约束问题的最优化方法

合集下载

第四章约束问题的最优化方法

第四章约束问题的最优化方法

当limr(k) 0 k
则(x, r(k) ) f (x) , xk * x *
例: 用内点法求
min
f
(x)

x2 1

x2 2
s.t. g( x) 1 x1 0 的约束最优解。
解:
首先构造内点惩罚函数: (
x,
r)

x2 1

x2 2

rk
ln(x1
1)
用解析法求函数的极小值,运用极值条件:
二. 直接解法:
基本思想:合理选择初始点,确定搜索方向,以迭代公式 x(k+1)= x(k)+α(k)S(k)在可行域中寻优,经过若干次迭代,收敛至最优点。 适用范围:只能求解不等式约束优化问题的最优解。
基本要点:选取初始点、确定搜索方向及适当步长。
搜索原则:每次产生的迭代点必须满足可行性与适用性两个条件。 可行性:迭代点必须在约束条件所限制的可行域内,即满足
1
u1 gu (x)
② .(x, r(k) )
m
f (x) r(k)
1
u1 gu (x)
③ .(x, r (k) )
f (x)
m
r (k) u u 1
1 gu (x)
其中:gu (x) 0,u 1,2,...m
其中:gu (x) 0,u 1,2,...m
gu(x)0, u=1,2,…,p
适用性:当前迭代点的目标函数值较前一点是下降的,即满足 F(xk+1)<F(xk)
收敛条件:
• 边界点的收敛条件应该符合 K-T 条件;
• 内点的收敛条件为: xk1 xk 1

最优化问题的约束条件处理方法

最优化问题的约束条件处理方法

最优化问题的约束条件处理方法在最优化问题中,约束条件是限制优化目标的条件。

对于一个最优化问题而言,约束条件的处理是至关重要的,因为它直接影响到问题的可行解集合以及最终的优化结果。

本文将介绍几种常见的约束条件处理方法,以帮助读者更好地理解和应用最优化算法。

一、等式约束条件处理方法等式约束条件是指形如f(x) = 0的约束条件,其中f(x)是一个函数。

处理等式约束条件的常用方法是拉格朗日乘子法。

该方法通过引入拉格朗日乘子,将等式约束条件转化为目标函数的一部分,从而将原问题转化为无约束问题。

具体而言,我们可以构造拉格朗日函数:L(x,λ) = f(x) + λ·g(x)其中,g(x)表示等式约束条件f(x) = 0。

通过对拉格朗日函数求导,我们可以得到原问题的最优解。

需要注意的是,拉格朗日乘子法只能处理等式约束条件,对于不等式约束条件需要使用其他方法。

二、不等式约束条件处理方法不等式约束条件是指形如g(x) ≥ 0或g(x) ≤ 0的约束条件,其中g(x)是一个函数。

处理不等式约束条件的常用方法是罚函数法和投影法。

1. 罚函数法罚函数法通过将约束条件转化为目标函数的一部分,从而将原问题转化为无约束问题。

具体而言,我们可以构造罚函数:P(x) = f(x) + ρ·h(x)其中,h(x)表示不等式约束条件g(x) ≥ 0或g(x) ≤ 0。

通过调整罚函数中的惩罚系数ρ,可以使得罚函数逼近原问题的最优解。

罚函数法的优点是简单易实现,但需要注意选择合适的惩罚系数,以避免陷入局部最优解。

2. 投影法投影法是一种迭代算法,通过不断投影到可行域上来求解约束最优化问题。

具体而言,我们首先将原问题的可行域进行投影,得到一个近似可行解,然后利用该近似可行解来更新目标函数的取值,再次进行投影,直到收敛为止。

投影法的优点是能够处理各种类型的不等式约束条件,并且收敛性良好。

三、混合约束条件处理方法混合约束条件是指同时包含等式约束条件和不等式约束条件的问题。

约束问题最优化方法

约束问题最优化方法
* * T * * * T * (1* , 2 ,, m ) 和 * ( 1 , 2 ,, m ) 使 Kuhn-Tucker 条 件 (9-6) 成 立 ,
且 对 满 足 下 述 (9-7) 、(9-8) 、(9-9) 三 条 件 的 任 意 非 零 向 量 z 有 (9-10) 成 立 , 则 x* 是 问 题 (9-1) 的 严 格 局 部 极 小 点 .
(1)
H ,定义集合
I ( x (1) ) {i g i ( x (1) ) 0,1 i l}
(1) x 为 点所有起作用约束的下标的集合.
可行下降方向的判定条件
g j ( x ) d 0 ( j I ( x ))
(1) T (1)
f ( x
(1)
) d 0
T
*
* j
必为零,在运用 K-T 条件求 K-T 点时,利用这一点可 以大大 地简化计算,另 外还要把约束条 件都加上.
2.求满足Kuhn-Tucker条件的点
例 9-1 求下列非线性规划问题的 Kuhn-Tucker 点.
min f ( x) 2x 2x1x2 x 10x1 10x2
线性无关.

* x* 是 (9-1) 的局部最优解,则比存在 * (1* , 2 ,, l* )T 和向量
* * T * (1* , 2 ,, m ) ,使下述条件成 立:
l m * * * * * f ( x ) j g j ( x ) i hi ( x ) 0 j 1 i 1 * * j g j ( x ) 0, j 1, 2, , l * j 0, i 1, 2, , l
2 1 2 2

非线性优化与约束优化问题的求解方法

非线性优化与约束优化问题的求解方法

非线性优化与约束优化问题的求解方法非线性优化问题是在目标函数和约束条件中包含非线性项的优化问题。

约束优化问题是在目标函数中加入了一些约束条件的优化问题。

解决这些问题在实际应用中具有重要意义,因此研究非线性优化和约束优化问题的求解方法具有重要的理论和实际意义。

一、非线性优化问题的求解方法非线性优化问题的求解方法有很多,下面介绍几种常见的方法:1. 黄金分割法:黄金分割法是一种简单但有效的搜索方法,它通过不断缩小搜索范围来逼近最优解。

该方法适用于目标函数单峰且连续的情况。

2. 牛顿法:牛顿法利用目标函数的一阶和二阶导数信息来逼近最优解。

该方法收敛速度较快,但在计算高阶导数或者初始点选取不当时可能产生不稳定的结果。

3. 拟牛顿法:拟牛顿法是对牛顿法的改进,它通过逼近目标函数的Hessian矩阵来加快收敛速度。

拟牛顿法可以通过不同的更新策略来选择Broyden-Fletcher-Goldfarb-Shanno(BFGS)方法或者DFP方法。

4. 全局优化方法:全局优化方法适用于非凸优化问题,它通过遍历搜索空间来寻找全局最优解。

全局优化方法包括遗传算法、粒子群优化等。

二、约束优化问题的求解方法约束优化问题的求解方法也有很多,下面介绍几种常见的方法:1. 等式约束问题的拉格朗日乘子法:等式约束问题可以通过引入拉格朗日乘子来转化为无约束优化问题。

通过求解无约束优化问题的驻点,求得原始约束优化问题的解。

2. 不等式约束问题的罚函数法:不等式约束问题可以通过引入罚函数来转化为无约束优化问题。

罚函数法通过将违反约束条件的点处添加罚项,将约束优化问题转化为无约束问题。

3. 逐次二次规划法:逐次二次规划法是一种常用的求解约束优化问题的方法。

该方法通过依次处理逐个约束来逼近最优解,每次处理都会得到一个更小的问题,直至满足所有约束条件。

4. 内点法:内点法是一种有效的求解约束优化问题的方法。

该方法通过向可行域内部逼近,在整个迭代过程中都保持在可行域内部,从而避免了外点法需要不断向可行域逼近的过程。

约束条件下的最优化问题

约束条件下的最优化问题

在约束条件下的最优化问题是指在一定的限制条件下,寻找使目标函数达到最大或最小值的最优解。

这类问题可以通过数学建模和优化算法来解决。

常见的约束条件包括等式约束和不等式约束。

等式约束要求某些变量之间的关系满足特定的等式关系,而不等式约束则要求某些变量之间的关系满足特定的不等式关系。

数学上,约束条件可以表示为:
1. 等式约束:g(x) = 0,其中g(x)是一个关于变量x的函数。

2. 不等式约束:h(x) ≤0,其中h(x)是一个关于变量x的函数。

最优化问题的目标函数可以是线性的、非线性的,甚至是在某些特殊情况下可能是非凸的。

根据问题的具体形式,可以选择适合的优化算法进行求解,如线性规划、非线性规划、整数规划等。

常见的优化算法包括:
1. 梯度下降法:用于求解无约束或有约束的凸优化问题,在连续可导的情况下通过迭代调整参数来逐步接近最优解。

2. KKT条件法:用于求解有约束的凸优化问题,通过构建拉格朗日函数和KKT条件来确定最优解。

3. 内点法:用于求解线性规划和凸优化问题,通过在可行域内寻找目标函数的最优解。

4. 遗传算法:用于求解复杂的非线性优化问题,通过模拟自然进化过程中的选择、交叉和变异操作来搜索最优解。

5. 模拟退火算法:用于求解非线性优化问题,通过模拟固体退火的过程来逐步降低温度并接近最优解。

在实际应用中,约束条件下的最优化问题广泛应用于工程、经济、运筹学、物流等领域。

通过合理地建立数学模型,并选择合适的优化算法,可以有效地解决这类问题,并得到最优解或接近最优解的结果。

约束问题的最优化方法

约束问题的最优化方法

m
⑤ .Φ ( x, r ) = f ( x) − r ∑ ln[− g u ( x)]
(k )
其中:惩罚(加权)因子 降低系数 c:
r ( 0 ) > r (1) > ....r ( k )
0< c <1
r ( k −1) ⋅ c = r ( k )
xk * → x *
当lim r ( k ) → 0
x ∈ D ⊂ Rn s.t. g u ( x ) ≥ 0, u = 1,2,..., p hv ( x ) = 0, v = 1,2,..., q min F ( x )
一. 约束优化问题解法分类: 约束优化方法按求解原理的不同可以分为直接法和间接法两类。
直接解法:随机方向搜索法、复合形法、可行方向法
其中:g u ( x) ≥ 0, u = 1,2,...m
③ .Φ ( x, r ) = f ( x) − ∑ ru ( k )
(k ) u =1
m
1 g u ( x)
④ .Φ ( x, r ) = f ( x) + r
(k )
(k )
(k )
1 ∑ 2 u =1 [ g u ( x )]
m u =1
k →∞
则Φ ( x, r ( k ) ) → f ( x) ,
) x12 + x22 例: 用内点法求 min f ( x=
s.t. g ( x ) = 1 − x1 ≤ 0
的约束最优解。
2 解: 首先构造内点惩罚函数:φ ( x , r ) = x12 + x2 − r k ln( x1 − 1)
(k ) u =1 m
lim r2 H [hv ( x ( k ) )] = 0

约束最优化方法

约束最优化方法

约束最优化方法
约束最优化方法是指通过给定约束条件,寻找目标函数的最优解。

以下是一些常用的约束最优化方法:
1. 拉格朗日乘子法:将约束最优化问题转化为无约束最优化问题,通过求解无约束最优化问题得到原问题的最优解。

2. 罚函数法:将约束条件转化为罚函数项,通过不断增加罚函数的权重,使目标函数逐渐逼近最优解。

3. 梯度下降法:通过迭代计算目标函数的梯度,沿着梯度的负方向搜索目标函数的最优解。

4. 牛顿法:通过迭代计算目标函数的Hessian矩阵,使用Hessian矩阵的逆矩阵乘以梯度向量来逼近最优解。

5. 遗传算法:模拟自然界的遗传机制,通过种群迭代的方式搜索最优解。

6. 模拟退火算法:模拟物理退火过程,通过随机搜索的方式搜索最优解。

7. 蚁群算法:模拟蚂蚁觅食行为,通过模拟蚂蚁的信息素传递过程来搜索最优解。

8. 粒子群算法:模拟鸟群、鱼群等群集行为,通过模拟粒子间的相互作用来搜索最优解。

这些方法各有优缺点,应根据具体问题选择合适的方法进行求解。

约束条件下的最优化问题

约束条件下的最优化问题

约束条件下的最优化问题约束条件下的最优化问题是数学和工程领域中的常见问题之一。

在这类问题中,我们需要找到一个满足一系列给定约束条件的最优解。

这类问题可以在多个领域中找到应用,包括经济学、物理学、工程学和计算机科学。

在解决约束条件下的最优化问题时,我们需要首先定义目标函数。

目标函数可以是一个需要最小化或最大化的数值指标。

我们需要确定约束条件,这些约束条件可能是等式或不等式。

约束条件反映了问题的实际限制,我们需要在满足这些限制的情况下找到最优解。

在解决这类问题时,一个常用的方法是使用拉格朗日乘子法。

这种方法基于拉格朗日函数的最优性条件,通过引入拉格朗日乘子来将约束条件融入目标函数中。

通过对拉格朗日函数进行求导,并解方程组可以找到满足约束条件的最优解。

在实践中,约束条件下的最优化问题可能会面临多个挑战。

问题的约束条件可能会很复杂,涉及多个变量和多个限制。

解决这些问题需要使用不同的数学工具和技巧。

问题的目标函数可能是非线性的,这使得求解过程更加复杂。

有时候问题可能会存在多个局部最优解,而不是一个全局最优解。

这就需要使用适当的算法来寻找全局最优解。

解决约束条件下的最优化问题有着重要的理论和实际价值。

在理论上,它为我们提供了了解优化问题的深入洞察和数学分析的机会。

在应用上,它可以帮助我们在现实世界中优化资源分配、最大化利润、降低成本等。

在工程领域中,我们可以使用最优化方法来设计高效的电路、最小化材料使用或最大化系统性能。

在总结上述讨论时,约束条件下的最优化问题是在特定约束条件下寻找最优解的问题。

通过使用拉格朗日乘子法和其他数学工具,我们可以解决这些问题并找到最优解。

尽管这类问题可能会面临一些挑战,但解决这些问题具有重要的理论和实际应用。

通过深入研究和理解约束条件下的最优化问题,我们可以在不同领域中做出更优化的决策,实现更有效的资源利用和更优秀的结果。

参考文献:1. Nocedal, J., & Wright, S. J. (2006). Numerical optimization. Springer Science & Business Media.2. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge university press.3. Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013). Nonlinear programming: theory and algorithms. John Wiley & Sons.个人观点和理解:约束条件下的最优化问题在现实生活中起着重要的作用。

不等式约束的最优化问题

不等式约束的最优化问题

不等式约束的最优化问题1. 引言不等式约束的最优化问题是数学领域中一类常见且重要的问题。

在实际生活和工程应用中,很多问题都可以转化为最优化问题,其中包含了一些约束条件,这些约束条件可以用不等式的形式表示。

本文将从理论和应用两个方面综合讨论不等式约束的最优化问题。

2. 理论基础2.1 最优化问题的定义最优化问题是指在满足一定的约束条件下,寻找使得目标函数取得最大(或最小)值的变量取值。

最优化问题可以分为有约束和无约束两种情况,本文主要讨论带有不等式约束的最优化问题。

2.2 拉格朗日乘子法拉格朗日乘子法是解决带有等式约束的最优化问题的重要方法,然而对于带有不等式约束的问题,拉格朗日乘子法并不适用。

取而代之的是KKT条件,即Karush–Kuhn–Tucker条件。

2.3 KKT条件KKT条件是带有不等式约束的最优化问题的解的必要条件。

KKT条件包括了原问题的约束条件和原问题的一阶和二阶必要条件。

利用KKT条件,可以将不等式约束的最优化问题转化为无约束最优化问题,从而求解出问题的最优解。

3. 解决方法3.1 梯度下降法梯度下降法是一种常用的优化算法,可以用于求解无约束和有约束的最优化问题。

对于带有不等式约束的问题,可以通过将约束条件变形为罚函数的形式,从而将其转化为无约束的问题。

梯度下降法的基本思想是根据目标函数的梯度信息不断迭代更新变量的取值,使得目标函数逐渐趋近于最优解。

3.2 内点法内点法是求解带有不等式约束的最优化问题的一种高效算法。

内点法的基本思想是通过不断向可行域的内部靠近,逐渐找到问题的最优解。

内点法具有较好的收敛性和稳定性,在实际应用中使用较为广泛。

3.3 割平面法割平面法是一种用于求解带有不等式约束的整数优化问题的有效方法。

割平面法的主要思想是通过逐步添加割平面,将原问题分解为一系列子问题,利用线性规划算法求解。

割平面法可以有效地提高整数规划问题的求解效率。

4. 应用领域4.1 金融领域在金融领域中,不等式约束的最优化问题被广泛应用于投资组合优化、风险管理等方面。

不等式约束条件的最优化问题

不等式约束条件的最优化问题

不等式约束条件的最优化问题概述在数学和经济学等领域中,最优化问题是一个常见的研究课题。

在解决最优化问题时,我们通常会面临各种约束条件,其中一种常见的约束条件是不等式约束条件。

本文将深入探讨不等式约束条件的最优化问题,包括其定义、求解方法以及应用领域等。

定义不等式约束条件的最优化问题是指在一组不等式条件下,寻找使目标函数取得最大值或最小值的变量取值。

不等式约束条件可以是单个不等式,也可以是多个不等式的组合。

一般来说,最优化问题可以分为线性最优化问题和非线性最优化问题,而不等式约束条件可以存在于两种类型的最优化问题中。

线性不等式约束条件的最优化问题求解方法线性不等式约束条件的最优化问题可以通过线性规划方法求解。

线性规划是一种数学优化方法,用于求解线性约束条件下的最优化问题。

在线性规划中,目标函数和约束条件都是线性的,可以用线性代数的方法进行求解。

线性不等式约束条件的最优化问题可以通过单纯形法、内点法等方法进行求解。

单纯形法是一种基于顶点的搜索算法,通过不断移动顶点以搜索最优解。

内点法是另一种常用的求解线性规划问题的方法,它通过将问题转化为一个等价的无约束问题来求解。

应用领域线性不等式约束条件的最优化问题在实际应用中具有广泛的应用。

例如,在生产计划中,我们常常需要在一组资源有限的条件下,最大化产出或最小化成本。

在供应链管理中,我们需要在供应商、生产能力、运输成本等多个因素的约束下,优化供应链的效率和利润。

线性不等式约束条件的最优化问题也在金融投资、交通规划等领域中得到广泛应用。

非线性不等式约束条件的最优化问题求解方法非线性不等式约束条件的最优化问题相对复杂,求解方法也更加多样化。

常见的求解方法包括梯度下降法、牛顿法、拟牛顿法等。

这些方法通常需要对目标函数进行求导或近似求导,以找到函数的极值点。

应用领域非线性不等式约束条件的最优化问题在实际应用中也非常常见。

例如,在机器学习和人工智能领域中,我们常常需要通过调整模型参数来最小化损失函数,以提高模型的准确性。

运筹学-约束最优化方法

运筹学-约束最优化方法

若AT的各个行向量线性无 关.根据Kuhn-Tucker条件, 在该线性规划的最优点y* 处存在乘子向量x*≥0,使得
即Ax*=b 对偶规划约束条件 及(ATy*-c)T x*=0 线性规划互补松弛条件
29
5.1.3 一般约束问题的最优性条件
定理1.3.1 在上述问题中,若 (i)x*为局部最优解, 有效集I*={i|ci(x*)=0,i∈I}; (ii)f(x),ci(x)(1≤i≤m)在x*点可微; (iii)对于i∈E∪I*, 线性无关, 则存在向量l*=(l1*,· · · ,lm*)使得

解:本问题是求点(1,1)T到如图三角形区域的最短 距离.显然唯一最优解为x*=(1/2,1/2)T.
19
例题(Fritz-John条件)
min f(x)=(x1-1)2+(x2-1)2 s.t. c1(x1,x2)=(1-x1-x2)3≥0 c2(x)=x1≥0 c3(x)=x2≥0 即

35
惩罚函数法
惩罚是手段,不是目的
KT条件中li*ci(x*)=0 称为互补松弛条件. 它表明li*与ci(x*)不能 同时不为0.

28
线性规划情形
对于线性规划问题 min f(y)=-bTy s.t. -ATy≥-c 其中 y∈Rm,A∈Rm×n, b∈Rm,c∈Rn 问题有n个约束条件. 各个约束条件关于y 的梯度为-AT的行向 量(-pi).

借助于Farkas引理,可推出存在li*≥0(i∈I*), 使得
类似与Fritz-John条件的证明,可以证明KuhnTucker条件. 有效约束函数的梯度线性无关称为KuhnTucker约束规范. 如果该约束规范不满足,最优点不一定是KT点.

最优化方法(约束优化问题的最优性条件)

最优化方法(约束优化问题的最优性条件)

s.t. c1 ( x ) = x 1 + x 2 + x 3 − 3 = 0 , c 2 ( x ) = − x 1 + x 2 ≥ 0
c 3 ( x ) = x1 ≥ 0 , c 4 ( x ) = x 2 ≥ 0 , c 5 ( x ) = x 3 ≥ 0
带入约束条件可知满足约束条件 将 x = (1,1,1) 带入约束条件可知满足约束条件
验证KT点的步骤 小结
• • • • • • 1 化为标准形式 2 验证约束成立 并且求得有效约束 3 约束规范 ∇f ( x * ) − λ1 ∇c1 ( x * ) − λ 2 ∇c 2 ( x * ) = 0 4 一阶条件方程 例如 5 验证不等式约束互补条件、乘子的非负性 验证不等式约束互补条件、 6结论 结论
* T
并且有效约束集合为 并且有效约束集合为 I = {1,2}
*
∇f ( x ) = ( −3,−1,−2) T , ∇c1 ( x ) = ( 2,2,2) T , ∇c 2 ( x ) = ( −1,1,0) T T T 线性无关。 且 ∇c 1 ( x ) = ( 2,2,2) 与 ∇c 2 ( x ) = ( −1,1,0) 线性无关。
向量 d ,如果对任意的 i ∈ I ( x) 有 ∇ci ( x)T d > 0 , 则 d 是点 x 的 可行方向。
令 证明: x ' = x + t d , t > 0。 则对任意的 i ∈ I ( x ) , 有
ci ( x' ) = ci ( x) + t ∇ci ( x)T d + o( || td ||2 )
= t ∇ci ( x)T d + o( || td ||2 )

运筹学第15讲 约束最优化方法 (1)

运筹学第15讲 约束最优化方法 (1)
2
⎛1 ⎞ (2) = ⎜ ⎜ 2 ⎟ ⎟ ⎝ ⎠
第六章
6.1 Kuhn-Tucker 条件
二、不等式约束问题的Khun-Tucker条件: (续)
m ⎧ ⎪ ∇ f ( x ) − ∑ u i∇ g i ( x ) = 0 i ⎪ u i ≥ 0 , i = 1,2 ,L , m → ⎨ ⎪ u ig i( x ) = 0 ⎪ ⎩
< 寻找下降可行方向: 定理 1:设 其中 x 是可行解,在
1 2
6.2 可行方向法
一、解线性约束问题的可行方向法 (续)
d x 处有 A 1 x = b 1,A
2
x > b2,
⎛ A A = ⎜ ⎜A ⎝
⎞ ⎛ b1 ⎟ ⎜ , b = ⎟ ⎜b ⎠ ⎝ 2
⎞ ⎟ ⎟ 。则非零向量 ⎠
d 为 x 处的下降可行
g3=0 x2 2 1 1
▽g2(x*)
第六章

-▽f(x*) (3,2)T
x* 2 3 g1=0
▽g1(x*)
4
g4=0 x1 g2=0
6.1 Kuhn-Tucker 条件 二、不等式约束问题的Khun-Tucker条件: (续)
在 x *点 ⎧ g 1 ( x1 , x 2 ) = 0 ⎨ ⎩ g 2 ( x1 , x 2 ) = 0
∗ ∗ ∗பைடு நூலகம்
第六章
6.1 Kuhn-Tucker 条件
三、一般约束问题的Kuhn-Tucker 条件 (续)
如果 x ∗ − l .opt .那么 ∃ u i∗ ≥ 0 , i ∈ I , v ∗j ∈ R , j = 1, 2 , L , l ∇f (x ) −

∑u

运筹学 第八章 约束最优化方法

运筹学 第八章 约束最优化方法

第八章 约束最优化方法无约束优化方法是优化方法中最基本最核心的部分。

但是,在工程实际中,优化问题大都是属于有约束的优化问题,即其设计变量的取值要受到一定的限制,用于求解约束优化问题最优解的方法称为约束最优化方法。

由于约束最优化问题的复杂性,无论是在理论方面的研究,还是实际中的应用都有很大的难度。

目前关于一般的约束最优化问题还没有一种普遍有效的算法。

本书重点介绍几种常用的算法,力求使读者对这类问题的求解思路有一个了解。

8.1 约束优化方法概述一、约束优化问题的类型根据约束条件类型的不同可以分为三种,其数学模型分别如下: 1)等式约束优化问题 考虑问题l1,2,...,j x h t s x f j ==0)(..)(min其中,l 1,2,...,j x h x f j =),(),(为R R n→上的函数。

记为)(fh 问题。

2)不等式约束优化问题 考虑问题m1,2,...,i x g t s x f i =≤0)(..)(min其中,m 1,2,...,i x g x f i =),(),(为R R n→上的函数。

记为)(fg 问题。

3)一般约束优化问题()()()⎩⎨⎧===≤l ,1,2,j x h m ,1,2,i x g t s x f j i L L 00..min其中,l 1,2,...,j m i x h x g x f j i ==;,2,1),(),(),(L 为R R n→上的函数。

记为)(fgh 问题。

二、约束优化方法的分类约束优化方法按求解原理的不同可以分为直接法和间接法两类。

1)直接法只能求解不等式约束优化问题的最优解。

其根本做法是在约束条件所限制的可行域内直接求解目标函数的最优解。

如:约束坐标轮换法、复合形法等。

其基本要点:选取初始点、确定搜索方向及适当步长。

搜索原则:每次产生的迭代点必须满足可行性与适用性两个条件。

可行性:迭代点必须在约束条件所限制的可行域内,即满足m i x g i ,...,2,1,0)(=≤适用性:当前迭代点的目标函数值较前一点的目标函数值是下降的,即满足)()()()1(k k x F x F <+2)间接法该方法可以求解不等式约束优化问题、等式约束优化问题和一般约束优化问题。

等式约束优化问题的求解方法

等式约束优化问题的求解方法

等式约束优化问题的求解方法等式约束优化问题是一类重要的数学问题。

它的求解方法在多个领域中得到广泛应用,如机器学习、运筹学、经济学等。

本文将介绍几种常见的求解等式约束优化问题的方法。

一、拉格朗日乘数法拉格朗日乘数法是求解等式约束优化问题的经典方法之一。

设等式约束为f(x)=0,目标函数为g(x),则拉格朗日函数为:L(x,λ)=g(x)+λf(x)其中,λ称为拉格朗日乘子。

根据最优化问题的求解原理,若x*为最优解,则存在一个λ*使得L(x*,λ*)取最小值。

我们可以通过对L(x,λ)求偏导数,然后令它们等于0,得到x*和λ*的值。

具体来说,求解过程如下:1. 求g(x)的梯度,令其等于λf(x)的梯度,即:∇g(x*)=λ*∇f(x*)2. 求f(x)的值,令其等于0,即:f(x*)=03. 代入公式,解出λ*。

4. 代入公式,解出x*。

值得注意的是,拉格朗日乘数法求解等式约束优化问题的前提是强可行性条件成立,即在f(x)=0的前提下,g(x)的最小值存在。

二、牛顿法牛顿法也是一种常用的求解等式约束优化问题的方法。

它的思路是利用二阶导数信息迭代地逼近最优解。

具体来说,求解过程如下:1. 初始化x0。

2. 计算g(x)和f(x)的一阶和二阶导数。

3. 利用二阶导数信息,优化一个二次模型,即:min{g(x)+∇g(x0)(x-x0)+1/2(x-x0)^TH(x-x0)} s.t. f(x)=0其中H是目标函数g(x)的海塞矩阵。

4. 求解约束最小二乘问题的解x*,即为下一轮的迭代结果。

5. 判断是否满足终止条件。

若满足,则停止迭代,输出结果。

否则,返回第2步。

牛顿法比拉格朗日乘数法更加高效,但是它不保证每次迭代都能收敛到最优解。

三、序列二次规划算法序列二次规划算法是一种求解等式约束优化问题的黑箱算法。

其主要思路是将目标函数g(x)的二次型模型转化为约束最小二乘问题。

这个约束最小二乘问题可以通过牛顿法来求解。

最优化方法及应用_郭科_约束问题的最优性条件

最优化方法及应用_郭科_约束问题的最优性条件

§2.7 约束问题的最优性条件所谓最优性条件就是最优化问题的目标函数与约束函数在最优点处满足的充要条件.这种条件对于最优化算法的终止判定和最优化理论推证都是至关重要的.最优性必要条件是指在最优点处满足哪些条件;充分条件是指满足哪些条件的点是最优点.本节仅讲述最基本的结论.一、约束最优解对约束优化问题的求解,其目的是在由约束条件所规定的可行域D 内,寻求一个目标函数值最小的点*X 及其函数值)(*X f .这样的解))(,(**X f X 称为约束最优解.约束最优点除了可能落在可行域D 内的情况外,更常常是在约束边界上或等式约束曲面上,因此它的定义及它的一阶必要条件与无约束优化问题不同.(一)约束优化问题的类型约束优化问题根据约束条件类型的不同分为三种,其数学模型如下:(1)不等式约束优化问题(IP 型)min (),..()012i f X s t g X i l ≥=,,,,. (2.16)(2)等式约束优化问题(EP 型)min ()..()012j f X s t h X j m ==,,,,,.(3)一般约束优化问题(GP 型) min ()()012..()012i j f X g X i l s t h X j m ≥=⎧⎪⎨==⎪⎩,,,,,,,,,,.(二)约束优化问题的局部解与全局解按一般约束优化问题,其可行域为 }210)(210)(|{m j X h l i X g X D j i ,,,,;,,,, ===≥=.若对某可行点*X 存在0>ε,当*X 与它邻域的点X 之距离ε<-||||*X X 时,总有)()(*X f X f <则称*X 为该约束优化问题的一个局部最优解.下面以一个简单例子说明.设有⎩⎨⎧=---=≥+=+-=.,,09)2()(02)(..)1()(min 222122221x x X h x X g t s x x X f该问题的几何图形如图2.8所示.从图上的目标函数等值线和不等式约束与等式约束的函数曲线可写出它的两个局部最优解T T X X ]05[]01[*2*1,,,=-=.这是因为在*1X 点邻域的任一满足约束的点X ,都有)()(*1X f X f >;同理,*2X 亦然.1图2.8 对某些约束优化问题,局部解可能有多个.在所有的局部最优解中,目标函数值最小的那个解称为全局最优解.在上例中,由于16)(4)(*2*1==X f X f ,,所以全局最优解为))((*1*1X f X ,. 由此可知,约束优化问题全局解一定是局部解,而局部解不一定是全局解.这与无约束优化问题是相同的.二、约束优化问题局部解的一阶必要条件对于约束,现在进一步阐明起作用约束与不起作用约束的概念.一般的约束优化问题,其约束包含不等式约束l i X g i ,,,, 210)(=≥和等式约束m j X h j ,,,, 210)(==.在可行点k X 处,如果有0)(=k i X g ,则该约束)(X g i 称可行点k X 的起作用约束;而如果有0)(>k i X g ,则该约束)(X g i 称可行点k X 的不起作用约束.对于等式约束0)(=X h j ,显然在任意可行点处的等式约束都是起作用约束. 在某个可行点k X 处,起作用约束在k X 的邻域内起到限制可行域范围的作用,而不起作用约束在k X 处的邻域内就不产生影响.因此,应把注意力集中在起作用约束上.(一)IP 型约束问题的一阶必要条件图2.9所示为具有三个不等式约束的二维最优化问题.图2.9图2.9(a )是最优点*X 在可行域内部的一种情况.在此种情形下,*X 点的全部约束函数值)(*X g i 均大于零)321(,,=i ,所以这组约束条件对其最优点*X 都不起作用.换句话说,如果除掉全部约束,其最优点也仍是同一个*X 点.因此这种约束优化问题与无约束优化问题是等价的.图2.9(b )所示的约束最优点*X 在)(1X g 的边界曲线与目标函数等值线的切点处.此时,0)(0)(0)(*3*2*1>>=X g X g X g ,,,所以)(1X g 是起作用约束,而其余的两个是不起作用约束.既然约束最优点*X 是目标函数等值线与)(1X g 边界的切点,则在*X 点处目标函数的梯度)(*X f ∇与约束函数梯度矢量)(*1X g ∇必共线,而且方向一致.若取非负乘子0*1≥λ,则在*X 处存在如下关系0)()(*1*1*=∇-∇X g X f λ.另一种情况如图2.9(c )所示.当前迭代点k X 在两约束交点上,该点目标函数的梯度矢量)(k X f ∇夹于两约束函数的梯度矢量)()(21k k X g X g ∇∇,之间.显然,在k X 点邻近的可行域内部不存在目标函数值比)(k X f 更小的可行点.因此,点k X 就是约束最优点,记作*X .由图可知,此时k X 点目标函数的梯度)(k X f ∇可表达为约束函数梯度)(1k X g ∇和)(2k X g ∇的线性组合.若用*X 代替k X 即有)()()(*2*2*1*1*X g X g X f ∇+∇=∇λλ成立,且式中的乘子*1λ和*2λ必为非负.总结以上各种情况,最优解的一阶必要条件为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≥=∇-∇∑=.,,,,210)(00)()(**21**1*i X g X g X f i i i i λλ 对于(2.16)IP 型约束问题的一阶必要条件讨论如下: 设最优点*X 位于j 个约束边界的汇交处,则这j 个约束条件组成一个起作用的约束集.按上面的分析,对于*X 点必有下式成立⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≥=∇-∇∑=.,,,,,,j i X g X g X f i i j i i i 210)(00)()(**1***λλ (2.17)但是在实际求解过程中,并不能预先知道最优点*X 位于哪一个或哪几个约束边界的汇交处.为此,把l 个约束全部考虑进去,并取不起作用约束的相应乘子为零,则最优解的一阶必要条件应把式(2.17)修改为⎪⎪⎪⎩⎪⎪⎪⎨⎧==≥≥=∇-∇∑=.,,,,,,,l i X g X g X g X f i i iil i i i 210)(0)(00)()(****1***λλλ (2.18)式(2.18)为IP 型问题约束最优解的一阶必要条件,它与式(2.17)等价.因为在*X 下,对于起作用约束,必有l i X g i ,,,, 210)(*==使式(2.18)中的第四式成立;对于不起作用约束,虽然0)(*>X g i 而必有0*=i λ,可见式(2.18)与式(2.17)等价.(二)EP 型约束问题的一阶必要条件图2.10所示为具有一个等式约束条件的二维化问题,其数学模型为.,0)(..)(min =X h t s X f在该问题中,等式约束曲线0)(=X h 是它的可行域,而且目标函数等值线C X f =)(与约束曲线0)(=X h 的切点*X 是该约束问题的最优解.图2.10在*X 点处,目标函数的梯度)(*X f ∇与约束函数的梯度)(*X h ∇共线.因此,在最优点*X 处一定存在一个乘子*u ,使得 0)()(***=∇-∇X h u X f成立.对于一般的n 维等式约束优化问题,其数学模型为min ()..()012j f X s t h X j m ==,,,,,.则*X 为其解的一阶必要条件为***1*()()0()012m j j j j f X u h X h X j m =⎧∇-∇=⎪⎨⎪==⎩∑,,,,,.(三)GP 型约束问题解的一阶必要条件由上述不等式约束优化与等式约束优化问题的一阶必要条件,可以推出一般约束优化问题的条件.设n 维一般约束优化问题的数学模型为⎩⎨⎧===≥,,,,,,,,,,,m j X h l i X g t s X f j i 210)(210)(..)(min (2.19)则*X 为其解的一阶必要条件应为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====≥≥=∇-∇-∇∑∑==.,,,,,,,,,,,,m j X h l i X g X g X h u X g X f j i i i i l i m j j j i i 210)(210)(0)(00)()()(*****11*****λλλ (2.20) 函数∑∑==--=l i m j j j i i X h u X g X f u X L 11)()()()(λλ,,称为关于问题(2.19)的广义拉格朗日函数,式中T l ][21λλλλ,,, =,T m u u u u ][21,,, =为拉格朗日乘子.由于引入拉格朗日函数,条件(2.20)中的第一式可写为0)(***=∇u X L X ,,λ.(四)Kuhn —T ucker 条件(简称K —T 条件)在优化实用计算中,常常需要判断某可行迭代点k X 是否可作为约束最优点*X 输出而结束迭代,或者对此输出的可行结果进行检查,观察它是否已满足约束最优解的必要条件,这种判断或检验通常借助于T K -条件进行的.对于IP 型问题,T K -条件可叙述如下:如果*X 是一个局部极小点 ,且各梯度矢量)(*X g i ∇组成线性无关的矢量系,那么必存在一组非负乘子*i λ,使得⎪⎩⎪⎨⎧===∇-∇∑=l i X g X g X f ii l i i i ,,,,,210)(0)()(**1***λλ 成立.必须指出,在一般情形下,T K -条件是判别约束极小点的一阶必要条件,但并非充分条件.只是对于凸规划问题,即对于目标函数)(X f 为凸函数,可行域为凸集的最优化问题,T K -条件才是约束最优化问题的充分条件.而且,在这种情况下的局部最优解也必为全局最优解.应用T K -条件检验某迭代点k X 是否为约束最优点的具体作法可按下述步骤进行:(1)检验k X 是否为可行点.为此需要计算k X 处的诸约束函数值)(k i X g ,若是可行点,则l i X g k i ,,,, 210)(=≥. (2)选出可行点k X 处的起作用约束.前面已求得l 个)(k i X g 值,其中等于零或相当接近零的约束就是起作用约束.把这些起作用约束重新编排成序列I i X g i ,,,, 21)(=.(3)计算k X 点目标函数的梯度)(k X f ∇和I 个起作用约束函数的梯度)(k i X g ∇.(4)按T K -条件,k X 点应满足∑==≥=∇-∇Ii i k i i k I i X g X f 1)21(00)()(,,,, λλ. (2.21)将式(2.21)中的各梯度矢量用其分量表示,则可得到i λ为变量的线性方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=∂∂-∂∂-∂∂-∂∂=∂∂-∂∂-∂∂-∂∂=∂∂-∂∂-∂∂-∂∂.,,0)()()()(0)()()()(0)()()()(22112222211211221111n k I I n k n k n k k I I k k k k I I k k k x X g x X g x X g x X f x X g x X g x X g x X f x X g x X g x X g x X f λλλλλλλλλ 由于矢量系I i X g k i ,,,, 21)(=∇是线性无关的,所以该方程组存在唯一解.通过解此线性方程组,求得一组乘子I λλλ,,,21,若所有乘子均为非负,即I i i ,,,, 210=≥λ,则k X 即为约束最优解.否则,k X 点就不是约束最优点.例2.9 设约束优化问题⎪⎩⎪⎨⎧≥=≥=≥--=+-=.,,,0)(0)(01)(..)2()(min 132222112221x X g x X g x x X g t s x x X f 它的当前迭代点为T k X ]01[,=,试用T K -条件判别它是否为约束最优点. 解:(1)计算k X 点的诸约束函数值,,,1)(0)(011)(2221===-=k k k X g X g X gk X 是可行点.(2)k X 点起作用约束是222211)(1)(x X g x x X g =--=,.(3)求k X 点梯度.,,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=∇⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=∇⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=∇1010)(1212)(022)2(2)()0,1(2)0,1(11)0,1(21k k k X g x X g x x X f(4)求拉格朗日乘子 按T K -条件应有 .,01012020)()()(212211=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡-=∇-∇-∇λλλλk k k X g X g X f写成线性方程组 ⎩⎨⎧=-=+-.,0022211λλλ 解得010121>=>=λλ,.乘子均为非负,故T k X ]0,1[=满足约束最优解的一阶必要条件.如图2.11所示,k X 点确为该约束优化问题的局部最优解,由于可行域是凸集,所以点k X 也是该问题的全局最优解.图2.11GP 型的约束最优化问题的T K -条件类似于IP 型约束最优化问题的T K -条件: 如果*X 是一个局部极小点 ,且各梯度矢量)(*X g i ∇和)(*X h j ∇组成线性无关的矢量系,那么必存在两组乘子*i λ和*j u ,使得。

第五章约束问题的最优化方法

第五章约束问题的最优化方法
g1 ( x ) x1 x2 4,
g1 ( x) [ 1 , 1 ]T
g2 ( x) x1 ,
g2 ( x) [ 1 , 0 ]T 。
g3 ( x) x2 ,
g3 ( x) [ 0 , 1 ]T 。
18
由K T条件得
x1 3 1 1 0 x 3 1 1 2 0 3 1 0 2
第七讲 约束非线性规划
约束极值及最优性条件
等式约束 不等式约束 一般约束问题
约束极值问题的算法
外点法 内点法 乘子法
1
一 、约束极值问题的最优性条件
1、约束极值问题的表示 min f ( x ) hi ( x ) 0 i 1 , 2 ,, m s .t . g j ( x ) 0 j 1 , 2 , , l
8
2 g3 ( x ) 0。 2
I ( x ) { 1 , 2 }。
x2 g2 ( x ) 0
g3 ( x ) 0
O
g1 ( x ) 0
x
x1
②如何判断一个方向是可行方向?
9
定理1:
给 定 点x Q , 记 点 x 的 积 极 约 束 指 标 集 为 I ( x )。 给 定 向 量 d , 如果对任意的 i I ( x ) 有 gi ( x )T d 0 , 则 d 是 点 x 的 可 行 方 向 。
则 向 量d 是 点 x 处 的 可 行 下 降 方 向 。
证略
③极值点的必要条件: 定理3:
设 x* Q, I ( x*)是其积极约束指标集。
f ( x) 和 gi ( x) (i I ( x*)) 在点x * 处可微,

约束问题的最优化方法

约束问题的最优化方法

3. 优化方法: 选用内点惩罚法,惩罚函数形式为: 6 1 T k k x,r f x r 取 x 0 1,30 , r 0 3 , c 0.7 u 1 g x u 调用 Powell 法求序列无约束优化极值,以逐渐逼近原问 题的极值点。
k 2 x r ( 1 x ) x 1时; x, r k x 1时。 x
4
min.
s.t
f (x) = x
x ∈ R1
g (x) = 1-x ≤ 0


§5.3 外点惩罚函数法
二. 惩罚函数的形式:

x, r ( k ) f x r k maxg u x ,0 I u g u x 0 u 1,2,...,m,
(k ) (k ) m
1 u 1 g ( x ) u
m
其中:gu ( x) 0, u 1,2,...m
1 u 1 g ( x ) u m 1 (k ) (k ) ③ . ( x, r ) f ( x) ru u 1 g u ( x) m 1 (k ) (k ) ④ .( x, r ) f ( x) r 2 u 1 [ g ( x )] u
§5.2 内点惩罚函数法
4. 求解过程分析:
§5.3 外点惩罚函数法 (衰减函数法)
一. 基本思想: 外点法将新目标函数
Φ( x , r )
构筑在可行域 D
外,随着惩罚因子 r(k) 的不断 递增,生成一系列新目标函数
Φ(xk ,r(k)),在可行域外逐步
迭代,产生的极值点 xk*(r(k)) 序列从可行域外部趋向原目标 函数的约束最优点 x* 。 例:求下述约束优化问题的最优点。 新目标函数:

拉格朗日乘数法stata命令

拉格朗日乘数法stata命令

拉格朗日乘数法引言拉格朗日乘数法(Lagrange Multiplier Method)是一种用于求解约束最优化问题的数学方法。

该方法由意大利数学家约瑟夫·路易斯·拉格朗日于18世纪提出,被广泛应用于经济学、物理学、工程学等领域。

在经济学中,拉格朗日乘数法常用于求解有约束条件的优化问题,例如最大化收益或最小化成本等。

基本原理拉格朗日乘数法通过引入拉格朗日乘子(Lagrange Multiplier)来处理约束条件。

假设我们要优化的目标函数为f(x),约束条件为g(x)=0,其中x为变量。

拉格朗日乘数法的基本思想是将约束条件引入目标函数,构造一个新的函数L(x, λ) =f(x) + λg(x),其中λ为拉格朗日乘子。

通过求解新函数L(x, λ)的驻点,即求解其对x和λ的偏导数都为零的点,可以得到原问题的最优解。

具体来说,我们需要求解以下方程组:∂L/∂x = 0 ∂L/∂λ = 0 g(x) = 0解得x和λ的值,即可得到最优解。

求解步骤使用拉格朗日乘数法求解约束最优化问题的一般步骤如下:1.定义目标函数f(x)和约束条件g(x)=0。

2.构造新函数L(x, λ) = f(x) + λg(x),其中λ为拉格朗日乘子。

3.对L(x, λ)分别对x和λ求偏导数,得到以下方程组:∂L/∂x = 0 ∂L/∂λ= 0 g(x) = 04.解方程组,得到x和λ的值。

5.将x和λ的值代入目标函数和约束条件,得到最优解。

示例为了更好地理解拉格朗日乘数法的应用,我们举一个简单的例子来说明。

假设我们要在给定预算的情况下购买苹果和香蕉,苹果的价格为p1,香蕉的价格为p2,我们的目标是最大化购买的苹果和香蕉的总数量,同时满足预算约束。

我们可以将问题形式化为以下数学模型:最大化:f(x) = x1 + x2 约束条件:p1x1 + p2x2 ≤ B 其中,x1和x2分别表示购买的苹果和香蕉的数量,B为预算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新目标函数: Φ ( x, r1 , r2 ) =
(k ) M
(k ) p
G[ g u ( x)] + r2 ∑ H [hv ( x)] f ( x) + r1 ∑ u =1 v =1
m
p
H [hv ( x)] 其中r ∑ G[g u ( x)] 和 r ∑ 称为加权转化项,并根据它们在惩 v =1 u =1 罚函数中的作用,分别称为障碍项和惩罚项。
二.
惩罚函数的形式:
(k ) (k ) m
1 ① .Φ ( x, r ) = f ( x) − r ∑ u =1 g ( x ) u
② .Φ ( x, r ) = f ( x) + r ∑
(k ) (k )
其中:g u ( x) ≤ 0, u = 1,2,...m
1 u =1 g ( x ) u
m
三.
间接解法:
目的:将有约束优化问题转化为无约束优化问题来解决。 前提:一不能破坏约束问题的约束条件,二使它归结到原约束问题的 同一最优解上去。 惩罚函数法: 通过构造罚函数把约束问题转化为一系列无约束最优化问题,进 而用无约束最优化方法去求解。惩罚函数法是一种使用很广泛、很有 效的间接解法。 基本思想:以原目标函数和加权的约束函数共同构成一个新的目标函 数 Φ( x, r1 ,r2 ),将约束优化问题转化为无约束优化问题。通 过不断调整加权因子,产生一系列Φ函数的极小点序列 x(k)* (r1(k),r2(k)) k= 0,1,2… ,逐渐收敛到原目标函数的约束最优解。
k →∞
则Φ ( x, r ( k ) ) → f ( x) ,
) x12 + x22 例: 用内点法求 min f ( x=
s.t. g ( x ) = 1 − x1 ≤ 0
的约束最优解。
2 解: 首先构造内点惩罚函数:φ ( x , r ) = x12 + x2 − r k ln( x1 − 1)
f ( x* ( r 0 )) = 2.022
f ( x* ( r 0 )) = 1.336
f ( x* ( r 0 )) = 1
内点法的迭代过程在可行域内进行,“障碍项”的作用 是阻止迭代点越出可行域。
三. 1. 2.
步骤: 选取合适的初始点 x(0) ,以及 r(0)、c、计算精度 ε1、ε2 ,令 k=0; 构造惩罚(新目标)函数;
障碍项:当迭代点在可行域内时,在迭代过程中阻止迭代点越出 边界。 惩罚项:当迭代点在非可行域或不满足不等式约束条件时,在迭 代过程之中迫使迭代点逼近约束边界或等式约束曲面。 加权因子(即惩罚因子): r1 , r2 无约束优化问题:min .
Φ ( x, r1 , r2 )
Φ函数的极小点序列 x (k)* ( r1 (k) , r2 (k) ) k= 0,1,2… 其收敛必须满足: lim r1 ∑ G[ g u ( x ( k ) )] = 0 k →∞
§4.2 内点惩罚函数法(障碍函数法)
一. 基本思想: 内点法将新目标函数 Φ( x , r ) 构筑在可行域 D 内,随着惩罚 因子 r(k) 的不断递减,生成一系列新目标函数 Φ(xk ,r(k)),在可 行域内逐步迭代,产生的极值点 xk*(r(k)) 序列从可行域内部趋向 原目标函数的约束最优点 x* 。 内点法只能用来求解具有不等式约束的优化问题。
(k )
(k )

1 u =1 g ( x ) u
m
1. 初始点 x (0) 的选择: 要求:① 在可行域内; ② 不要离约束边界太近。如太靠近某一约束边界,构造 的惩罚函数可能由于障碍项的值很大而变得畸形,使求解无约 束优化问题发生困难. 方法: ① 人工估算,需要校核可行性; ② 计算机随机产生,也需校核可行性。 2. 惩罚因子初始值 r(0) 的选择: 惩罚因子的初值应适当,否则会影响迭代计算的正常进行。 一般而言,太大,将增加迭代次数;太小,会使惩罚函数的性态 变坏,甚至难以收敛到极值点。对于不同的问题,都要经过多次 试算,才能决定一个适当 r0。
3. 调用无约束优化方法,求新目标函数的最优解 xk* 和 Φ(xk , r(k) ) ; 4. 判断是否收敛:运用终止准则

x( k −1) * (r ( k −1) ) − xk * (r ( k ) ) ≤ ε 1

Φ ( x( k −1) * (r ( k −1) )) − Φ ( xk * (r ( k ) )) Φ ( x( k −1) * (r
1. 2.
设计分析:(略) 数学模型:
设计变量 : X = [x1 ,x2 ] = [t f ,h]
T T
目 标 函数: min.
f ( x ) = 120 x1 + x2
约 束函数 : g1 ( x ) = − x1 < 0
g 2 ( x ) = − x2 < 0 g 4 (x ) = 1 −
g 3 ( x ) = 1 − 0.25 x2 ≤ 0 7 x1 x2 ≤ 0 45 7 2 g 5 ( x ) = 1 − x1 x2 ≤ 0 45 1 2 g 6 (x ) = 1 − x1 x2 ≤ 0 320
m
⑤ .Φ ( x, r ) = f ( x) − r ∑ ln[− g u ( x)]
(k )
其中:惩罚(加权)因子 降低系数 c:
r ( 0 ) > r (1) > ....r ( k )
0< c <1
r ( k −1) ⋅ c = r ( k )
xk * → x *
当lim r ( k ) → 0
3.
降低系数 c 的选择:
在构造序列惩罚函数时,惩罚因子r是一个逐次递减到0的数列 ,相邻两次迭代的惩罚因子的关系为 :
k −1 (k 1,2,...) = r r cr =
式中的c称为惩罚因子的缩减系数,c为小于1的正数。一般的 看法是,c值的大小在迭代过程中不起决定性作用,通常的取值范 围在0.1~0.7之间。 4. 收敛条件:
一. 约束优化问题解法分类: 约束优化方法按求解原理的不同可以分为直接法和间接法两类。
直接解法:随机方向搜索法、复合形法、可行方向法
间接解法:内点惩罚函数法、外点惩罚函数法、混合惩罚函数法 二. 直接解法:
基本思想:合理选择初始点,确定搜索方向,以迭代公式 x(k+1)= x(k)+α(k)S(k)在可行域中寻优,经过若干次迭代,收敛至最优点。 适用范围:只能求解不等式约束优化问题的最优解。 基本要点:选取初始点、确定搜索方向及适当步长。 搜索原则:每次产生的迭代点必须满足可行性与适用性两个条件。 可行性:迭代点必须在约束条件所限制的可行域内,即满足 gu(x)≥0, u=1,2,…,p 适用性:当前迭代点的目标函数值较前一点是下降的,即满足 F(xk+1)<F(xk)
2、等式约束优化问题(EP型)
x ∈ D ⊂ Rn s.t. hv ( x ) = 0, v = 1,2,..., q min F ( x )
3、一般约束优化问题(GP型)
x ∈ D ⊂ Rn s.t. g u ( x ) ≥ 0, u = 1,2,..., p hv ( x ) = 0, v = 1,2,..., q min F ( x )
φ[ x * (r k ), r k ] − φ[ x * (r k −1 ), r k −1 ] ≤ ε1 * k −1 k −1 φ[ x (r ), r ]
x * (r k ) − x * (r k −1 ) ≤ ε 2
五.
方法评价:
用于目标函数比较复杂,或在可行域外无定义的场合下: 由于优化过程是在可行域内逐步改进设计方案,故在解决工程 问题时,只要满足工程要求,即使未达最优解,接近的过程解也 是可行的; 初始点和序列极值点均需严格满足所有约束条件; 不能解决等式约束问题。
其中:g u ( x) ≥ 0, u = 1,2,...m
③ .Φ ( x, r ) = f ( x) − ∑ ru ( k )
(k ) u =1
m
1 g u ( x)
④ .Φ ( x, r ) = f ( x) + r
(k )
(k )
(k )
1 ∑ 2 u =1 [ g u ( x )]
m u =1
六.
举例:盖板问题 设计一个箱形截面的盖板。 tf
h
已知:长度 l0= 600cm,宽度 b = 60cm, 侧板厚度 ts = 0.5cm,翼板厚度为 tf(cm),高 度为 h(cm),承受最大的单位载荷 q = 0.01Mpa。
ts b
要求:在满足强度、刚度和稳定性等条件下,设计一个最轻结构。
r 用解析法求函数的极小值,运用极值条件: ∂φ = x − = 2 0 1 ∂x x − 1 1 1 k 1 ± 1 + 2 r 联立求解得: φ x1 (r k ) = ∂ = x2 0 2= 2 ∂ x 2 x (r k ) = 0 2 1 − 1 + 2r x1 (r ) = 1 − x1 ≤ 0 应舍去 。 时不满足约束条件 g ( x) = 2 * k 1 + 1 + 2r k 无约束极值点为: x (r ) =
收敛条件:
• 边界点的收敛条件应该符合 K-T 条件; • 内点的收敛条件为: x − x ≤ ε 和 f (x) f (x−) f (x)
( k +1) (k ) ( k +1)
1特点:① ②
在可行域内进行; 若可行域是凸集,目标函数是定义在凸集上的凸函数,
则收敛到全局最优点;否则,结果与初始点有关。
3.
优化方法:
选用内点惩罚法,惩罚函数形式为:
相关文档
最新文档