K—H—V型渐开线少齿差行星传动的建模设计与CAD技术
全自动洗衣机减速离合器文献综述
毕业设计(论文)文献综述洗衣机减速离合器综述1 引言随着洗衣机质量不断提高和居民购买能力的增强,洗衣机行业迎来了成熟期之后市场需求的提升,人们在注重产品品质和价格的同时,对产品外观和功能的要求也越来越高,目前,国内大部分洗衣机的外观都相差不大,只有中外合资企业LG、三星、松下、惠而浦、东芝、夏普等的外观较为独特。
近年来,许多新技术和新工艺应用于洗衣机上,例如:离心原理应用、无离合器技术、波轮与内桶一体化技术、无孔内桶技术等等[1]。
2 国内外现状2.1国外少齿差行星齿轮传动的研究德国人最早提出摆线针轮行星齿轮传动原理,三十年代后期日本开始研制生产这种传动,由于当时工艺条件落后,齿形2ha-精度很低,因而产量不高,直到六十年代摆线磨庆的出现,从工艺上保证了摆线齿形的精度,才促进了这种传动的发展,摆线针轮传动是少齿差传动中应用最广泛、最基本的一种类型,在此基础上还发展了二齿差传动,复合齿形、行星轴承与偏心套合并等新结构。
摆线针轮传动承载能力高,运转平稳,效率高,寿命长。
但加工精度要求高,结构复杂。
后来的渐开线少齿差传动,其原理与摆线少齿差基本相同,主要区别在于其内外齿轮的齿廓曲线,轮齿结构简单、啮合接触应力小,承载能力高,可以采用软齿面,加工也容易得多。
虽然苏联学者在1949年从理论上解决了实现一齿差传动的几何计算问题,但直到六十年代以后,随着电子计算机的普及运用,渐开线少齿差传动才得到了较专迅速的发展。
目前有柱销式、零齿差、十字滑块、浮动盘等多种形式。
在六十年代,国外就开始探讨圆弧少齿差传动,到七十年中期,日本已开始乾地圆弧少齿差行星减速器的系列化生产。
这种传动的特点在于行星轮的齿廓曲线凹圆弧代替了摆线,轮齿与针齿在啮合点的曲率方向相同,形成两凹凸圆弧的内啮合,从而提高了轮齿的接触强度和啮合效率,其针齿不带齿套,并采用半埋齿结构,既提高了变曲强度又简化了针齿结构[2]。
近几十年来,又相继出现了一些新的少齿差传动形式,其中发展较快的有活齿少齿差传动、锥齿少齿差传动、双曲柄输入式少齿差传动以及利用弹性变形来传递运动的谐波传动。
2K-H差动轮系动力学建模与仿真分析
振动,取逆时针方向为正。 差动轮系传动的纯扭振动力学模型如图 2 所示 (图中未绘出阻尼符号 ):
ψ n —第 n 个行星轮与水平方向的夹角;
图1 2K-H 型差动轮系结构简图
1
动力学模型
差动轮系动力学模型用到如下几个假设 [4]: ( 1 )将系统视为集中参数系统; ( 2 )各行星轮质量、转动惯量相同; ( 3 )忽略齿侧间隙的影响; ( 4) 仅考虑三个中心构件和各个行星轮的扭转
ui —各个旋转件的扭转位移,ui = riθi , 式中 ri ,
图2
2K-H 差动轮系纯扭振动力学模型
图中:
k ju —第 j 个构件的回转支承刚度( j = c, r , s
分别代表行星架、齿圈、太阳轮)
krn — 第 n 个 行 星 轮 与 内 齿 圈 的 时 变 啮 合 刚 度
( n = 1, 2,..., N ,下同)
k sn —第 n 个行星轮与太阳轮的时变啮合刚度;
[6 , 7] [5]
,并根据齿轮转动惯量、扭转角位移、
啮合阻尼计算啮合力大小,如图 3 所示。 图4
2
2K-H差动轮系虚拟样机模型
3、仿真分析
太阳轮驱动转速 700r/min,齿圈驱动转速为 1200r/min , 行星架负载为 800Nm, 仿真步长为 1e-5s, 仿真时间 1s。 各主要部件角速度如图 5所示, 由于啮合刚度的 变化,即使输入转速为恒定值,输出转速仍有波动。 输出转速均值为 1046r/min ,幅值为 23.1r/min 。输出 转速均值与理论计算值( 1047.22r/min )误差为 0.11%,可认为样机建立是正确的。
【毕业设计】新型少齿差行星齿轮减速机设计
【关键字】毕业设计专科毕业设计文献综述院(系);机电工程系专业:数控技术班级:0902姓名:寇超学号: 00201 1年11 月12日专科生毕业设计文献综述评价表少齿差行星齿轮减速器的设计文献综述1 少齿差行星齿轮减速器的特点随着现代工业的高速发展,机械化和自动化水平的不断提高,各工业部门需要大量的减速器,并要求减速器体积小,重量轻,传动比范围大,效率高,装载能力大,运转可靠以及寿命长等。
减速器的种类虽然很多,但普通的圆柱齿轮减速器的体积大,结构笨重;普通的蜗轮减速器在大的传动比时,效率较低;摆线针轮行星减速器虽能满足以上提出的要求,但成本较高,需要专用设备制造;而渐开线少齿差行星减速器不但基本上能满足以上提出的要求,并可用通用刀具在插齿机上加工,因而成本较低。
能适应特种条件下的工作,在国防,冶金,矿山,化工,纺织,食品,轻工,仪表制造,起重运输以及建筑工程等工业部门中取得广泛的应用。
渐开线少齿差行星减速器具有以下优点:1.结构紧凑、体积小、重量轻由于采用内啮合行星传动,所以结构紧凑;当传动比相等时,与同功率的普通圆柱齿轮减速器相比,体积和重量均可减少三分之一至三分之二;2.传动比范围大N型一级减速器的传动比为10~100以上;二级串联的减速器,传动比可达一万以上;三级串联的减速器,传动比可达百万以上。
NN型一级减速器的传动比为100~1000以上;3.效率高N型一级减速器的传动比为10~100时,效率为80~94%;NN型当传动比为10~200时,效率为70~93%.效率随着传动比的增加而降低。
4.运转平稳、噪音小、装载能力大由于式内啮合传动,两啮合齿轮一位凹齿,一为凸齿,两齿的曲率中心在同一方向。
曲率半径接近相等,因此接触面积大,使轮齿的接触强度大为提高,又采用短齿制,轮齿的弯曲强度也提高了。
此外,少齿差传动时,不是一对轮齿啮合,而是3~9对轮齿同时接触受力,所以运转平稳,噪音小,并且在相同模数的情况下,其传递力矩臂普通圆周齿轮减速器大。
关于少齿差行星齿轮传动设计的新思路
( )传 动 比 范 围 大 , 级 传 动 比 为 1 2 单 0~10 0 0
传 动相 比具有 承载能力大 、 积小 、 体 效率高 、 总质量 以上 。 轻 、 动 比大 、 传 噪声 小 、 可靠 性 高 、 寿命 长 、 于 维 修 便 () 3 结构 形 式多 , 用范 围广 。 由于其 输人 轴 与 应 等优 点 , 同时 还 可 以提 高其 承 载能力 。渐 开线 少齿 差 输 出轴 可在 同一轴 线 上 , 也可 以不 在 同一 轴 线上 , 所 行星齿轮传动 以其适用于一切功率、速度范 围和一 以能适 应各 种机 械 的需要 。 切工作条件, 到了世界各 国的广泛关 注, 受 成为世 界 () 4 结构 紧凑 、 积小 、 体 总质 量轻 。 由于 采用 内啮 各 国在机械传动方面的重点研究方向之一。但 由于 合 行 星传 动 , 以结 构紧凑 。 所 其计算过程复杂 , 目前还不能广泛被应用。本课题开 () 5 效率高。当传动 比为 1 ~ 0 时 , 0 20 效率提高 发 了一个计算过程 , 对于解决此问题十分有效 , 实 了8 且 O% 一 4%。效率 随 着传 动 比的增加 而 降低 。 9 际应 用 效果 良好 。 () 6 运转平稳、 噪音小、 承载能力大。 由于是 内啮 合传动 , 啮合齿轮一为凹齿 , 两 另一为 凸齿 , 两者 的 曲率中心在同一方向 , 曲率半径又接近相 等 , 因此接 1 课题 开发背景及 国内外研究现状 触 面积 大 , 齿 轮 的接 触强 度 大 为提 高 ; 因采用 断 使 又 11 课题 开发 背 景 . 齿制 , 齿 的弯 曲强度 也提 高 了。 轮 本课 题 开 发是 与某 阀 门制 造 商进 行 合作 的 。在 此外 , 在少齿差传动时 , 不是一对轮齿啮合 , 而是 使 用 原 设 计理 论 基 础上 ,该 企业 生产 出 的齿 轮 啮 合 3~9对 轮齿 同时 接触 受 力 , 以运 转 平 稳 、 所 噪音 小 , 极 差 , 常 由工 人凭 经 验进 行 打磨 , 全破 坏 了齿 轮 并且在 相 同的模数 情况 下 , 传递 力矩 比普 通 圆柱 齿 通 完 其 基于 以上特 点 , 到机 器人 的关 节 、 到 小 大 的渐开线曲面 , 结果在运行 中的振动和噪声都很 大, 轮减速 器大 。 以及 从要 求不 高 的农 用 、 品机 械 , 食 到 而且 传动 不稳 。因此 , 本课 题将 MA 1B和辅 助制 造 冶金矿 山机械 , TA 软件结合 , 开发新 的制造过程 , 发挥出该类机械机构 要求较高的印刷和国防工业都有应用实例 。 应 有 的优 势和 特点 。 13 国 内外研 究现 状 . ・ 12 少 齿差 行星 齿轮 传 动的特 点 . 当内啮合的两渐开线齿轮齿数差很小时 ,极 易 少齿差行星齿轮传动具有以下优点 : 产生各种干涉 ,因此在设计 过程 中选择齿轮几何参 () 1 加工方便 、 制造成本较低。渐开线少齿差传 数 的技术 十 分复 杂 。早 在 14 9 9年 , 苏 联 学 着 就从 前 动的特点是用普通 的渐开线齿轮刀具和齿轮机床就 理论上解决了实现一齿差传 动的几何计算问题 。但 可以加工齿轮 , 不需要特殊的刀具和专用设备 , 材料 直到 16 年代 以后 , 90 渐开线少齿差传动才得到迅速
渐开线少齿差行星传动的多目标优化设计
2 少齿差行 星传动系统 的优 化设计
21 设 计 变量 .
在 行 星 轮 和 内 齿 轮 齿 数 、 模 数 确 定 的 情 况
收稿 日期 :2 1-1-1 01 0 0 作者简介:林 尚飞 (9 8 1 8 一) ,男 ,浙江金华 人 , 硕士研 究生,研究方 向为机 械设计及理论 。 f2 第 3卷 3J 4 第5 期 2 1 —0 ( ) 0 2 5上
比较 优化 设 计 与常规 设 计 的结 果 可知 :
1 )优 化 后 的渐 开 线 少齿 差行 星 齿 轮 采 用 非 标 准齿 形 角 ,正变 位 ,超 短齿 ,并 且 是 正传 动 。 2 内外 齿轮 均采 用 了较 大 的正 变 位 ,齿 根厚 )
方 向
和 步长 因子 a , 使 下 一 个 迭 代 点
1输 入 轴 2内 齿 轮 3外 齿 轮 4滚 筒 5转 臂 轴 承 一 一 一 一 一 6固 定 盘 轴 7右 支座 8底 座 9柱 销 l一 支 座 一 . 一 一 0左 图 1 渐 开 线 少 齿 差 行 星 传 动 在 绞 车 上 的 应 用
多 目标 优 化 ,但 都 没 有 把 齿 轮 齿 形 角 作 为 设 计 变
l
匐 化
渐开 线少 齿差行星传 动的 多 目标优化设 计
Muli b e tv p i ia i nd sgno v u e e t e h dfe e c ln t r t- j c ie o tm z to e i fi olt sf w e t i r n e pa e a y o n f
的 实 例 ,如 广 东 梅 田煤 机 厂 已批 量 生 产 用 于 井 下 的J I 型渐 开 线 少 齿 差式 调 度 绞 车 。钟 相 副 D—M 对 渐 开 线 少齿 差 行 星 传 动 的齿 轮 体 积 作 了 优 化 ,楼 锡 银 对 少 齿 差 行 星 传 动 的 啮 合 角 和 重 合 度 作 了
少齿差行星齿轮传动分析及应用
少齿差行星齿轮传动分析及应用摘要:少齿差行星齿轮传动由行星齿轮传动演变而来,由于行星齿轮副内外齿轮的齿数相差很少,因此简称少齿差传动,通常指渐开线少齿差行星齿轮传动。
少齿差轮系按传动形式可分为N型和NN型,其输出机构又设计成多种形式,文章分析轮系传动比的计算方法,对其典型结构的效率计算做了阐述,少齿差传动以其大传动比、小体积、轻重量、传动效率高等优点,在化工、轻工、冶金等机械设备中获得广泛应用。
关键词:少齿差传动;传动比;传动效率Abstract: the less tooth differenced planetary gear transmission of planetary gear transmission by evolved, by the planet gear pair of internal and external gear are very few number, so fewer tooth difference as transmission, usually refers to the involute less tooth differenced planetary gear transmission. Less tooth was sent by the transmission forms can be divided into N type and NN type, its export agencies and design into a variety of forms, this paper analyzes the calculation method of gear transmission ratio, the typical structure of the calculation efficiency paper and less tooth difference with its large transmission transmission, small volume, light weight, high transmission efficiency advantage, in the chemical industry, the light industry, metallurgy, and other machinery and equipment were widely available.Keywords: less tooth difference transmission; Transmission ratio; Transmission efficiency中图分类号:U463.212+.42 文献标识码:A文章编号:少齿差行星齿轮传动是由行星齿轮传动演变而来,是行星齿轮传动中的一种特殊的轮系。
浅谈渐开线少齿差行星齿轮传动的特点及发展前景
图 E
图 F
图 3 轴销输 出机构和浮动盘式结构
而 浮动 盘 式 结 构 较 简 单 , 图 3的 F图 , 用 如 采
传动 , 但浮 动盘本 身加 工要 求较 高 , 且其工 作效 率 而
和承载 能力 还缺乏 测 试数据 。
一
传 递平行 轴运 动 的浮动盘 机构 作为输 出机 构 。它 比
而齿数 不 同的两个 内齿 轮副组 成 。其 结构 如 图 2的 C图所示 , 由两 个 中心 轮 ( 内齿 轮 ) 即 和一个 行 星架
啮合齿 轮 副 。H 是 输 入轴 , 是 输 出轴 。 当 电动机 V 带动偏 心轴 转动 时 , 行星 齿轮 与 内齿 轮啮合 , 由于 内 齿轮 2固定 不动 , 迫使双 联行 星轮既绕 内齿 轮公转 ,
・
2 ・ 4
a" 用 F
汽
车
21 第 1 0 1年 期
★ 设 计 ・ 验 ・ 究 ★ 试 研
又绕 自身 中心 自传 , 带动 内齿轮 4输 出运 动 , 而达 从 到传 动 的 目的 。有 时 , 型 行 星 传 动 也 可设 计 成 NN 外 齿轮输 出的结构 形式 , 图 2的 D 图 。 如
W
图A 图 1 N型 少 齿 差行 星齿 轮 传 动
图B
1 2 NN型 少齿 差行星 齿轮传 动 .
( 即偏心 轴 ) 成两级 行星 传动 。 由其 中的齿 轮 1 组 及
3为双联 外齿轮 , 1与 2 3与 4分别 为两对少 齿差 内 ,
N 型行 星齿 轮传 动 可 以实 现 大 传 动 比传 动 , N 是一种 典型 的行 星齿 轮 传 动形 式 , 般 由模 数 相 同 一
渐开线少齿差行星齿轮传动
渐开线少齿差行星齿轮传动1. 介绍渐开线少齿差行星齿轮传动是一种常用于机械传动系统中的重要装置。
它具有紧凑结构、高承载能力、平稳传动等优点,广泛应用于汽车、船舶、工程机械等领域。
本文将对渐开线少齿差行星齿轮传动进行全面详细的介绍,包括其原理、结构、工作方式以及应用领域等方面。
2. 原理渐开线少齿差行星齿轮传动是通过行星架上的多个行星轮与太阳轮和内圈齿圈之间的啮合来实现转速变换和扭矩传递的。
其中,太阳轮为输入端,内圈齿圈为输出端。
在渐开线少齿差行星齿轮传动中,太阳轮和内圈齿圈固定不动,而行星架上的多个行星轮则绕着自身的轴线旋转,并且同时绕着太阳轮中心的固定点运动。
这样,在行星架上的行星轮与太阳轮以及内圈齿圈之间形成了多个渐开线啮合副。
行星架上的行星轮与太阳轮之间的啮合使得行星架绕自身轴线旋转,而行星轮与内圈齿圈之间的啮合则使得内圈齿圈绕输出端轴线旋转。
因此,通过调节太阳轮和内圈齿圈的相对位置和转速比,就可以实现输入端到输出端的转速变换和扭矩传递。
3. 结构渐开线少齿差行星齿轮传动由太阳轮、内圈齿圈、行星架以及行星轮等组成。
•太阳轮:位于传动装置的输入端,固定不动。
•内圈齿圈:位于传动装置的输出端,通过啮合与行星架上的行星轮实现输出。
•行星架:连接太阳轮和内圈齿圈,并且支撑着多个行星轮。
•行星轮:位于行星架上,并且通过啮合与太阳轮和内圈齿圈实现转速变换和扭矩传递。
4. 工作方式渐开线少齿差行星齿轮传动的工作方式可以分为以下几个步骤:1.输入端的太阳轮通过输入轴将动力传递给行星架上的行星轮。
2.行星架上的行星轮绕着自身的轴线旋转,并且同时绕着太阳轮中心的固定点运动。
3.行星轮与太阳轮之间的啮合使得行星架绕自身轴线旋转,从而实现转速变换。
4.行星架上的行星轮通过啮合与内圈齿圈,将动力传递给输出端。
由于渐开线少齿差行星齿轮传动采用了多个渐开线啮合副,因此可以实现平稳传动和较大扭矩输出。
5. 应用领域渐开线少齿差行星齿轮传动由于其紧凑结构、高承载能力和平稳传动等优点,在许多领域得到了广泛应用,包括但不限于以下几个方面:•汽车工业:用于汽车变速器、前后桥等部件中,实现转速变换和扭矩传递。
少齿差行星齿轮传动的设计计算与计算机辅助设计
第4卷 第6期光学 精密工程Vo l.4,N o.6 1996年12月OPTICS AND PRECISION ENGINEERING D ecember,1996少齿差行星齿轮传动的设计计算与计算机辅助设计陈岱民 温 坚 何 平 赵明晶(长春大学机械工程学院,长春130022) 摘要 阐述了以少齿差行星齿轮传动的设计计算方法及计算机辅助设计方法。
内容包括工作原理、参数选择、几何计算、流程框图以及变位系数选择表等。
文中根据所设计的程序,计算了284种少齿差内啮合齿轮副的几何参数并附有计算实例。
实践表明,文中给出的设计计算方法是正确的,可供少齿差传动设计参考。
关键词:少齿差;变位系数;齿廓重迭干涉;重合度1 引 言 少齿差行星齿轮传动是以齿数差相差甚少的圆柱内齿轮副为传动元件的一种行星传动。
它具有传动比大、重量轻、结构简单、效率高、寿命长等特点。
因此,广泛应用于起重、运输、矿山、冶金、造船、建筑、农机、水利、轻工仪表、食品化工以及国防工业等部门。
但少齿差行星轮传动,由于内齿轮与外齿轮齿数相差甚少,在传动过程中易产生干涉,且计算比较复杂,参数选择过程繁锁,因此有待开发新的设计计算方法。
为此,本文采用CAD方法,设计了少齿差传动的计算机程序,计算了齿数差Z2-Z1=1~4的内啮齿轮副的变位系数,并列出了变位系数选择表。
根据该表可方便地进行少齿差传动计算。
实践表明文中给出的设计方法是正确的,计算数据是可靠的,可满足传动比i=30~100和齿数差Z2-Z1=1~4范围内的Z-X-V型少齿差行星齿轮传动的设计计算要求,可供少齿差传动设计参考。
2 工作原理 少齿差行星齿轮传动的型式有N型内啮合齿轮传动(Z-X-V型)和NN型双联行星轮内啮合齿轮传动(2Z-X型)两种。
其工作原理与传动比计算公式示于表1。
其中,Z-X-V型应用较多,它是由一组内啮齿轮副组成的,并需采用输出机构将其行星轮自身回转运动以1∶1的传动比传输给输出轴,其传动比一般i≤100。
行星齿轮减速器设计说明书
一齿差渐开线行星齿轮减速器设计摘要本毕业设计的目标是设计一齿差渐开线行星齿轮减速器。
本减速器属于K-H-V型。
K 表示行星轮,H表示转臂,V表示输出轴。
由于行星轮与内齿轮齿数差为1,所以叫“一齿差”,可以实现很大传动比。
行星轮少齿差行星齿轮减速器具有结构紧凑、体积小、重量轻、传动平稳、效率高、传动比范围大等优点,在许多情况下可以代替多级的普通齿轮传动。
但齿轮必须修正,即选定一对变位系数。
设计时首先在一齿差齿轮传动的基础上进行机构的运动设计,包括几何尺寸的计算、强度校核计算等。
设计时要满足几个条件,即要保证啮合率不小于1、齿顶不相碰、不发生齿廓重迭干涉,然后对主要零件进行详细的受力分析和设计计算,从而进行装配结构的设计,并最终在AutoCAD环境下绘出减速器的装配图和零件图。
另外,还在pro-engineer环境下实现三维建模,并对减速器传动进行相关的分析。
关键词:减速器一齿差变位 pro-engineerThe design of one tooth difference involute planetary gear reducerAbstractMy design goal is a kind of one tooth difference involute planetary gear reducer. The reducer belonging to the K-H-V type. K stands for planetary gear, H stands for tumbler, and V stands for output axle. The tooth difference between the planetary gear and the internal gear is one, therefore it can achieve a large transmission ratio. Planetary gear with few teeth difference planetary gear reducer has the advantages of compact structure, small volume, light weight, stable transmission, high efficiency, wide range of transmission ratio etc, in many cases can replace the multistage ordinary gear drive. But the gear must be trimmed, that is to selecte a pair of displacements coefficient. When I design it, first of all, I do the motion design of mechanisms at the base of one gear tooth difference movement, which includes geometry size calculation and strength checking calculation. The design must meet several conditions, we must ensure that the coincidence should not be less than one, no collision between top gear teeth, and no profile overlapping interference, then make detailed stress analysis and design calculation of the main parts, thus design the assembly structure, and ultimately drawn in AutoCAD environment the reducer assembly and main parts. In addition, achieve three-dimensional modeling in pro-engineer environment to conduct relevant analysis.Key words:reducer one tooth difference displace pro-engineer目录1.前言 (4)1.1课题来源 (4)1.2产品的发展与研究 (4)1.3渐开线少齿差行星传动 (5)1.4 渐开线少齿差行星传动减速器工作原理 (6)1.4.1少齿差行星齿轮传动基本原理 (6)1.4.2实现少齿差行星传动的条件 (7)2.传动方案的总体设计 (7)2.1拟定传动方案 (7)2.2电机的选择 (8)2.3 选择W机构 (8)2.4零件材料和热处理的选择 (9)3.减速装置的设计 (9)3.1齿轮齿数的确定 (9)3.2模数的确定 (10)3.3齿轮几何尺寸的设计计算 (12)3.4偏心轴的设计 (20)3.5销轴及销轴套的选择 (21)3.6浮动盘的设计 (22)3.7输出轴的设计 (22)4.主要零件的校核 (23)4.1偏心轴的校核 (23)4.2销轴的弯曲强度校核 (25)4.3销轴套与滑槽平面的接触强度校核 (26)4.4轴承的校核 (27)5.一齿差行星传动效率计算 (27)5.1行星机构的啮合效率计算 (28)5.2输出机构效率计算 (29)5.3转臂轴承的效率计算 (30)5.4 总效率计算 (30)6.减速器的润滑与密封与固定 (30)7.三维建模 (30)7.1零件建模 (30)7.2虚拟装配及爆炸视图 (36)结束语 (37)参考文献 (38)致谢....................................................... 错误!未定义书签。
2K-H行星齿轮传动优化设计数学 建模与解算
2K-H行星齿轮传动优化设计数学建模与解算引言行星齿轮传动是一种常见的机械传动方式,广泛应用于各种设备和机械系统中。
优化设计行星齿轮传动,可以提高传动效率、减小体积和重量,从而实现更高的性能和更低的成本。
数学建模与解算是优化设计的重要步骤,通过数学模型,可以准确地描述齿轮传动系统的工作原理和性能参数,通过数值计算和优化算法,可以找到最优的设计参数和工作状态。
本文针对2K-H行星齿轮传动进行优化设计数学建模与解算的研究,通过数学分析和计算,找到最佳的参数组合和工作状态,为行星齿轮传动的优化设计提供理论和技术支持。
1. 2K-H行星齿轮传动的结构和工作原理2K-H行星齿轮传动是一种常见的行星齿轮传动结构,由太阳轮、行星轮、行星架、内齿轮和外齿轮等部件组成。
太阳轮和内齿轮由电机或其他动力装置驱动,行星轮由行星架支撑,并围绕太阳轮和内齿轮旋转,外齿轮则与行星轮啮合并输出动力。
通过这种结构,2K-H行星齿轮传动可以实现多种不同的传动比和输出方向,是一种灵活、高效的传动方式。
优化设计齿轮传动需要准确地描述和计算传动系统的性能参数,其中包括传动比、效率、载荷能力、寿命和噪音等。
对于2K-H行星齿轮传动而言,传动比是一个重要的参数,通过调整太阳轮、行星轮和内齿轮的尺寸和数量,可以实现不同的传动比。
效率是另一个关键参数,它直接影响传动系统的能量损失和发热,通过优化齿轮几何形状和啮合参数,可以提高传动效率。
载荷能力、寿命和噪音也是需要考虑的性能参数,它们与齿轮材料、加工工艺和润滑方式等因素有关。
基于建立的数学模型,可以进行2K-H行星齿轮传动的优化设计。
需要确定优化的目标和约束条件,例如最大化传动比、最大化效率或最小化体积和重量。
然后,可以采用数学优化算法,如遗传算法、粒子群算法和模拟退火算法,搜索最优的设计参数组合和工作状态。
数学优化算法包括了全局搜索和局部搜索两个方面,能够得到全局最优解或局部最优解,根据实际情况选择合适的算法和计算策略。
齿厚偏差
1) Limet deviation of tooth thickness齿厚极限偏差公法线平均长度极限偏差2) Tooth thickness齿厚1.The stress and tooth flank clearance distribution of the gear under various conditions has been made clear,The correction, reasonable tooth thickness reductionand interference can be decided,and the dependable theory basis is provided for the design of the locomotive gear coupling.本文采用逐点分析计算法,对韶山_8型机车大功率齿轮联轴器的修形、齿面接触点轨迹及受力情况进行了分析,明确了各工况下轮齿的静力状态及齿面间隙量分布,可以确定修形方式及齿厚减薄量的合理性及干涉等问题,为机车用齿轮联轴器的设计工作提供了理论计算依据。
2.Deviation measurement of tooth thickness and conical point of straight bevel gear by using steel bail was studied and approached.对钢球法测量直齿圆锥齿轮齿厚及锥项位置误差检测进行了研究和探讨。
3) functional width of teeth功能齿厚4) tooth thickmess error齿厚误差5) teeth thickness calculation齿厚计算1.It is considered that there is short of introduction for teeth thickness calculation of involute helical cylindrical gear with end face module as standard in correlative documents,the article deduces the teeth thickness calculation equation taking end face as parameter,which has been put into practice.针对有关资料中对以端面模数为标准的渐开线斜齿圆柱齿轮的齿厚计算缺乏介绍的情况,自行推导出以端面为参数的斜齿轮之齿厚计算公式,并在实践中得到应用。
渐开线少齿差行星齿轮传动的设计理论及其研究(1)
渐开线少齿差行星齿轮传动的设计理论及其研究四川大学锦江学院机械工程系学生:魏金霖指导教师:牟柳晨【摘要】齿轮机构是在各种机构中应用最为广泛的一种传动机构。
其中行星齿轮传动与普通定轴齿轮传动相比较,具有质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点。
行星齿轮传动不仅适用于高速、大功率而且可用于低速、大转矩的机械传动装置上。
它可以用作减速、增速和变速传动,运动的合成和分解,以及其特殊的应用中,这些功用对于现代机械传动发展有着重要意义。
在起重运输、石油化工、医疗器械、仪器仪表、汽车、船舶、航空等领域均得到了广泛的应用。
本文将以渐开线少齿差行星齿轮减速器为例,根据目前国内外发展现状,分析渐开线少齿差行星齿轮传动的优缺点,以及对其传动原理进行一定点阐述。
在设计过程中对内啮合传动所产生的各种干预进行详细的分析和验算,以提高传动效率、精度以及提高其使用寿命为出发点,来选择减速器齿轮的模数等参数,进行渐开线少齿差内齿轮副的设计计算,从而最终合理的设计出渐开线少齿差行星齿轮减速器结构。
【关键词】渐开线少齿差行星齿轮目录绪论 (1)1.概述 (1) (2) (2)N 型少齿差行星减速器 (3)NN 型少齿差行星减速器 (4) (6) (6) (6)选题意义 (6)设计任务 (7)2.减速器结构型式选择 (7)2.1减速器的选型 (7)3.减速器的内齿轮和外齿轮的参数确定 (8) (8) (9)3.3 啮合角及变位系数确定 (9)确定啮合角'α和内齿轮变位系数b x 及外齿轮变位系数c x (9)取c x 的初始值(0)c x =0,计算几何尺寸及参数 (10)计算四个偏导数 (11)3.4 计算(1)c x 、(1)b x 及相应的'α (13)4.几何尺寸计算及主要限制条件检查 (14) (14)4.1.1径向切齿干预 (14)插齿啮合角'0b α (15) (16)4.2.1展成顶切干预 (16)齿顶必须是渐开线 (16)切削外齿轮的限制条件检查 (16)内啮合其他限制条件检查 (16)4.4.1渐开线干预 (16)外齿轮齿顶与内齿轮齿根过度曲线干预 (16)内齿轮齿顶与外齿轮齿根过渡曲线干预 (17)顶隙检查 (17) (19)转臂轴承寿命计算 (19)5.2销轴受力 (20)销轴的弯曲应力 (21)几何尺寸确实定 (21)销套与浮动盘平面的接触应力 (21)6.效率计算 (22)啮合效率 (22)一对内啮合齿轮的效率 (22)行星机构的啮合效率 (22) (22)转臂轴承效率 (23)总效率 (23)7.轴的相关设计 (23)7.1轴的材料选择 (24) (24)输入偏心轴的结构设计 (25)输出轴的机构设计 (25)选择轴的材料及热处理方式 (26)计算轴的最小轴径 (26)计算轴上的转矩和齿轮作用力 (27)8.箱体与附件的设计 (27) (27)减速器箱体材料和尺寸确实定 (29) (29)配重设计 (29)减速器附件设计 (30)参考文献 (32)附录 (33)致谢 (34)绪论齿轮的发展史几乎与人类的文明同步,早在西元前2000年左右,中外历史上就已经有了使用齿轮的记载。
机械创新设计实例分析
输入运动的位移函数 非线性函数 非线性函数
第二十八页,共46页。
表9-3 根据(gēnjù)输出运动函数的数学性质划分原动机的类型
原动机类型 线性原动机 非线性原动机
输出运动的位移函数 线性函数
非线性函数
举例 普通直流马达,普通交流马达
步进马达,伺服马达
二、凸轮机构的主动控制(kò ngzhì)
将控制(kò ngzhì)系统与凸轮机构结合起来,融合其优点, 改善凸轮机构的动态特性,并使凸轮机构标准化,为凸轮机 构的发展开辟出新的途径。
主动。
i
K HG
1 iHGK
1 zG zG zK
zK zK zG
(3)外齿中心轮的齿形综合 (4)外激波摆动活齿传动的优缺点
第二十页,共46页。
第二十一页,共46页。
1)省掉了少齿差传动中的W输出机构 2)提高了摆动活齿与激波器高副的接触强度 3)外齿中心轮K的特点 4)外激波器的尺寸大,动平衡性能差 2.带传动的选择 图9-14a所示为带传动的一种从动带轮结构。如图9-14b所 示,齿轮(chǐlún)副合状态和轴承4的受力状态都得到改善,取得 极好效果。称这种结构的带轮为卸荷带轮。带传动的从动带轮仍 采用卸荷结构。
能传递运动和扭矩的,所以必须要用三片以上的内齿轮才能正常
地工作。
3.运动学分析
iHGK
zK zG zK
4.外平动齿轮传动的特点 (1)传动比大、分级密集,单级传动比在11~99之间,双级传动比
可达9801。 (2)承载能力大 啮合时几乎是面接触,齿面赫兹应力小。单个转
臂轴承变换为多个转臂轴承分担载荷,转臂轴承的寿命可达两万 小时,且转臂轴承等基本(jīběn)构件不受内齿轮尺寸的限制,可 以按强度要求确定,利于按强度进行优化设计。
2K-H行星齿轮传动优化设计数学 建模与解算
2K-H行星齿轮传动优化设计数学建模与解算引言一、传动原理2K-H行星齿轮传动是一种常用的行星齿轮传动形式,由一个太阳轮、一个行星轮、一个内齿圈和一个行星架组成。
太阳轮和行星轮之间通过行星架相连,内齿圈与行星架相连。
其中太阳轮是输入端,内齿圈是输出端,行星轮为中间齿轮。
当太阳轮旋转时,通过行星架和行星轮的连动,驱动内齿圈旋转,实现功率传递。
二、传动优化设计1.参数选择在进行2K-H行星齿轮传动的优化设计时,首先需要选择一组合适的参数,包括模数、齿数、齿轮轴距、啮合角等。
这些参数的选择将直接影响传动的效率、噪音、振动等性能指标。
通过合理选择传动参数,可以实现传动性能的最优化。
2.齿形设计齿形是影响行星齿轮传动性能的重要因素之一,通过优化设计齿形可以提高传动效率、降低噪音和振动。
齿形设计的关键在于根据传动要求和受力情况,选择合适的齿形曲线,使齿轮啮合时满足一定的啮合条件,如啮合传动比、啮合角等。
3.啮合分析在进行2K-H行星齿轮传动的优化设计时,需要进行啮合分析,即对传动系统中各个齿轮的啮合情况进行分析。
通过啮合分析可以获得齿轮啮合面的接触应力、压力角、圆周速度等重要参数,为传动系统的优化设计提供依据。
三、数学建模与解算1.齿轮啮合模型2.传动效率计算传动效率是评价2K-H行星齿轮传动性能的重要指标,通过传动效率计算可以评估传动系统的能量损失情况,为传动系统的优化设计提供依据。
传动效率的计算需要考虑传动系统中各个齿轮的滑动、摩擦、变形等能量损失情况。
3.优化设计算法为实现2K-H行星齿轮传动的优化设计,需要借助优化设计算法进行设计计算。
常用的优化设计算法包括遗传算法、粒子群算法、模拟退火算法等。
通过运用优化设计算法,可以对传动参数进行优化设计计算,实现传动系统性能的最优化。
行星齿轮传动课程设计
行星齿轮传动课程设计目录一.绪论 (3)1.引言 (3)2.行星齿轮传动的特点及国内外研究现状 (4)(1)行星齿轮传动的特点及应用 (4)(2)国内外的研究状况及其发展方向 (5)3.本文的主要内容 (7)二.机构简图的确定 (7)三.齿形与精度 (8)四.齿轮材料及其性能 (8)五.设计计算 (9)1.配齿数 (9)2.初步计算齿轮主要参数 (10)(1)按齿面接触强度计算太阳轮分度圆直径 (10)(2)按弯曲强度初算模数 (11)3.几何尺寸计算 (12)4.重合度计算 (14)5.啮合效率计算 (14)六.行星轮的强度计算 (15)七.疲劳强度校核 (19)1.外啮合 (19)(1)齿面接触疲劳强度 (19)(2)齿根弯曲疲劳强度 (22)2.内啮合 (25)八.安全系数校核 (26)九.零件图及装配图 (29)十.参考文献 (30)一.绪论1.引言渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。
渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。
渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。
NGW型行星齿轮传动机构的主要特点有:1、重量轻、体积小。
在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3;2、传动效率高;3、传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高;4、装配型式多样,适用性广,运转平稳,噪音小;5、外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。
2K-H行星齿轮传动优化设计数学 建模与解算
2K-H行星齿轮传动优化设计数学建模与解算2K-H行星齿轮传动是一种常用的传动方式,具有结构紧凑、传动比大、承载能力高等优点。
传统的设计方法往往依靠经验和试验,难以对传动系统进行精确的优化设计。
利用数学建模与解算技术进行2K-H行星齿轮传动的优化设计具有重要意义。
本文将介绍2K-H行星齿轮传动的数学建模及优化设计的相关内容。
1. 2K-H行星齿轮传动的结构及传动原理2K-H行星齿轮传动由两组行星轮、太阳轮和内外环组成,其传动原理为太阳轮通过传动轴与驱动机构相连,内环固定,外环与机构输出相连,通过行星轮的转动实现传动功能。
行星轮与太阳轮的传动比与行星轮与外环之间的传动比不同,因此具有较大的传动比范围。
2. 2K-H行星齿轮传动的数学建模2K-H行星齿轮传动的数学建模是优化设计的基础,通过建立传动系统的数学模型,可以准确地描述传动系统的动力学特性,为优化设计提供依据。
传动系统的数学模型主要包括传动比、扭矩传递、齿轮啮合等方面的数学表达式。
这些表达式可以通过几何和力学原理推导得到,是优化设计的输入。
3. 2K-H行星齿轮传动的优化设计方法优化设计是通过数学建模求解一组最佳参数,使得传动系统的性能达到最优。
优化设计方法主要包括参数化建模、多目标优化、灵敏度分析等。
参数化建模是将传动系统的设计参数表示成一组数学变量,通过数学方法求解这些变量的最佳取值。
多目标优化是在考虑多个性能指标的情况下,寻找一组最佳参数,使得各个性能指标均达到最优。
灵敏度分析是通过求解传动系统的敏感性矩阵,找出影响传动系统性能的主要参数,为优化设计提供指导。
4. 2K-H行星齿轮传动的解算技术优化设计所依赖的数学建模和求解技术主要包括有限元分析、多体动力学分析、优化算法等。
有限元分析是将传动系统的结构离散化,通过有限元方法求解传动系统的动态响应、应力分布等。
多体动力学分析是将传动系统的每个构件抽象为多体系统,通过求解运动学和动力学方程求解传动系统的运动特性。
少齿差行星齿轮减速器的设计毕业设计
转臂轴承设计
转臂轴承的作用:支撑转臂,传递扭矩 转臂轴承的类型:滚动轴承、滑动轴承等 转臂轴承的选择:根据载荷、转速、工作环境等因素选择合适的轴承类型 转臂轴承的安装:确保轴承与转臂的配合精度,防止轴承过早磨损或损坏
少齿差行星齿轮减速器 的设计毕业设计
,a click to unlimited possibilities
汇报人:
目录
01 添 加 目 录 项 标 题 03 设 计 任 务 与 要 求 05 减 速 器 强 度 分 析 07 总 结 与 展 望
02 减 速 器 概 述 04 减 速 器 结 构 设 计 06 减 速 器 性 能 测 试
齿轮减速器:通过齿轮啮合实 现减速
蜗杆减速器:通过蜗杆和蜗轮 啮合实现减速
摆线针轮减速器:通过摆线针 轮啮合实现减速
谐波减速器:通过柔性元件的 弹性变形实现减速
少齿差行星齿轮减速器特点
结构紧凑:体积小,重量轻,便于安装和维护 传动效率高:传动比大,效率高,能耗低 承载能力强:能够承受较大的载荷和冲击载荷 噪音低:运行平稳,噪音低,适用于各种工作环境
设计内容:包括减 速器结构设计、传 动系统设计、润滑 系统设计等
设计标准:符合国 家标准和行业规范 ,满足使用环境和 使用要求
设计方法:采用计 算机辅助设计( CAD)、有限元分 析(FEA)等现代 设计方法进行优化 设计
设计流程
明确设计要求:满足减 速比、效率、寿命等要
求
制定设计方案:选择合 适的齿轮参数、结构形