[初中数学]定义与命题教案北师大版

合集下载

北师大版八年级上册《7.2 定义与命题》教案x

北师大版八年级上册《7.2 定义与命题》教案x

北师大版八年级上册《7.2 定义与命题》教案x一. 教材分析《7.2 定义与命题》这一节主要让学生了解数学中的定义与命题的概念,理解命题的构成要素,学会如何书写和阅读命题。

教材通过具体的例子,引导学生理解定义与命题的关系,以及如何从命题中提取信息。

二. 学情分析八年级的学生已经有一定的数学基础,对数学概念和命题有一定的认识。

但是,对于定义与命题的深入理解,以及如何从命题中提取信息,可能还存在一定的困难。

因此,在教学过程中,需要通过具体的例子,引导学生理解定义与命题的概念,以及如何从命题中提取信息。

三. 教学目标1.了解定义与命题的概念,理解命题的构成要素。

2.学会如何书写和阅读命题。

3.学会从命题中提取信息。

四. 教学重难点1.重点:定义与命题的概念,命题的构成要素。

2.难点:如何从命题中提取信息。

五. 教学方法采用讲授法、引导法、讨论法、案例分析法等,通过具体的例子,引导学生理解定义与命题的概念,以及如何从命题中提取信息。

六. 教学准备2.PPT。

3.教学案例。

七. 教学过程1.导入(5分钟)通过一个具体的案例,引导学生思考什么是定义,什么是命题。

例如,定义一个三角形:由三条线段首尾相连围成的图形。

然后,给出一个命题:所有的三角形都有三个顶点。

让学生思考这个命题是否正确。

2.呈现(10分钟)通过PPT,呈现定义与命题的概念,以及命题的构成要素。

让学生理解定义与命题的关系。

3.操练(15分钟)让学生阅读教材中的例子,尝试自己书写和阅读命题。

教师通过提问,引导学生理解命题的构成要素。

4.巩固(10分钟)通过小组讨论,让学生互相交流自己的理解和发现。

教师通过提问,检查学生对定义与命题的理解。

5.拓展(10分钟)让学生尝试解决一些与定义与命题相关的问题。

例如,给出一个命题,让学生判断其是否正确,并说明理由。

6.小结(5分钟)通过总结,让学生回顾本节课所学的内容,加深对定义与命题的理解。

7.家庭作业(5分钟)布置一些与定义与命题相关的作业,让学生课后巩固所学知识。

北师大版八年级数学上册7.2定义与命题优秀教学案例

北师大版八年级数学上册7.2定义与命题优秀教学案例
2.通过设置分层问题,满足不同学生的学习需求,促进他们的思维发展。
3.鼓励学生主动提问,培养学生敢于质疑的精神,提高他们的问题解决能力。
(三)小组合作
1.划分学习小组,鼓励学生相互讨论、交流,提高团队协作能力。
2.设计小组合作任务,使学生在讨论中深入理解定义与命题,提高他们的逻辑思维能力。
3.注重小组评价,激发学生的竞争意识,提高他们的学习积极性。
北师大版八年级数学上册7.2定义与命题优秀教学案例
一、案例背景
北师大版八年级数学上册7.2节“定义与命题”的教学,旨在让学生理解概念的含义,掌握命题的构成要素,培养学生的逻辑思维能力。本节课内容是学生对数学语言和基本概念的深入学习,是建立良好数学思维的基础。
在这个阶段,学生已经掌握了初步的数学概念和简单的逻辑推理,但对定义与命题的深层含义理解不足,容易混淆概念,对命题的真假判断缺乏准确性。因此,在教学过程中,我以学生已有的知识为基础,通过丰富的教学活动和实例,引导学生深入理解定义与命题的关系,提高他们的逻辑思维和判断能力。
这些亮点体现了我在教学过程中的创新与实践,注重启发式教学,关注学生的全面发展,培养他们的自主学习能力和团队协作能力。同时,我也注重激发学生的学习兴趣,让他们在轻松愉快的氛围中掌握知识,提高他们的数学素养。
2.感受数学的严谨性和逻辑性,培养学生的求真精神。
3.认识到数学在实际生活中的应用价值,提高学生运用数学解决实际问题的能力。
4.培养学生热爱祖国,为祖国的繁荣富强而努力学习的情感。
在教学过程中,我将以学生为主体,关注每个学生的个体差异,充分调动他们的积极性,引导他们主动参与课堂讨论,培养他们的自主学习能力。同时,注重启发式教学,引导学生发现定义与命题之间的内在联系,提高他们的逻辑思维能力。

2023定义与命题北师大版数学初二下册教案

2023定义与命题北师大版数学初二下册教案

2023定义与命题北师大版数学初二下册教案在现代哲学、数学、规律学、语言学中,命题是指一个推断(陈述)的语义(实际表达的概念),这个概念是可以被定义并观看的现象。

命题不是指推断(陈述)本身,而是指所表达的语义。

以下是我整理的定义与命题北师大版数学初二下册教案,欢迎大家借鉴与参考!7.2定义与命题:教案一、同学学问状况分析同学技能基础:学习本节之前,同学已经对命题的含义有所了解,并且已经学习过一些公理和定理,为公理化思想的培育作好了充分预备.活动阅历基础:有了上一节的活动基础,同学对本节课主要实行同学分组沟通、争论、举例说明的学习方式有比较好的活动阅历.二、教学任务分析在上一节课的学习中,同学对命题的概念有了清晰的熟悉,但同学对于命题的构造,什么是真命题,什么是假命题还不甚了解,本节课旨在让同学对真假命题有一个清晰的熟悉,从而进一步了解定理、公理的概念,为此,本节课的教学目标是:1.了解命题中的真命题、假命题、定理的含义;2.解命题的构成,能区分命题中的条件和结论。

3.经受实际情境,初步体会公理化思想和方法,了解本教材所采纳的公理.4.培育同学的语言表达力量。

三、教学过程分析本节课的设计分为五个环节:回顾引入——探究命题的结构——思索探讨——读一读——课堂反思与小结.6.2定义与命题:同步练习1.下列句子中,不是命题的是( )A.三角形的内角和等于180度;B.对顶角相等;C.过一点作已知直线的平行线;D.两点确定一条直线.6.2 定义与命题:课后测试1.下列命题属于定义的是( )A.两点之间线段最短B.25的平方根是±5C.同旁内角互补D.含有两个未知数,并且未知数的次数是1的整式方程是二元一次方程2.下列叙述:①两点确定一条直线;②同位角相等;③每一个偶数都能被4整除;④点到直线的距离是该点到这条直线的垂线段的长度.其中是定义的是( )A.①B.②C.③D.④3.下列语句是命题的是( )A.连接P,Q两点B.画一条线段等于已知线段C.过点M作直线PQ的垂线D.两条直线相交,有且只有一个交点4.命题:①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短.其中真命题的个数有( )A.1个B.2个C.3个D.4个5.已知三条不同的直线a,b,c在同一平面内,下列命题中:①假如a∥b,a⊥c,那么b⊥c;②假如b∥a,c∥a,那么b∥c;③假如b⊥a,c⊥a,那么b⊥c;④假如b⊥a,c⊥a,那么b∥c.其中真命题有__________.(填写真命题的序号)6.说明命题“假如a,b,c是△ABC的三边,那么长为a-1,b-1,c-1的三条线段能构成三角形”是假命题的反例可以是( )A.a=2,b=2,c=3B.a=2,b=2,c=2C.a=3,b=3,c=4D.a=3,b=4,c=5定义与命题北师大版数学初二下册教案文档内容到此结束,欢迎大家下载、修改、丰富并分享给更多有需要的人。

北师大版数学八年级上册2《定义与命题》教案1

北师大版数学八年级上册2《定义与命题》教案1

北师大版数学八年级上册2《定义与命题》教案1一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的内容。

本节课主要让学生了解数学中的定义与命题的概念,学会如何正确理解和运用定义与命题。

教材通过生活中的实例,引导学生理解定义与命题的含义,培养学生的逻辑思维能力。

二. 学情分析学生在七年级时已经接触过一些简单的定义与命题,对这部分内容有初步的了解。

但大部分学生对这些概念的理解不够深入,容易混淆。

此外,学生对于如何运用定义与命题来解决问题还比较陌生。

因此,在教学过程中,需要注重引导学生深入理解概念,并学会运用。

三. 教学目标1.理解定义与命题的概念,掌握它们的书写格式。

2.学会如何正确理解和运用定义与命题。

3.培养学生的逻辑思维能力。

四. 教学重难点1.重点:理解定义与命题的概念,学会正确书写格式。

2.难点:如何运用定义与命题解决问题,培养学生逻辑思维能力。

五. 教学方法1.情境教学法:通过生活实例引入定义与命题,让学生在实际情境中理解概念。

2.互动教学法:引导学生通过小组讨论、交流,共同探讨定义与命题的含义和运用。

3.案例教学法:分析典型例题,让学生学会如何运用定义与命题解决问题。

六. 教学准备1.准备相关的生活实例和典型例题。

2.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)通过一个生活实例,如“等腰三角形”的定义,引导学生思考:如何用数学语言来描述这个概念?从而引出定义与命题的概念。

2.呈现(10分钟)呈现教材中的相关定义与命题,如“平行线”、“全等三角形”等,让学生初步了解这些概念。

同时,引导学生注意定义与命题的书写格式。

3.操练(10分钟)让学生分组讨论,每组选择一个定义与命题,试着用自己的语言来表达,并互相交流。

教师在这个过程中给予适当的引导和反馈。

4.巩固(10分钟)通过一些练习题,让学生运用所学的定义与命题来解决问题。

教师在这个过程中注意引导学生运用定义与命题的正确方法。

北师大版数学八年级上册2《定义与命题》教学设计2

北师大版数学八年级上册2《定义与命题》教学设计2

北师大版数学八年级上册2《定义与命题》教学设计2一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的教学内容。

本节课主要介绍了定义与命题的概念,以及如何正确理解和运用它们。

教材通过具体的例子,让学生初步认识定义与命题,并学会如何区分它们。

同时,教材还引导学生思考定义与命题在数学中的应用,培养学生的逻辑思维能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对数学概念和定理有一定的认识。

但学生在理解和运用定义与命题方面可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解和掌握定义与命题的概念和运用。

三. 教学目标1.理解定义与命题的概念,掌握它们的区别与联系。

2.学会如何正确理解和运用定义与命题。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.重点:定义与命题的概念及其区别与联系。

2.难点:如何正确理解和运用定义与命题。

五. 教学方法1.情境教学法:通过具体的例子,引导学生理解和掌握定义与命题。

2.启发式教学法:引导学生主动思考,发现定义与命题的规律。

3.小组合作学习:鼓励学生互相讨论,共同解决问题。

六. 教学准备1.教学PPT:制作涵盖定义与命题的例子、练习题等内容的PPT。

2.学习素材:准备一些与定义与命题相关的阅读材料,以便学生在课后进行拓展学习。

七. 教学过程1.导入(5分钟)教师通过一个简单的例子,如“直线的定义”,引导学生思考定义与命题的概念,激发学生的学习兴趣。

2.呈现(10分钟)教师通过PPT呈现定义与命题的相关概念,让学生初步认识它们。

同时,教师可以通过讲解、举例等方式,让学生了解定义与命题的区别与联系。

3.操练(10分钟)教师布置一些练习题,让学生区分给出的数学语句是定义还是命题。

学生独立完成后,教师选取部分答案进行讲解和分析。

4.巩固(10分钟)教师继续呈现一些定义与命题的例子,让学生判断并解释它们的含义。

在此过程中,教师要注意引导学生运用已学的知识,加深对定义与命题的理解。

[初中数学]定义与命题教案 北师大版

[初中数学]定义与命题教案 北师大版

《定义与命题》教案
第二课时
【教学目标】
一、教学知识点
1.命题的组成.
2.命题真假的判断。

二、能力训练要求:
1.使学生能够分清命题的条件和结论,能判断命题的真假
2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法三、情感与价值观要求:
1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一2.帮助学生了解数学发展史,拓展视野,激发学习兴趣
3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值
【教学重点】准确的找出命题的条件和结论
【教学难点】理解判断一个真命题需要证明
【教学方法】探讨、合作交流
【教具准备】投影片
【教学过程】。

北师大版数学八年级上册2《定义与命题》教学设计1

北师大版数学八年级上册2《定义与命题》教学设计1

北师大版数学八年级上册2《定义与命题》教学设计1一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的教学内容。

本节课主要让学生理解命题的概念,学会用数学语言表述命题,并了解命题的逆命题、反命题等基本知识。

教材通过引入现实生活中的例子,激发学生的学习兴趣,让学生体会数学与生活的紧密联系。

二. 学情分析学生在七年级时已经接触过简单的命题与定理,对命题的概念有初步的了解。

但部分学生对命题的理解仍停留在表面,不能准确运用数学语言表述命题。

此外,学生在之前的数学学习过程中,接触到的大部分是具体的运算问题,对于抽象的数学概念和逻辑推理较为陌生。

三. 教学目标1.理解命题的概念,学会用数学语言表述命题。

2.了解命题的逆命题、反命题等基本知识。

3.培养学生逻辑思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.重点:理解命题的概念,学会用数学语言表述命题。

2.难点:命题的逆命题、反命题的理解与应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究命题的内涵与外延。

2.利用现实生活中的例子,让学生感受数学与生活的联系,提高学习兴趣。

3.通过小组讨论、师生互动等方式,培养学生的合作交流能力。

4.运用逻辑推理方法,引导学生理解命题的逆命题、反命题。

六. 教学准备1.准备相关的生活例子,用于引导学生理解命题。

2.准备课件,展示命题的定义、逆命题、反命题等内容。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活例子,如“如果一个人是学生,那么他每天要上学。

”引导学生思考:这是一个什么概念?让学生初步感知命题的概念。

2.呈现(10分钟)通过课件展示命题的定义,让学生明确命题的概念。

同时,呈现命题的逆命题、反命题的定义,让学生初步了解这些基本知识。

3.操练(10分钟)让学生分组讨论,举例说明命题、逆命题、反命题的关系。

教师选取部分学生的例子,进行讲解和分析。

4.巩固(10分钟)让学生独立完成教材中的练习题,检验学生对命题、逆命题、反命题的理解。

北师大版数学八年级上册2《定义与命题》教学设计2

北师大版数学八年级上册2《定义与命题》教学设计2

北师大版数学八年级上册2《定义与命题》教学设计2一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的教学内容。

本节课的主要内容是让学生理解并掌握命题与定理的概念,学会如何用数学语言表述命题,以及如何通过推理和证明来判断命题的真假。

本节课的内容是学生学习更高级数学知识的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。

二. 学情分析学生在七年级时已经接触过简单的命题和定理,对命题和定理的概念有初步的了解。

但是,对于如何准确地表述命题,如何通过推理和证明来判断命题的真假,以及如何运用命题和定理解决实际问题等方面,还需要进一步的学习和掌握。

因此,在教学过程中,教师需要根据学生的实际情况,从简单的例子入手,逐步引导学生理解和掌握命题与定理的概念,以及如何运用这些概念解决实际问题。

三. 教学目标1.理解命题与定理的概念,掌握如何用数学语言表述命题。

2.学会通过推理和证明来判断命题的真假。

3.能够运用命题和定理解决实际问题。

4.培养学生的逻辑思维能力和数学素养。

四. 教学重难点1.重点:理解命题与定理的概念,掌握如何用数学语言表述命题,学会通过推理和证明来判断命题的真假。

2.难点:如何引导学生理解和掌握命题与定理的概念,以及如何运用这些概念解决实际问题。

五. 教学方法1.讲授法:教师通过讲解和举例,引导学生理解和掌握命题与定理的概念。

2.实践法:学生通过动手操作和思考,培养学生的逻辑思维能力和数学素养。

3.讨论法:学生分组讨论,交流自己的理解和思路,培养学生的合作意识和沟通能力。

六. 教学准备1.教师准备PPT,内容包括教材中的重点和难点,以及一些相关的例子和练习题。

2.准备一些与本节课内容相关的实物或图片,用于导入和呈现。

七. 教学过程1.导入(5分钟)教师通过展示一些与本节课内容相关的实物或图片,引导学生观察和思考,激发学生的兴趣。

然后,教师简要介绍本节课的主要内容,让学生对课程有一个初步的了解。

8年级数学北师大版 上册教案 第7章《定义与命题》

8年级数学北师大版 上册教案 第7章《定义与命题》

教学设计定义与命题
(教材例题)已知:如图,直线AB与直线CD相交于点O,∠AOC与∠BOD是对顶角.
求证:∠AOC=∠BOD.
证明:∵直线AB与直线CD相交于点O,
∴∠AOB和∠COD都是平角(平角的定义).
∴∠AOC和∠BOD都是∠AOD的补角(补角的定义).
∴∠AOC=∠BOD(同角的补角相等).
通过上面的例题,我们可以得到定理:对顶角相等.教师小结归纳证明的格式:
(1)根据条件,画出图形,并在图形上标出有关字母与符号;
(2)结合图形,写出已知、求证;
(3)分析因果关系,找出由已知推出结论的途径;
(4)有条理地写出证明过程(每一步推理要有依据).
三、运用新知,深化理解
练习:请你完成定理“三角形的任意两边之和大于第三边”的证明.。

北师大版数学八年级上册《认识定义与命题》教案

北师大版数学八年级上册《认识定义与命题》教案

北师大版数学八年级上册《认识定义与命题》教案一. 教材分析北师大版数学八年级上册《认识定义与命题》一课,主要让学生了解数学中的定义与命题的概念,理解命题的题设和结论部分,学会判断一个命题是真命题还是假命题,培养学生逻辑思维能力。

二. 学情分析学生在七年级时已经接触过一些简单的定义和命题,对本节课的内容有一定的认知基础。

但部分学生对定义和命题的概念理解不深,逻辑思维能力有待提高。

三. 教学目标1.让学生了解定义与命题的概念,理解命题的题设和结论部分。

2.培养学生判断命题真假的能力。

3.提高学生逻辑思维能力。

四. 教学重难点1.教学重点:定义与命题的概念,命题的题设和结论部分。

2.教学难点:判断命题的真假。

五. 教学方法1.采用问题驱动法,引导学生主动探究定义与命题的关系。

2.运用案例分析法,让学生通过分析具体例子,理解命题的题设和结论部分。

3.采用小组合作学习法,培养学生团队协作能力和逻辑思维能力。

六. 教学准备1.准备相关定义与命题的案例,用于课堂分析和讨论。

2.设计好针对本节课的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活中的实例,如“勾股定理”的定义,引导学生思考:什么是定义?什么是命题?2.呈现(15分钟)呈现一组勾股定理的例子,让学生分析其中的题设和结论部分,引导学生理解命题的结构。

3.操练(10分钟)让学生分组讨论,分析给出的几个命题,判断它们是真命题还是假命题。

每组选取一个命题进行分析,并汇报答案。

4.巩固(10分钟)让学生完成教材中的相关练习题,巩固对定义与命题的理解。

教师及时给予反馈,解答学生的疑问。

5.拓展(10分钟)引导学生思考:如何证明一个命题是真命题?如何证明一个命题是假命题?让学生举例说明。

6.小结(5分钟)对本节课的内容进行总结,强调定义与命题的概念,以及判断命题真假的方法。

7.家庭作业(5分钟)布置一道有关定义与命题的家庭作业,让学生课后思考。

8.板书(课后整理)整理本节课的主要内容,包括定义与命题的概念,命题的题设和结论部分,以及判断命题真假的方法。

2024年北师大版八年级上册教学设计第七章7.2 定义与命题

2024年北师大版八年级上册教学设计第七章7.2   定义与命题

第1课时定义与命题课时目标1.掌握定义、命题的含义,并感受其在数学和生活中的广泛应用.2.理解命题的结构,会将命题写成“如果……那么……”的形式,会区分命题的条件和结论,并判断其真假.3.通过观察、猜想、推理的过程,发展学生的探索意识与合作交流的意识,关注现实,培养学生进行思考的能力和质疑精神.学习重点掌握定义、命题的含义,并感受其在数学和生活中的广泛应用.学习难点理解命题的结构,会将命题写成“如果……那么……”的形式,会区分命题的条件和结论,并判断其真假.课时活动设计情境引入通过多媒体播放图片,创设小华和小刚对话的场景,让学生发现有关的数学问题.小华与小刚正在津津有味地阅读《我们爱科学》.小华:哈!这个黑客终于被逮住了.小刚:是的,现在的因特网广泛运用于我们的生活中,给我们带来了方便,但……小华:这个黑客是个小偷吧?小刚:可能是个喜欢穿黑衣服的贼.设计意图:创设这个情境,激发和引导学生更主动地参与课堂交流,感受到为了进行有效交流必须引入定义和命题.用这种形式引入,让学生及早融入课堂,积极思考,也作为本节课的一个贯穿的背景.更重要的是,希望学生初步感受定义的重要性.探究新知教师引导学生回答下面问题.1.阅读下面的内容,并填一填.(1)“具有中华人民共和国国籍的人,叫做中华人民共和国公民”是“中华人民共和国公民”的定义;(2)“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义;(3)“无限不循环小数被称为无理数”是“无理数”的定义;(4)“由不在同一直线上的若干线段首尾顺次连接所组成的平面图形叫做多边形”是“多边形”的定义;(5)“有两条边相等的三角形叫做等腰三角形”是“等腰三角形”的定义.教师通过上述例子,引出定义的含义.证明时,为了交流的方便,必须对某些名称和术语形成共同的认识.为此,就要对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.2.从本册数学课本中找找有哪些定义?设计意图:这里的例子,既有几何概念方面的定义,也有代数方面的定义,还有生活中的定义,力图让学生认识到定义在工作、学习、生活中的广泛应用,达成定义的必要性以及科学性、准确性、简洁性、唯一性的共识;然后通过在教材上找定义,体验定义的无所不在,突显教材在学习中的指导作用.鼓励学生自己动脑思考并与小组的其他同学相互讨论,对学生的答案给予肯定,激发他们学习数学的兴趣.探究新知下列各语句中,哪些语句对事情作出了判断,哪些没有?(1)任何一个三角形一定有一个角是直角;(2)对顶角相等;(3)无论n为怎样的自然数,式子n2-n+11的值都是质数;(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(5)你喜欢数学吗?(6)作线段AB=CD.学生组内合作,互相交流讨论.教师引导,通过上述例子引出命题的概念.解:(1)(2)(3)(4)作出了判断,(5)(6)没有作出判断.教师总结:判断一件事情的句子叫做命题.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.命题是一个陈述句.设计意图:让学生在经历活动环节和独立思考的基础上道出对命题的认识和理解,表示判断的句子都是命题,而不管判断是否正确.不表示判断的句子就不是命题,在此过程中培养学生的表达能力和总结能力.探究新知观察下列命题,你能发现这些命题有什么共同的结构特征?(1)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;(2)如果a=b,那么a2=b2;(3)如果两个三角形中有两边和一个角分别相等,那么这两个三角形全等.学生组内合作,互相交流讨论.教师引导,总结交流结果.教师总结:一般地,每个命题都由条件和结论两部分组成,条件是已知的事项,结论是由已知事项推断出的事项.命题通常可以写成“如果……那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.设计意图:这些命题都是“如果…那么……”的形式,让学生进一步体会命题的含义,并概括出命题的结构特征:有“如果……那么……”的结构,进而明晰命题的条件和结论,使学生更好地认识命题及其结构.典例精讲例指出下列命题的条件和结论,其中哪些命题是错误的?你是如何判断的?(1)如果两个角相等,那么它们是对顶角;(2)如果a≠b,b≠c,那么a≠c;(3)全等三角形的面积相等;(4)如果室外气温低于0℃,那么地面上的水一定会结冰.学生分组进行讨论交流,教师展示答案.解:(1)条件:两个角相等;结论:它们是对顶角.例:等腰三角形的两个底角相等,但它们不是对顶角,所以命题不正确.(2)条件:a≠b,b≠c;结论:a≠c.例:a=c=3,b=1,同样满足条件a≠b,b≠c.所以命题不正确.(3)条件:两个三角形全等;结论:这两个三角形的面积相等.命题正确.(4)条件:室外气温低于0℃;结论:地面上的水一定会结冰.例:结冰需要一个过程,在室外温度低于0℃时才刚刚开始结冰.所以命题不正确.教师总结:正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.设计意图:明晰了命题的结构之后,自然应让学生结合实例分析命题的条件和结论.在这样的分析过程中,必然会思考这些命题的真假.巩固学生分析命题的条件和结论,进一步引导学生体会:要说明一个命题是假命题,通常举出一个反例就可以了.同时,与前面内容相呼应:要说明一个命题是正确的,无论验证多少个特殊的例子,也无法保证命题的正确性.巩固训练1.指出下列命题的条件和结论,并判断是真命题还是假命题.(1)互为补角的两个角相等;(2)如果a=b,那么a+c=b+c;(3)如果两个长方形的周长相等,那么这两个长方形的面积相等.解:(1)条件:两个角互为补角;结论:这两个角相等.假命题.(2)条件:a=b;结论:a+c=b+c.真命题.(3)条件:两个长方形的周长相等;结论:这两个长方形的面积相等.假命题.2.分别把下列命题写成“如果……,那么……”的形式.(1)两点确定一条直线;(2)在同一平面内,垂直于同一条直线的两条直线平行;(3)内错角相等.解:(1)如果经过两点画直线,那么只能画出一条直线.(2)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行.(3)如果两个角是内错角,那么这两个角相等.设计意图:旧知识和新知识的结合体,巩固真命题与假命题的概念,学会用举反例来证明假命题,体会命题的完备性,促进了学生对教学内容的整体理解和把握,同时也加深对“如果……,那么……”形式的理解与掌握,培养学生的核心素养.课堂小结1.定义和命题的概念.2.命题的条件和结论.3.判断真假命题.设计意图:通过回顾本节所学的知识,加深学生对本节所学内容的理解,培养学生善于反思的习惯.课堂8分钟.1.教材第167页习题7.2第2,3题.2.七彩作业.教学反思第2课时公理、定理和证明课时目标1.了解真命题的证明,通过实例感受证明的过程与格式.2.初步感受公理化思想,并了解本套教科书所采用的基本事实.3.阅读有关《原本》和公理化的资料,感受公理化方法对数学发展和促进人类文明进步的价值.学习重点了解公理、定理与证明的概念并了解本套教材所采用的基本事实.学习难点体会命题证明的必要性,体验数学思维的严谨性.课时活动设计复习回顾1.回忆我们上次学习到了哪些知识?对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.判断一件事情的句子,叫做命题.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.一般地,每个命题都由条件和结论两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.命题通常可以写成“如果……那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.2.举一个反例就可以说明一个命题是假命题,那么如何证实一个命题是真命题呢?设计意图:开门见山,引导学生回忆命题引出下面活动.情境引入公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得(公元前300年前后)编写了一本书,书名叫做《原本》.为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据,其中的数学名词称为原名,公认的真命题称为公理.除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断.演绎推理的过程称为证明,经过证明的真命题称为定理.每个定理都只能用公理、定义和已经证明为真的命题来证明.已学的八条基本事实有:1.两点确定一条直线.2.两点之间线段最短.3.同一平面内,过一点有且只有一条直线与已知直线垂直.4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行).5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角分别相等的两个三角形全等.7.两角及其夹边分别相等的两个三角形全等.8.三边分别相等的两个三角形全等.此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据.例如,如果a=b,b=c,那么a=c,这一性质也可以作为证明的依据,称为“等量代换”.又如,如果a>b,b>c,那么a>c,这一性质同样可以作为证明的依据.设计意图:经历实际情境,初步体会公理化思想和方法,了解本教材所采用的基本事实,让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念.培养学生的语言表达能力.探究新知定理证明学生组内合作,互相交流完成下面问题,教师及时指导,规范学生证明过程的书写.1.定理:同角的补角相等.已知:℃B和℃C是℃A的补角,求证:℃B=℃C.证明:℃℃B和℃C是℃A的补角,℃℃B=180°-℃A,℃C=180°-℃A.℃℃B=℃C(等量代换).℃同角的补角相等.2.定理:同角的余角相等.已知:℃B和℃C是℃A的余角,求证:℃B=℃C.证明:℃℃B和℃C是℃A的余角,℃℃B=90°-℃A,℃C=90°-℃A.℃℃B=℃C(等量代换).℃同角的余角相等.设计意图:通过学生合作交流,培养了学生互助交流的意识;让学生初步感受证明推理的过程,体会证明的思路,体验书写的过程以及数学的严谨性.典例精讲例已知:如图,直线AB与直线CD相交于点O,℃AOC与℃BOD是对顶角.求证:℃AOC=℃BOD.证明:℃直线AB与直线CD相交于点O,℃℃AOB与℃COD都是平角(平角的定义).℃℃AOC=℃BOD都是℃AOD的补角(补角的定义).℃℃AOC=℃BOD(同角的补角相等).由例题得到定理:对顶角相等.设计意图:让学生进一步体会证明的思路与书写的过程.巩固训练已知:如图,℃ABC.求证:AB+BC>AC,BC+CA>AB,CA+AB>BC.证明:℃AC是以点A,点C为端点的线段,℃AB+BC>AC(两点之间线段最短).同理BC+CA>AB,CA+AB>BC.设计意图:让学生进一步感受证明推理的过程,体会证明思路,体验书写的过程以及数学的严谨性.课堂小结1.公理:公认的真命题.2.定理:经过证明的真命题.3.证明:演绎推理的过程.设计意图:通过回顾本节课所学的内容,加深学生对本节所学内容的理解,掌握证明推理的过程,体验数学的严谨性,培养学生反思的习惯.课堂8分钟.1.教材第171页习题7.3第3,4题.2.七彩作业.第2课时公理、定理和证明1.公理:公认的真命题.2.定理:经过证明的真命题.3.证明:演绎推理的过程.教学反思。

北师大版八年级上册数学教案:7.2定义与命题

北师大版八年级上册数学教案:7.2定义与命题
(3)了解命题的证明方法:了解平面几何证明的基本方法,如直接证明、反证法等,并能应用于具体的命题证明。
2.教学难点
(1)定义的抽象:学生对从具体实例中抽象出定义感到困难,需要教师通过生动形象的例子和引导性的问题,帮助学生理解定义的形成过程。
举例:在讲解“平行线”的定义时,学生可能难以理解“不相交的两条直线为何要在同一平面内”,教师可以通过实际操作或动画演示,让学生直观感受平行线的特点。
举例:在证明“如果一个三角形的两边相等,那么这两边的对角也相等”时,教师可以引导学生尝试直接证明和反证法,并分析两种方法的优缺点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《7.2定义与命题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断一个说法是否正确的情况?”比如,有人说“只要是正方形,其对角线就相等”,这个说法是否正确呢?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索定义与命题的奥秘。
2.增强学生的几何直观感知:通过观察、操作、探究等教学活动,培养学生的空间观念和几何直观,提高学生对几何图形的认识和理解。
3.提升学生的数学交流能力:在教学过程中,鼓励学生用准确、简洁的语言表达几何定义和命题,提高学生之间的合作交流能力。
4.培养学生的数学抽象能力:引导学生从具体实例中抽象出几何定义和命题,培养学生从具体到抽象的思维方式,提高数学抽象能力。
五、教学反思
今天我们在课堂上一起探讨了7.2定义与命题这一章节的内容,回顾整个教学过程,我觉得有几个方面值得反思。
首先,关于定义的教学,我尝试通过生动的实例引入,让学生从具体情境中抽象出几何定义。我发现这种方法对于大多数学生来说是比较容易接受的,他们能够更好地理解定义的内涵与外延。但在实际操作中,仍有一部分学生对于定义的抽象过程感到困惑,我需要思考如何针对这部分学生进行更有针对性的指导。

八年级数学上册7.2定义与命题第1课时定义与命题教学设计 (新版北师大版)

八年级数学上册7.2定义与命题第1课时定义与命题教学设计 (新版北师大版)

八年级数学上册7.2定义与命题第1课时定义与命题教学设计(新版北师大版)一. 教材分析本节课的内容是北师大版八年级数学上册7.2定义与命题,主要介绍定义与命题的概念及其相互关系。

通过本节课的学习,使学生理解定义与命题的含义,掌握定义与命题的书写格式,能够正确书写定义与命题,并能够分析、判断命题的正确性。

二. 学情分析学生在七年级时已经学习了命题与定理的内容,对命题的概念有一定的了解。

但学生在定义与命题的书写格式、分析判断命题的正确性方面存在困难。

因此,在教学过程中,要注重引导学生理解定义与命题的关系,通过例题讲解,让学生掌握定义与命题的书写格式,提高学生分析判断命题正确性的能力。

三. 教学目标1.理解定义与命题的概念及其相互关系。

2.掌握定义与命题的书写格式。

3.能够正确书写定义与命题。

4.能够分析、判断命题的正确性。

四. 教学重难点1.教学重点:定义与命题的概念及其相互关系,定义与命题的书写格式。

2.教学难点:定义与命题的书写格式,分析判断命题的正确性。

五. 教学方法采用讲授法、例题解析法、小组合作法、问答法等教学方法,引导学生通过自主学习、合作交流,掌握定义与命题的概念及其相互关系,提高分析判断命题正确性的能力。

六. 教学准备1.准备相关定义与命题的例题。

2.准备投影仪、黑板等教学设备。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾七年级学习的命题与定理内容,为新课的学习做好铺垫。

2.呈现(10分钟)介绍定义与命题的概念,讲解定义与命题的相互关系。

让学生明确定义与命题的区别与联系。

3.操练(10分钟)让学生根据定义与命题的概念,尝试书写几个简单的定义与命题。

教师选取部分学生的作品进行点评,指出书写格式上的优点与不足。

4.巩固(10分钟)讲解定义与命题的书写格式,强调书写要求。

让学生再次尝试书写定义与命题,并相互检查,纠正错误。

5.拓展(10分钟)分析判断一些给定的命题是否正确。

教师引导学生运用定义与命题的知识,通过逻辑推理分析命题的正确性。

北师大版八年级上册数学7.2定义与命题教案

北师大版八年级上册数学7.2定义与命题教案
3.重点难点解析:在讲授过程中,我会特别强调角的平分线定义和性质这两个重点。对于难点部分,比如角的平分线性质的应用,我会通过具体例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与角的平分线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何利用尺规作图画出一个角的平分线。
3.证明方法:指导学生运用角的平分线定义及基本图形性质进行简单命题的证明。
4.实践应用:结合实际情境,设计相关问题,让学生运用角的平分线知识解决实际问题。
本节课旨在帮助学生掌握角的平分线的定义和性质,培养他们的逻辑思维能力和解题技巧。
二、核心素养目标
1.理解与运用:通过学习角的平分线定义,使学生能够理解并运用角的平分线性质解决相关问题,培养他们的几何直观和空间观念。
5.情感态度:激发学生对几何学的兴趣,培养他们勇于探索、克服困难的意志,形成积极向上的学习态度。
三、教学难点与重点
1.教学重点
-角的平分线的定义:重点讲解角的平分线的概念,使学生理解并掌握角的平分线的表示方法。
-举例:如讲解角的平分线时,可以通过具体图形说明什么是角的平分线,如何用符号表示等。
-角的平分线性质:强调角的平分线上的点到角的两边的距离相等这一核心性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角的平分线的基本概念。角的平分线是从一个角的顶点出发,将这个角平分成两个相等角的射线。它是解决几何问题中非常重要的一部分,可以帮助我们更好地理解和处理角的关系。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用角的平分线性质解决实际问题,以及它如何帮助我们找到等边三角形。

北师大版数学八年级上册《认识定义与命题》教案1

北师大版数学八年级上册《认识定义与命题》教案1

北师大版数学八年级上册《认识定义与命题》教案1一. 教材分析《认识定义与命题》是北师大版数学八年级上册的一章内容。

这一章主要让学生理解命题与定理的概念,学会如何阅读和理解数学定义,掌握如何用数学符号表示命题,并能够判断命题的真假。

教材通过丰富的例子和实际问题,引导学生掌握这些概念和方法。

二. 学情分析学生在学习这一章内容时,已经具备了一定的逻辑思维能力和数学基础。

但是,对于一些抽象的数学概念,如命题和定理,可能还比较难以理解。

因此,在教学过程中,需要注重引导学生从具体问题中抽象出数学概念,并通过实际的例子让学生理解和掌握这些概念。

三. 教学目标1.了解命题和定理的概念,理解数学定义的重要性。

2.学会如何阅读和理解数学定义,掌握如何用数学符号表示命题。

3.能够判断命题的真假,并能够运用所学知识解决实际问题。

四. 教学重难点1.重点:命题与定理的概念,数学定义的阅读和理解,命题的真假判断。

2.难点:命题与定理的概念,数学定义的阅读和理解。

五. 教学方法采用问题驱动的教学方法,通过丰富的例子和实际问题,引导学生理解和掌握命题与定理的概念,学会如何阅读和理解数学定义,掌握如何用数学符号表示命题,并能够判断命题的真假。

六. 教学准备1.准备相关的教学PPT,包括命题与定理的定义,数学定义的阅读和理解,命题的真假判断等内容。

2.准备一些实际的例子和问题,用于引导学生理解和掌握所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出命题与定理的概念,激发学生的兴趣。

2.呈现(15分钟)讲解命题与定理的定义,通过PPT展示相关的例子,让学生理解和掌握这些概念。

3.操练(15分钟)让学生阅读和理解一些数学定义,通过实际的例子让学生掌握如何用数学符号表示命题,并能够判断命题的真假。

4.巩固(10分钟)通过一些练习题,让学生巩固所学知识,并能够运用所学知识解决实际问题。

5.拓展(5分钟)讲解一些与命题与定理相关的拓展知识,如逆命题、逆否命题等,让学生进一步理解和掌握所学知识。

北师大版数学八年级上册《认识定义与命题》教学设计

北师大版数学八年级上册《认识定义与命题》教学设计

北师大版数学八年级上册《认识定义与命题》教学设计一. 教材分析《认识定义与命题》是北师大版数学八年级上册的一章,主要介绍了定义和命题的概念,以及它们在数学中的应用。

本章内容是学生学习数学的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

本章内容包括:定义、命题、定理、公理等概念,以及如何判断命题的真假等。

二. 学情分析学生在学习本章内容前,已经学习了初中数学的一些基本概念和运算方法,具备一定的逻辑思维能力。

但部分学生对抽象的概念理解起来较为困难,需要通过具体的例子来帮助理解。

同时,学生对于数学语言的严谨性可能还不够了解,需要在教学中加强引导。

三. 教学目标1.了解定义、命题、定理、公理等基本概念,理解它们之间的区别和联系。

2.学会判断命题的真假,并能运用所学知识解决实际问题。

3.培养学生的逻辑思维和解决问题的能力。

4.增强学生对数学语言的严谨性的认识。

四. 教学重难点1.重点:定义、命题、定理、公理等基本概念的理解和运用。

2.难点:对命题真假的判断,以及数学语言的严谨性的把握。

五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探索。

2.用具体的例子来帮助学生理解抽象的概念。

3.小组讨论,让学生在合作中学习,提高学生的参与度。

4.采用归纳总结的教学方法,帮助学生形成系统的知识结构。

六. 教学准备1.准备相关的教学PPT,包括定义、命题、定理、公理等概念的介绍,以及具体的例子。

2.准备一些练习题,用于巩固所学知识。

3.准备一些实际问题,用于引导学生运用所学知识解决实际问题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾之前学习过的数学概念,如数学问题、解题方法等,为新课的学习做好铺垫。

2.呈现(10分钟)介绍定义、命题、定理、公理等基本概念,并用具体的例子来帮助学生理解。

同时,解释这些概念在数学中的应用,让学生感受它们的重要性。

3.操练(10分钟)让学生通过做一些练习题,运用所学知识解决问题。

北师大版数学八年级上册2《定义与命题》教案2

北师大版数学八年级上册2《定义与命题》教案2

北师大版数学八年级上册2《定义与命题》教案2一. 教材分析《定义与命题》是北师大版数学八年级上册第二章的内容。

本节内容是学生学习数学的基础知识,主要介绍了定义与命题的概念、特点和运用。

通过本节内容的学习,学生能够理解定义与命题的含义,掌握如何正确运用定义与命题进行数学推理和证明。

二. 学情分析学生在学习本节内容之前,已经学习了数学的一些基本概念和运算规则,具备一定的逻辑思维能力。

但是,对于定义与命题的概念和运用可能还存在一定的困惑,需要通过本节内容的学习来进一步理解和掌握。

三. 教学目标1.理解定义与命题的概念和特点。

2.学会正确运用定义与命题进行数学推理和证明。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.定义与命题的概念和特点。

2.如何正确运用定义与命题进行数学推理和证明。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探索;通过案例分析,让学生理解和掌握定义与命题的运用;通过小组合作学习,促进学生之间的交流和合作。

六. 教学准备1.教案文档。

2.课件或黑板。

3.相关案例材料。

4.练习题。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索定义与命题的概念和特点。

例如,什么是定义?什么是命题?定义和命题有什么区别和联系?2.呈现(10分钟)通过课件或黑板,呈现定义与命题的概念和特点。

讲解定义与命题的定义,举例说明定义与命题的运用。

让学生理解和掌握定义与命题的概念和特点。

3.操练(10分钟)给出一些案例,让学生运用定义与命题进行分析和推理。

例如,给出一个几何图形,让学生根据定义与命题判断图形的性质。

通过案例的操练,让学生加深对定义与命题的理解和运用。

4.巩固(5分钟)给出一些练习题,让学生独立完成。

通过练习题的解答,巩固学生对定义与命题的理解和掌握。

5.拓展(5分钟)给出一些综合性的案例,让学生运用定义与命题进行分析和推理。

通过拓展练习,提高学生的逻辑思维能力和数学表达能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生活动四 探索命题的真假——如何证实一个命题
拓展 2.师:任何公理、定理是命题吗?是真命题吗? 为什么?
建议:在学生回答后归纳总结:公理是经过长期实 践验证的,不需要再进行推理论证都承认的真命题。定 理是经过推理论证的真命题。
练习书 p197 习题 6.3 1 四、问题式总结
是真命题 学生交流: 生:用我们以前学过的观察、实验、验 证特例等方法 生:这些方法往往并不可靠 生:能够根据已知道的真命题证实呢? 生:那已经知道的真命题又是如何证实
学生活动二 —— 探索命题的条件和结论 生:命题 1、2 如果部分是条件,那么部 分是结论;命题 3 如果两个三角形两角 和其中一角对边对应相等是条件,那么 这两个三角形全等是结论;命题 4 如果
形式,其中“如果”引出部分是条件, 是结论。 二、例题讲解:
“那么”引出部分
是菱形是条件,那么四条边相等是结论; 命题 5 如果两三角形全等是条件,那么 面积相等是结论。
例 1:师:下列命题的条件是什么?结论是什么?
1.如果两个角相等,那么他们是对顶角; 2.如果 a>b, b>c,那么 a=c; 3.两角和其中一角的对边对应相等的两个三角形全 等;
4.菱形的四条边都相等; 5.全等三角形的面积相等。 例题教学建议: 1:其中( 1)、(2)请学生直接回答, (3)、(4)、( 5)请学生分成小组交流然后回答。 2:有的命题的描述没有用“如果 ,, 那么 ,, ”的 形式,在分析时可以扩展成这种形式,以分清条件和结 论。
教学建议:对于反例的要求可以采取启发式层层递进
方式给出,即:说明命题错误可以举例→综合命题(
1)、 已知:∠ AOB ,∠1=∠2,∠ 1,∠ 2 不是
( 2 )的两例,两例条件具备→例子结论不吻合→给出如
对顶角
何举反例要求。
生:命题 2,若 a=10,b=8,c=5 ,此时 a>b,
三、思维拓展:
师:经过本节课我们在一起共同探讨交流,你了解了 有关命题的哪些知识?
的? 生:那可怎么办呢?
建议:可对学生进行提示性引导,如:命题的构成特 点、命题是否都正确、如何判断一个命题是假命题、如
何证实一个命题是真命题。 作业:书 p197 习题 6.3 2 、3
板书设计: 1.命题的结构特征 2.命题真假的判别
3.如果一个三角形是等腰三角形,那么这个三角形 的两个底角相等。
ቤተ መጻሕፍቲ ባይዱ
4.如果一个四边形的对角线相等,那么这个四边形 是矩形。
5.如果一个四边形的两条对角线相互垂直,那么这 个四边形是菱形。
师:由此可见,每个命题都是由条件和结论两部分组 成的,条件是已知的事项,结论是由已知事项推出的事 项。一般地,命题都可以写成“如果 ,, 那么,, ”的
《定义与命题》教案
第二课时
【教学目标】
一、教学知识点 1.命题的组成 . 2.命题真假的判断。
二、能力训练要求: 1.使学生能够分清命题的条件和结论,能判断命题的真假
2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法 三、情感与价值观要求:
1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一 2.帮助学生了解数学发展史,拓展视野,激发学习兴趣 3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值
【教学重点】准确的找出命题的条件和结论 【教学难点】理解判断一个真命题需要证明
【教学方法】探讨、合作交流 【教具准备】投影片 【教学过程】
一、情景创设、引入新课 师:如果这个星期不下雨,我们就去郊游,这是命题
吗?分析这句话,这个周日,我们郊游一定能成行吗?
学生活动一 —— 探索命题的结构特征 学生观察、分组讨论,得出结论:
学生活动三 探索命题的真假——如何判断假命题 生:可以举一个例子,说明命题 1 是不 正确的,如图:
例 2:上述命题哪些是正确的, 哪些是不正确的?你是 怎么知道它是不正确的?与同伴交流。
师:正确的命题叫真命题,不正确的命题叫假命题。 要说明一个命题是假命题,通常可以举一个例子,使之 具备命题的条件,却不具备命题的结论,即反例。
定义与命题 条件
结论 1.假命题——可以举反例
2.真命题——需要证明
生:可通过证明的方法 学生分小组讨论得出结论
生:命题的结构特征: 条件 和结论 生:命题有真假之分 生:可以通过举反例的方法判断假命题 生:可通过证明的方法证实真命题
b>c,但 a≠ c
拓展 1.师:如何证实一个命题是真命题呢?请同学们 分小组交流一下。
生:由此说明:命题 1、 2 是不正确的 生:命题 3、4、5 是正确的
教学建议:不急于解决学生怎么证实真命题的问题, 可按以下程序设计教学过程
( 1 )首先给学生介绍欧几里得的《原本》 ( 2 )引出概念:公理、定理,证明 ( 3 )启发学生,现在如何证实一个命题的正确性 (4)给出本套教材所选用如下 6 个命题作为公理 ( 5 )等式性质、不等式有关性质,等量代换也看作 定理。
为什么? 新课: ( 1 )观察下列命题,你能发现这些命题有什么共同
结构特征?与同伴交流。
( 1)这五个命题都是用“如果 ,, 那 么,, ”形式叙述的 ( 2)这五个命题都是由已知得到结论 ( 3)这五个命题都有条件和结论
1.如果两个三角形的三条边对应相等,那么这两个 三角形全等。
2.如果一个四边形的一组对边平行且相等,那么这 个四边形是平行四边形。
相关文档
最新文档