低低温省煤器应用
新型热管低温省煤器的开发应用
新型热管低温省煤器的开发应用谢庆亮(福建龙净环保股份有限公司,福建 龙岩 364000)摘要:燃煤电厂常规管壳式低温省煤器已有大量应用,但其磨损泄漏对机组的安全稳定运行和污染物排放都造成了很大的影响,市场上亟需一种可实现无冷却水泄漏的换热器升级改造方案。
本文从热管式低温省煤器的技术原理出发,分析了其替代原有低温省煤器的技术手段的可行性,并以某660MW机组应用新型热管低温省煤器为例进行了介绍。
运行效果表明,热管低温省煤器是一种可靠的低温省煤器升级改造技术,为其他燃煤电厂烟气余热利用装置的安全运行升级改造提供了借鉴。
关键词:燃煤电厂;低温省煤器;热管;冷却水泄漏中图分类号:X701 文献标志码:A 文章编号:1006-5377(2021)04-0054-05近十年来,燃煤电厂锅炉空预器后的低温省煤器作为一项节能设备,已得到广泛的推广应用。
通过低温省煤器将空预器后的烟温从120℃~150℃降低至90℃左右,可降低烟气中粉尘的比电阻值,稳定提高电除尘器的除尘效率[1],协同脱除烟气中的SO3、Hg等污染物并回收烟气余热,降低机组煤耗。
现有的低温省煤器基本都是管壳式翅片管结构,烟气走壳侧,冷却水走管侧,近十年来的应用实践暴露了两个突出问题:(1)在低温省煤器主要组成设备中,作为核心换热元件的换热管束及翅片,在除尘器前的高浓度粉尘环境下被连续冲刷,换热元件的磨损无法避免,造成换热元件的使用寿命短,虽然采取了多种强化防磨措施,但仍无法从根本上解决磨损问题。
(2)管壳式低温省煤器所有管内的冷却水都是相通的,且冷却水系统多为开式循环系统,一旦某根管因为磨损损坏,管内大量冷却水将源源不断向烟气中泄漏,造成低温省煤器积灰堵塞,严重影响机组的安全运行。
通过调研发现,目前行业内布置于电除尘器前的传统低温省煤器出现泄漏的周期为2~3年。
低温省煤器换热管束泄漏会引发诸多问题:1)换热器堵灰及电除尘器灰斗输灰不畅会影响机组的安全运行;2)换热器局部或全部模块退出运行会导致降温幅度不足,节煤效果大打折扣,电除尘器的除尘效率下降,除尘器后的环保设备的工作环境恶化,影响超低排放效果;3)烟气阻力增大,引风机电耗增加,甚至会导致风机失速[2]。
低温省煤器介绍范文
低温省煤器介绍范文低温省煤器的工作原理是通过在烟气中加装一个热交换器,将烟气中的余热与给水进行换热,使得排出的烟气温度降低,而给水的温度升高。
这样一来,锅炉的进气温度就能降低,从而节约燃料。
同时,低温省煤器还可以减少烟气中的污染物排放,起到环保的作用。
低温省煤器一般由烟道、烟气进出口、管束、水箱、安装支撑和管道连接等组成。
烟道是烟气流动的通道,烟气通过烟道进出口进入低温省煤器,经过管束的热交换后,排出烟道的同时,给水也通过管道进入低温省煤器的水箱,与烟气进行换热。
安装支撑则起到固定和支撑低温省煤器的作用。
低温省煤器的效果主要取决于其换热管束的材质和结构设计。
常见的换热管材料有钢管、合金钢管、不锈钢管等。
不同的材料对于不同工况的烟气都有一定的适应性。
在设计上,采用合理的管束结构,可以增加烟气与给水的接触面积,提高换热效果。
还可以通过增加管束数量或采用螺旋状管束,增加换热效果。
此外,还可以通过降低给水的流速,延长其在煤气中的停留时间,提高换热效果。
另外,还可以采用冷凝器等辅助设备,进一步提高换热效果。
低温省煤器的优点是具有良好的节能效果和环保效益。
通过利用烟气中的余热进行换热,降低了烟气排放温度,减少了烟气中的有害物质的排放。
同时,降低了锅炉烟气的温度,提高了热效率,减少了燃料的消耗。
这不仅节约了能源成本,还可以降低碳排放量,减轻环境污染。
另外,低温省煤器的安装和维护成本相对较低,使用寿命长,具有较高的经济效益。
然而,低温省煤器也存在一些问题。
首先,烟气中的灰尘和硫酸盐等杂质容易在管束表面形成结垢,影响换热效果。
因此,在操作过程中需要经常对低温省煤器进行清洗和维护。
其次,在使用过程中,需要注意控制给水的流速和温度,避免给水温度过高或流速过大,造成设备热负荷过大,对管束造成损坏。
此外,由于低温省煤器需要与锅炉烟道进行连接,也需要考虑连接管道的维护和处理问题。
综上所述,低温省煤器是一种有效的能量回收设备,通过利用锅炉烟气中的余热进行换热,提高热效率,减少能源消耗。
低温省煤器
低温省煤器概述
• 为防止低温省煤器受热面大量积灰影响传 热效器,吹灰汽源取自锅炉低温再热器出 口联箱果,在低温煤器进口烟道安装了六 组蒸汽吹灰。
二.低温省煤器的启动
• 1.启动前的检查 • 1)检查低温省煤器检修工作结束,工作票收回,现场清洁
无杂物。 • 2)检查低温省煤器的管道保温完整,人孔门封闭严密,各
三.低温省煤器的投运
• 1.检查增压水泵放空气门见水后关闭,低温 省煤器水质合格后关闭增压水泵出口手动 门。
• 2.启动增压水泵,缓慢开启泵出口手动门及 再循环调整门。
低温省煤器的投运
• 低温省煤器出口水温在110℃以上时,开启 低温省煤器回水电动总门,投低温省煤器 再循环自动及回水调整门自动,检查各调 整门动作正常,低温省煤器出口烟温不低 于120℃.
低温省煤器运行监视调整
• 2.低温省煤器出口调整门与再循环调整门是 差动控制,当泵出口母管水温高于设定值 时,可关小再循环调整门,同时开大出口 调整门;当泵出口母管水温低于设定值时 可开大再循环调整门,同时关小出口调整 门。
低温省煤器运行监视调整
• 3.一台增压水泵在运行时,低温省煤器再循 环调整门的指令低限为20%,当自动控制 回路切手动且两台增压水泵全停后,低温 省煤器再循环调整门方可全关。
四.低温省煤器投运时危险点分析
• 1.上水时应注意上水温度及上水速度,管壁 与水温差应小于55℃。
• 2 .上水时应注意检查系统有无泄漏,否则 应立即停止上水联系检修处理。
低温省煤器投运时危险点分析
• 3.升压时速度不宜过快,避免产生过大的热 应力损坏低温省煤器,升压过程中应严密 监视低温省煤器水量变化,维持正常水量。
低温省煤器
余热利用装置一 低温省煤器述• 我公司低温省煤器布置在引风机之后、脱 硫吸收塔之前的水平烟道内,采用H型翅片 管,备注:(用H型翅片式省煤器代替光管 省煤器,可以有效增加换热面积,增大烟 气流通截面,降低烟速,减少磨损。有的 设计中将省煤器的弯头全部置于烟道之外, 完全排除了省煤器弯头的磨损问题。
低低温省煤器经济性计算及应用
华电技术 HuadianTechnology
Vol.41 No.2 Feb.2019
DOI:10.3969/j.issn.167性计算及应用
Economycalculationandapplicationoflowlow temperatureeconomizer
1 机组概况
2 低低温省煤器节能原理及计算
某电厂 #4机组是上海电器集团生产的 600MW 超临界机 组,2016年 环 保 技 术 改 造 安 装 了 双 路 取 水、双路回水低低温省煤器(如图 1所示),沿烟气流
收稿日期:2018-06-21;修回日期:2018-11-25
2.1 低低温省煤器热经济性原理分析 低低温省煤器独立于主凝结水系统之外,利用
张方,修正平,方津 ZHANGFang,XIUZhengping,FANGJin
(福建华电可门发电有限公司,福州 350500) (FujianHuadianKemenPowerGenerationCompanyLimited,Fuzhou350500,China)
摘 要:为充分挖掘低低温省煤器回收的烟气余热用于汽轮机的节能潜力,根据某电厂改造后的机组运行参数, 应用等效焓降法计算了双路取水、双路回水低低温省煤器在变工况下的节煤量,进而得出此类型低低温省煤器变 工况下的节煤量曲线以及最经济回水切投方式,可为采用同类型低低温省煤器改造的机组提供调试及运行参考。 关键词:低低温省煤器;低压加热器;节煤量;经济运行;等效焓降法 中图分类号:TK223.3+3 文献标志码:B 文章编号:1674-1951(2019)02-0065-04 Abstract:Inordertofullyexploitthepotentialofthelowlowtemperatureeconomizeronfluegaswasteheatrecoveryto savetheenergyofsteam turbine,equivalententhalpydropmethodisusedtocalculatethecoalsavingofdualwaywater intakeandthedualwaywaterreturnlowlowtemperatureeconomizerundervariousworkingcondition,basedonoperating parametersofaunitaftertransformation.Thenthecoalsavingcurveoflowlowtemperatureeconomizerofthistypeunder variableworkingconditionsandthemosteconomicalreturnwaterswitchingmethodcanbeobtained.Itcanprovidede buggingandoperationreferenceforunitswiththesametypeoflowlowtemperatureeconomizer. Keywords:lowlowtemperatureeconomizer;lowpressureheater;coalsaving;economicoperation;equivalententhalpy dropmethod
高效氟塑料低温省煤器系统应用简介
高效氟塑料低温省煤器系统应用简介摘要:锅炉排烟温度过高严重影响锅炉运行的经济性,采用低温换热器是一种有效的降低排烟温度,利用烟气余热,提高锅炉热效率的节能方式。
采用管式换热器的余热回收利用系统,其换热能力受到低温腐蚀的限制,而采用高效氟塑料的换热器,能够有效防止酸腐蚀,并将烟气温度降至120℃以内。
高效氟塑料管烟气换热器采用氟塑料作为换热管材料有以下优点,可耐高温,长期安全使用温度:200-260℃;低阻力,具有极小的摩擦系数(0.04),拥有极低的水侧及气侧阻力,不粘灰:具有固体材料中最小的表面张力而不粘附任何物质。
烟气余热回收系统安装在引风机之后、脱硫吸收塔之前的烟道中,可以最大程度地降低烟气温度,回收余热。
关键词:余热回收利用氟塑料烟气温度节能0前言本公司锅炉型号为HG-1102/17.5-YM33型亚临界、一次中间再热、自然循环汽包炉、固态干式排渣。
排烟热损失约占锅炉热损失的60%~70%,存在很大的节能空间。
本文主要对高效氟塑料换热器余热回收系统的启停和运行调整进行分析,从而达到最佳运行状态,最大程度降低烟气温度,提高锅炉热效率。
1 系统简介本系统采用氟塑料管作为换热组件,通有冷却水的氟塑料软管换热组件布置引风机之后、脱硫吸收塔之前的烟道中,冷却水的流动方向与烟气流动方向相反,冷却水为循环水,流量为382t/h。
冷却水由进口水室进入氟塑料管内,经过联络水室,再由出口水室流出;冬季采暖期烟气温度由130℃冷却至82℃,冷却水温度由41℃加热到100℃,夏季非采暖期烟气温度由150℃冷却至92℃,冷却水温度由45℃加热到111℃,吸收的热量用于加热凝结水。
换热器顶盖设有冲洗水管,用于定期冲洗附着在氟塑料管上的灰尘。
整个换热模块垂直悬挂安装于吸收塔入口的烟道内,共8个换热模块。
每个模块都设有两组进出水口,模块的水侧设有供水回水联络母管,每个换热模块的每个进出口都设有独立的关断阀,可以单独隔离。
燃煤电厂低温省煤器应用现状与改进
科 技·TECHNOLOGY44燃煤电厂低温省煤器应用现状与改进文_谢庆亮1 袁素华1 王正阳1 程鸿2 朱尧21.福建龙净环保股份有限公2.国家电投集团江西电力有限公司景德镇发电厂摘要:本文总结了燃煤电厂低温省煤器的应用现状,分析了现有改进技术的效果及其局限性,同时提出热管式低温省煤器的改进思路。
关键词:低温省煤器;应用现状;热管;改进Application Status and Improvement of Low T emperature Economizer in Coal-fired Power Plant XIE Qing-liang YUAN Su-hua WANG Zheng-yang CHENG Hong ZHU Yao [ Abstract ] The article summarizes the application status of low-temperature economizers in coal-fired power plants, analyzes the effects and limitations of existing improved technologies, and proposes the improvement ideas of heat pipe type low-temperature economizers.[ Key words ] low temperature economizer; application status; heat pipe; improvement经过近几年国内电力行业的实践与发展,低低温电除尘器因其除尘效率高、改造成本小、工况适应性好、高效协同脱除SO3等特点,已广泛应用于国内燃煤机组。
低低温电除尘器配套的低温省煤器可将烟气温度由低温状态降低至低低温状态,对于电除尘器的高效运行起着至关重要的作用。
低温省煤器技术简介及应用讲解
低温省煤器LTE 技术介绍及应用分析福建紫荆环境工程技术有限公司2014年目录1.低温省煤器系统概述 (1)2.国内外低温省煤器目前的应用情况及安装位置 (1)3.低压省煤器节能理论及计算 (3)4.某工程低温省煤器的初步方案 (6)5.加装低温省煤器需要考虑的问题 (8)6 低温省煤器的特点分析 (9)1.低温省煤器系统概述排烟损失是锅炉运行中最重要的一项热损失,一般约为5%--12%,占锅炉热损失的60%--70%,影响排烟热损失的主要因素是排烟温度,一般情况下,排烟温度每增加10℃,排烟热损失增加0.6%--1%,相应多耗煤1.2%--2.4%。
若以燃用热值2000KJ/KG煤的410t/h高压锅炉为例,则每年多消耗近万吨动力力煤,我国火力发电厂的很多锅炉排烟温度都超过设计值,约比设计值高20—50℃。
所以,降低排烟温度对于节约燃料和降低污染具有重要的实际意义,实践中以降低排烟温度为目的的锅炉技术改造较多。
但由于大多数电厂尾部烟道空间太小,防磨、防腐要求较高,引风机的压头裕量不大等实际情况。
为了降低排烟温度,减少排烟损失,提高电厂的运行经济性,可考虑在烟道上加装低温省煤器。
低温省煤器的具体方案为:凝结水在低温省煤器内吸收排烟热量,降低排烟温度,自身被加热、升高温度后再返回汽轮机低压加热器系统,代替部分低压加热器的作用。
在发电量不变的情况下,可节约机组的能耗。
同时,由于进入脱硫塔的烟温下降,还可以节约脱硫工艺水的消耗量。
2.国内外低温省煤器目前的应用情况及安装位置2.1低温省煤器目前在国内外的应用情况低温省煤器能提高机组效率、节约能源。
目前在国内也已有电厂进行了低温省煤器的安装和改造工作。
山东某发电厂,两台容量100MW发电机组所配锅炉是武汉锅炉厂设计制造的WGZ410/100—10型燃煤锅炉,由于燃用煤种含硫量较高,且锅炉尾部受热面积灰、腐蚀和漏风严重,锅炉排烟温度高达170℃,为了降低排烟温度,提高机组的运行经济性,在尾部加装了低温省煤器。
新型低温省煤器在电站锅炉上的应用
2新 型 低 温 省 煤 器 的结 构
低 温 省 煤 器 运 行 时 , 气 自上 而 下 地 冲 刷 受 热 烟 面管 子 的外 表 面 放 热 ; 却 水 从 下 联 箱 进 入 低 温 省 冷 煤器, 冲刷 受 热 面 管 子 的 内表 面 , 烟 气 形 成 逆 流换 与 热 吸 收 烟 气 的热 量 , 后 从 上 联 箱 离 开低 温 省 煤 器 。 而 清 灰板 在 驱 动 装 置 的带 动 下 顺 着 受 热 面 管 子 的长 度 方 向做 往 复 移 动 , 且 借 助 烟 气 的 冲刷 , 理 掉 受 热 并 清
摘 要 : 进 一 步 利 用 电站 锅 炉 的 排 烟 热 量 , 文 提 出 了一 种 新 型 低 温 省 煤 器 。 如 此 。 站 锅 炉 排 烟 为 本 电 温 度 可 以从 10~10 降 低 到 4 ~5 ℃ , 应 的 热 损 失 从 8 ~1 % 降 低 到 3 ~4 。 新 型 低 温 4 5℃ o 0 对 % 2 % %
面管子外表面 的烟气 积灰 。 测 量 低 温 省 煤 器 的 出 口烟 气 温度 和 人 口冷 却 水 温度 , 并且 与设 计值 比较 可 以估算 出受 热面 管子外 表 面 的积灰厚度 。积灰厚度 的大小 可 以作 为控 制清 灰 器行走或停 止的信 号 。 3低 温 省 煤 器 的安 装 位 置 般讲 , 烟气 从锅炉排 出后 依次通过 除尘器 、 引 风机 和 烟 囱 , 后 排 人 大 气 。鉴 于 经 过 低 温 省 煤 器 最
低温省煤器发展现状
低温省煤器发展现状目前,低温省煤器在能源节约、环境保护和资源利用等方面的优势逐渐被认可和采纳。
低温省煤器作为一种有效的省能源设备,广泛应用于各个行业中,对于工业生产和清洁能源发展起到了积极的作用。
下面将介绍低温省煤器的发展现状以及未来的发展趋势。
从技术应用方面来看,低温省煤器的技术发展逐渐成熟。
低温省煤器的原理是利用废热回收的方法,将高温烟气中的废热转化为热水或蒸汽,进而进行再利用。
这种技术既能提高工业生产的效率,又能减少煤炭的消耗,达到节能减排的目的。
目前,国内外许多企业和机构对低温省煤器的研发与应用进行了大量的实践研究,取得了一定的成果。
在技术应用方面,主要体现在以下几个方面:1.高效的换热管设计:低温省煤器的主要核心部件是换热管,优化设计换热管的形状和结构,能够提高换热效率,进一步增加废热回收利用的效果。
2.先进的控制系统:低温省煤器配备先进的控制系统,能够对温度、压力等进行实时监测和调控,保证烟气的废热被充分回收利用。
3.应用范围的扩大:低温省煤器最初应用于火电厂等大型工业企业中,用于回收锅炉排放的废热。
但随着技术的进步和成本的降低,低温省煤器逐渐应用于其他行业,如石化、钢铁、造纸等行业。
在市场需求方面,低温省煤器受到了广泛的关注和认可。
随着能源资源的日益紧张和环境问题的愈发突出,政府和企业都意识到节能减排的重要性,积极推行绿色发展的战略。
低温省煤器作为节能减排的一项有效措施,受到了广泛关注和需求。
1.政策的支持:许多国家和地区都出台了相关的法规和政策来推动低温省煤器的应用。
政策的支持使得低温省煤器得到了市场的认可和需求的增加。
2.节能减排需求的增加:随着全球能源资源的减少和环境污染的日益严重,节能减排成为各国的共同目标。
低温省煤器作为一种有效的节能设备,受到了各个行业的青睐,市场需求逐渐增加。
3.技术创新的推动:随着科技的进步和技术的创新,低温省煤器的技术水平不断提高,产品性能和质量得到了大幅度提升。
燃煤机组低低温省煤器系统研究及应用效果分析
燃煤机组低低温省煤器系统研究及应用效果分析宁玉琴;胡清;胡月【摘要】为解决燃煤锅炉排烟温度偏高的问题,设计了低低温省煤器热力系统,将锅炉排烟温度降低至合理范围,并对烟气热量进行回收利用.给出了低低温省煤器热力系统技术方案,对系统投运效果进行了测试.结果表明:所提方法有效解决了锅炉排烟温度偏高问题;在120 MW负荷下,排烟温度从156℃降低至99℃左右,机组热经济性相对提高2.16%,经济效益显著.降低低低温省煤器入口水温以及提高低低温省煤器凝结水流量,均可强化传热效果,提高烟气余热回收效益.【期刊名称】《应用能源技术》【年(卷),期】2018(000)003【总页数】3页(P27-29)【关键词】燃煤锅炉;低低温省煤器;排烟温度;烟气余热回收;节能【作者】宁玉琴;胡清;胡月【作者单位】华电电力科学研究院,杭州310030;杭州华电能源工程有限公司,杭州310030;华电电力科学研究院,杭州310030;杭州华电能源工程有限公司,杭州310030;华电电力科学研究院,杭州310030;杭州华电能源工程有限公司,杭州310030【正文语种】中文【中图分类】TK229.40 引言随着国家“十三五”能源规划发布,要求现役60万kW及以上机组力争5年内供电煤耗降至300 g/kW·h标煤。
然而,目前国内很多燃煤机组由于设计制造、运行调整、煤种变更等诸多原因,导致锅炉排烟温度高于设计值。
排烟温度偏高导致排烟热损失增加,锅炉效率降低,直接影响燃煤机组运行经济性。
为有效降低燃煤机组供电煤耗,实现机组节能减排一体化目标,可以对锅炉尾部排烟余热进行回收利用[1-5]。
文中以实际改造工程为例,对低低温省煤器技术及应用效果进行了较为深入的研究和分析。
1 机组概况某电厂440 t/h CFB锅炉采用循环流化床燃烧技术,与135 MW等级汽轮发电机组相匹配。
单炉架、一次再热、平衡通风、单露天岛式布置,全钢构架、悬吊结构汽包、固定排渣方式。
0低温省煤器介绍
低温省煤器泄漏:检查并修复泄漏 点,确保密封良好
低温省煤器温度异常:检查热源和 冷源,调整温度控制系统
添加标题
添加标题
添加标题
添加标题
低温省煤器堵塞:定期清理或更换 滤网,保持畅通
低温省煤器振动:检查安装基础和 支撑结构,确保稳定
PART SIX
高效传热技术:提高低温省煤器的传热效率,降低能耗。 耐腐蚀材料:研发更耐腐蚀的材料,延长设备使用寿命。 智能化控制:实现低温省煤器的智能控制,提高运行稳定性。 多功能集成:将低温省煤器与其他节能设备集成,实现系统节能。
技术创新:随着科技的不断进步,低温省煤器技术将得到进一步优化和提升。
环保需求:随着全球对环保问题的重视,低温省煤器将在减少碳排放方面发挥重要作用。
市场需求:随着工业领域的发展,低温省煤器的市场需求将不断增长。
竞争格局:未来低温省煤器市场竞争将更加激烈,品牌和服务将成为企业竞争的关键因 素。
添加标题
选择材料:根据设计温度、压力、 腐蚀性等条件,选择合适的材料, 如不锈钢、碳钢等。
确定工艺流程:根据设计结构和制 造要求,确定低温省煤器的工艺流 程,如焊接、防腐处理等。
PART FOUR
制造材料:低温省煤器主要采用耐腐蚀、耐磨损的材料,如不锈钢、合金钢等。
制造过程:低温省煤器的制造过程包括焊接、热处理、表面处理等环节,以确保其质量和性 能。
减少温室气体排放,缓解全球气候变暖 降低污染物排放,改善空气质量 提高能源利用效率,减少资源消耗 促进可再生能源的开发利用,减少对化石燃料的依赖
汇报人:
高效节能:通过优化设计,降 低能耗,提高能源利用效率
环保减排:降低污染物排放, 符合环保要求,推动绿色发展
经济实用:在满足性能要求的 前提下,合理控制设备成本,
低温省煤器积灰分析及处理
低温省煤器积灰分析及处理摘要:由于在电站锅炉的热损失中,排烟损失是锅炉热损失中最重要的一项,约占据了锅炉热损失的60%~70%,因此在电站锅炉尾部加装低温省煤器及其普遍。
然而低温省煤器在回收烟气余热做工时,需要面临的一大难题就是烟灰积聚,影响传热系数,增大烟气阻力,危及低温省煤器和锅炉的运行安全。
那么本文对低温省煤器积灰情况进行分析及处理。
关键词:低温省煤器;积灰分析;处理作用1 低温省煤器的作用1)低温省煤器投运后降低烟气的温度,当烟气温度降低时粉尘的比电阻会增大,并提高粉尘适当粘度,降低空气密度从而降低风速,这些因素都会提高除尘效率。
2)低温省煤器投运后降低烟气的温度,烟气密度降低,能降低引风机电耗,满负荷工况下我厂引风机电流降低约25A。
3)低温省煤器投运后降低烟气的温度,能有效降低脱硫事故喷淋用水量,保护脱硫塔内衬胶。
4)低省投运后吸收排烟热量提高凝水温度,减少#6低加抽汽。
2 低温省煤器的结构从结构上的角度来看,低温省煤器主要是由受热面蛇形管、机械清灰器、上下联箱以及箱板等四部分构成。
清灰板的数量应当在三块左右,其中的每块清灰板都要根据一定的标准来进行相应孔的钻取,并且孔的直径应当被尽量控制在大于受热面管子零点五毫米左右的范围内。
清灰板彼此之间通过钢板条的焊接进行相连,构成一个具有较高稳定性的整体。
实际的驱动装置则由电动机、齿轮、皮带轮以及螺杆螺母组成。
当低温省煤气开始工作时,烟气要进过受热面管子放热,冷却水则要由联箱进入到低温省煤气,对受热管的内表面起到一种冲刷的作用,并与烟气形成一种热量,随后于上联箱离开低温省煤器。
而清灰板则会在驱动装置的推动下去进行冲刷烟气的工作,将受热管外的积灰清除。
3 低温省煤器的安装位置大多数情况下,低温省煤器的主要流程是烟气经过锅炉排出进入到除尘器中,之后流经引风机和烟囱,并排入大气之中。
但是要坚持具体问题具体分析的原则,因此省煤器安装位置应当根据实际情况来进行。
低低温省煤器施工方案
低低温省煤器施工方案1. 引言在能源紧缺和环境污染加剧的背景下,各种节能减排技术被广泛应用于工业生产中。
低低温省煤器作为一种重要的节能设备,被广泛应用于燃煤锅炉系统中,能够有效回收烟气中的低温热量,提高设备热效率,减少燃煤消耗和烟气排放。
本文将介绍低低温省煤器的施工方案,包括施工准备、施工流程和注意事项等内容。
2. 施工准备在进行低低温省煤器施工之前,需要进行充分的准备工作,包括材料准备、工具准备和人员组织等。
2.1 材料准备在材料准备方面,需要准备以下主要材料:•钢管:用于制作低低温省煤器的传热管道。
•硅酸铝耐火砖:用于制作低低温省煤器的烟气通道衬砌。
•高温耐热涂料:用于涂覆低低温省煤器的外表面,提高外界温度对设备的影响。
•螺栓、螺母、垫片:用于固定低低温省煤器的各个部件。
2.2 工具准备在工具准备方面,需要准备以下主要工具:•焊割工具:包括电焊机、气割刀等,用于焊接和切割钢管。
•手动工具:包括扳手、锤子、刷子等,用于安装和维修低低温省煤器。
•测量工具:包括卷尺、水平仪等,用于测量和调整低低温省煤器的位置和水平度。
2.3 人员组织在施工准备阶段,需要合理组织人员,并确保相关施工人员具备相关的技术和证书。
通常施工队伍由技术负责人、焊接工、钢结构安装工和电气工等组成。
3. 施工流程低低温省煤器的施工流程主要包括设备安装、管道连接和衬砌固定等步骤。
3.1 设备安装设备安装是低低温省煤器施工的关键步骤之一。
在安装之前,需要根据现场实际情况,确定低低温省煤器的安装位置和方向。
安装时需要使用起重设备,确保设备安全稳定地安装在预定位置上。
安装过程中,需要严格按照相关施工规范和图纸要求进行操作。
3.2 管道连接管道连接是低低温省煤器施工的重要步骤之一。
在连接之前,需要对传热管道进行清洗和检查,确保管道内部干净无异物。
然后,根据设计要求进行管道连接,采用合适的连接方式,如焊接、螺纹连接等。
连接完成后,需要进行密封测试,确保连接处无泄漏。
燃煤电厂低低温省煤器改造
燃煤电厂低低温省煤器改造1低温腐蚀为了追求最大的换热效率,通常受热面采用逆流布置,烟气的低温段和工质的低温段重合。
管壁温度有可能低于硫酸结露的露点温度,烟气中的硫酸蒸汽将冷凝沉积在烟气冷却器的冷端受热面上引起硫酸露点腐蚀,因此,解决传热管低温腐蚀是首要难题,是必须解决的关键技术之一。
(1)烟气中SO2与SO3的含量煤中的硫成分按其在燃烧过程中的可燃情况可分为可燃硫和不可燃硫。
煤中的黄铁矿硫、有机硫及元素硫均属于可燃硫,而硫酸盐硫在煤燃烧后沉积在灰渣中,是不可燃硫。
但煤中硫酸盐硫含量很少,一般不超过0.2%,可燃硫在还原性气氛下还会生成少量的H2S,所以煤中硫燃烧后绝大部分转化为硫氧化物。
煤中S的析出速率与煤的种类和实验工况有关,S的含量、煤中S的存在形式(高温S与低温S的比例)、燃烧气氛(过量空气系数)以及试验工况的温度等都对S的析出速率有很大的影响。
在实际锅炉燃烧中,一般都假定煤中的S全部反应生成SO2,但是引起低温腐蚀的却是SO3,SO3主要是通过以下几种途径形成的:燃烧反应,SO2与烟气中的O原子反应生成SO3;催化反应,SO2在催化剂的作用下转化成SO3;锅炉烟气通道内的催化剂主要是灰中的V2O5和Fe2O3;硫酸盐分解,一些碱金属硫酸盐在高温下会分解,从而产生SO3,但鉴于煤中此种硫酸盐的含量少,其生成的SO3也很少。
锅炉尾部烟气中只有0.5%~3%,最大不超过5%的SO2转化成SO3,在进行烟气酸露点计算时,常常假定2%的SO2转化成SO3。
通常SO2与SO3含量的计算步骤为:根据给定的燃料组成成分和过量空气系数,计算出烟气组成,SO2按2%的转化率计算SO3的含量。
(2)酸露点的计算对于锅炉的烟气露点温度,国内外有大量的研究结果。
由于锅炉的烟气结露问题复杂、研究价值大,所以有很多人从不同的侧重点进行了研究,研究结论差别很大。
对于同一种烟气成分,应用不同的研究结论进行计算所得到的烟气露点温度差别很大。
低温省煤器技术简介及应用分析
低温省煤器LTE 技术介绍及应用分析福建紫荆环境工程技术有限公司2014年目录1.低温省煤器系统概述 (1)2.国内外低温省煤器目前的应用情况及安装位置 (1)3.低压省煤器节能理论及计算 (3)4.某工程低温省煤器的初步方案 (6)5.加装低温省煤器需要考虑的问题 (8)6 低温省煤器的特点分析 (9)1.低温省煤器系统概述排烟损失是锅炉运行中最重要的一项热损失,一般约为5%--12%,占锅炉热损失的60%--70%,影响排烟热损失的主要因素是排烟温度,一般情况下,排烟温度每增加10℃,排烟热损失增加0.6%--1%,相应多耗煤1.2%--2.4%。
若以燃用热值2000KJ/KG煤的410t/h高压锅炉为例,则每年多消耗近万吨动力力煤,我国火力发电厂的很多锅炉排烟温度都超过设计值,约比设计值高20—50℃。
所以,降低排烟温度对于节约燃料和降低污染具有重要的实际意义,实践中以降低排烟温度为目的的锅炉技术改造较多。
但由于大多数电厂尾部烟道空间太小,防磨、防腐要求较高,引风机的压头裕量不大等实际情况。
为了降低排烟温度,减少排烟损失,提高电厂的运行经济性,可考虑在烟道上加装低温省煤器。
低温省煤器的具体方案为:凝结水在低温省煤器内吸收排烟热量,降低排烟温度,自身被加热、升高温度后再返回汽轮机低压加热器系统,代替部分低压加热器的作用。
在发电量不变的情况下,可节约机组的能耗。
同时,由于进入脱硫塔的烟温下降,还可以节约脱硫工艺水的消耗量。
2.国内外低温省煤器目前的应用情况及安装位置2.1低温省煤器目前在国内外的应用情况低温省煤器能提高机组效率、节约能源。
目前在国内也已有电厂进行了低温省煤器的安装和改造工作。
山东某发电厂,两台容量100MW发电机组所配锅炉是武汉锅炉厂设计制造的WGZ410/100—10型燃煤锅炉,由于燃用煤种含硫量较高,且锅炉尾部受热面积灰、腐蚀和漏风严重,锅炉排烟温度高达170℃,为了降低排烟温度,提高机组的运行经济性,在尾部加装了低温省煤器。
低温省煤器技术漫谈
低压省煤器技术123
国内火电厂排烟温度一般在120℃--140℃左右,燃用高硫煤的电厂,其排烟温度高达150℃左右,有的可能更高,根据计算,排烟温度每降低10℃,锅炉效率可提高0.5%--0.7%;
1、降低排烟温度最有效的措施之一是改进热力系统,将汽轮机低压回热系统的凝结水送入锅炉尾部烟道加装的一个汽水换热器中,在换热器中烟气被冷却,温度降低。
烟气热量加热凝结水,可以减一个或几个低压加热器的抽汽量,增加了发电量,节能效果明显;
2、目前国内主要低压省煤器无论是普通汽水换热器还是相变换热器,实际运行中都存在以下问题:
(1)低温腐蚀
(2)积灰严重
(3)磨损较大
(4)可靠性不强
3、针对以上问题,要将烟气余热回收利用,需要遵循以下技术关键点:
(1)根据现场情况合理选择低温省煤器布置空间区域,为改造后的安全稳定运行奠定基础;
(2)进行烟气流场数值模拟,避免产生局部漩涡和局部烟气走廊,防止磨损;
(3)利用计算机软件,合理设计换热管束和换热元件,控制受热面积灰和磨损;
(4)低温省煤器传热元件采用合理的受热面结构,具有较高的总传热系数和防止磨损、堵灰及抵抗腐蚀的综合性能;
(5)优化设计系统,使得综合节能收益最大。
优化设计取水点和混水点的位置,使得系统的不可逆损失最小;
(6)优化设计分水量,以控制露点温度,防止低温腐蚀;
(7)综合分析锅炉及汽轮机变工况性能,找到适合于改造机组锅炉低温省煤器最佳运行方案,形成运行规程。
低温省煤器技术简介及应用分析报告
低温省煤器LTE 技术介绍及应用分析**紫荆环境工程技术**2014年目录1.低温省煤器系统概述12.国内外低温省煤器目前的应用情况及安装位置13.低压省煤器节能理论及计算34.某工程低温省煤器的初步方案55.加装低温省煤器需要考虑的问题56 低温省煤器的特点分析61.低温省煤器系统概述排烟损失是锅炉运行中最重要的一项热损失,一般约为5%--12%,占锅炉热损失的60%--70%,影响排烟热损失的主要因素是排烟温度,一般情况下,排烟温度每增加10℃,排烟热损失增加0.6%--1%,相应多耗煤1.2%--2.4%.若以燃用热值2000KJ/KG煤的410t/h高压锅炉为例,则每年多消耗近万吨动力力煤,我国火力发电厂的很多锅炉排烟温度都超过设计值,约比设计值高20—50℃.所以,降低排烟温度对于节约燃料和降低污染具有重要的实际意义,实践中以降低排烟温度为目的的锅炉技术改造较多.但由于大多数电厂尾部烟道空间太小,防磨、防腐要求较高,引风机的压头裕量不大等实际情况.为了降低排烟温度,减少排烟损失,提高电厂的运行经济性,可考虑在烟道上加装低温省煤器.低温省煤器的具体方案为:凝结水在低温省煤器内吸收排烟热量,降低排烟温度,自身被加热、升高温度后再返回汽轮机低压加热器系统,代替部分低压加热器的作用.在发电量不变的情况下,可节约机组的能耗.同时,由于进入脱硫塔的烟温下降,还可以节约脱硫工艺水的消耗量.2.国内外低温省煤器目前的应用情况及安装位置2.1低温省煤器目前在国内外的应用情况低温省煤器能提高机组效率、节约能源.目前在国内也已有电厂进行了低温省煤器的安装和改造工作.**某发电厂,两台容量100MW发电机组所配锅炉是**锅炉厂设计制造的WGZ410/100—10型燃煤锅炉,由于燃用煤种含硫量较高,且锅炉尾部受热面积灰、腐蚀和漏风严重,锅炉排烟温度高达170℃,为了降低排烟温度,提高机组的运行经济性,在尾部加装了低温省煤器.低温省煤器系统布置图如下:**某电厂低温省煤器系统连接图国外低温省煤器技术较早就得到了应用.在苏联为了减少排烟损失而改装锅炉机组时,在锅炉对流竖井的下部装设低温省煤器供加热热网水之用.德国Schwarze Pumpe电厂2×800MW褐煤发电机组在静电除尘器和烟气脱硫塔之间加装了烟气冷却器,利用烟气加热锅炉凝结水,其原理同低温省煤器一致.德国科隆Nideraussem1000MW级褐煤发电机组采用分隔烟道系统充分降低排烟温度,把低温省煤器加装在空气预热器的旁通烟道中,在烟气热量足够的前提下引入部分烟气到旁通烟道内加热锅炉给水.日本的常陆那珂电厂采用了水媒方式的管式GGH.烟气放热段的GGH布置在电气除尘器上游,烟气被循环水冷却后进入低温除尘器<烟气温度在90~100℃左右>,烟气加热段的GGH布置在烟囱入口,由循环水加热烟气.烟气放热段的GGH的原理和低温省煤器一样.低温省煤器尽管在国内和国外已经有运用业绩,但上述的例子中我们发现,在德国锅炉排烟温度较高,均达到170℃左右<这些锅炉燃用的是褐煤>,而加装低温省煤器后排烟温度下降到100℃左右.日本的情况是锅炉设计排烟温度不高<125℃左右>,经过低温省煤器后烟气温度可降低到85℃左右.2.2低温省煤器安装位置由于低温省煤器的传热温差低,因此换热面积大,占地空间也较大,所以在加装低温省煤器时,需合理考虑其在锅炉现场的布置位置.低温省煤器布置在除尘器的进口日本的不少大型火电厂,如常陆那珂电厂<1000MW>和Tomato-Atsuma电厂<700MW>等都有类似的布置.管式的GGH烟气放热段布置在空预器和除尘器之间.管式GGH将烟气温度降低到90℃左右,除尘器的飞灰比电阻可从1012Ω-cm下降到1010Ω-cm,这样可提高电气除尘器的运行收尘效率.低温省煤器布置在除尘器的进口,除尘器下游的烟气体积流量降低了约5%,因此其烟道、引风机、增压风机等的容量也可相应减少,降低了运行厂用电.据计算,每台机组节约引风机和增压风机厂用电共约500kW.需要指出的是除尘器和风机的选型仍应该考虑125℃低温省煤器未投运时的情况,这种布置方式最大的风险是腐蚀.因为经过低温烟气换热器后的烟气温度已经在酸露点以下,除尘器、烟道、引风机、增压风机均存在腐蚀的风险.根据日本的有关技术资料,未经除尘器收尘的烟气中含有较多的碱性颗粒,可中和烟气中凝结的硫酸微滴,低温除尘器及其下游的设备并"不需要进行特别的防腐考虑",而且日本的不少大机组运行低温除尘器也有良好的业绩,因此,这种布置方式应该是可行的.但是,对所谓的"不需要进行特别的防腐考虑"还有一些疑虑:<1>是不是仅仅依靠烟气中的碱性灰颗粒就能中和大部分SO,而大大降低温烟气的腐2蚀性?中和反应的彻底程度肯定与燃煤的特性有关<如含硫量,含灰量,灰分中碱性物质如CaO.K2O的数量等>,是不是还与别的因素有关?<2>对于低温电气除尘器与常规除尘器的区别还需要进一步研究.根据我们目前掌握的资料,为了防止低温除尘器灰斗中的灰板结,其灰斗的加热面积要大于普通除尘器.由于缺乏更多的资料,如果采用这种布置方式需要进行大量资料的收集研究工作.<3>对于除尘器下游的烟道和风机设备,由于烟气中的灰已经基本被除去,此时还应该充分考虑相应的防腐措施.<4>随着烟气温度的降低,烟灰的电气抗阻值下降.此时ESP 的除尘性能上升,但是在捶打集尘极板时,附在电极处的烟尘会飞散,使ESP出口粉尘浓度短时上升<比通常的出口浓度要高约50mg/m3左右>.低温省煤器布置在脱硫吸收塔的进口德国一些燃烧褐煤的锅炉将低温省煤器布置在吸收塔入口.低温省煤器将烟气温度从160℃降低到100℃后进入吸收塔,被烟气加热的凝结水再加热冷二次风.这种方式的低温省煤器实际上起到管式GGH加热器中烟气冷却的作用.烟气经过除尘器后,低温省煤器处于低尘区工作,因此飞灰对管壁的磨损程度将大大减轻.由于烟气中的碱性颗粒几乎被除尘器捕捉,其出口烟气带有酸腐蚀性.但是由于其布置位置在除尘器、引风机、增压风机之后,烟气并不会对这些设备造成腐蚀,因而避免了腐蚀的危险.因为吸收塔内本来就是个酸性环境,烟气离开吸收塔时温度约为45℃.塔内进行了防腐处理.这种布置方式只要考虑对低温省煤器的低温段材料和低温省煤器与吸收塔之间的烟道进行防腐.采用这种布置方式的缺点是无法利用烟气温度降低带来的提高电气除尘器运行效率、减少引风机和增压风机功率的好处;其次,其布置位置远离主机,用于降低烟气温度的凝结水管道也较长,凝结水泵需克服的管道阻力及电耗也更高.3.低压省煤器节能理论及计算一般认为,把烟气余热输入回热系统中会排挤部分抽汽,导致热力循环效率降低;并且,排挤的部分抽汽会增加凝汽器的排汽使汽轮机真空有所降低.这两点对于低压省煤器节能的疑问必须加以澄清.理论上,增设低压省煤器后,大量烟气余热进入回热系统,这是在没有增加锅炉燃料量的前提下,获得的额外热量,它以一定的效率转变为电功.这个新增功量要远大于排挤抽汽和汽机真空微降所引起的功量损失,所以机组经济性无例外都是提高的.3.1 发电煤耗节省量计算采用等效热降法进行热经济性分析.将低压省煤器回收的排烟余热作为纯热量输入系统,而锅炉产生1kg新汽的能耗不变.在这个前提下,热系统所有排挤抽汽所增发的功率,都将使汽轮机的效率提高.相应1kg汽轮机新汽,其全部做功量称新汽等效焓降<记为H>,所有排挤抽汽所增发的功量<记为ΔH>称等效焓降增量,计算如下:H = 3600/<ηjd×d> 〕kJ/kg〔ΔH=β[<hd2-h4>η5+∑〕τj·ηj〔] 〕kJ/kg〔式中 d—机组汽耗率,kg/kwh;ηjd—汽轮机机电效率;β—低省流量系数;hd2—低压省煤器出水比焓,kJ/kg;h4—除氧器进水比焓,kJ/kg;τj—所绕过的各低加工质焓升,kJ/kg;ηj—所绕过的各低加抽汽效率.热耗率降低δq按下式计算:δq=ΔH·q/〕H+ΔH〔〕kJ/kwh〔式中 q—机组热耗率,kJ/kwh;发电标煤耗节省量δbs按下式计算:δbs=δq/〕ηp·ηb·29300〔〕kg/kwh〔式中ηp、ηb——锅炉效率、管道效率;以已投运的某200MW火电机组低压省煤器系统为例进行节能量计算,结果列于表1.由表1可见,低压省煤器降低排烟温度28℃,可节省标准煤3.05g/kwh.表1低压省煤器主要指标计算结果〕某国产200MW机组〔这里指出,低压省煤器尽管降低了排烟温度,但并未改变锅炉效率.锅炉的排烟温度仍然定义于空气预热器出口.3.2 汽轮机真空影响计算对于湿冷机组,汽轮机背压增量dpc与冷凝量增量dDc关系借助凝汽器的变工况计算,亦可按下式估算:dpc=2.059×dDc/Dc 〕kPa〔dDc=∑Dj- dD0 <t/h>式中 Dc—凝汽器冷凝量,t/h,dD0—由增设低省引起的汽轮机新汽量减少值,t/h,可由δbs计算得到.∑Dj—低省各排挤抽抵达凝汽器的总量,t/h.其中第J级的排挤量按下式计算:Dj=3.6·γj·G·τj/qj 〕 t/h〔式中 G—低省的过水流量,kg/sγj—排挤系数,指第J级排挤抽汽抵凝汽器的份额,按文献[1]计算.其余符号,意义同前.表2列出了汽轮机真空计算主要结果.表2汽轮机真空影响计算结果<某国产200MW级组>由表可知,各排挤抽抵达凝汽器的总量14.12t/h,低省节省新汽量5.64t/h,冷凝量净增量8.48t/h,由此引起汽轮机背压升高0.0404kPa.此时汽轮机排汽比焓升高值为0.457kJ/kg,仅占新汽等效焓降的0.037%.根据以上分析,排挤抽汽对汽轮机真空以及对汽轮机做功的影响完全可以忽略.4.某工程低温省煤器的初步方案低温省煤器的结构形式如下省煤器结构设计中需考虑的问题 :1、管径的选择2、纵向节距和横向节距<烟气流速>的确定3、管组高度的限制,检修用空间高度的预留4、省煤器中的凝结水流速4.1机组主要设备参数4.2低温省煤器主要设备参数4.3低温省煤器调试运行参数由以上实例可以看出,投资回收期为1.41年,可使用寿命为10年,则低温省煤器具有非常积极的意义.5.加装低温省煤器需要考虑的问题5.1 烟道省煤器的低温腐蚀选用合适的耐腐蚀材料.针对工程的应用情况,选择合适的、性价比比较高的材料是非常重要的.目前可供考虑采用的材料主要有:不锈钢材料、耐腐蚀的低合金碳钢、复合钢管及碳钢表面搪瓷处理等.5.2 换热面管的积灰低温省煤器的换热面管采用高频焊翅片管,与普通光管相比,翅片管传热性好,因此可减小低温省煤器的外形尺寸和管排数,减少烟气流动阻力.但是高频焊翅片管易于积灰.其积灰的程度与煤灰特性及烟气流速有关.因此在设计时可适当提高烟速〕对于除尘器前布置的低温省煤器,烟气流速推荐10 m/s左右,对于除尘器后布置的低温省煤器,烟气流速推荐15 m/s左右〔.选择合适间距的翅片管以减少省煤器管壁积灰.在低温省煤器管排间将设置蒸汽吹灰器.对于低温省煤器在布置上必须考虑可拆卸的形式,并在低温省煤器上设置水清洗系统,利用机组停运期间进行水清洗.5.3 烟道的防腐由于烟气运行温度较低,需要对低温省煤器后的烟道考虑防腐措施,初步考虑采用耐硫酸碳钢,对烟道的造价会提高约20%.6 低温省煤器的特点分析6.1排烟温度方案比较主要比较了传统的高压省煤器改造和增设低压省煤器的两种技术方案.与高压省煤器改造相比,低压省煤器在电厂节能减排方面有其独到的优点:<1>可以实现排烟温度的大幅度降低.按照电厂的不同需求,可降低排烟温度30℃~35℃,甚至更多.而改造高压省煤器,则根本无法做到这一点.这个优点对于需上脱硫系统的锅炉<排烟温度有最高限制>,是十分珍贵的.<2>对于锅炉燃烧和传热不会产生任何不利影响.由于低压省煤器布置于锅炉的最后一级受热面<下级空预器>的后面,因此,它的传热行为对于锅炉的一切受热面的传热均不发生影响.因此既不会降低入炉热风温度而影响锅炉燃烧,也不会使空气预热器的传热量减少,从而反弹排烟温度的降低效果.<3>具有独特的煤种和季节适应性.锅炉的低压省煤器出口烟温可以根据不同季节和煤质<主要是含硫量>进行调节,以实现节能和防腐蚀的综合要求.这也是高压省煤器改造所不具备的.例如为**QG电厂670t/h锅炉设计的低压省煤器,设计将排烟温度从160℃降低到135℃.后运行中排烟温不正常升高到180℃,低压省煤器靠自身的烟温调节功能,仍然将排烟温度轻松降低到135℃.<4>设计低压省煤器也可以同时解决汽轮机热力系统的某些缺陷.例如**ST电厂#4机<200MW>,大修前除氧器的主凝结水进水温度高出设计值很多,造成了除氧器的排挤抽汽.为此,只得部分开启#4低加旁路,使汽轮机热耗增加.加装低压省煤器后,低省出口的水温为120℃,低于主凝结水温度34℃,与主凝结水汇合后,使除氧器进水温度基本恢复设计值,从而消除了回热系统的缺陷,保证了除氧效果.<5>采用低压省煤器系统,可以充分利用锅炉本体以外的场地空间布置受热面,因而空间宽绰、便于检修.当然,由于低压省煤器所吸收余热的利用能级相对较低,因此其单位排烟温降的节能量不及高压省煤器改造.如果电厂只需少量降低排烟温度、而锅炉又无燃烧稳定性的担忧或其它限制时,改造高压省煤器也不失为较好的方案.6.2低温省煤器的优点:1、可降低排烟温度30~70℃.可获得显著的节能经济效益.2、大大降低脱硫系统的水耗.加装低压省煤器后,可取消脱硫系统的喷水降温装置或事故<喷淋>降温装置,实现脱硫系统的深度节能.3、增设低压省煤器,可减少抽汽量,降低煤耗.4、具有良好的煤种和季节适应性.5、具有良好的负荷适应性.6、可以充分利用锅炉本体以外的场地空间,布置所需要的受热面,并留有足够的检修空间,检修方便.7、本技术把锅炉的余热利用与汽轮机的低加系统巧妙地结合起来,对于锅炉燃烧和传热不会产生任何不利影响.8、对于拆除GGH的脱硫改造工程,在吸收塔入口处加装低温省煤<GGH的阻力比低温省煤器高300-400Pa>,不仅解决了去掉GGH后烟气对脱硫系统的不利影响,而且降低排烟温度,提高锅炉效率.9、由于本系统属静态设备,无动力装置,所以系统本身能耗极低.。
火力发电厂超低排放改造低低温省煤器
火力发电厂超低排放改造低低温省煤器(MGGH)1、概述:我国火电厂大气污染物排放要求的提高,必将促进环保治理技术不断创新和进步。
低低温省煤器(MGGH)系统是在借鉴国外先进技术的基础上,结合我国燃煤电厂实际情况进行创新开发的一种适合我国国情的环保治理新技术和新工艺。
应用低低温省煤器(MGGH)系统与电除尘技术结合形成的低低温电除尘技术,将电除尘器入口烟气温度降至酸露点温度以下,在大幅提高除尘效率的同时可以高效捕集SO3 ,保证燃煤电厂满足低排放要求,并有效减少PM2.5 排放。
而且低低温省煤系统还可以将回收的热量加以利用,具有较好的节能效果。
且通过将低低温省煤器(MGGH)系统降温段回收烟气余热,将热量利用于脱硫岛出口的烟气加热器,将脱硫出口净烟气温度抬升至安全温度以上,以减轻“石膏雨”现场,并降低烟囱防腐维护费用。
山西中源科扬节能服务有限公司是国家备案的节能服务公司,长期致力于烟气余热回收利用领域的技术研发及推广,拥有最先进的烟气余热回收利用技术,可以为客户提供最佳的余热回收利用方案,是集软件、硬件与服务为一体的综合服务商。
国内多个燃煤电厂低低温省煤器(MGGH)系统的成功投运证明,这一技术可以很好地满足最严格的排放标准要求,具有显著的经济效益和广阔的市场前景。
低低温省煤器系统与电除尘器系统的结合,不但扩大了省煤器及电除尘器的适用范围,而且为实现节能减排开辟了一条新路径。
2、低低温省煤器(MGGH)系统介绍低低温省煤器(MGGH)系统是一个闭式循环系统,主要由布置于电除尘器前的冷却器和布置于脱硫塔后的烟气加热器,配套热媒水辅助加热器、循环水泵、补水系统、热媒体膨胀罐、清灰装置、加药装置以及其它辅助系统组成。
冷却器和烟气加热器间的中间传热媒介为除盐水,该系统设置一个补水箱和补水泵,除盐水水源自带压力进入补水箱,通过补水泵进入MGGH闭式循环管路系统,直至充满整个系统,待热媒水膨胀罐达到一定液位时,启动热媒水循环泵,热媒水经循环泵升压后进入烟气冷却器回收烟气余热,加热后的除盐水进入烟气烟气加热器加热脱硫后的低温烟气,经烟气烟气加热器冷却后的除盐水回水到介质热媒水循环泵入口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为防治大气污染,我国火电厂烟气排放标准不断提高,促使除尘技术的不断进步。
目前,欧美日等国外均有低低温电除尘技术的应用先例,其中日本在低低温电除尘技术中较为成熟。
我国结合国外先进技术,创新出适合我国燃煤电厂实际情况的低低温电除尘技术。
日本自1997 年开始推广应用低低温电除尘技术,据不完全统计,配套机组容量累计已超过 1.5 万MW。
据了解,2003 年投运的常陆那珂#1 炉1000MW 机组低低温电除尘器,其入口烟气温度为92℃,电除尘器出口烟尘浓度小于30mg/m3,脱硫系统出口烟尘浓度小于8mg/m3。
国内电除尘厂家从2010年开始逐步加大对低低温电除尘技术的研发力度,正进行有益的探索和尝试,已有600MW机组投运业绩。
典型案例包括:
1.国内首台大机组低低温电除尘器在福建宁德电厂#4炉600MW 机组燃煤锅炉电除尘器的提效改造工程上取得突破。
项目电除尘器原设计除尘效率99.6%,于2006 年投运。
由于电厂实际燃烧煤种与设计煤种偏差较大,造成排烟温度比原设计温度偏高较多,实际除尘效率较设计效率也有所偏差。
总体改造采用“低温省煤器降低烟气温度”及“电除尘机电升级改造”相结合的技术方案。
经测试,电除尘器出口烟尘浓度从原来的60mg/m3下降到20.2mg/m3;SO3 脱除率达73.78%以上;在600MW、450MW负荷时,汽机热耗下分别为52kJ/kWh以上和69kJ/kWh以上;本体实测阻力小于等于350Pa(含第2级换热器)。
a.低温省煤器将烟气温度降至酸露点温度以下。
针对电厂燃煤煤种情况和烟气温度,通过对比电阻测试,在148℃烟温下比电阻较高(为1011~1012Ω˙cm范围),在90~100℃烟温时对应的比电阻值(为108~1010Ω˙cm)比较适宜电除尘高效工作。
结合除尘效率、比电阻与低温烟气的性能试验验证及实际烟气酸露点温度,采用低温省煤器将烟气温度降至酸露点温度以下。
根据实际场地条件,在电除尘器进口封头和前置垂直烟道内分别设置一套低温省煤器,使电除尘器运行温度由150℃下降到95℃左右。
b.电除尘机电升级改造。
对原电除尘器电场气流分布进行CFD 分析与改进设计,改善电除尘器各室流量分配及气流分布;电除尘器全面检查壳体气密性,加强灰斗保温措施;考虑到烟温降低后,进入除尘器的粉尘浓度提高,尤其在第一电场内粉尘的停留时间延长及烟尘密度增大,对原电除尘器第一、二电场换用高频电源;对电除尘器高低压电控设备进行数控
技术改造,并结合电除尘器控制经验,配套先进的烟温调节与电除尘器减排节能自适应控制系统。
2.上海漕泾发电有限公司#1 炉1000MW 机组配套三室四电场电除尘器,于2009 年投运,电除尘器实际出口烟尘浓度约为20mg/m3。
2012 年4月,为进一步提高节能效果,采用降低排烟温度的方式实现烟气余热综合利用。
通过两级布置烟气换热器的方案,即第一级烟气换器布置在电除尘器进口烟道内,第二级烟气换热器布置在脱硫塔进口烟道内,利用烟气余热加热凝结水系统。
通过第一级烟气换热器使电除尘器的运行温度由120℃左右降至96℃左右。
2012年6月,经测试,低低温电除尘器出口烟尘浓度为14.05mg/m3。
3.江西新昌电厂#1炉660MW 机组电除尘器提效改造,对原双室四电场电除尘器采用
“低温省煤器降低烟气温度”及“电除尘器机电升级改造”相结合的改造方案,主要在电除尘器前置水平烟道处设置低温省煤器,将电除尘器入口烟气平均温度降低至95℃;结合低温省煤器和电除尘器气流均布装置对电除尘器的气流分布装置进行改造;将原电除尘器第一、二电场换用高频电源,电除尘器电控全面升级改造;电除尘器阴阳极全面检查与适应性调整。
初步测试表明,电除尘器出口烟尘浓度10mg/m3。
4.广东潮州电厂一期600MW 机组电除尘器提效改造,对原双室五电场电除尘器采用“低温省煤器降低烟气温度”及“电除尘器机电升级改造”相结合的改造方案,主要在电除尘器前置水平烟道处设置低温省煤器,将电除尘器入口烟气平均温度降低至95℃;结合低温省煤器和电除尘器气流均布装置对电除尘器的气流分布装置进行改造;将原电除尘器第一、二电场换用高频电源,电除尘器电控全面升级改造;电除尘器阴阳极全面检查与适应性调整;电除尘器出口烟尘浓度在线监测值为15 mg/m3~21mg/m3。
5.华能长兴电厂“上大压小”工程2×660MW 机组新建项目已确定采用低低温电除尘技术,其设计煤种、校核煤种1、校核煤种2的电除尘器入口烟气酸露点温度分别为103℃、101℃、117℃,要求电除尘器入口烟气温度为90℃,除尘器出口烟尘浓度小于等于20mg/m3。
浙能台州第二电厂1000MW 新建项目也已确定采用低低温电除尘技术,其设计煤种、校核煤种电除尘器入口烟气酸露点温度分别为97℃、98℃,要求电除尘器入口烟气温度为85℃,除尘器出口烟尘浓度小于等于15mg/m3。
这两个项目均在实施中。
ND钢是目前国内外最理想的“耐硫酸低温露点腐蚀”用钢材,09CrCuSb(ND钢)钢无缝钢管/钢板主要的考核指标(70°50%H2SO4溶液中浸泡24小时)腐蚀速率不大于14mg/cm·h,与碳钢、日本进口同类钢、不锈钢耐腐蚀能力相比教,是日本CR1R钢的1.84倍,是1Cr18Ni9钢的2.97倍,是Corten钢的8.63倍,是Q235B钢的14.11倍。
09CrCuSb (ND钢)钢是以锅炉;电炉的热交换、烟管、烟囱等用途为目的开发的具有优秀的耐硫酸露点腐蚀的热轧钢板、钢管。
其优越的耐硫酸露点腐蚀的性能及非常高的性价比,是完全可以代替不锈钢,超越不锈钢(在耐硫酸露点腐蚀方面)的最好材料,ND钢具有重大经济意义,符合当今高效.长寿.节能.环保等“绿色”观念和国家发展政策导向。