最新决策树例题分析及解答_(1)复习课程

合集下载

决策树例题分析及解答_(1)学习课件

决策树例题分析及解答_(1)学习课件
X1=20公顷 X2=5.333公顷 X3=8公顷
优选
2
决策方案评价
在生产出16.5万公顷玉米的前提下,将获得 5.28万元的利润,在忙劳动力资源尚剩余680 个工日可用于其他产品生产。
优选
3
例:设某茶厂方案创立精制茶厂,开场有两个方案,方案 一是建年加工能力为800担的小厂,方案二是建年加工能 力为2000担的大厂。两个厂的使用期均为10年,大厂投 资25万元,小厂投资10万元。产品销路没有问题,原料来 源有两种可能(两种自然状态):一种为800担,另一种为 2000担。两个方案每年损益及两种自然状态的概率估计值 见下表
优选
15
建小厂的方案在经济上是比较合理的
优选
16
• 例:随着茶叶生产的开展,三年后的原 料供给可望增加,两个行动方案每年损益及 两种自然状态的概率估计如表
三年后两种收益估计值
单位: 万元
优选
17
优选
18
各点效益值计算过程是:
点2:13.5×0.8×3+172.9×0.8+25.5×0.2×3+ 206.5×0.2-25(投资)=202.3万元 点3:15×0.8×3+105×0.8+15×0.2×3+105×0.2- 10〔投资〕=140万元 点4:21.5×0.6×7年+29.5×0.4×7年=172.9万元 点5:29.5×1.0×7=206.5 点6:15×0.6×7+15×0.4×7=105万元 通过以上计算。可知建小厂的效益期望值为140万元,而 建大厂的效益期望值为202.3万元,所以应选择建大厂的 方案。
益损值 状态 方案
益损值 方案
状态
优选
26
平均主义决策〔折衷决策〕
在悲观与乐观中取折中值,既不过于冒险, 也不过于保守,先确定折中系数a。

《决策树例题》课件(2024)

《决策树例题》课件(2024)

基于信息增益的决策树
通过计算每个特征的信息增益来选择 最佳划分特征,构建决策树。例如, 在二分类问题中,可以使用ID3算法 来构建决策树。
基于基尼指数的决策树
通过计算每个特征的基尼指数来选择 最佳划分特征,构建决策树。例如, 在二分类问题中,可以使用CART算 法来构建决策树。
剪枝策略
针对决策树过拟合问题,可以采用预 剪枝或后剪枝策略来优化决策树性能 。
输入 欠标采题样
从多数类样本中随机选择一部分样本,减少其样本数 量,使得正负样本数量平衡。例如Random UnderSampler算法。
过采样
代价敏感学 习
通过集成多个基分类器的结果来提高整体性能。例如 Bagging和Boosting方法。
集成学习方 法
为不同类别的样本设置不同的误分类代价,使得模型 在训练过程中更加关注少数类样本。例如AdaCost算 法。
剪枝策略
通过预剪枝或后剪枝策略,可以优化决策 树的性能,减少过拟合。
19
过拟合问题解决方案讨论
增加训练数据
更多的训练数据可以让模型学习 到更多的模式,减少过拟合。
使用集成学习方法
去除不相关或冗余的特征,可以 减少模型的复杂度,降低过拟合
风险。
2024/1/30
特征选择
通过添加正则化项,可以惩罚模 型的复杂度,防止过拟合。
模型构建:选择合适的 模型优化:针对不平衡
决策树算法(如ID3、 数据集问题,可以采用
C4.5、CART等)构建分 过采样、欠采样或代价
类模型,并采用交叉验 敏感学习等方法优化模
证等方法评估模型性能 型性能。同时,也可以

通过调整决策树参数(
如最大深度、最小样本

决策树例题分析及解答_(1)分解共32页

决策树例题分析及解答_(1)分解共32页
45、法律的制定是为了保的才能 。—— 罗伯斯 庇尔
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
决策树例题分析及解答_(1) 分解
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒

决策树例题分析及解答

决策树例题分析及解答

13
最后比较决策点1的情况: • 由于点③(719万元)与点②(680万元) 相比,点③的期望利润值较大,因此取 点③而舍点②。这样,相比之下,建设 大工厂的方案不是最优方案,合理的策 略应采用前3年建小工厂,如销路好,后 7年进行扩建的方案。
14
决策树法的一般程序是: (1)画出决策树图形 决策树指的是某个决策问题未来发展情 况的可能性和可能结果所做的估计,在图纸上的描绘决策树 (2)计算效益期望值 两个行动方案的效益期望值计算过程: 行动方案A1(建大厂)的效益期望值: 13.5×0.8×10+25.5×0.2×10-25=134万元 行动方案A2(建小厂)的效益期望值: 15×0.8×10+15×0.2×10-10=140万元 (3)将效益期望值填入决策树图 首先在每个结果点后面填上 相应的效益期望值;其次在每个方案节点上填上相应的期望值, 最后将期望值的角色分支删减掉。只留下期望值最大的决策分 支,并将此数值填入决策点上面,至此决策方案也就相应选出
600
800 350 400
22
2、悲观决策(极大极小决策、小中取大)
决策者持悲观态度,或由于自己实力比较, 担心由于决策失误会造成巨大损失,因 此追求低风险。
本着稳中求胜的精神,在不知道未来各种 可能状态发生概率的前提下,将各个方案 在各种状态下可能取得的最大收益值作为 该方案的收益值,然后再从各方案收益值 中找出最大收益值的方案。
玉米 棉花 花生 合计 资源供给量 资源余缺量
在生产出16.5万公顷玉米的前提下,将获得 5.28万元的利润,在忙劳动力资源尚剩余680 个工日可用于其他产品生产。
3
例:设某茶厂计划创建精制茶厂,开始有两个方案,方案 一是建年加工能力为 800担的小厂,方案二是建年加工能 力为 2000 担的大厂。两个厂的使用期均为 10 年,大厂投 资25万元,小厂投资10万元。产品销路没有问题,原料来 源有两种可能 ( 两种自然状态 ) :一种为 800 担,另一种为 2000担。两个方案每年损益及两种自然状态的概率估计值 见下表

决策树例题分析图文

决策树例题分析图文

➢ 计算各点的期望值: • 点②:0.7×200×10+0.3×(-40)×10-600(投资
)=680(万元) • 点⑤:1.0×190×7-400=930(万元) • 点⑥:1.0×80×7=560(万元) ➢ 比较决策点4的情况可以看到,由于点⑤(930万元)
与点⑥(560万元)相比,点⑤的期望利润值较大, 因此应采用扩建的方案,而舍弃不扩建的方案。 ➢ 把点⑤的930万元移到点4来,可计算出点③的期望利 润值: • 点③:0.7×80×3+0.7×930+0.3×60×(3+7)-280 = 719(万元)
9
.3)
200万元 -40万元
1 719万元
建小厂
扩建 5 销路好(1.0) 930万元
销路好(0.7) 4 不扩建
930万元
6 销路好(1.0)
3
560万元
719万元
销路差(0.3)
前3年,第一次决策
后7年,第二次决策
190万元
80万元 60万元
10
3
状态节点
2 方案分枝
1 决策结点
方案分枝
3
状态节点
概率分枝 4 结果节点
概率分枝 5 结果节点
概率分枝 6
结果节点
概率分枝 7
结果节点
4
• 应用决策树来作决策的过程,是从右向 左逐步后退进行分析。根据右端的损益 值和概率枝的概率,计算出期望值的大 小,确定方案的期望结果,然后根据不 同方案的期望结果作出选择。
7
决策过程如下:画图,即绘制决策树
• A1的净收益值=[300×0.7+(-60)×0.3] ×5-450=510 万
• A2的净收益值=(120×0.7+30×0.3)×5-240=225万 • 选择:因为A1大于A2,所以选择A1方案。 • 剪枝:在A2方案枝上打杠,表明舍弃。

决策树例题分析及解答分解课件

决策树例题分析及解答分解课件
决策树例题分析及解 答分解课件
目录
CONTENTS
• 决策树与其他机器学习算法的比 • 决策树未来发展方向
01
决策树简 介
决策树的定义
决策树是一种监督学习算法,用于解决分类和回归问题。
它通过递归地将数据集划分成更纯的子集来构建决策树,每个内部节点表示一个 特征属性上的判断条件,每个分支代表一个可能的属性值,每个叶子节点表示一 个类别。
03
决策树例题分析
题目描述
题目
预测一个学生是否能够被大学录 取
数据集
包含学生的个人信息、成绩、活动 参与情况等
目标变量
是否被大学录取(0表示未录取,1 表示录取)
数据预处理
01
02
03
数据清洗
处理缺失值、异常值和重 复值
数据转换
将分类变量转换为虚拟变 量,将连续变量进行分箱 处理
数据归一化
将特征值缩放到0-1之间, 以便更好地进行模型训练
结果解读与优化建议
结果解读
根据模型输出的结果,分析决策树 的构建情况,理解各节点的划分依据。
优化建议
根据模型评估结果和业务需求,提出 针对性的优化建议,如调整特征选择、 调整模型参数等。
05
决策树与其他机器
学习算法的比 较
与逻辑回归的比较
总结词
逻辑回归适用于连续和二元分类问题,而决策树适用于多元分类问题。
建立决策树模型
选择合适的决策树算 法:ID3、C4.5、 CART等
构建决策树模型并进 行训练
确定决策树的深度和 分裂准则
模型评估与优化
使用准确率、召回率、F1分数等指标 评估模型性能
对模型进行优化:剪枝、调整参数等
进行交叉验证,评估模型的泛化能力

决策树例题分析ppt课件

决策树例题分析ppt课件

例 : 设某茶厂计划创建精制茶厂,开始有两个方案,方案 一是建年加工能力为800担的小厂,方案二是建年加工能 力为2000担的大厂。两个厂的使用期均为10年,大厂投 资25万元,小厂投资10万元。产品销路没有问题,原料来 源有两种可能(两种自然状态):一种为800担,另一种为 2000担。两个方案每年损益及两种自然状态的概率估计值 见下表
最新版整理ppt
3
状态节点
2 方案分枝
1 决策结点
方案分枝
3
状态节点
概率分枝 4 结果节点
概率分枝 5 结果节点
概率分枝 6
结果节点
概率分枝 7
结果节点
最新版整理ppt
4
• 应用决策树来作决策的过程,是从右向 左逐步后退进行分析。根据右端的损益
值和概率枝的概率,计算出期望值的大
小,确定方案的期望结果,然后根据不 同方案的期望结果作出选择。
最新版整理ppt
2
补充: 风险型决策方法——决策树方法
• 风险决策问题的直观表示方法的图示法。因为图的形状 像树,所以被称为决策树。
• 决策树的结构如下图所示。图中的方块代表决策节点, 从它引出的分枝叫方案分枝。每条分枝代表一个方案, 分枝数就是可能的相当方案数。圆圈代表方案的节点, 从它引出的概率分枝,每条概率分枝上标明了自然状态 及其发生的概率。概率分枝数反映了该方案面对的可能 的状态数。末端的三角形叫结果点,注有各方案在相应 状态下的结果值。
最新版整理ppt
7
决策过程如下:画图,即绘制决策树
• A1的净收益值=[300×0.7+(-60)×0.3] ×5-450=510 万
• A2的净收益值=(120×0.7+30×0.3)×5-240=225万

[复习]决策树决策表练习题与参考答案

[复习]决策树决策表练习题与参考答案

1.某厂对一部分职工重新分配工作,分配原则是:
⑴年龄不满20岁,文化程度是小学者脱产学习,文化程度是中学者当电工;
⑵年龄满20岁但不足50岁,文化程度是小学或中学者,男性当钳工,女性当车工;文化程度是大专者,当技术员。

⑶年龄满50岁及50岁以上,文化程度是小学或中学者当材料员,文化程度是大专者当技术员。

要求:做出决策表。

2、试画出某企业库存量监控处理的判断树。

若库存量≤0,按缺货处理;若库存量≤库存下限,按下限报警处理;若库存量>库存下限,而又≤储备定额,则按订货处理;若库存量>库存下限,而又>储备定额,则按正常处理;若库存量≥库存上限,又>储备定额,则按上限报警处理。

3某货运站收费标准如下:
若收件地点在本省,则快件6元/公斤,慢件4元/公斤;
若收件地点在外省,则在25公斤以内(包括25公斤),快件8元/公斤,慢件6元/公斤;而超过25公斤时,快件10元/公斤,慢件8元/公斤;
画出决策表和决策树:
决策表:
优化后的结果如下所示:
决策树:
收费
本省
外省快件
慢件
快件
慢件
≤25斤
>25斤
≤25斤
>25斤
6元
4元
8元
10元
6元
8元
地点规格重量收费金额。

回归问题的决策树题目和解答

回归问题的决策树题目和解答

回归问题的决策树题目和解答(原创实用版)目录1.决策树的基本概念2.回归问题的决策树3.决策树的构建过程4.决策树的应用实例5.决策树的优缺点正文一、决策树的基本概念决策树是一种基本的分类和回归方法,通过将数据集分成许多子集,每个子集对应一个决策节点,直到最终得到叶子节点为止。

决策树可以分为分类决策树和回归决策树。

分类决策树主要用于分类问题,而回归决策树主要用于回归问题。

二、回归问题的决策树回归决策树主要用于解决回归问题,即预测一个连续值的问题。

在回归问题中,决策树的每个内部节点表示一个特征,每个分支表示一个决策规则,而叶子节点表示预测结果。

通过组合不同特征的预测结果,可以得到最终的回归预测值。

三、决策树的构建过程决策树的构建过程主要包括以下步骤:1.特征选择:从训练数据集中选择一个最佳特征进行划分。

最佳特征的选择可以采用信息增益、增益率、基尼指数等方法。

2.决策树生成:根据选择的特征和其对应的阈值,将训练数据集划分成不同的子集,然后对每个子集递归地重复步骤 1,直到满足停止条件(如所有样本属于同一类别、没有可选特征等)。

3.决策树剪枝:为了避免过拟合,需要对决策树进行剪枝。

剪枝方法包括预剪枝和后剪枝。

预剪枝是在构建过程中提前停止树的生长,后剪枝是在构建完整的决策树后进行简化。

四、决策树的应用实例决策树在许多领域都有广泛应用,如金融、医疗、教育、市场营销等。

例如,在房价预测中,可以使用决策树根据房屋的面积、卧室数量、距离市中心的距离等特征来预测房价。

五、决策树的优缺点1.优点:(1)易于理解和解释;(2)具有较高的预测准确性;(3)能够处理连续值和类别值;(4)可以处理缺失值。

决策树例题分析及解答

决策树例题分析及解答

600
800 350 400
22
2、悲观决策(极大极小决策、小中取大)
决策者持悲观态度,或由于自己实力比较, 担心由于决策失误会造成巨大损失,因 此追求低风险。
本着稳中求胜的精神,在不知道未来各种 可能状态发生概率的前提下,将各个方案 在各种状态下可能取得的最大收益值作为 该方案的收益值,然后再从各方案收益值 中找出最大收益值的方案。
自然状态 原料800担 原料2000担 概率 0.8 0.2 建大厂(投资25 万元) 13.5 25.5 建小厂(投资10 万元) 15.0 15.0
4
补充: 风险型决策方法——决策树方法
• 风险决策问题的直观表示方法的图示法。因为图的形状 像树,所以被称为决策树。
• 决策树的结构如下图所示。图中的方块代表决策节点, 从它引出的分枝叫方案分枝。每条分枝代表一个方案, 分枝数就是可能的相当方案数。圆圈代表方案的节点, 从它引出的概率分枝,每条概率分枝上标明了自然状态 及其发生的概率。概率分枝数反映了该方案面对的可能 的状态数。末端的三角形叫结果点,注有各方案在相应 状态下的结果值。
13
最后比较决策点1的情况: • 由于点③(719万元)与点②(680万元) 相比,点③的期望利润值较大,因此取 点③而舍点②。这样,相比之下,建设 大工厂的方案不是最优方案,合理的策 略应采用前3年建小工厂,如销路好,后 7年进行扩建的方案。

决策树法的一般程序是: (1)画出决策树图形 决策树指的是某个决策问题未来发展情 况的可能性和可能结果所做的估计,在图纸上的描绘决策树 (2)计算效益期望值 两个行动方案的效益期望值计算过程: 行动方案A1(建大厂)的效益期望值: 13.5×0.8×10+25.5×0.2×10-25=134万元 行动方案A2(建小厂)的效益期望值: 15×0.8×10+15×0.2×10-10=140万元 (3)将效益期望值填入决策树图 首先在每个结果点后面填上 相应的效益期望值;其次在每个方案节点上填上相应的期望值, 最后将期望值的角色分支删减掉。只留下期望值最大的决策分 支,并将此数值填入决策点上面,至此决策方案也就相应选出
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
• 计算完毕后,开始对决策树进行剪枝, 在每个决策结点删去除了最高期望值以 外的其他所有分枝,最后步步推进到第 一个决策结点,这时就找到了问题的最 佳方案
• 方案的舍弃叫做修枝,被舍弃的方案用 “≠”的记号来表示,最后的决策点留 下一条树枝,即为最优方案。
8
• A1、A2两方案投资分别为450万和240 万,经营年限为5年,销路好的概率为 0.7,销路差的概率为0.3,A1方案销 路好、差年损益值分别为300万和负60 万;A2方案分别为120万和30万。
• 建设大工厂需要投资600万元,可使用10年。销路好 每年赢利200万元,销路不好则亏损40万元。
• 建设小工厂投资280万元,如销路好,3年后扩建,扩 建需要投资400万元,可使用7年,每年赢利190万元。 不扩建则每年赢利80万元。如销路不好则每年赢利60 万元。
• 试用决策树法选出合理的决策方案。 经过市场调查, 市场销路好的概率为0.7,销路不好的概率为0.3。
12
➢ 计算各点的期望值: • 点②:0.7×200×10+0.3×(-40)×10-600(投资)
=680(万元) • 点⑤:1.0×190×7-400=930(万元) • 点⑥:1.0×80×7=560(万元) ➢ 比较决策点4的情况可以看到,由于点⑤(930万元)
与点⑥(560万元)相比,点⑤的期望利润值较大, 因此应采用扩建的方案,而舍弃不扩建的方案。 ➢ 把点⑤的930万元移到点4来,可计算出点③的期望利 润值: • 点③:0.7×80×3+0.7×930+0.3×60×(3+7)-280 = 719(万元)
9
决策过程如下:画图,即绘制决策树
• A1的净收益值=[300×0.7+(-60)×0.3] ×5-450=510 万
• A2的净收益值=(120×0.7+30×0.3)×5-240=225万 • 选择:因为A1大于A2,所以选择A1方案。 • 剪枝:在A2方案枝上打杠,表明舍弃。
10
例题
• 为了适应市场的需要,某地提出了扩大电视机生产的 两个方案。一个方案是建设大工厂,第二个方案是建 设小工厂。
11
680万元 2
建大厂
销路好(0.7) 销路差(0.3)
200万元 -40万元
1 719万元
建小厂
扩建 5 销路好(0.7) 930万元
销路好(0.7) 4 不扩建
930万元
6 销路好(0.7)
3
560万元
719万元
销路差(0.3)
前3年,第一次决策
后7年,第二次决策
190万元
80万元 60万元
决策树例题分析及解答_(1)
解:玉米、棉花、花生和种植面积分别为X1,X2,X3公顷,依 题意列出线性规划模型。
目标函数:S=1500X1+1800X2+1650X3——极大值 约束条件:X1+X2+X3≤33.333 60X1+105X2+45X3≤2800 2250X1+2250X2+750X3≤63000 8250X1≤165000 X1,X2,X3≥0 采用单纯形法求出决策变量值: X1=20公顷 X2=5.333公顷 X3=8公顷
5
状态节点
2 方案分枝
1 决策结点
方案分枝
3
状态节点
概率分枝 4 结果节点
概率分枝 5 结果节点
概率分枝 6
结果节点
概率分枝 7
结果节点
6
• 应用决策树来作决策的过程,是从右向 左逐步后退进行分析。根据右端的损益 值和概率枝的概率,计算出期望值的大 小,确定方案的期望结果,然后根据不 同方案的期望结果作出选择。
2
决策方案评价
作物类别
玉米 棉花 花生 合计 资源供给量 资源余缺量
占用耕 忙季耗用 灌水用量 地面积 工日数 (立方米) (公顷)
20
1200
45000
5.333
560
12000
8
36060ຫໍສະໝຸດ 033.3332120
63000
33.333
2800
63000
0
680
0
总产量 (千瓦)
165000 40000
自然状态 概率 建大厂(投资25 建小厂(投资10
万元)
万元)
原料800担 0.8 原料2000担 0.2
13.5 25.5
15.0 15.0
4
补充: 风险型决策方法——决策树方法
• 风险决策问题的直观表示方法的图示法。因为图的形状 像树,所以被称为决策树。
• 决策树的结构如下图所示。图中的方块代表决策节点, 从它引出的分枝叫方案分枝。每条分枝代表一个方案, 分枝数就是可能的相当方案数。圆圈代表方案的节点, 从它引出的概率分枝,每条概率分枝上标明了自然状态 及其发生的概率。概率分枝数反映了该方案面对的可能 的状态数。末端的三角形叫结果点,注有各方案在相应 状态下的结果值。
13
➢最后比较决策点1的情况: • 由于点③(719万元)与点②(680万元)
相比,点③的期望利润值较大,因此取 点③而舍点②。这样,相比之下,建设 大工厂的方案不是最优方案,合理的策 略应采用前3年建小工厂,如销路好,后 7年进行扩建的方案。
14
决策树法的一般程序是: (1)画出决策树图形 决策树指的是某个决策问题未来发展情 况的可能性和可能结果所做的估计,在图纸上的描绘决策树 (2)计算效益期望值 两个行动方案的效益期望值计算过程: 行动方案A1(建大厂)的效益期望值: 13.5×0.8×10+25.5×0.2×10-25=134万元 行动方案A2(建小厂)的效益期望值: 15×0.8×10+15×0.2×10-10=140万元 (3)将效益期望值填入决策树图 首先在每个结果点后面填上 相应的效益期望值;其次在每个方案节点上填上相应的期望值, 最后将期望值的角色分支删减掉。只留下期望值最大的决策分 支,并将此数值填入决策点上面,至此决策方案也就相应选出
120000
利润量 (元)
30000 9600
13200 52800
在生产出16.5万公顷玉米的前提下,将获得 5.28万元的利润,在忙劳动力资源尚剩余680 个工日可用于其他产品生产。
3
例 : 设某茶厂计划创建精制茶厂,开始有两个方案,方案 一是建年加工能力为800担的小厂,方案二是建年加工能 力为2000担的大厂。两个厂的使用期均为10年,大厂投 资25万元,小厂投资10万元。产品销路没有问题,原料来 源有两种可能(两种自然状态):一种为800担,另一种为 2000担。两个方案每年损益及两种自然状态的概率估计值 见下表
相关文档
最新文档