结基本类型与相应方法:设 )0()(2≠++=a c bx ax x f ,则方程0)(=x f 的实根分布的基本类型及相应方法如下表:五作业:1.关于x 的一元二次方程222320ax x a ---=的一根大于1,另一根小于1.则a 的值是 ( )(A )0a >或4a <- (B )4a <- (C )0a > (D )40a -<<2.方程227(13)20(x k x k k k -++--=为常数)有两实根,αβ,且01α<<,12β<<,那么k 的取值范围是 ( )(A )34k << (B )21k -<<- (C )21a -<<-或34k << (D )无解3.设m 是整数,且方程2320x mx +-=的两根都大于95-而小于37,则m = .4.若关于x 的方程22(1)210m x mx -+-=的所有根都是比1小的正实数,则实数m 的取值范围是m =5. 方程2(21)(6)0x m x m +-+-=的一根不大于-1,另一根不小于1.试求:(1)参数m 的取值范围;(2)方程两根的平方和的最大值和最小值. 第二课时 一元二次方程实数根分布的应用一复习二、例子例1 已知实数a 、b 、c 满足22211a b c a b c a b c ⎧>>⎪++=⎨⎪++=⎩,求a b +的取值范围.解 由已知得1a b c +=-且222222()()(1)(1)22a b a b c c ab c c +-+---===-.所以,a b 是一元二次方程22(1)()0x c x c c --+-=的两根. 由a b c>>问题可转化为方程22(1)()0x c x c c --+-=的二根都大于c .令()f x =22(1)()x c x c c --+-,有2212()0(1)4()0c cf c c c c -⎧>⎪⎪>⎨⎪∆=--->⎪⎩ 即22123203210c c c c c c ->⎧⎪->⎨⎪--<⎩, 求得103c -<<,因此4(1,)3a b +∈.例2已知点(0,4)A 、(4,0)B .若抛物线21y x mx m =-++与线段AB (不包括端点A 及B )有两个不同的交点,则m 的取值范围是 . (1997年上海市高中数学竞赛)解: 显然直线AB 的方程为1(04)44x y x +=<<即4y x =-,代入抛物线方程并整理得2(1)(3)0x m x m +-+-=.设2()(1)(3)f x x m x m =+-+-,问题转化函数()y f x =的图象和x 轴在0到4之间有两个不同的交点,即方程2(1)(3)0x m x m +-+-=在(0,4)上有两个不相等的实根. 所以2(1)4(3)0(0)30(4)164(1)30104.2m m f m f m m m ⎧∆=--->⎪=->⎪⎪⎨=--+->⎪-⎪<<⎪⎩ 解得m 的取值范围是1733m <<. 例3关于x 的实系数二次方程20x ax b ++=的两个实数根为,αβ,证明:①如果||2,||2αβ<<,那么2||4a b <+且||4b <;②如果 2||4a b <+且||4b <,那么||2,||2αβ<<.(1993年全国高考题)证明 ①设2()f x x ax b =++,由已知,函数()y f x =的图象与x 轴在2-到2之间有两个不同的交点. 所以240,(1)22,(2)2(2)420,(3)(2)420.(4)a b a f a b f a b ⎧∆=->⎪⎪-<-<⎪⎨⎪-=-+>⎪=++>⎪⎩由(3)、(4)得(4)24b a b -+<<+,所以2||4a b <+.由(2),得||4a <,结合(1)得2416b a <<,所以4b <. 将(3)+(4)得4b >-,因此44b -<<,即||4b <.②由于2||4a b <+且||4b <,可得4,2||448b a <<+=,所以||4a <,222a -<-<. 即函数()f x 的图象的对称轴2a x =-位于两条直线2x =-,2x =之间.因为(2)(2)(42)(42)2(4)0f f a b a b b -+=+++-+=+>,22(2)(2)(42)(42)(4)40f f a b a b b a -⋅=++-+=+-> .所以(2)0,(2)0f f ->>. 因此函数()f x 的图象与x 轴的交点位于-2和2之间,即||2,||2αβ<<.作业1.已知抛物线2(4)2(6),y x m x m m =++-+为实数.m 为何值时,抛物线与x 轴的两个交点都位于点(1,0)的右侧?2.已知,,a b c 都是正整数,且抛物线2()f x ax bx c =++与x 轴有两个不同的交点A 、B. 若A 、B 到原点的距离都小于1,求a b c ++的最小值.第三课时 应用提高例1若方程k x x =-232在[]1,1-上有实根,求实数k 的取值范围. 解法一:方程k x x =-232在[]1,1-上有实根,即方程0232=--k x x 在[]1,1-上有实根,设k x x x f --=23)(2,则根据函数)(x f y =的图象与x 轴的交点的横坐标等价于方程0)(=x f 的根. (1)两个实根都在[]1,1-上,如图:可得⎪⎪⎩⎪⎪⎨⎧≤-≤-≥≥-≥∆1210)1(0)1(0a b f f ,解得2169-≤≤-k ; (2)只有一个实根在[]1,1-上,如图:可得0)1()1(≤⋅-f f ,解得 2521≤≤-k ,综合(1)与(2)可得 实数k 的取值范围为⎥⎦⎤⎢⎣⎡-25,169 解法二:方程k x x =-232在[]1,1-上有实根,即存在[]1,1-∈x ,使得等式x x k 232-=成立,要求k 的取值范围,也即要求函数[]1,1,232-∈-=x x x k 的值域. 设[]1,1,1694323)(22-∈-⎪⎭⎫ ⎝⎛-=-==x x x x x f k 又因,则)1(169-≤≤-f k , 可得25169≤≤-k . 解法三:令,232x x y -=则k y =,则方程k x x =-232在[]1,1-上有实根,等价于方程组⎪⎩⎪⎨⎧=-=k y x x y 232在[]1,1-上有实数解,也即等价于抛物线,232x x y -=与直线k y =在[]1,1-上有公共点,如图所示直观可得:25169≤≤-k .解法四:根据解法三的转化思想,也可将原方 程k x x =-232化成k x x +=232,然后令 k x y x y +==23,2,从而将原问题等价转化为 抛物线2x y =与直线k x y +=23在[]1,1-点时,“数形结合法”下去求参数k 的取值范围.根据图形直观可得:当直线k x y +=23过点)1,1(-, 截距k 最大;当直线k x y +=23与抛物线k x y +=23相切时,截距k 最小. 且169,25-==最小最大k k .故参数的取值范围为25169≤≤-k . 2已知实数a 、b 、c 满足021a b c m m m++=++,其中m 为正数.对于2()f x ax bx c =++. (1)若0a ≠,求证:()01m af m <+; (2) 若0a ≠,证明方程()0f x =在(0,1)内有实根.证明 (1)由021a b c m m m ++=++,求得()21am bm c m m =-+++,所以 222222211()[()()][()][]11112(1)2m m m m m af a a b c a a m m m m m m m m m=++=-=-+++++++ 又由22(1)20m m m +>+>,因此22110(1)2m m m -<++,故()01m af m <+. (2)要证明方程()0f x =在(0,1)内有实根,只须证明(0)(1)0f f ⋅< 或 (0)0,(1)0,0,0 1.2af af b a >⎧⎪>⎪⎪∆≥⎨⎪⎪<-<⎪⎩但两者都不易证明. 由01(0)1m m m <<>+,结合第(1)题()01m af m <+,对a 进行讨论: 当0a >时,有()01m f m <+. 只要证明(0)f c =和(1)f a b c =++中有一个大于零即可. 若0c >,则(0)0f >成立,问题得证;若0c ≤,由021a b c m m m ++=++求得(1)(1)2a m c m b m m++=--+,所以 (1)(1)(1)22a m c m a c f a b c a c m m m m ++=++=--+=-++. 由0,0,0a m c >>≤,知(1)0f >,命题得证. 故当0a >时,方程()0f x =在(0,1)内有实根. 同理可证,当0a <时,方程()0f x =在(0,1)内也有根.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲 一元二次方程的实根分布
22.注意:(1)利用相应二次函数图象与x 轴交点位置写出相应的等价条件,一般考虑一下三个方面:①判别式Δ=b 2-4ac 的符号;②对称轴x =-
b
2a
的位置分布;③二次函数在实根分布界点处函数值的符号.(2)对于一元二次方程根和解是有区别的.
一、一点同侧两根
【例1】若关于x的方程x2-(k+2)x+4=0有两个不等的负根,求实数k的取值范围.
【练】若关于x的方程x2+(m+2)x+m+5=0有两个正数根,求实数m的取值范围.【例2】若关于x的方程kx2-2kx+(k-1)=0有两个正实数根,求实数k的取值范围.【练】若关于x的方程2(k+1)x2+4kx+3k-2=0有两个负实根,求实数k的取值范围.【例3】若关于x的方程x2-mx+(3+m)=0有两个大于1的根,求实数m的取值范围.
【练】若关于x的方程mx2+(2m-1)x-m+2=0有两个小于1的根,求实数m的取值范围.
二、一点异侧两根
【例4】若关于x的方程4x2+(m-2)x+m-5=0的一正根和一负根,求实数m的取值范围.
【练】若关于x的方程(2m+1)x2-2mx+m-1=0有一正根和一个负根,求实数m的取值范围.
【例5】若关于x的方程mx2+(m+2)x+9m=0有两个实数根x1和x2,且x1<1<x2,求m的取值范围.
【练】若关于x的二次方程2mx2-2x-3m-2=0的一个根大于1,另一个根小于1,求实数m的取值范围.
三、一点一侧有根
【例6】若关于x的方程x2-ax+4=0有正实根,则实数a的取值范围是
【练】若方程x2+x+a=0至少有一根为非负实数,求实数a的取值范围.
【例7】若关于x的方程ax2+2x+1=0至少有一个负实根,求实数a的取值范围.
【练】若关于x的一元二次方程mx2+(m-3)x+1=0至少有一个正根,求m的取值范围.
四、两点中间两根
【例8】若关于x的方程x2-ax+2=0在区间(0,3)内有两个根,求实数a的取值范围.
【练】若关于x的方程x2-2ax+a2-1=0的两个不等根在区间(-2,4)上,求实数a 的取值范围.
【变】若关于x的二次方程(m-1)x2+(3m+4)x+m+1=0的两个根属于(-1,1),求实数m的取值范围.
【例9】当实数a和b满足何条件时,关于x的方程x2+ax+b=0在区间[-2,2]上有两个实根?
【练】若关于x的方程x2+(m-1)x+1=0有两个相异的实根,且两根均在区间[0,2]上,求实数m的取值范围.
【变】若抛物线y=x2+ax+2与连接两点M(0,1)、N(2,3)的线段有两个相异的交点,求a的取值范围.
五、两点中间一根
【例10】已知关于x的二次方程(2m+1)x2-2mx+m-1=0有且只有一个实根属于(1,2),且x=1,x=2都不是方程的根,求实数m的取值范围.
【练】若关于x的二次方程(3m-1)x2+(2m+3)x-m+4=0有且只有一个实根属于(-1,1),求实数m的取值范围.
【变】已知点A、B的坐标分别为(1,0)、(2,0),若二次函数f(x)=x2+(a-3)x+3的图象与线段AB恰有一个交点,求实数a的取值范围.
【例11】若关于x的方程ax2+x+a-3=0在(-2,0)上有且只有一个实根,求实数a 的取值范围.
【练】若关于x的方程mx2+(2m-3)x+4=0有且只有一个小于1的正根,求实数m的取值范围.
六、两点中间有根
【例12】若方程x2-2mx+m-1=0在区间(-2,4)上有根,求实数m的取值范围.
【练】若关于x的二次方程x2+2mx+2m+1=0在区间(0,2)内至少存在一根,求实数m的范围.
【变】已知关于x的方程2ax2+2x-a-3=0在区间[-1,1]上有根,求实数a的取值范围.
【例13】集合A={(x,y) | y=x2+mx+2},B={(x,y) | x-y+1,且0≤x≤2},若A∩B≠∅,求实数m的取值范围.
【练】已知抛物线y=2x2-mx+m与以点(0,0)和(1,1)为端点的线段(除去两个端点)有公共点,求实数m的取值范围.
七、两点隔两根
【例14】关于x的方程4x2+(m-2)x+m-5=0的一根小于1,另一根大于2,求实数m的取值范围.
【练】若关于x的方程x2+(2m-1)x+m-6=0的一个根不大于-1,另一个根不小于1,求实数m的取值范围.
【变1】已知方程(a-1)x2+(2a-6)x-4a+1=0的两根为x1,x2,且-1<x1<1<x2,求实数a的取值范围.
【变2】若关于x的方程2x2-(m-2)x-2m2-m=0的两根在区间[0,1]之外,求实数m 的取值范围.
八、多点隔两根
【例15】若关于x方程x2-mx-m+3=0的一根在区间(0,1)内,另一根在区间(1,2)内,求实数m的取值范围.
【练】已知关于x的方程x2+2mx+2m+1.若方程有两个根,其中一个在区间(-1,0),另一根在区间(1,2)内,求m的范围.
【变】若mx2-(m-1)x+m2-m+2=0的两根分别在0<x<1和1<x<2的范围内,求实数m的取值范围.
【作业】
1、已知关于x的方程x2+(m-3)x+m=0,分别在下列条件下,求实数m的取值范围.(1)方程有两个正根;
(2)方程两个根均小于1;
(3)方程的一个根大于1,另一个根小于1;
(4)方程的两个根均在(0,2)内;
(5)方程的一个根小于2,另一个根大于4.
(6)方程的一个根在(-2,0)内,另一个根在(0,4)内;
(7)方程有一个正根,一个负根且正根的绝对值较大;
(8)方程的两个根有且仅有一个在(0,2)内;
2、若方程x2-4|x|+5=m有四个互不相等的实数根,求实数m的取值范围.
3、设|a|=1,b为整数,关于x的方程ax2-2x-b+5=0有两个负实数根,求b的值.
4、已知二次函数f(x)=(m+2)x2-(2m+4)x+3m+3与x轴有两个交点,分别在点(1,0)左右两边,求实数m的取值范围.
5、求实数m的取值范围,使关于x的方程x2+2(m-1)x+2m+6=0至少有一个正根.
6、如果二次函数y=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,求实数m的取值范围.
7、已知关于x的方程x2+2mx+2m+1=0.若方程两根均在区间(0,1)内,求实数m的取值范围.
8、若关于x的方程7x2-(m+13)x+m2-m-2=0在区间(0,1)、(1,2)上各有一个实根,求实数m的取值范围.
9、已知关于x的方程x2+(3m-1)x+3m-2=0的两根都属于(-3,3),且其中至少有一个根小于1,求实数m的取值范围.
10、求证:关于x的方程3ax2+2bx-(a+b)=0在(0,1)内至少有一个实根.。