信号系统实验报告

合集下载

信号与系统实验报告(一) 大二下

信号与系统实验报告(一) 大二下

电气学科大类级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名学号专业班号同组者1 学号专业班号同组者2 学号专业班号指导教师日期实验成绩评阅人综合实验和实验报告要求信号与控制综合实验,是集多门技术基础课程以及其它延伸课程理论于一体的综合性实验课程,需要综合多门学科理论知识和实验方法来体现,因此,实验目的不是简单的课程理论验证和练习,而是综合应用、研究开发、设计创新。

应采用尽可能好的设计,使所设计的电路和系统达到要实现的功能,步骤和方案自行拟定,实现对设计思路的实验验证。

完成多个实验项目的,应将实验内容整理综合后写成一份总报告,以利于锻炼整理归纳和总结能力,在总报告中以第二级标题形式依次写下所完成的实验项目、内容及实验设计过程。

实验报告按“题目、目录、正文(分所完成的各实验项目)、结论、心得与自我评价、参考文献”6个部分撰写;正文主要包括以下几个内容:任务和目标、总体方案设计(原理分析与方案设计特点,选择依据和确定)、方案实现和具体设计(过程)、实验设计与实验结果、结果分析与讨论。

(格式方面请注意:每个图应该有图号和图名,位于图的下方,同一图号的分图应在同一页,不要跨页;每个表应该有表号和表名,位于表的上方,表号表名与表(数据)也应在同一页,不要跨页;建议各部分题目采用四号黑体、设计报告内容文字采用小四号宋体)注:报告中涉及实验指导书或教材内容,只需注明引用位置,不必在报告中再加以阐述。

不得不加引用标记地抄袭任何资料。

每一基本实验部分按计划学时100分成绩计算(100%),需要完成60分的实验项目;实验报告、设计部分和创新研究内容另外计分(分别为10%、20%和10%)。

再按照学时比例与本课程其它部分实验综合成为总实验成绩。

每一部分实验均为:基本实验:0~60分,考核基本理论的掌握和基本操作技能、实验室道德规范;实验报告:0~10分,考核思考和总结表述能力;完成设计性实验:0~20分,评价设计能力;完成创新性实验:0~10分,鼓励创新。

信号与系统实验四实验报告

信号与系统实验四实验报告

实验四 时域抽样与频域抽样一、实验目的加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。

掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。

加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。

二、 实验原理时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率sam f 大于等于2倍的信号最高频率m f ,即m sam f f 2≥。

时域抽样是把连续信号x (t )变成适于数字系统处理的离散信号x [k ] ;信号重建是将离散信号x [k ]转换为连续时间信号x (t )。

非周期离散信号的频谱是连续的周期谱。

计算机在分析离散信号的频谱时,必须将其连续频谱离散化。

频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件。

三.实验内容1. 为了观察连续信号时域抽样时抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进行抽样,试画出抽样后序列的波形,并分析产生不同波形的原因,提出改进措施。

)102cos()(1t t x ⨯=π答: 函数代码为: t0 = 0:0.001:0.1;x0 =cos(2*pi*10*t0);plot(t0,x0,'r')hold onFs =50;t=0:1/Fs:0.1;x=cos(2*pi*10*t); stem(t,x); hold offtitle('连续信号及其抽样信号')函数图像为:)502cos()(2t t x ⨯=π同理,函数图像为:)0102cos()(3t t x ⨯=π同理,函数图像为:由以上的三图可知,第一个图的离散序列,基本可以显示出原来信号,可以通过低通滤波恢复,因为信号的频率为20HZ,而采样频率为50>2*20,故可以恢复,但是第二个和第三个信号的评论分别为50和100HZ,因此理论上是不能够恢复的,需要增大采样频率,解决的方案为,第二个信号的采样频率改为400HZ,而第三个的采样频率改为1000HZ,这样可以很好的采样,如下图所示:2. 产生幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘制波形。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。

二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

Matlab中进行数值积分运算的函数有quad函数和int函数。

其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。

因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。

quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

信号与系统实验报告

信号与系统实验报告

1、求门函数g4(t)的傅里叶变换,并画出其频率特性曲线。

程序如下:w=linspace(-3*pi,3*pi,512);N=length(w);F=zeros(1,N);for k=1:NF(k)=quadl('sf1',-3,3,[],[],w(k));endfigure(1);plot(w,real(F));xlabel('\omega');ylabel('F(j\omega)');figure(2);plot(w,real(F)-sinc(w/2/pi).^2);xlabel('\omega');title('计算误差');运行结果如图一、图二所示:图一g4(t)的傅里叶变换图二g4(t)傅里叶变换的计算误差2、已知频率特性函数为:H(jw)=2(jw)3+jw+4(jw)4+3(jw)3+2(jw)2+5jw+2求其幅频特性和相频特性。

程序如下:w=linspace(0,5,200);b=[2 0 1 4];a=[1 3 2 5 2];H=freqs(b,a,w);subplot(2,1,1);plot(w,abs(H));set(gca,'xtick',[0 1 2 3 4 5]);set(gca,'ytick',[0 0.4 0.707 1]);xlabel('\omega');ylabel('|H(j\omega)|');subplot(2,1,2);plot(w,angle(H));set(gca,'xtick',[0 1 2 3 4 5]);xlabel('\omega');ylabel('\phi(\omega)');运行结果如图三所示:图三幅频特性和相频特性3、设H s=s(s−p1)(s−p2)设①p1=-2,p2=-30;②p1=-2,p2=3(1)针对极点参数①②,画出系统零、极点分布图,判断该系统稳定性。

信号与系统实验报告资料

信号与系统实验报告资料

《信号与系统》实验报告湖南工业大学电气与信息工程学院实验一用同时分析法观测50Hz非正弦周期信号的分解与合成一、实验目的1、用同时分析法观测50Hz非正弦周期信号的频谱,并与傅立叶级数各项的频率与系数作比较。

2、观测基波和其谐波的合成。

二、实验设备1、信号与系统实验箱:TKSS -A型或TKSS -B 型TKSS -C 型;2、双踪示波器三、实验原理1、 一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其他成分则根据其频率为基波频率的2、3、4、…、n 等倍数分别称为二次、三次、四次、…、n 次谐波,其幅度将随着谐波次数的增加而减小,直至无穷小。

2、 不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分,3、 一个非正弦周期函数可以用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示Um1351/91/51/71/3790ωωωωωω图1-1 方波频谱图表2-1 各种不同波形的傅立叶级数表达式UmtTU 2τ方波Um0TU 2τ正弦整流全波UmTU 2τ三角波Um0T2τ正弦整流半波t tUm0tT U 2τ矩形波U1、方波 ())7s i n 715s i n 513s i n 31(s i n 4 ++++=t t t t u t u mωωωωπ 2、三角波())5s i n 2513sin 91(sin 82++-=t t t u t u mωωωπ3、半波())4c o s 1512cos 31sin 421(2 +--+=t t t u t u m ωωωππ 4、全波 ())6c o s 3514cos 1512cos 3121(4 +---=t t t u t u m ωωωπ5、 矩形波())3cos 3sin 312cos 2sin 21cos (sin 2 ++++=t T t T t T U T U t u m m ωτπωτπωτππτ实验装置的结构如图1-2所示DC20f f f f f f 3456图1-2信号分解于合成实验装置结构框图图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。

信号系统实验报告

信号系统实验报告

福建xx大学xx学院信息工程类实验报告课程名称:信号与系统姓名:XXX系:电子信息工程专业:电子信息工程年级:XXX级学号:XXX指导教师:XXX职称:讲师XXX年12 月17日实验项目列表XXX 信息工程类实验报告系: 电子信息工程 专业: 电子信息工程 年级: 07级 姓名: XXX 学号: XXX 实验课程: 信号与系统实验室号:_信号与系统实验室 实验设备号: 01 实验时间: 11.19 指导教师签字: 成绩:实验一 函数信号发生器1、 实验目的1)了解单片多功能集成电路函数信号发生器的功能及特点。

2)熟悉信号与系统实验箱信号产生和测试的方法。

2、 实验仪器1)信号与系统实验箱一台。

2)20MHz 双踪示波器一台。

3、 实验原理ICL8038是单片机集成函数信号发生器,其内部框图如图1.1所示。

它由恒流源1I 和2I 、电压比较器A 和B 、触发器、缓冲器和三角波变正弦波电路等组-V EE图1.1 ICL8038原理方框图外接电容C 由两个恒流源充电和放电,电压比较器A 、B 的阀值分别为电源电压(指EE cc U U +)的2/3和1/3。

恒流源1I 和2I 的大小可通过外接电阻调节,但必须12I I >。

当触发器的输出为低电平时,恒流源2I 断开,恒流源1I 给C 充电,它的两端电压UC 随时间线性上升,当UC 达到电源电压的2/3时,电压比较器A 的输出电压发生跳变,使触发器输出由低电平变为高电平,恒流源C 接通,由于12I I >(设122I I =),恒流源2I 将电流21I 加到C 上反充电,相当于C 由一个净电流I 放电,C 两端的电压UC 又转为直线下降。

当它下降到电源电压的1/3时,电压比较器B 的输出电压发生跳变,使触发器的输出由高电平跳变为原来的低电平,恒流源2I 断开,1I 再给C 充电,…如此周而复始,产生振荡。

若调整电路,使122I I =,则触发器输出为方波,经反相缓冲器由管脚⑨输出方波信号。

武大电气学院信号系统实验报告

武大电气学院信号系统实验报告

《信号与系统》上机实验实验一连续时间信号的表示及可视化一.实验目的熟练掌握连续时间信号的表示及可视化处理。

二.实验源程序δf(t))=)(tf=@(t)dirac(t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标f(t)= ε(t)(f=Heaviside(n))f=@(t)heaviside(t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标f(t)=at e(分别取a>0及a<0)a=1时f=@(t)exp(t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标a=-1时f=@(t)exp(-t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标f(t)=R(t)t=-5:0.01:5; %设定时间变量t的范围及步长y=rectpuls(t,2); %用rectpuls(t a)命令表示门函数,默认以零点为中心,宽度为aplot(t,y); %用plot函数绘制连续函数grid on; %显示网格命令title('门函数'); %用title函数设置图形的名称axis([-5 5 -0.5 1.5]);f(t)=Sa(wt)w=5时,f=Sa(5*t)f=@(t)Sinc(5*t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标axis([-5 5 -1.2 1.2])w=8时,f=Sa(8*t)f=@(t)sinc(8*t) %定义函数ezplot(f,[-4:4]); %利用eaplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标f(t)=Sin(2πft)(分别画出不同周期个数的波形)f(t)=Sin(t)f=@(t)sin(t) %定义函数ezplot(f,[-15:15]); %利用eaplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标axis([-15 15 -1.2 1.2])三.程序运行结果(1)(2)(3)-5-4-3-2-1012345-1-0.8-0.6-0.4-0.200.20.40.60.81(t)dirac(t)(f )-5-4-3-2-101234500.20.40.60.81(t)heav iside(t)(f )(4)-5-4-3-2-1012345010********607080(t)exp(t)(f )-5-4-3-2-1012345010********607080(t)exp(-t)(f )(5)-5-4-3-2-1012345-1-0.8-0.6-0.4-0.200.20.40.60.81(t)Sinc(5 t)(f )(6)-4-3-2-101234 -1-0.8-0.6-0.4-0.20.20.40.60.81(t)sinc(8 t)(f)-15-10-5051015 -1-0.8-0.6-0.4-0.20.20.40.60.81(t)sin(t)(f)实验二离散时间信号的表示及可视化一.实验目的学会对离散时间信号进行标识和可视化处理。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

无线信号实验报告模板(3篇)

无线信号实验报告模板(3篇)

第1篇一、实验目的1. 理解无线信号的基本传输原理和过程。

2. 掌握无线信号的调制与解调技术。

3. 分析无线信号传输过程中的影响因素。

4. 学习使用无线信号测试仪器进行实验操作。

5. 培养实验报告撰写能力。

二、实验原理无线信号传输是利用电磁波在空间传播,将信息从一个地点传输到另一个地点的过程。

实验主要涉及以下原理:1. 调制与解调:调制是将信息信号与载波信号进行叠加的过程,解调则是从叠加后的信号中提取出信息信号的过程。

2. 频率选择:根据无线信号的频率范围选择合适的频率,以减少干扰和提高传输效率。

3. 天线设计:天线是无线信号发射和接收的关键部件,其设计对信号传输性能有重要影响。

4. 信号衰减与反射:无线信号在传播过程中会因距离、障碍物等因素发生衰减和反射,影响信号强度和稳定性。

三、实验仪器与设备1. 无线信号发射器2. 无线信号接收器3. 无线信号测试仪器(如频谱分析仪、功率计等)4. 计算机及实验软件5. 天线(发射天线和接收天线)四、实验步骤1. 实验准备:熟悉实验仪器与设备的使用方法,了解实验原理和步骤。

2. 搭建实验平台:将发射器和接收器连接好,确保信号传输通道畅通。

3. 信号发射:调整发射器参数,如频率、功率等,使信号稳定发射。

4. 信号接收:调整接收器参数,如增益、带宽等,接收发射器发出的信号。

5. 信号测试:使用无线信号测试仪器对信号进行测试,如测量信号的功率、频率、带宽等参数。

6. 数据分析:分析实验数据,探讨无线信号传输过程中的影响因素。

7. 撰写实验报告。

五、实验数据记录与分析1. 信号发射参数:记录发射器的频率、功率等参数。

2. 信号接收参数:记录接收器的频率、增益、带宽等参数。

3. 信号测试结果:记录信号的功率、频率、带宽等测试数据。

4. 数据分析:分析实验数据,探讨无线信号传输过程中的影响因素,如信号衰减、干扰等。

六、实验结论根据实验数据和数据分析,总结无线信号传输过程中的关键因素,提出改进措施,以提高无线信号传输性能。

信号与系统课程实验报告

信号与系统课程实验报告

合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。

二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。

它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。

2.实验线路检查无误后,打开实验箱右侧总电源开关。

3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。

4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。

信号与系统实验报告

信号与系统实验报告

实验三常见信号的MATLAB 表示及运算一、实验目的1.熟悉常见信号的意义、特性及波形2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法二、实验原理根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法;在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了;1.连续时间信号从严格意义上讲,MATLAB 并不能处理连续信号;在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号;在MATLAB 中连续信号可用向量或符号运算功能来表示; ⑴ 向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔;向量f 为连续信号()f t 在向量t 所定义的时间点上的样值; ⑵ 符号运算表示法如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot 等函数来绘出信号的波形; ⑶ 常见信号的MATLAB 表示 单位阶跃信号单位阶跃信号的定义为:10()0t u t t >⎧=⎨<⎩方法一: 调用Heavisidet 函数首先定义函数Heavisidet 的m 函数文件,该文件名应与函数名同名即;%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为y function y= Heavisidety=t>0; %定义函数体,即函数所执行指令%此处定义t>0时y=1,t<=0时y=0,注意与实际的阶跃信号定义的区别;方法二:数值计算法在MATLAB 中,有一个专门用于表示单位阶跃信号的函数,即stepfun 函数,它是用数值计算法表示的单位阶跃函数()u t ;其调用格式为:stepfunt,t0其中,t 是以向量形式表示的变量,t0表示信号发生突变的时刻,在t0以前,函数值小于零,t0以后函数值大于零;有趣的是它同时还可以表示单位阶跃序列()u k ,这只要将自变量以及取样间隔设定为整数即可; 符号函数符号函数的定义为:10sgn()1t t t >⎧=⎨-<⎩在MATLAB 中有专门用于表示符号函数的函数sign ,由于单位阶跃信号 t 和符号函数两者之间存在以下关系:1122()sgn()t t ε=+,因此,利用这个函数就可以很容易地生成单位阶跃信号;2.离散时间信号离散时间信号又叫离散时间序列,一般用()f k 表示,其中变量k 为整数,代表离散的采样时间点采样次数;在MATLAB 中,离散信号的表示方法与连续信号不同,它无法用符号运算法来表示,而只能采用数值计算法表示,由于MATLAB 中元素的个数是有限的,因此,MATLAB 无法表示无限序列;另外,在绘制离散信号时必须使用专门绘制离散数据的命令,即stem 函数,而不能用plot 函数; 单位序列()k δ单位序列()k δ的定义为10()0k k k δ=⎧=⎨≠⎩单位阶跃序列()u k单位阶跃序列()u k 的定义为10()0k u k k ≥⎧=⎨<⎩3.卷积积分两个信号的卷积定义为:MATLAB 中是利用conv 函数来实现卷积的;功能:实现两个函数1()f t 和2()f t 的卷积;格式:g=convf1,f2说明:f1=f 1t,f2=f 2t 表示两个函数,g=gt 表示两个函数的卷积结果;三、实验内容1.分别用MATLAB 的向量表示法和符号运算功能,表示并绘出下列连续时间信号的波形: ⑴ 2()(2)()tf t e u t -=- ⑵[]()cos()()(4)2tf t u t u t π=--1 t=-1::10;t1=-1::; t2=0::10;f1=zeros1,lengtht1,ones1,lengtht2;f=2-exp-2t.f1; plott,faxis-1,10,0, syms t;f=sym'2-exp-2theavisidet'; ezplotf,-1,10;2t=-2::8;f=0.t<0+cospit/2.t>0&t<4+0.t>4; plott,f syms t;f=sym'cospit/2heavisidet-heavisidet-4 '; ezplotf,-2,8;2.分别用MATLAB 表示并绘出下列离散时间信号的波形: ⑵ []()()(8)f t k u k u k =-- ⑶()sin()()4k f k u k π= 2 t=0:8; t1=-10:15;f=zeros1,10,t,zeros1,7; stemt1,faxis-10,15,0,10; 3 t=0:50; t1=-10:50;f=zeros1,10,sintpi/4; stemt1,faxis-10,50,-2,23.已知两信号1()(1)()f t u t u t =+-,2()()(1)f t u t u t =--,求卷积积分12()()()g t f t f t =*,并与例题比较;t1=-1::0; t2=0::1; t3=-1::1;f1=onessizet1; f2=onessizet2; g=convf1,f2;subplot3,1,1,plott1,f1; subplot3,1,2,plott2,f2; subplot3,1,3,plott3,g;与例题相比较,gt 的定义域不同,最大值对应的横坐标也不同;4.已知{}{}12()1,1,1,2,()1,2,3,4,5f k f k ==,求两序列的卷积和 ;N=4; M=5; L=N+M-1; f1=1,1,1,2;f2=1,2,3,4,5; g=convf1,f2; kf1=0:N-1; kf2=0:M-1; kg=0:L-1;subplot1,3,1,stemkf1,f1,'k';xlabel'k'; ylabel'f1k';grid onsubplot1,3,2,stemkf2,f2,'k';xlabel'k'; ylabel'f2k';grid onsubplot1,3,3;stemkg,g,'k';xlabel'k'; ylabel'gk';grid on 实验心得:第一次接触Mutlab 这个绘图软件,觉得挺新奇的,同时 ,由于之前不太学信号与系统遇到一些不懂的问题,结合这些图对信号与系统有更好的了解;实验四 连续时间信号的频域分析一、实验目的1.熟悉傅里叶变换的性质 2.熟悉常见信号的傅里叶变换3.了解傅里叶变换的MATLAB 实现方法二、实验原理从已知信号()f t 求出相应的频谱函数()F j ω的数学表示为:()F j ω()j t f t e dt ω∞--∞=⎰傅里叶反变换的定义为:1()()2j t f t F j e d ωωωπ∞-∞=⎰在MATLAB 中实现傅里叶变换的方法有两种,一种是利用MATLAB 中的Symbolic Math Toolbox 提供的专用函数直接求解函数的傅里叶变换和傅里叶反变换,另一种是傅里叶变换的数值计算实现法;1.直接调用专用函数法①在MATLAB 中实现傅里叶变换的函数为:F=fourier f 对ft 进行傅里叶变换,其结果为Fw F =fourierf,v 对ft 进行傅里叶变换,其结果为Fv F=fourier f,u,v 对fu 进行傅里叶变换,其结果为Fv ②傅里叶反变换f=ifourier F 对Fw 进行傅里叶反变换,其结果为fx f=ifourierF,U 对Fw 进行傅里叶反变换,其结果为fu f=ifourier F,v,u 对Fv 进行傅里叶反变换,其结果为fu 注意:1在调用函数fourier 及ifourier 之前,要用syms 命令对所有需要用到的变量如t,u,v,w 等进行说明,即要将这些变量说明成符号变量;对fourier 中的f 及ifourier 中的F 也要用符号定义符sym 将其说明为符号表达式;2采用fourier 及fourier 得到的返回函数,仍然为符号表达式;在对其作图时要用ezplot 函数,而不能用plot 函数;3fourier 及fourier 函数的应用有很多局限性,如果在返回函数中含有δω等函数,则ezplot 函数也无法作出图来;另外,在用fourier 函数对某些信号进行变换时,其返回函数如果包含一些不能直接表达的式子,则此时当然也就无法作图了;这是fourier 函数的一个局限;另一个局限是在很多场合,尽管原时间信号ft 是连续的,但却不能表示成符号表达式,此时只能应用下面介绍的数值计算法来进行傅氏变换了,当然,大多数情况下,用数值计算法所求的频谱函数只是一种近似值;2、傅里叶变换的数值计算实现法严格说来,如果不使用symbolic 工具箱,是不能分析连续时间信号的;采用数值计算方法实现连续时间信号的傅里叶变换,实质上只是借助于MATLAB 的强大数值计算功能,特别是其强大的矩阵运算能力而进行的一种近似计算;傅里叶变换的数值计算实现法的原理如下: 对于连续时间信号ft,其傅里叶变换为:其中τ为取样间隔,如果ft 是时限信号,或者当|t|大于某个给定值时,ft 的值已经衰减得很厉害,可以近似地看成是时限信号,则上式中的n 取值就是有限的,假定为N,有: 若对频率变量ω进行取样,得: 通常取:02k k k MM ωπωτ==,其中0ω是要取的频率范围,或信号的频带宽度;采用MATLAB 实现上式时,其要点是要生成ft 的N 个样本值()f n τ的向量,以及向量k j n eωτ-,两向量的内积即两矩阵的乘积,结果即完成上式的傅里叶变换的数值计算;注意:时间取样间隔τ的确定,其依据是τ必须小于奈奎斯特Nyquist 取样间隔;如果ft 不是严格的带限信号,则可以根据实际计算的精度要求来确定一个适当的频率0ω为信号的带宽;三、 实验内容1.编程实现求下列信号的幅度频谱1 求出1()(21)(21)f t u t u t =+--的频谱函数F 1jω,请将它与上面门宽为2的门函数()(1)(1)f t u t u t =+--的频谱进行比较,观察两者的特点,说明两者的关系;2 三角脉冲21||||1()0||1t t f t t -≤⎧=⎨>⎩3 单边指数信号3()()tf t e t ε-=4 高斯信号23()t f t e -=1 syms t w Gt=sym'Heaviside2t+1-Heaviside2t-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0与()(1)(1)f t u t u t =+--的频谱比较,1()(21)(21)f t u t u t =+--的频谱函数F 1jω最大值是其的1/2; 2syms t w;Gt=sym'1+tHeavisidet+1-Heavisidet+1-tHeavisidet-Heavisidet-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0 3syms t w Gt=sym'exp-tHeavisidet';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi -1 2 4syms t w Gt=sym'exp-t^2';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; ezplotFFw,-30 30;grid; axis-30 30 -1 22.利用ifourier 函数求下列频谱函数的傅氏反变换122()16F j j ωωω=-+ 222()58()()65j j F j j j ωωωωω+-=++1syms t w Fw=sym'-i2w/16+w^2'; ft=ifourierFw,w,t; ft运行结果: ft =-exp4theaviside-t+exp-4theavisidet 2syms t wFw=sym'iw^2+5iw-8/iw^2+6iw+5'; ft=ifourierFw,w,t; ft运行结果: ft =diract+-3exp-t+2exp-5theavisidet实验心得matlab 不但具有数值计算能力,还能建模仿真,能帮助我们理解不同时间信号的频域分析;实验五 连续时间系统的频域分析一、实验目的1. 学习由系统函数确定系统频率特性的方法;2. 学习和掌握连续时间系统的频率特性及其幅度特性、相位特性的物理意义;3.通过本实验了解低通、高通、带通、全通滤波器的性能及特点;二、实验原理及方法频域分析法与时域分析法的不同之处主要在于信号分解的单元函数不同;在频域分析法中,信号分解成一系列不同幅度、不同频率的等幅正弦函数,通过求取对每一单元激励产生的响应,并将响应叠加,再转换到时域以得到系统的总响应;所以说,频域分析法是一种变域分析法;它把时域中求解响应的问题通过 Fourier 级数或 Fourier 变换转换成频域中的问题;在频域中求解后再转换回时域从而得到最终结果;在实际应用中,多使用另一种变域分析法:复频域分析法,即 Laplace 变换分析法;所谓频率特性,也称频率响应特性,是指系统在正弦信号激励下稳态响应随频率变化的情况,包括幅度随频率的响应和相位随频率的响应两个方面;利用系统函数也可以确定系统频率特性,公式如下:幅度响应用()ωj H 表示,相位响应用)(ωϕH 表示;本实验所研究的系统函数Hs 是有理函数形式,也就是说,分子、分母分别是m 、n 阶多项式; 要计算频率特性,可以写出为了计算出()ωj H 、)(ωϕH 的值,可以利用复数三角形式的一个重要特性: 而⎥⎦⎤⎢⎣⎡+=2sin 2cosππωωj j ,则()⎥⎦⎤⎢⎣⎡+=2sin 2cos ππωωn j n j n n利用这些公式可以化简高次幂,因此分子和分母的复数多项式就可以转化为分别对实部与虚部的实数运算,算出分子、分母的实部、虚部值后,最后就可以计算出幅度()ωj H 、相位)(ωϕH 的值了;三、实验内容a)sm m ms H )(1)(2-+=,m 取值区间 0,1,绘制一组曲线 m=,,,,; b) 绘制下列系统的幅频响应对数曲线和相频响应曲线,分析其频率特性; a %figurealpha=,,,,;colorn='r' 'g' 'b' 'y' 'k'; % r g b y m c k 红,绿,蓝,黄,品红,青,黑 for n=1:5b=0 alphan; % 分子系数向量a=alphan-alphan^2 1; % 分母系数向量 printsysb,a,'s' Hz,w=freqsb,a; w=w./pi; magh=absHz;zerosIndx=findmagh==0; maghzerosIndx=1; magh=20log10magh; maghzerosIndx=-inf; angh=angleHz;angh=unwrapangh180/pi; subplot1,2,1plotw,magh,colornn;hold onsubplot1,2,2plotw,angh,colornn;hold onendsubplot1,2,1hold offxlabel'特征角频率\times\pi rad/sample' title'幅频特性曲线 |Hw| dB';subplot1,2,2hold offxlabel'特征角频率 \times\pi rad/sample' title'相频特性曲线 \thetaw degrees';b1 %b=1,0; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';2 %b=0,1,0; % 分子系数向量a=1,3,2; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';3 %b=1,-1; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';实验心得:虽然之前用公式转换到频域上分析,但是有时会觉得挺抽象的,不太好理解;根据这些图像结合起来更进一步对信号的了解;同时,这个在编程序时,虽然遇到一些问题,但是总算解决了;实验六离散时间系统的Z域分析一、 实验目的1. 学习和掌握离散系统的频率特性及其幅度特性、相位特性的物理意义;2. 深入理解离散系统频率特性和对称性和周期性;3. 认识离散系统频率特性与系统参数之间的系统4.通过阅读、修改并调试本实验所给源程序,加强计算机编程能力; 二、 实验原理及方法对于离散时间系统,系统单位冲激响应序列)(n h 的 Fourier 变换)(ωj e H 完全反映了系统自身的频率特性,称)(ωj eH 为离散系统的频率特性,可由系统函数)(z H 求出,关系式如下:ωωj j e z z H e H ==)()( 6 – 1由于ωj e是频率的周期函数,所以系统的频率特性也是频率的周期函数,且周期为π2,因此研究系统频率特性只要在πωπ≤≤-范围内就可以了;∑∑∑∞-∞=∞-∞=∞-∞=--==n n n j j n n h j n n h en h e H )sin()()cos()()()(ωωωω6 – 2容易证明,其实部是ω的偶函数,虚部是ω的奇函数,其模ωj e H (的ω的偶函数,相位[])(arg ωj e H 是ω的奇函数;因此研究系统幅度特性)(ωj e H 、相位特性[])(arg ωj e H ,只要在πω≤≤0范围内讨论即可;综上所述,系统频率特性)(ωj eH 具有周期性和对称性,深入理解这一点是十分重要的;当离散系统的系统结构一定,它的频率特性)(ωj e H 将随参数选择的不同而不同,这表明了系统结构、参数、特性三者之间的关系,即同一结构,参数不同其特性也不同; 例如,下图所示离散系统,其数学模型由线性常系数差分方程描述:)()1()(n x n ay n y +-=系统函数:a z az z z H >-=,)(系统函数频率特性:ωωωωωsin )cos 1(1)(ja a a e e e H j j j +-=-=幅频特性:ωωcos 211)(2a a eH j -+=相频特性:[]ωωωcos 1sin arctan)(arg a a eH j --= 容易分析出,当10<<a 时系统呈低通特性,当01<<-a 时系统呈高通特性;当0=a 时系统呈全通特性;同时说明,在系统结构如图所示一定时,其频率特性随参数a 的变化而变化;三、 实验内容a 2281.011)(----=z z z H ;b 1.04.06.01.03.03.01.0)(2323+++-+-=z z z z z z z Hc 2181.011)(--+-=zz z H a %b=1,0,-1; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通b %b=,,,; % 分子系数向量a=1,,,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';高通c %b=1,-1,0; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通实验心得:本来理论知识不是很强的,虽然已经编出程序得到相关图形,但是不会辨别相关通带,这让我深刻地反省;。

信号与系统实验报告 连续信号的时域描述与运算

信号与系统实验报告 连续信号的时域描述与运算

信号与系统实验报告课程名称:信号与系统实验实验项目名称:连续信号的时域描述与运算专业班级:姓名:学号:完成时间:年月日一、实验目的1.通过绘制典型信号的波形,了解这些信号的基本特征。

2.通过绘制信号运算结果的波形,了解这些信号运算对信号所起的作用。

二、实验原理1.基于MATLAB的信号描述方法如果一个信号在连续时间范围内(除有限个间断点外)有定义,则称该信号为连续时间信号,简称为连续信号。

从严格意义上讲, MATLAB数值计算的方法并不能处理连续信号,但是可利用连续信号在等时间间隔点的采样值来近似表示连续信号,即当采样间隔足够小时,这些离散采样值能够被MATLAB处理,并且能较好地近似表示连续信号。

(1)向量表示法对于连续时间信号f(t),可以定义两个行向量f和t来表示,其中向量t是形如t=t1:Δt:t2的MATLAB命令定义的时间范围向量,t1为信号起始时间,t2为终止时间,Δt为时间间隔;向量f为连续时间信号f(t)在向量t所定义的时间点上的采样值。

(2)符号运算表示法如果信号可以用一个符号表达式来表示,则可用ezplot命令绘制出信号的波形。

2.连续信号的基本运算(1)信号的相加与相乘信号的已知信号f1(t)、f2(t),信号相加和相乘记为f(t)=f1(t)+f2(t)f(t)=f1(t)·f2(t)(2)微分与积分对于连续时间信号,其微分运算是用diff函数来完成的。

其语句格式为:diff(function,’variable’,n);其中function表示需要进行求导运算的信号,或者被赋值的符号表达式;variable为求导运算的独立变量;n为求导的阶数,默认值为求一阶导数。

连续信号的积分运算用int函数来完成。

其语句格式为:int(function,’variable’,a,b);其中function表示被积信号,或者被赋值的符号表达式;variable为积分变量;a,b为积分上、下限,a和b省略时求不定积分。

信号、系统及系统响应实验报告

信号、系统及系统响应实验报告

信号、系统及系统响应实验报告实验⼀信号、系统及系统响应⼀、实验⽬的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。

2、熟悉离散信号和系统的时域特性;3、熟悉线性卷积的计算编程⽅法;利⽤卷积的⽅法,观察、分析系统响应的时域特性。

4、掌握序列傅⽒变换的计算实现⽅法,利⽤序列的傅⽒变换离散信号、系统及系统响应做频域分析。

⼆、实验原理(⼀)连续时间信号的采样对⼀个连续时间信号进⾏理想采样的过程可以表⽰为该信号的⼀个周期冲击脉冲的乘积,即()()()a a x t x t M t ∧= (1-1)其中()a x t ∧是连续信号()a x t 的理想采样,()M t 是周期冲激脉冲()()M t t nT δ+∞-∞=-∑ (1-2)理想信号的傅⾥叶变换为:1()[()]a a s m X j X j m T +∞∧=-∞Ω=Ω-Ω∑ (1-3)(⼆)有限长序分析⼀般来说,在计算机上不可能,也不必要处理连续的曲线()j X e ω,通常我们只要观察。

分析()j X e ω在某些频率点上的值。

对于长度为N 的有限长序列⼀般只需要在02π之间均匀的取M 个频率点。

(三)信号卷积⼀个线性时不变离散系统的响应y(n)可以⽤它的单位冲激响应h(n 和输⼊信号x(n)的卷积来表⽰: ()()()()()m y n x n h n x m h n m +∞=-∞=*=-∑ (1-4)根据傅⾥叶变换和Z变换的性质,与其对应应该有:()()()Y z X z H z = (1-5) ()()()j j j Y e X e H e ωωω= (1-6)式(1-3)可知通过对两个序列的移位、相乘、累加计算信号响应;⽽由式(1-6)可知卷积运算也可以在频域上⽤乘积实现。

三、实验内容及步结果1、分析理想采样信号序列的特性。

产⽣理想采样信号序列()a x t ,使A=444.128,α=,0Ω=。

当频率fs =1000h z时,其幅频特性如图1.1所⽰:-2000200理想采样信号序列(fs=1000hz )时间幅值0100200理想采样信号序列幅度谱时间幅值-505理想采样信号序列相位谱频率幅值图1.1当fs=300hz的时候,其幅频特性如图1.2所⽰:理想采样信号序列(fs=300hz )时间幅值理想采样信号序列幅度谱时间幅值102030405060理想采样信号序列相位谱频率幅值图1.2当f s=200hz 的时候,其幅频特性如图1.3所⽰:理想采样信号序列(fs=200hz )时间幅值理想采样信号序列幅度谱时间幅值理想采样信号序列相位谱频率幅值图1.3经过对⽐以上三个图形可以看出:当频率分别为1000h z,300hz和200hz 的时候均没有出现混叠现象,因为给定的信号序列的频率为0Ω=,三个抽样频率均满⾜2s f f ≥,因此不会出现频率混叠现象。

华工电信学院信号与系统实验一报告参考模板

华工电信学院信号与系统实验一报告参考模板

华工电信学院信号与系统实验信号与系统实验报告(一)实验项目名称:MATLAB 编程基础及典型实例 上机实验题目:信号的时域运算及MA TLAB 实现 一、实验目的学习并掌握使用MATLAB 产生基本信号、绘制信号波形、实现信号的可视化表示,为信号分析和系统设计奠定基础。

二、实验内容1. 利用Matlab 产生下列连续信号并作图。

(1) 51),1(2)(<<---=t t u t x(2) 2000,)8.0cos()1.0cos()(<<=t t t t x ππ 2. 利用Matlab 产生下列离散序列并作图。

(1) ⎩⎨⎧≤≤-=其他,055,1][k k x , 设1515-≤<k 。

(2) )]25.0cos()25.0[sin()9.0(][k k k x k ππ+=,设2020-≤<k 。

3. 已知序列]3,2,1,0,1,2;2,3,1,0,2,1[][--=-=k k x , ]21,0,1,1,1[][=-=k k h 。

(1) 计算离散序列的卷积和][][][k h k x k y *=,并绘出其波形。

(2) 计算离散序列的相关函数][][][n k y k x k R k xy +=∑∞-∞=,并绘出其波形。

(3) 序列相关与序列卷积有何关系?三、实验细节1. 利用Matlab 产生下列连续信号并作图。

(1) 51),1(2)(<<---=t t u t xt=-1:0.01:5;x=-2.*((t-1)>=0); plot(t,x);axis([-1,5,-2.2,0.2])-112345-2-1.5-1-0.5(2) 2000,)8.0cos()1.0cos()(<<=t t t t x ππ t=0:2:200;x=cos(0.1*pi*t).*cos(0.8*pi*t); plot(t,x);20406080100120140160180200-1-0.8-0.6-0.4-0.200.20.40.60.812. 利用Matlab 产生下列离散序列并作图。

信号与系统实验报告实验一 信号与系统的时域分析

信号与系统实验报告实验一 信号与系统的时域分析

实验一信号与系统的时域分析一、实验目的1、熟悉与掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间与离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MA TLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。

基本要求:掌握用MA TLAB描述连续时间信号与离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换与运算,并且以图形的方式再现各种信号的波形。

掌握线性时不变连续系统的时域数学模型用MA TLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。

二、实验原理信号(Signal)一般都就是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都就是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就就是随着海拔高度的变化而变化的。

一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴与纵轴,因此,图像信号具有两个或两个以上的独立变量。

在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量就是否就是时间变量。

在自然界中,大多数信号的时间变量都就是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力与声音信号就就是连续时间信号的例子。

信号与系统的实验报告(2)

信号与系统的实验报告(2)

信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。

L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。

L=laplace(F,t)用t 替换结果中的变量s 。

F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。

F=ilaplace(L,x)用x 替换结果中的变量t 。

2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。

对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。

信号与系统实验报告-(常用信号的分类与观察)

信号与系统实验报告-(常用信号的分类与观察)

实验一:信号的时域分析一、实验目的1.观察常用信号的波形特点及产生方法2.学会使用示波器对常用波形参数的测量二、实验仪器1.信号与系统试验箱一台(型号ZH5004)2.40MHz双踪示波器一台3.DDS信号源一台三、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。

因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。

在本实验中,将对常用信号和特性进行分析、研究。

信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。

常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。

1、信号:指数信号可表示为f(t)=Ke at。

对于不同的a取值,其波形表现为不同的形式,如下图所示:图1―1 指数信号2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。

其波形如下图所示:图1-2 正弦信号3、指数衰减正弦信号:其表达式为其波形如下图:图1-3 指数衰减正弦信号4、Sa(t)信号:其表达式为:。

Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。

该函数在很多应用场合具有独特的运用。

其信号如下图所示:图1-4 Sa(t)信号5、钟形信号(高斯函数):其表达式为:其信号如下图所示:图1-5 钟形信号6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。

其信号如下图所示:7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示U(t)四、实验内容及主要步骤下列实验中信号产生器的工作模式为111、指数信号观察通过信号选择键1,设置A组输出为指数信号(此时信号输出指示灯为000000)。

用示波器测量“信号A组”的输出信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号实验报告信息科学与工程学院电子信息工程姓名:学号:实验一一、实验内容:1、连续信号的MATLAB表示:MATLAB提供了大量的产生基本信号的函数。

最常用的指数信号、正弦信号是MATLAB的内部函数,即不安装任何工具箱就可调用的函数。

2、编程实现题2-2已知信号x(t)如图m2-2图所示,分别用MATLAB表示信号x(t)、x(t)cos(50t),并画出波形,程序如下:function yt=x2_2(t)yt=1*(t>=-1&t<0)+4*t.*(t>=0&t<=0.5)+(-4)*(t-1).*(t>0.5&t<=1);%example2_2t=-2:0.001:2;subplot(2,1,1)plot(t,x2_2(t))title('x(t)')subplot(2,1,2)A=1;w0=50;t=-2:0.001:2;phi=0;xt=[A*cos(w0*t+phi)].*[1*(t>=-1&t<0)+4*t.*(t>=0&t<=0.5)+(-4)*(t-1).*(t>0.5&t<=1) ];plot(t,xt)title('x(t)cos(50t)')运行结果如图所示:2-3(1)编写表示题M2-3图所示的信号波形x(t)的MATLAB函数(2)试画出x(t)、x(0.5t)、和x(2-0.5t)的波形图。

程序如下:function yt=x2_3(t)yt=1*t.*(t>=0&t<2)+2*(t>=2&t<3)+(-1)*(t>=3&t<5);%example2_3t=-4:0.01:10;subplot(3,1,1)plot(t,x2_3(t))title('x(t)')axis([-4,10,-2,3])t=-4:0.01:10;subplot(3,1,2)plot(t,x2_3(0.5*t))title('x(0.5t)')axis([-4,10,-2,3])t=-6:0.01:8;subplot(3,1,3)plot(t,x2_3(2-0.5*t))title('x(2-0.5t)')axis([-6,8,-2,3]运行结果如有右图:2-4 画出题M2-4图所示信号的奇分量和偶分量。

程序如下:2-7已知连续信号x1(t)=cos(6∏t)、x2(t)=cos(14∏t)、x3(t)=cos(26∏t),以抽样函数fs=10Hz对这三个信号进行抽样得离散序列x1[k]、x2[k]、x3[k].试在同一图上画出连续信号和其他对应的离散序列。

程序如下:%program2-7A=1;w1=6*pi;phi=0;t1=0:0.0001:1;xt1=A*cos(w1*t1+phi);subplot(2,3,1)plot(t1,xt1)title('x1(t)')k1=0:20;xk1=cos(3*pi/5*k1);subplot(2,3,4)stem(k1,xk1)title('x1[k]')A=1;w2=14*pi;phi=0;t2=0:0.0001:1;xt2=A*cos(w2*t2+phi);subplot(2,3,2)plot(t2,xt2)title('x2(t)')k2=0:20;xk2=cos(7*pi/5*k2);subplot(2,3,5)stem(k2,xk2)title('x2[k]')A=1;w3=26*pi;phi=0;t3=0:0.0001:1;xt3=A*cos(w3*t3+phi);subplot(2,3,3)plot(t3,xt3)title('x3(t)')k3=0:20;xk3=cos(13*pi/5*k3); subplot(2,3,6)stem(k3,xk3)title('x3[k]')运行结果如右上图:2-8分别用square函数和Swtooth画出题M2-8图所示的离散周期序列。

程序如下:%program2-81k=0:1:40;A=1;T=20;w0=2*pi/T;xk=A*sawtooth(w0*k,0.5); stem(k,xk)运行结果如右图所示:%program2-82k=0:1:40;A=-1;T=10;w0=2*pi/T;xk=A*square(w0*k,50); stem(k,xk)运行结果如右图:实验二3-1一个连续时间LTI系统满足的微分方程为:y″(t)+3y′(t)+2y(t) =2x′(t)+x(t)%program3_1ts=0;te=10;dt=0.001; sys=tf([2 1],[1 3 2]); t=ts:dt:te;x=1*exp(-3*t)*1;y=lsim(sys,x,t);plot(t,y);xlabel('Time(sec)') ylabel('y(t)')3-2程序如下:%program3-2ts=0;te=5;dt=0.01;sys=tf([6],[1 3]);t=ts:dt:te;y=impulse(sys,t);plot(t,y);xlabel('Time(sec)') ylabel('h(t)')运行结果如有图所示:%program3-2ts=0;te=5;dt=0.01;sys=tf([6],[1 3]);t=ts:dt:te;y=step(sys,t);plot(t,y);xlabel('Time(sec)')ylabel('h(t)')运行结果如有图所示:3-4程序如下:%program3_4x=[0.85,0.53,0.21,0.67,0.84,0.12]; y=[0.68,0.37,0.83,0.52,0.71];z=conv(x,y);n=length(z);stem(-3:n-4,z);运行结果如有图所示:3-7某离散时间LTI系统满足差分方程Y[k]+0.42y[k-1]-0.19y[k-2]=0.31x[k]+0.68x[k-1],若x(t)=0.6ku(k)试求系统的零状态响应Yzs(k),并画出前20点图。

程序如下%program3_7k=0:100;a=[1,0.42,-0.19];b=[0.31,0.68];A=1;a=0.6;xk=A*a.^k;stem(k,xk)y=filter(b,a,xk);axis([0,20,0,1])xlabel('k');ylabel('Yzs[k]')运行结果如右图所示:3-8某离散时间LTI系统满足差分方程Y[k]+0.7y[k-1]-0.45y[k-2]-0.6y[k-3]=0.8x[k]-0.44x[k-1]+0.36x[k-2]+0.02x[k],试利用impz函数求其单位脉冲响应,,并画出前30点图。

程序如下:%program3_8k=0:100;a=[1 0.7 0.45 0.6];b=[0.8 -0.44 0.36 0.02];h=impz(b,a,k);stem(k,h)axis([0,30,-1,0.8])运行结果如右图所示:实验三M4-1 试求题M4-1图所示周期矩形信号和周期三角波信号的频谱,并画出频谱图,取A=1,T=2。

得如下程序4_1_1程序如下k=-4:0.01:4;A=1;T=2;w0=2*pi/T;xk=A*square(w0*k,50); k1=-4:4;N=length(k);k1=(0:N)*0.5*T;x=A*square(w0*k1,50);X=fft(x);subplot(3,1,1)stem(k1,real(X))xlabel('k');title('X[k]的实部');axis([0,40,-20,60])subplot(3,1,2)stem(k1,imag(X));xlabel('k');title('X[k]的虚部');axis([0,40,-20,60])xr=ifft(X);subplot(3,1,3)stem(k1,xr)axis([0,40,-2,2])xlabel('k');title('重建的X[k]');4-1-2 程序如下:k1=-4:0.001:4;N=length(k);k1=(0:N)*0.5*T;x=0.5*sawtooth(w0*k1,0.5)+0.5;X=fft(x);subplot(3,1,1)stem(k1,real(X))xlabel('k');title('X[k]的实部');axis([0,40,-20,60])subplot(3,1,2)stem(k1,imag(X));xlabel('k');title('X[k]的虚部');axis([0,40,-20,60])xr=ifft(X);subplot(3,1,3)stem(k1,xr)axis([0,40,-2,2])xlabel('k');title('重建的X[k]');运行结果如有图所示:M4-4 试利用MATLAB计算下列连续信号的频谱X(jw),画出频谱图4-4-1程序如下:t u=t u-t-t xt ut u=t x)[)((2)];2cos()()1(-)(()()2();2-function yt=u(t)yt=0*(t<0)+1*(t>=0);function yt=xx1(t,w);yt=(u(t)-u(t-2)).*exp(-j*w*t);w=linspace(-6*pi,6*pi,512);N=length(w);X=zeros(1,N);for k=1:NX(k)=quadl('xx1',0,2,[],[],w(k));endplot(w,real(X));xlabel('\omega');ylabel('X(j\omega)');运行结果如有图所示:4-4-2程序如下:function yt=u(t)yt=0*(t<0)+1*(t>=0);function yt=xx2(t,w);yt=cos(2*t).*(u(t)-u(t-2)).*exp(-j*w*t);w=linspace(-6*pi,6*pi,512);N=length(w);X=zeros(1,N);for k=1:NX(k)=quadl('xx2',0,2,[],[],w(k));endplot(w,real(X));xlabel('\omega ');ylabel('X(j\omega)');运行结果如下图所示:M4-2 (1)若以90.0||2||1220>=∑+=PC C Nn n 定义信号的有效带宽,试确定题M4-1图所示信号的有效带宽0w N ,取A=1,T=2;(2)画出有效带宽内有限项谐波合成的近似波形,并对结果加以讨论和比较;(3)增加谐波的项数,观察其合成的近似波形,并对结果加以讨论和比较;得如下程序::function y=x1(t,w);y=cos(2*t).*(t>=0&t<=2).*exp(-j*w*t);w=linspace(-6*pi,6*pi,1024);N=length(w);X=zeros(1,N);for k=1:NX(k)=quadl('x1',0,2,[],[],w(k)); end figure(1)plot(w,real(X));xlabel('\omega ');ylabel('X(j\omega )'运行结果如右图所示:M4-3 求题M4-3图所示周期矩形信号的幅度频谱,并画出频谱图。

相关文档
最新文档