2015届高三上学期期中考试数学(理)试题(含答案)
河南省焦作市2015届高三上学期期中考试数学(理)试题
河南省焦作市2015届高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(共12题,每小题5分,共60分)1.已知集合A={x|0≤x≤2},B={y|1<y<3},则A∩B=()A.[1,2)B.[0,3)C.(1,2]D.[0,3]分析:根据题意画出数轴,再由交集的运算求出A∩B.解答:解:由题意得,集合A={x|0≤x≤2},B={y|1<y<3},如图所示:则A∩B=(1,2],故选:C.点评:本题考查了交集及其运算,以及数形结合思想,属于基础题.2.“a=1”是“复数a2﹣1+(a+1)i(a∈R,i为虚数单位)是纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件分析:利用纯虚数的定义,先判断充分性再判断必要性.解答:解:当a=1时,复数a2﹣1+(a+1)i=2i为纯虚数,满足充分性;当a2﹣1+(a+1)i是纯虚数时,有a2﹣1=0,且a+1≠0,解得a=1,满足必要性.综上,“a=1”是“复数a2﹣1+(a+1)i(a∈R),i为虚数单位)是纯虚数”的充要条件,故选:C.点评:该题考查复数的基本概念、充要条件.属基础题.3.已知双曲线﹣y2=1(a>0)的实轴长2,则该双曲线的离心率为()A.B.C.D.分析:首先根据实轴长为2,解得双曲线的方程为:x2﹣y2=1,进一步求出离心率.解答:解:已知双曲线﹣y2=1(a>0)的实轴长2,即2m=2解得:m=1 即a=1所以双曲线方程为:x2﹣y2=1离心率为故选:B点评:本题考查的知识要点:双曲线的方程,及离心率的求法4.已知log7[log3(log2x)]=0,那么x等于()A.B.C.D.分析:从外向里一层一层的求出对数的真数,求出x的值,求出值.解答:解:由条件知,log3(log2x)=1,∴log2x=3,∴x=8,∴x=故选:D.点评:利用对数式与指数式的相互转化从外向里求出真数,属于基础题.5.如图所示是计算某年级500名学生期末考试(满分为100分)及格率q的程序框图,则图中空白框内应填入()A.q=B.q=C.q=D.q=考点:程序框图.专题:计算题.分析:通过题意与框图的作用,即可判断空白框内应填入的表达式.解答:解:由题意以及框图可知,计算某年级500名学生期末考试(满分为100分)及格率q的程序框图,所以输出的结果是及格率,所以图中空白框内应填入q=.故选:D.点评:本题考查循环框图的应用,考查计算能力.6.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种考点:计数原理的应用.专题:计算题.分析:本题是一个分类计数问题,一是3本集邮册一本画册,让一个人拿本画册就行了4种,另一种情况是2本画册2本集邮册,只要选两个人拿画册C42种,根据分类计数原理得到结果.解答:解:由题意知本题是一个分类计数问题一是3本集邮册一本画册,让一个人拿本画册就行了4种另一种情况是2本画册2本集邮册,只要选两个人拿画册C42=6种根据分类计数原理知共10种,故选B.点评:本题考查分类计数问题,是一个基础题,这种题目可以出现在选择或填空中,也可以出现在解答题目的一部分中.7.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β考点:空间中直线与平面之间的位置关系.分析:本题考查的知识点是直线与平面之间的位置关系,逐一分析四个答案中的结论,发现A,B,D中由条件均可能得到l∥β,即A,B,D三个答案均错误,只有C满足平面平行的性质,分析后不难得出答案.解答:解:若l⊥α,α⊥β,则l⊂β或l∥β,故A错误;若l∥α,α∥β,则l⊂β或l∥β,故B错误;若l⊥α,α∥β,由平面平行的性质,我们可得l⊥β,故C正确;若l∥α,α⊥β,则l⊥β或l∥β,故D错误;故选C点评:判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a⊂α,b⊄α,a∥b⇒a∥α);③利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);④利用面面平行的性质(α∥β,a⊄α,a⊄,a∥α⇒a∥β).线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.垂直问题的证明,其一般规律是“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.8.要得到函数f(x)=sin(2x+)的导函数f′(x)的图象,只需将f(x)的图象()A.向左平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B.向左平移个单位,再把各点的纵坐标缩短到原来的(横坐标不变)C.向左平移个单位,再把各点的纵坐标缩短到原来的(横坐标不变)D.向左平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)考点:简单复合函数的导数;函数y=Asin(ωx+φ)的图象变换.专题:导数的综合应用;三角函数的图像与性质.分析:求出函数f(x)=sin(2x+)的导函数,然后变形为=,然后由函数图象的平移得答案.解答:解:∵f(x)=sin(2x+),∴=,则要得到函数f(x)=sin(2x+)的导函数f′(x)的图象,只需将f(x)的图象向左平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)而得到.故选:D.点评:本题考查了简单的复合函数的导数,考查了三角函数的图象平移,是基础题.9.设z=x+y,其中实数x,y满足若z的最大值为12,则z的最小值为()A.﹣3 B.3C.﹣6 D.6考点:简单线性规划.专题:计算题;作图题;不等式的解法及应用.分析:由题意作出其平面区域,直线y=k,y=﹣x+12,y=x三线相交于一点,联立y=﹣x+12,y=x 解出交点坐标,代入求k.解答:解:由题意作出其平面区域:则直线y=k,y=﹣x+12,y=x三线相交于一点,由y=﹣x+12,y=x联立可解得,x=6,y=6,则k=6.故选D.点评:本题考查了简单线性规划,作图要细致认真,属于中档题.10.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=()A.B.C.D.考点:与直线关于点、直线对称的直线方程.专题:直线与圆.分析:由两点关于一条直线对称的性质,求得对称轴所在的直线方程为2x﹣y﹣3=0,再根据垂直及中点在轴上这两个条件求得m,n的值,可得m+n的值解答:解:由题意可得,对称轴所在的直线即为点(0,2)与点(4,0)构成的线段的中垂线.由于点(0,2)与点(4,0)连成的线段的中点为(2,1),斜率为﹣,故对称轴所在的直线方程为y﹣1=2(x﹣2),即2x﹣y﹣3=0.再根据点(7,3)与点(m,n)重合,可得,求得,m+n=,故选:C.点评:本题主要考查两点关于一条直线对称的性质,求一个点关于某直线的对称点的坐标的求法,利用了垂直及中点在轴上这两个条件,还考查了中点公式,用两点式求直线的方程,属于基础题.11.一只蚂蚁从正方体ABCD﹣A1B1C1D1的顶点A处出发,经正方体的表面,按最短路线爬行到达顶点C1位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是()考点:平行投影及平行投影作图法.专题:空间位置关系与距离.分析:本题可把正方体沿着某条棱展开到一个平面成为一个矩形,连接此时的对角线AC1即为所求最短路线.解答:解:由点A经正方体的表面,按最短路线爬行到达顶点C1位置,共有6种展开方式,若把平面ABA1和平面BCC1展到同一个平面内,在矩形中连接AC1会经过BB1的中点,故此时的正视图为②.若把平面ABCD和平面CDD1C1展到同一个平面内,在矩形中连接AC1会经过CD的中点,此时正视图会是④.其它几种展开方式对应的正视图在题中没有出现或者已在②④中了,故选C点评:本题考查空间几何体的展开图与三视图,是一道基础题.12.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数有如下四个命题:①f(f(x))=0;②函数f(x)是偶函数;③任取一个不为零的有理数T,f(x+T)=f(x)对任意的x∈R恒成立;④存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.其中的真命题是()考点:命题的真假判断与应用.专题:函数的性质及应用.分析:①,根据函数的对应法则,可得不管x是有理数还是无理数,均有f(f(x))=1,从而可判断①;②,根据函数奇偶性的定义,可得f(x)是偶函数,可判断②;③,根据函数的表达式,结合有理数和无理数的性质,得f(x+T)=f(x),可判断③;对于④,取x1=﹣,x2=0,x3=,可得A(﹣,0)、B(0,1)、C(,0)三点恰好构成等边三角形,可判断④.解答:解:对于①,∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0,∴当x为有理数时,f(f(x))=f(1)=1;当x为无理数时,f(f(x))=f(0)=1,即不管x是有理数还是无理数,均有f(f(x))=1,故①错误;对于②,因为有理数的相反数还是有理数,无理数的相反数还是无理数,所以对任意x∈R,都有f(﹣x)=f(x),故②正确;对于③,若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数,∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故③正确;对于④,取x1=﹣,x2=0,x3=,可得A(﹣,0)、B(0,1)、C(,0)三点恰好构成等边三角形,故④正确.综上所述,真命题是②③④,故选:D.点评:本题考查命题的真假判断与应用,着重考查狄利克雷函数表达式的理解与应用,考查函数的奇偶性、周期性,考查分析、探究能力,属于难题.二、填空题(共4小题,每小题5分,共20分)13.的展开式中,常数项为672.(用数字作答)r r r=0×=67214.已知向量,夹角为45°,且||=1,|2﹣|=,则||=.向量,||=1﹣|=∴,,∵||=故答案为:15.函数f(x)=x3+x2﹣6x+m的图象不过第Ⅱ象限,则m的取值范围是(﹣∞,﹣10]16.(2012•烟台一模)已知cos=,cos cos=,cos cos cos=,…,根据这些结果,猜想出的一般结论是cos cos…cos=.,右式为cos,可化为=cos cos=,可化为cos cos=cos cos cos=cos cos cos=cos cos…=cos cos…cos=三、解答题17.(12分)已知等差数列{a n}的前n项和为S n,且a2=8,S4=40.数列{b n}的前n项和为T n,且T n﹣2b n+3=0,n∈N*.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设c n=,求数列{c n}的前2n+1项和P2n+1.考点:数列的求和.专题:计算题;等差数列与等比数列.分析:(Ⅰ)运用等差数列的通项公式与求和公式,根据条件列方程,求出首项和公差,得到通项a n,运用n=1时,b1=T1,n>1时,b n=T n﹣T n﹣1,求出b n;(Ⅱ)写出c n,然后运用分组求和,一组为等差数列,一组为等比数列,分别应用求和公式化简即可.解答:解:(Ⅰ)设等差数列{a n}的公差为d,由题意,得,解得,∴a n=4n;∵T n﹣2b n+3=0,∴当n≥2时,T n﹣1﹣2b n﹣1+3=0,两式相减,得b n=2b n﹣1,(n≥2)又当n=1时,b1=3,则数列{b n}为等比数列,∴;(Ⅱ)∴P2n+1=(a1+a3+…+a2n+1)+(b2+b4+…+b2n)==22n+1+4n2+8n+2.点评:本题主要考查等差数列和等比数列的通项与前n项和公式,考查方程在数列中的运用,考查数列的求和方法:分组求和,必须掌握.18.(12分)某家电专卖店在国庆期间设计一项有奖促销活动,每购买一台电视,即可通过电脑产果如下:247,235,145,324,754,500,296,065,379,118,520,161,218,953,254,406,227,111,358,791.(1)在以上模拟的20组数中,随机抽取3组数,求至少有1组获奖的概率;(2)根据以上模拟试验的结果,将频率视为概率:(i)若活动期间某单位购买四台电视,求恰好有两台获奖的概率;(ii)若本次活动平均每台电视的奖金不超过85元,求m的最大值.考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.分析:(1)利用对立事件的概率,即可求出随机抽取3组数,至少有1组获奖的概率;(2)(i)求出每购买一台电视获奖的概率,利用相互独立事件概率公式,可求恰好有两台获奖的概率;(ii)设ξ为获得奖金的数额,则ξ的可能取值为0,m,2m,5m,求出ξ的分布列,可得期望,利用本次活动平均每台电视的奖金不超过85元,即可求m的最大值.解答:解:(1)设“在以上模拟的20组数中,随机抽取3组数,至少有1组获奖”为事件A,则由数组知,没中奖的组数为12,∴P(A)=1﹣=,(2)(i)由题意得,每购买一台电视获奖的概率为P==,设“购买四台电视,恰有两台获奖”为事件B,则P(B)=c()2×(1﹣)2=(ii)设“购买一台电视获一等奖”为事件A1,“购买一台电视获二等奖”为事件A2,“购买一台电视获三等奖”为事件A3,则P(A1)=,P(A2)=,P(A3)=,设ξ为获得奖金的数额,则ξ的可能取值为0,m,2m,5m,故ξ的分布列为ξ0 m 2m 5mP∴Eξ=0+++=由题意Eξ=≤85,得m≤∴m的最大值为点评:本题考查概率的计算,考查离散型随机变量的期望与方差,确定变量的取值,求出相应的概率是关键19.(12分)如图1,直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=2,CD=4,点E为线段AB上异于A,B的点,且EF∥AD,沿EF将面EBCF折起,使平面EBCF⊥平面AEFD,如图2.(Ⅰ)求证:AB∥平面DFC;(Ⅱ)当三棱锥F﹣ABE体积最大时,求平面ABC与平面AEFD所成锐二面角的余弦值.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:综合题;空间位置关系与距离;空间角.分析:(Ⅰ)证明BE∥平面DFC、AE∥平面DFC,可得平面ABE∥平面DFC,即可证明AB∥平面DFC;(Ⅱ)建立坐标系,利用三棱锥F﹣ABE体积最大时,确定点的坐标,可得向量的坐标,求出平面CBA的法向量,利用向量的夹角公式,即可求平面ABC与平面AEFD所成锐二面角的余弦值.解答:(Ⅰ)证明:∵BE∥CF,BE⊄平面DFC,CF⊂平面DFC,∴BE∥平面DFC,同理AE∥平面DFC,∵BE∩AE=E,∴平面ABE∥平面DFC,∵AB⊂平面ABE,∴AB∥平面DFC;(Ⅱ)解:∵平面EBCF⊥平面AEFD,CF⊥EF,平面EBCF∩平面AEFD=EF,∴CF⊥平面AEFD,建立如图所示的坐标系,设AE=x,则EB=2﹣x,∴V F﹣ABE=•x(2﹣x)•2=﹣(x﹣1)2+.∴x=1时,三棱锥F﹣ABE体积最大,∴A(2,1,0),B(2,0,1),C(0,0,3),∴=(2,0,﹣2),=(2,1,﹣3),设平面CBA的法向量为=(x,y,z),则,∴=(1,1,1),∵平面AEFDA的一个法向量为=(0,0,2),∴cos<,>==,∴平面ABC与平面AEFD所成锐二面角的余弦值是.点评:本题考查平面与平面的平行、线面平行,考查平面与平面所成锐二面角的余弦值,正确运用平面与平面的平行、线面平行的判定,利用好空间向量是关键.20.(12分)已知圆C经(x﹣1)2+(y﹣2)2=5经过椭圆E:+=1(a>b>0)的右焦点F和上顶点B.(1)求椭圆E的方程;(2)过原点O的射线l在第一象限与椭圆E的交点为Q,与圆C的交点为P,M为OP的中点,求•的最大值.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)在圆(x﹣1)2+(y﹣2)2=5中,令y=0,得F(2,0),令x=0,得B(0,4),由此能求出椭圆方程;(2)设点Q(x0,y0),x0>0,y0>0,由于M为OP的中点,则CM⊥OQ,则=(+)==(1,2)•(x0,y0)=x0+2y0,设t=x0+2y0,与+=1联立,消去x0,再由判别式为0,即可得到最大值.解答:解:(1)在圆C:(x﹣1)2+(y﹣2)2=5中,令y=0,得F(2,0),即c=2,令x=0,得B(0,4),即b=4,∴a2=b2+c2=20,∴椭圆E的方程为:+=1.(2)设点Q(x0,y0),x0>0,y0>0,由于M为OP的中点,则CM⊥OQ,则=(+)==(1,2)•(x0,y0)=x0+2y0,又+=1,设t=x0+2y0,与+=1联立,得:21y02﹣16ty0+4t2﹣80=0,令△=0,得256t2﹣84(4t2﹣80)=0,解得t=±2.又点Q(x0,y0)在第一象限,∴当y0=时,取最大值2.点评:本题考查直线、圆、椭圆、平面向量等基础知识,考查直线与圆锥曲线的位置关系,考查运算求解能力、推理论证能力,考查数形结合、化归转化及函数与方程等数学思想.21.(12分)已知函数f(x)=ln(x+a)﹣x2,x∈[0,2],a>0.(1)若存在x0∈[0,2],使得函数y=f(x)在点(x0,f(x0))处的切线斜率k≤1,求实数a的取值范围;(2)求函数f(x)的最小值.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:综合题;导数的综合应用.分析:(1)求导数,利用函数y=f(x)在点(x0,f(x0))处的切线斜率k≤1,分离参数,可得a≥﹣x0,求出右边的最小值,即可求实数a的取值范围;(2)确定函数在[0,2]上单调递减,即可求函数f(x)的最小值.解答:解:(1)∵f(x)=ln(x+a)﹣x2,∴f′(x)=﹣x,∴≤1,∴a≥﹣x0,由y=﹣x,可得y′=﹣1,∴函数在[0,2]上单调递减,∴函数的最小值为﹣,∴a≥﹣;(2)f′(x)=﹣x=,∵x∈[0,2],a>0,∴f′(x)<0,∴函数在[0,2]上单调递减,∴x=2时,函数取得最小值f(2)=ln(2+a)﹣2.点评:本题考查利用导数研究曲线上某点切线方程,考查利用导数求闭区间上函数的最值,考查学生分析解决问题的能力,属于中档题.请考生从22、23、24中任选一题作答。
【名师解析】北京市朝阳区2015届高三上学期期中统一考试数学(理)试题 Word版含解析
北京市朝阳区2015届高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.1.已知集合A={x|x2+x﹣2<0},B={x|x>0},则集合A∪B等于()A.{x|x>﹣2} B.{x|0<x<1} C.{x|x<1} D.{x|﹣2<x<1}解答:解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},B={x|x>0},∴集合A∪B={x|x>﹣2}.故选:A.点评:本题考查并集的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.2.已知命题p:∀x>0,x+≥4;命题q:∃x0∈R,2x0=﹣1.则下列判断正确的是()A.p是假命题B.q是真命题C.p∧(¬q)是真命题D.(¬p)∧q是真命题解答:解:对于命题p:∵x>0,∴x+≥2=4,∴命题p为真命题;对于命题q:∵对∀x∈R,2x>0,∴命题q为假命题,¬q为真命题,故只有选项C为真命题.故选:C.点评:本题综合考查了复合命题的真假,简单命题的真假判断等知识,属于中档题,解题的关键是:准确理解两个命题的真值情况.3.执行如图所示的程序框图,则输出的k的值是()A.120 B.105 C.15 D.5考点:循环结构.专题:算法和程序框图.分析:据题意,模拟程序框图的运行过程,得出程序框图输出的k值是什么.解答:解:第一次循环得到:k=1,i=3;第二次循环得到:k=3,i=5;第三次循环得到:k=15,i=7;满足判断框中的条件,退出循环∴k=15故选C点评:本题考查了求程序框图的运行结果的问题,解题时应模拟程序框图的运行过程,以便得出结论,是基础题.4.曲线y=与直线x=1,x=e2及x轴所围成的图形的面积是()A.e2B.e2﹣1 C.e D.2分析:确定被积区间及被积函数,利用定积分表示面积,即可得到结论.解答:解:由题意,由曲线y=与直线x=1,x=e2及x轴所围成的图形的面积是S===2.故选:D.点评:本题考查面积的计算,解题的关键是确定曲线交点的坐标,确定被积区间及被积函数,利用定积分表示面积.5.设,是两个非零的平面向量,下列说法正确的是()①若•=0,则有|+|=|﹣|;②|•|=||||;③若存在实数λ,使得=λ,则|+|=||+||;④若|+|=||﹣||,则存在实数λ,使得=λ.A.①③B.①④C.②③D.②④分析:①当•=0时,判断|+|=|﹣|成立;②利用数量积判断|•|=||||不一定成立;③当=λ时,判断|+|=||+||不一定成立;④当|+|=||﹣||时,得出、共线,即可判断正误.解答:解:对于①,当•=0时,|+|===|﹣|,∴①正确;对于②,∵•=||||cos<,>,∴|•|=||||不一定成立,②错误;对于③,当=λ时,则|+|=|λ+|=|||λ+1|,||+||=|λ|+||=||(|λ|+1),|+|=||+||不一定成立,∴③错误;对于④,当|+|=||﹣||时,∴+2•+=﹣2||||+,∴•=﹣||||,∴共线,即存在实数λ,使得=λ,∴④正确.综上,正确的是①④.故选:B.点评:本题考查了平面向量的应用问题,解题时应熟练地掌握平面向量的有关概念,是基础题.6.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为()A.3000 B.3300 C.3500 D.4000考点:函数最值的应用.专题:计算题;应用题;函数的性质及应用.分析:由题意,设利润为y元,租金定为3000+50x元,(0≤x≤70,x∈N),则y=(3000+50x)(70﹣x)﹣100(70﹣x),利用基本不等式求最值时的x的值即可.解答:解:由题意,设利润为y元,租金定为3000+50x元,(0≤x≤70,x∈N)则y=(3000+50x)(70﹣x)﹣100(70﹣x)=(2900+50x)(70﹣x)=50(58+x)(70﹣x)≤50()2,当且仅当58+x=70﹣x,即x=6时,等号成立,故每月租金定为3000+300=3300(元),故选B.点评:本题考查了学生由实际问题转化为数学问题的能力及基本不等式的应用,属于中档题.7.如图,某地一天中6时至14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b(其中ω>0,<φ<π),则估计中午12时的温度近似为()A.30℃B.27℃C.25℃D.24℃考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:由函数的图象的顶点坐标求出A和b,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,从而其求得x=12时的值.解答:解:由函数的图象可得b=20,A=30﹣20=10,根据•=10﹣6,可得ω=.再根据五点法作图可得,×6+φ=,求得φ=,∴y=10sin(x+)+20.令x=12,可得y=10sin(+)+20=10sin+20 10×+20≈27℃,故选:B.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,属于基础题.8.设函数f(x),g(x)满足下列条件:(1)对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2);(2)f(﹣1)=﹣1,f(0)=0,f(1)=1.下列四个命题:①g(0)=1;②g(2)=1;③f2(x)+g2(x)=1;④当n>2,n∈N*时,[f(x)]n+[g(x)]n的最大值为1.其中所有正确命题的序号是()A.①③B.②④C.②③④D.①③④考点:命题的真假判断与应用.专题:函数的性质及应用.分析:既然对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2),那么分别令x1,x2取1,0,﹣1求出g(0),g(1),g(﹣1),g(2),然后令x1=x2=x可得③,再根据不等式即可得④解答:解;对于①结论是正确的.∵对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2)且f(﹣1)=﹣1,f(0)=0,f(1)=1,令x1=x2=1,得[f(1)]2+[g(1)]2=g(0),∴1+[g(1)]2=g(0),∴g(0)﹣1=[g(1)]2令x1=1,x2=0,得f(1)f(0)+g(1)g(0)=g(1),∴g(1)g(0)=g(1),g(1)[g (0)﹣1]=0解方程组得对于②结论是不正确的,令x1=0,x2=﹣1,得f(0)f(﹣1)+g(0)g(﹣1)=g(1),∴g (﹣1)=0令x1=1,x2=﹣1,得f(1)f(﹣1)+g(1)g(﹣1)=g(2),∴﹣1=g(2),∴g(2)≠1 对于③结论是正确的,令x1=x2=1,得f2(x)+g2(x)=g(0)=1,对于④结论是正确的,由③可知f2(x)≤1,∴﹣1≤f(x)≤1,﹣1≤g(x)≤1∴|f n(x)|≤f2(x),|g n(x)|≤g2(x)对n>2,n∈N*时恒成立,[f(x)]n+[g(x)]n≤f2(x)+g2(x)=1综上,①③④是正确的.故选:D点评:本题考查赋值法求抽象函数的性质属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知平面向量,满足||=1,=(1,1),且∥,则向量的坐标是或.考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:设=(x,y).由于平面向量,满足||=1,=(1,1),且∥,可得=1,x﹣y=0.解出即可.解答:解:设=(x,y).∵平面向量,满足||=1,=(1,1),且∥,∴=1,x﹣y=0.解得.∴=或.故答案为:或.点评:本题考查了向量模的计算公式、向量共线定理,属于基础题.10.已知tan(+α)=,α∈(,π),则tanα的值是﹣;cosα的值是﹣.考点:两角和与差的正切函数;任意角的三角函数的定义.专题:三角函数的求值.分析:利用两角和与差的正切函数及任意角的三角函数的定义,即可求得tanα与cosα的值.解答:解:tan(+α)=,∴tanα=tan[(+α)﹣]===﹣;又α∈(,π),∴cosα=﹣=﹣.故答案为:;.点评:本题考查两角和与差的正切函数及任意角的三角函数的定义,属于中档题.11.若f(x)=,是奇函数,则a+b的值是﹣1.考点:函数奇偶性的性质.分析:不妨设x<0,则﹣x>0,根据所给的函数解析式,利用f(﹣x)=﹣f(x),由此可得a、b的值,即可得到a+b.解答:解:函数f(x)=,是奇函数,任意x<0,则﹣x>0,由f(﹣x)=﹣f(x),则﹣2x+3=﹣ax﹣b,则a=2,b=﹣3.则a+b=﹣1,故答案为:﹣1.点评:本题主要考查分段函数求函数的奇偶性,运用函数的奇偶性的定义是解题的关键,属于基础题.12.已知等差数列{a n}中,S n为其前n项和.若a1+a3+a5+a7=﹣4,S8=﹣16,则公差d=﹣2;数列{a n}的前3项和最大.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由题意可得a2+a4+a6+a8=﹣4+4d,可得S8=﹣4+(﹣4+4d)=﹣16,解之可得d=﹣2,进而可得a1=5,可得a n=7﹣2n,解不等式可得等差数列{a n}的前3项为正数,从第4项起为负数,故数列{a n}的前3项和最大.解答:解:∵a1+a3+a5+a7=﹣4,∴a2+a4+a6+a8=﹣4+4d,∴S8=﹣4+(﹣4+4d)=﹣16,解得d=﹣2,∴a1+a3+a5+a7=4a1+12d=﹣4,解得a1=5,∴等差数列{a n}的通项公式a n=5﹣2(n﹣1)=7﹣2n,令a n=7﹣2n≤0可得n≥,∴等差数列{a n}的前3项为正数,从第4项起为负数,∴数列{a n}的前3项和最大故答案为:﹣2;3点评:本题考查等差数列的前n项和公式,属基础题.13.已知x,y满足条件若目标函数z=ax+y(其中a>0)仅在点(2,0)处取得最大值,则a的取值范围是(,+∞).考点:简单线性规划的应用.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,确定目标取最优解的条件,即可求出a的取值范围.解答:解:作出不等式对应的平面区域,由z=ax+y得y=﹣ax+z,∵a>0,∴此时目标函数的斜率k=﹣a<0,要使目标函数z=ax+y仅在点A(2,0)处取得最大值,则此时﹣a≤k AB=﹣,即a>,故答案为:(,+∞)点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.14.如图,在水平地面上有两座直立的相距60m的铁塔AA1和BB1.已知从塔AA1的底部看塔BB1顶部的仰角是从塔BB1的底部看塔AA1顶部的仰角的2倍,从两塔底部连线中点C分别看两塔顶部的仰角互为余角.则从塔BB1的底部看塔AA1顶部的仰角的正切值为;塔BB1的高为45m.考点:解三角形的实际应用.专题:应用题;解三角形.分析:设从塔BB1的底部看塔AA1顶部的仰角为α,则AA1=60tanα,BB1=60tan2α,利用从两塔底部连线中点C分别看两塔顶部的仰角互为余角,可得△A1AC∽△CBB1,即可求出结论.解答:解:设从塔BB1的底部看塔AA1顶部的仰角为α,则AA1=60tanα,BB1=60tan2α,∵从两塔底部连线中点C分别看两塔顶部的仰角互为余角,∴△A1AC∽△CBB1,∴,∴AA1•BB1=900,∴3600tanαtan2α=900,∴tanα=,tan2α=,BB1=60tan2α=45.故答案为:,45点评:本题考查解三角形的实际应用,考查学生的计算能力,属于中档题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(13分)已知函数f(x)=sinx﹣acosx(x∈R)的图象经过点(,1).(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数f(x)的最小正周期和单调递减区间.考点:两角和与差的正弦函数;三角函数的周期性及其求法;复合三角函数的单调性.专题:三角函数的图像与性质.分析:(Ⅰ)代点可求a值,可得解析式;(Ⅱ)由(Ⅰ)知f(x)=,易得周期为T=2π,解可得单调递减区间.解答:解:(Ⅰ)∵函数f(x)的图象经过点,∴,即﹣a=1,解得a=1.∴==.(Ⅱ)由(Ⅰ)知f(x)=.∴函数f(x)的最小正周期为T=2π.由,k∈Z.可得,k∈Z.∴函数f(x)的单调递减区间为:[],k∈Z点评:本题考查三角函数的图象和性质,涉及三角函数公式和三角函数的单调性和周期性,属基础题.16.(13分)如图,在△ABC中,∠ACB为钝角,AB=2,BC=.D为AC延长线上一点,且CD=+1.(Ⅰ)求∠BCD的大小;(Ⅱ)求BD的长及△ABC的面积.考点:余弦定理的应用.专题:解三角形.分析:(Ⅰ)利用正弦定理求出∠BCD的正弦函数值,然后求出角的大小;(Ⅱ)在△BCD中,由余弦定理可求BD的长,然后求出AC的长,即可求解△ABC的面积.解答:(本小题满分13分)解:(Ⅰ)在△ABC中,因为,,由正弦定理可得,即,所以.因为∠ACB为钝角,所以.所以.…(6分)(Ⅱ)在△BCD中,由余弦定理可知BD2=CB2+DC2﹣2CB•DC•cos∠BCD,即,整理得BD=2.在△ABC中,由余弦定理可知BC2=AB2+AC2﹣2AB•AC•cosA,即,整理得.解得.因为∠ACB为钝角,所以AC<AB=2.所以.所以△ABC的面积.….(13分)点评:本题考查余弦定理的应用,解三角形,考查基本知识的应用.17.(13分)在递减的等比数列{a n}中,设S n为其前n项和,已知a2=,S3=.(Ⅰ)求a n,S n;(Ⅱ)设b n=log2S n,试比较与b n+1的大小关系,并说明理由.考点:数列与函数的综合.专题:综合题;等差数列与等比数列.分析:(Ⅰ)利用a2=,S3=,建立方程组,即可求a n,S n;(Ⅱ)b n+1=log2S n+1,由于函数y=log2x在定义域上为增函数,所以只需比较与S n+1的大小关系.解答:解:(Ⅰ)由已知可得,解得q=2或.由上面方程组可知a1>0,且已知数列{a n}为递减数列,所以.代入求得,则.….(6分)(Ⅱ)依题意,=;b n+1=log2S n+1,由于函数y=log2x在定义域上为增函数,所以只需比较与S n+1的大小关系,即比较S n•S n+2与S2n+1的大小关系,=,=,由于,即,所以.即S n•S n+2<S2n+1,即<b n+1….(13分)点评:本题考查数列的通项,考查大小比较,考查学生分析解决问题的能力,属于中档题.18.(14分)已知函数f(x)=,a∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若f(x)在(1,2)上是单调函数,求a的取值范围.考点:函数的单调性及单调区间.专题:函数的性质及应用;导数的综合应用.分析:本题考察函数的单调性.(Ⅰ)先写出函数的定义域,然后求导数,分a=0,a>0,a<0,利用导数的符号讨论函数的单调性即可,(Ⅱ)结合(Ⅰ)中的函数单调性,对a进行分类讨论,又x∈(1,2),分成a≤0,0<2a≤1,1<2a<2,2a≥2四种情况进行讨论.解答:解:(Ⅰ)f(x)的定义域为{x|x≠a}..①当a=0时,f(x)=x(x≠0),f'(x)=1,则x∈(﹣∞,0),(0,+∞)时,f(x)为增函数;②当a>0时,由f'(x)>0得,x>2a或x<0,由于此时0<a<2a,所以x>2a时,f(x)为增函数,x <0时,f(x)为增函数;由f'(x)<0得,0<x<2a,考虑定义域,当0<x<a,f(x)为减函数,a<x<2a时,f (x)为减函数;③当a<0时,由f'(x)>0得,x>0或x<2a,由于此时2a<a<0,所以当x<2a时,f(x)为增函数,x>0时,f(x)为增函数.由f'(x)<0得,2a<x<0,考虑定义域,当2a<x<a,f(x)为减函数,a<x<0时,f (x)为减函数.综上,当a=0时,函数f(x)的单调增区间为(﹣∞,0),(0,+∞).当a>0时,函数f(x)的单调增区间为x∈(﹣∞,0),(2a,+∞),单调减区间为(0,a),(a,2a).当a<0时,函数f(x)的单调增区间为x∈(﹣∞,2a),(0,+∞),单调减区间为(2a,a),(a,0).(Ⅱ)①当a≤0时,由(Ⅰ)可得,f(x)在(1,2)单调增,且x∈(1,2)时,x≠a.②当0<2a≤1时,即时,由(Ⅰ)可得,f(x)在(2a,+∞)单调增,即在(1,2)单调增,且x∈(1,2)时,x≠a.③当1<2a<2时,即时,由(Ⅰ)可得,f(x)在(1,2)上不具有单调性,不合题意.④当2a≥2,即a≥1时,由(Ⅰ)可得,f(x)在(0,a),(a,2a)为减函数,同时需注意a∉(1,2),满足这样的条件时f(x)在(1,2)单调减,所以此时a=1或a≥2.综上所述,或a=1或a≥2.点评:本题易忽略函数的定义域,在讨论函数的性质的题目中一定要先求出函数的定义域,在定义域内讨论;难点是分类讨论较复杂,要做到不重不漏,按照数轴从左向右讨论,还要注意特殊情况.19.(14分)已知函数y=f(x),若在区间(﹣2,2)内有且仅有一个x0,使得f(x0)=1成立,则称函数f(x)具有性质M.(Ⅰ)若f(x)=sinx+2,判断f(x)是否具有性质M,说明理由;(Ⅱ)若函数f(x)=x2+2mx+2m+1具有性质M,试求实数m的取值范围.考点:函数零点的判定定理.专题:计算题;新定义;函数的性质及应用.分析:(Ⅰ)f(x)=sinx+2具有性质M.若存在x0∈(﹣2,2),使得f(x0)=1,解方程求出方程的根,即可证得;(Ⅱ)依题意,若函数f(x)=x2+2mx+2m+1具有性质M,即方程x2+2mx+2m=0在(﹣2,2)上有且只有一个实根.设h(x)=x2+2mx+2m,即h(x)=x2+2mx+2m在(﹣2,2)上有且只有一个零点.讨论m的取值范围,结合零点存在定理,即可得到m的范围.解答:解:(Ⅰ)f(x)=sinx+2具有性质M.理由:依题意,若存在x0∈(﹣2,2),使得f(x0)=1,则x0∈(﹣2,2)时有sinx0+2=1,即sinx0=﹣1,x0=2kπ﹣,k∈Z.由于x0∈(﹣2,2),所以x0=﹣.又因为区间(﹣2,2)内有且仅有一个x0=﹣.使得f(x0)=1成立,所以f(x)具有性质M;(Ⅱ)依题意,若函数f(x)=x2+2mx+2m+1具有性质M,即方程x2+2mx+2m=0在(﹣2,2)上有且只有一个实根.设h(x)=x2+2mx+2m,即h(x)=x2+2mx+2m在(﹣2,2)上有且只有一个零点.解法一:(1)当﹣m≤﹣2时,即m≥2时,可得h(x)在(﹣2,2)上为增函数,只需解得交集得m>2.(2)当﹣2<﹣m<2时,即﹣2<m<2时,若使函数h(x)在(﹣2,2)上有且只有一个零点,需考虑以下3种情况:(ⅰ)m=0时,h(x)=x2在(﹣2,2)上有且只有一个零点,符合题意.(ⅱ)当﹣2<﹣m<0即0<m<2时,需解得交集得∅.(ⅲ)当0<﹣m<2时,即﹣2<m<0时,需解得交集得.(3)当﹣m≥2时,即m≤﹣2时,可得h(x)在(﹣2,2)上为减函数只需解得交集得m≤﹣2.综上所述,若函数f(x)具有性质M,实数m的取值范围是m或m>2或m=0;解法二:依题意,(1)由h(﹣2)•h(2)<0得,(4﹣2m)(6m+4)<0,解得或m>2.同时需要考虑以下三种情况:(2)由解得m=0.(3)由解得,不等式组无解.(4)由解得,解得.综上所述,若函数f(x)具有性质M,实数m的取值范围是或m>2或m=0.点评:本题考查函数的零点的判断和求法,考查零点存在定理的运用,考查分类讨论的思想方法,考查运算能力,属于中档题.20.(13分)对于项数为m的有穷数列{a n},记b k=max{a1,a2,a3,…,a k}(k=1,2,3,…,m),即b k为a1,a2,a3,…,a k中的最大值,则称{b n}是{a n}的“控制数列”,{b n}各项中不同数值的个数称为{a n}的“控制阶数”.(Ⅰ)若各项均为正整数的数列{a n}的控制数列{b n}为1,3,3,5,写出所有的{a n};(Ⅱ)若m=100,a n=tn2﹣n,其中,{b n}是{a n}的控制数列,试用t表示(b1﹣a1)+(b2﹣a2)+(b3﹣a3)+…+(b100﹣a100)的值;(Ⅲ)在1,2,3,4,5的所有全排列中,将每种排列视为一个数列,对于其中控制阶数为2的所有数列,求它们的首项之和.考点:数列的应用.专题:新定义;等差数列与等比数列.分析:(Ⅰ)若各项均为正整数的数列{a n}的控制数列{b n}为1,3,3,5,可得{a n};(Ⅱ)确定当n≥2时,总有a n+1>a n,n≥3时,总有b n=a n.从而只需比较a1和a2的大小,即可得出结论.(Ⅲ)确定首项为1、2、3、4的数列的个数,即可得出结论.解答:解:(Ⅰ)1,3,1,5;1,3,2,5;1,3,3,5….(3分)(Ⅱ)因为,所以.所以当n≥2时,总有a n+1>a n.又a1=t﹣1,a3=9t﹣3.所以a3﹣a1=8t﹣2>0.故n≥3时,总有b n=a n.从而只需比较a1和a2的大小.(1)当a1≤a2,即t﹣1≤4t﹣2,即时,{a n}是递增数列,此时b n=a n对一切n=1,2,3,…100均成立.所以(b1﹣a1)+(b2﹣a2)+(b3﹣a3)+…+(b100﹣a100)=0.(2)当a1>a2时,即t﹣1>4t﹣2,即时,b1=a1,b2=a1,b n=a n(n≥3).所以(b1﹣a1)+(b2﹣a2)+(b3﹣a3)+…+(b100﹣a100)=0+[(t﹣1)﹣(4t﹣2)]+0+…+0=1﹣3t.综上,原式=….(9分)(Ⅲ)154.首项为1的数列有6个;首项为2的数列有6+2=8个;首项为3的数列有6+4+2=12个;首项为4的数列有6+6+6+6=24个;所以,控制阶数为2的所有数列首项之和6+8×2+12×3+24×4=154.…(13分)点评:本题考查数列的应用,着重考查分析,对抽象概念的理解与综合应用的能力,对(3)观察,分析寻找规律是难点,是难题.。
山东省泰安市2015届高三上学期期中考试数学试题(理)Word版含答案
高 三 年 级 考 试数 学 试 题(理科)2014.11一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}213A x x =-≤,集合(){}11B x y g x ==-,则A B ⋂等于A.()1,2B.[]1,2C.(]1,2D.[)1,2 2.如果命题“()p q ⌝∨”为真命题,则A.,p q 均为真命题B.,p q 均为假命题C.,p q 中至少有一个为真命题D.,p q 中一个为真命题,一个为假命题3.设sin31cos58,tan32a b c ===o o o ,,则A.a b c >>B.c b a >>C.c a b >>D.b c a >>4.若点()16,2在函数()log 01a y x a a =>≠且的图象上,则tan3a π的值为A. B.3-5.设数列{}n a 是公比为q 的等比数列,则“01q <<”是“{}n a 为递减数列”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 6.给定函数①12y x =,②()12l o g1y x =+,③1y x =-,④12x y +=,其中在区间()0,1上单调递减的函数序号是A.①②B.②③C.③④D.①④7.设α是第二象限角,(),4P x 为其终边上的一点,且1cos 5x α=,则tan 2α等于 A.247- B.127-C.127D.2478.在各项均不为零的等差数列{}n a 中,若()21121024n n n n a a a n S n +---+=≥-,则等于A.2-B.0C.1D.29.若函数()()()01x x f x ka a a a -=->≠-∞+∞且在,上既是奇函数又是增函数,则函数()()log a g x x k =+的图象是10.已知函数()()()()2210ln 2x f x x e x g x x x a =+-<=++与的图象上存在关于y 轴对称的点,则a 的取值范围是A.(-∞B.⎛-∞ ⎝C.⎛⎝ D.⎛⎝二、填空题:本大题共5个小题,每小题5分,共25分.请把答案填在答题纸的相应位置.11.已知31sin 23πα⎛⎫+= ⎪⎝⎭,则cos 2α= ▲ .12.已知向量a b ,的夹角为45°,且1,2a a b b =-== ▲ .13.由曲线y =,直线2y x y =-及轴所围成的图形的面积为 ▲ .14.数列{}n a 的前n 项和()0.1log 1n S n =+,则101199a a a ++⋅⋅⋅+= ▲ .15.定义在R 上的奇函数()f x 满足()()4f x f x +=,且在[]()0,2f x =上()1,01s i n ,12x x x x x π⎧-≤≤⎪⎨<≤⎪⎩,则294146f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭▲ . 三、解答题:本大题共6个小题,满分75分.解答应写出必要的文字说明、证明过程或演算步骤.请将解答过程写在答题纸的相应位置.16.(本小题满分12分)在平面直角坐标系xoy 中,已知点()()()1,42,321A B C --,,,.(I )求AB AC AB AC ⋅+uuur uuu r uu u r uuu r 及;(II )设实数t 满足()AB tOC OC -⊥uu u r uu u r uu u r ,求t 的值.17.(本小题满分12分)如图,在ABC ∆中,已知24sin 4sin sin 382A B A B AC -+==,,点D 在BC 边上,且12,cos 7BD ADB =∠=.求角C 的大小及边AB 的长.18.(本小题满分12分)已知)()()cos sin ,1,03,a x b x x R ωωω==-<<∈r r ,.函数()f x a b =⋅r r ,若将函数()f x 的图象向左平移3π个单位,则得到()y g x =的图像,且函数()y g x =为偶函数. (I )求函数()f x 的解析式及其单调增区间;(II )若12,2263f απαπ⎛⎫⎛⎫=<< ⎪ ⎪⎝⎭⎝⎭,求sin α的值.19.(本小题满分12分)某工厂为提高生产效益,决定对一条生产线进行升级改造,该生产线升级改造后的生产效益y 万元与升级改造的投入()10x x >万元之间满足函数关系:21101ln ln1010050y m x x x =-++(其中m 为常数) 若升级改造投入20万元,可得到生产效益为35.7万元.试求该生产线升级改造后获得的最大利润.(利润=生产效益-投入)(参考数据:ln 20.7,ln5 1.6==)20.(本小题满分13分)已知首项都是1的数列{}{}()*,0,n n n a b b n N ≠∈满足113n n n n na b b a b ++=+(I )令n n na Cb =,求数列{}nc 的通项公式; (II )若数列{}n b 为各项均为正数的等比数列,且23264b b b =⋅,求数列{}n a 的前n 项和n S .21.(本小题满分14分)已知函数()ln ,f x a x a R =∈.(I )若曲线()y f x =与曲线()g x =a 的值;(II )若对任意[]1,x e ∈,都有()()22f x x a x ≥-++恒成立,求a 的取值范围;(III )在(I )的条件下,求证:()112xxe xf x ->-.。
【真题】15年河北省衡水中学高三(上)数学期中试卷含答案(理科)
2014-2015学年河北省衡水中学高三(上)期中数学试卷(理科)一、选择题(每小题5分,共60分.下列每小题只有一项符合题意,请将正确答案)1.(5分)设集合A={x|x>﹣1},B={x|x≥1},则“x∈A且x∉B”成立的充要条件是()A.﹣1<x≤1 B.x≤1 C.x>﹣1 D.﹣1<x<12.(5分)已知实数1,m,9依次构成一个等比数列,则圆锥曲线的离心率为()A.B.C.D.或23.(5分)已知m,n为不同的直线,α,β为不同的平面,则下列说法正确的是()A.m⊂α,n∥m⇒n∥α B.m⊂α,n⊥m⇒n⊥αC.m⊂α,n⊂β,m∥n⇒α∥βD.n⊂β,n⊥α⇒α⊥β4.(5分)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()A.B.C.D.5.(5分)要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度6.(5分)如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.由增加的长度决定7.(5分)如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下液体(滴管内液体忽略不计),设输液开始后x分钟,瓶内液面与进气管的距离为h厘米,已知当x=0时,h=13.如果瓶内的药液恰好156分钟滴完.则函数h=f(x)的图象为()A.B.C.D.8.(5分)已知直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,O是坐标原点,且有,那么k的取值范围是()A.B.C.D.9.(5分)函数在[﹣2,2]上的最大值为2,则a的范围是()A.B.C.(﹣∞,0]D.10.(5分)抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为()A.B.p2C.2p2D.4p211.(5分)四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD 是边长为3的等边三角形.若AB=2,则球O的表面积为()A.4πB.12πC.16πD.32π12.(5分)若定义在R上的函数f(x)满足f(﹣x)=f(x),f(2﹣x)=f(x),且当x∈[0,1]时,f(x)=,则函数H(x)=|xe x|﹣f(x)在区间[﹣5,1]上的零点个数为()A.4 B.8 C.6 D.10二、填空题(每题5分,共20分,把答案填在横线上)13.(5分)已知,3sin2α=2cosα,则cos(α﹣π)=.14.(5分)如图,F1,F2是双曲线C1:x2﹣=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点.若|F1F2|=|F1A|,则C2的离心率是.15.(5分)设x,y满足约束条件,若目标函数z=ax+2by(a>0,b >0)的最大值为1,则+的最小值为.16.(5分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C 的半径为1,圆心在l上.若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或验算步骤)17.(12分)如图,在△ABC中,BC边上的中线AD长为3,且sinB=,cos ∠ADC=﹣.(Ⅰ)求sin∠BAD的值;(Ⅱ)求AC边的长.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q是AD的中点.(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在线段PC上是否存在点M,使二面角M﹣BQ﹣C的大小为60°.若存在,试确定点M的位置,若不存在,请说明理由.19.(12分)设不等式组所表示的平面区域为D n,记D n内整点的个数为a n(横纵坐标均为整数的点称为整点).(1)n=2时,先在平面直角坐标系中作出区域D2,再求a2的值;(2)求数列{a n}的通项公式;(3)记数列{a n}的前n项的和为S n,试证明:对任意n∈N*恒有++…+<成立.20.(12分)定圆M:=16,动圆N过点F且与圆M相切,记圆心N的轨迹为E.(I)求轨迹E的方程;(Ⅱ)设点A,B,C在E上运动,A与B关于原点对称,且|AC|=|CB|,当△ABC 的面积最小时,求直线AB的方程.21.(12分)已知函数f(x)=x+alnx在x=1处的切线与直线x+2y=0垂直,函数g(x)=f(x)+x2﹣bx.(1)求实数a的值;(2)若函数g(x)存在单调递减区间,求实数b的取值范围;(3)设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥,求g(x1)﹣g (x2)的最小值.四、选修4-1:几何证明选讲22.(10分)如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线.五、选修4-5:不等式选讲23.已知函数f(x)=|x﹣1|.(Ⅰ)解不等式:f(x)+f(x﹣1)≤2;(Ⅱ)当a>0时,不等式2a﹣3≥f(ax)﹣af(x)恒成立,求实数a的取值范围.2014-2015学年河北省衡水中学高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分.下列每小题只有一项符合题意,请将正确答案)1.(5分)设集合A={x|x>﹣1},B={x|x≥1},则“x∈A且x∉B”成立的充要条件是()A.﹣1<x≤1 B.x≤1 C.x>﹣1 D.﹣1<x<1【解答】解:∵集合A={x|x>﹣1},B={x|x≥1},又∵“x∈A且x∉B”,∴﹣1<x<1;又由﹣1<x<1时,满足x∈A且x∉B.故选:D.2.(5分)已知实数1,m,9依次构成一个等比数列,则圆锥曲线的离心率为()A.B.C.D.或2【解答】解:∵实数1、m、9依次构成一个等比数列,∴m2=1×9,解之得m=±3①当m=3时,圆锥曲线的方程为,表示椭圆a2=3,b2=2,可得a=,c==∴椭圆的离心率e==②当m=﹣3时,圆锥曲线的方程为,表示双曲线a2=1,b2=3,可得a=1,c==2∴双曲线的离心率e==2故选:C.3.(5分)已知m,n为不同的直线,α,β为不同的平面,则下列说法正确的是()A.m⊂α,n∥m⇒n∥α B.m⊂α,n⊥m⇒n⊥αC.m⊂α,n⊂β,m∥n⇒α∥βD.n⊂β,n⊥α⇒α⊥β【解答】解:在A选项中,可能有n⊂α,故A错误;在B选项中,可能有n⊂α,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确.故选:D.4.(5分)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()A.B.C.D.【解答】解:本题中给出了正视图与左视图,故可以根据正视图与俯视图长对正,左视图与俯视图宽相等来找出正确选项A中的视图满足三视图的作法规则;B中的视图满足三视图的作法规则;C中的视图不满足三视图的作法规则中的宽相等,故其为错误选项;D中的视图满足三视图的作法规则;故选:C.5.(5分)要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【解答】解:=,故把的图象向左平移个单位,即得函数的图象,即得到函数的图象.故选:C.6.(5分)如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.由增加的长度决定【解答】解:设增加同样的长度为x,原三边长为a、b、c,且c2=a2+b2,c为最大边;新的三角形的三边长为a+x、b+x、c+x,知c+x为最大边,其对应角最大.而(a+x)2+(b+x)2﹣(c+x)2=x2+2(a+b﹣c)x>0,由余弦定理知新的三角形的最大角的余弦=>0,则为锐角,那么它为锐角三角形.故选:A.7.(5分)如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下液体(滴管内液体忽略不计),设输液开始后x分钟,瓶内液面与进气管的距离为h厘米,已知当x=0时,h=13.如果瓶内的药液恰好156分钟滴完.则函数h=f(x)的图象为()A.B.C.D.【解答】解:由题意知,每分钟滴下πcm3药液,当4≤h≤13时,xπ=π•42•(13﹣h),即h=13﹣,此时0≤x≤144;当1≤h<4时,xπ=π•42•9+π•22•(4﹣h),即,此时144<x≤156.∴函数单调递减,且144<x≤156时,递减速度变快.故选:A.8.(5分)已知直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,O是坐标原点,且有,那么k的取值范围是()A.B.C.D.【解答】解:设AB中点为D,则OD⊥AB∵,∴∴∵∴∵直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,∴∴4>∴4>∵k>0,∴故选:C.9.(5分)函数在[﹣2,2]上的最大值为2,则a的范围是()A.B.C.(﹣∞,0]D.【解答】解:先画出分段函数f(x)的图象,如图.当x∈[﹣2,0]上的最大值为2;欲使得函数在[﹣2,2]上的最大值为2,则当x=2时,e2a的值必须小于等于2,即e2a≤2,解得:a故选:D.10.(5分)抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为()A.B.p2C.2p2D.4p2【解答】解:法一:取倾斜角为:450,600,900,经计算可知,当倾斜角为900时,△ABQ的面积的最小,此时AB=2p,又焦点到准线的距离=p,此时三角形的面积最小为p2故选B.法二:由于若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上,且△PAB为直角三角型,且角P为直角.,由于AB是通径时,AB最小,故选B.11.(5分)四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD 是边长为3的等边三角形.若AB=2,则球O的表面积为()A.4πB.12πC.16πD.32π【解答】解:取CD的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,△BCD是边长为3的等边三角形.∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,BE=,BG=,∴R=2.四面体ABCD外接球的表面积为:4πR2=16π.故选:C.12.(5分)若定义在R上的函数f(x)满足f(﹣x)=f(x),f(2﹣x)=f(x),且当x∈[0,1]时,f(x)=,则函数H(x)=|xe x|﹣f(x)在区间[﹣5,1]上的零点个数为()A.4 B.8 C.6 D.10【解答】解:定义在R上的函数f(x)满足f(﹣x)=f(x),f(2﹣x)=f(x),∴函数是偶函数,关于x=1对称,∵函数f(x)=xe x的定义域为R,f′(x)=(xe x)′=x′e x+x(e x)′=e x+xe x令f′(x)=e x+xe x=e x(1+x)=0,解得:x=﹣1.列表:由表可知函数f(x)=xe x的单调递减区间为(﹣∞,﹣1),单调递增区间为(﹣1,+∞).当x=﹣1时,函数f(x)=xe x的极小值为f(﹣1)=﹣.y=|xe x|,在x=﹣1时取得极大值:,x∈(0,+∞)是增函数,x<0时有5个交点,x>0时有1个交点.共有6个交点故选:C.二、填空题(每题5分,共20分,把答案填在横线上)13.(5分)已知,3sin2α=2cosα,则cos(α﹣π)=.【解答】解:∵,3s in2α=2cosα,∴6sinα•cosα=2cosα,解得sinα=,∴cosα=﹣.故cos(α﹣π)=cos(π﹣α)=﹣cosα=,故答案为.14.(5分)如图,F1,F2是双曲线C1:x2﹣=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点.若|F1F2|=|F1A|,则C2的离心率是.【解答】解:由双曲线C1:x2﹣=1可得a1=1,b1=,c=2.设椭圆C2的方程为=1,(a>b>0).则|F1A|﹣|F2A|=2a1=2,|F1A|+|F2A|=2a,∴2|F1A|=2a+2∵|F1F2|=|F1A|=2c=4,∴2×4=2a+2,解得a=3.则C2的离心率==.故答案为:.15.(5分)设x,y满足约束条件,若目标函数z=ax+2by(a>0,b >0)的最大值为1,则+的最小值为8.【解答】解:由约束条件作可行域如图.由图可知,使目标函数数z=ax+2by(a>0,b>0)取得最大值的点为B(1,1),∴a+2b=1,则+(当且仅当a=2b时取等号),由,解得:.∴+的最小值为.故答案为:8.16.(5分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C 的半径为1,圆心在l上.若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为[0,] .【解答】解:设点M(x,y),由MA=2MO,知:=2,化简得:x2+(y+1)2=4,∴点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,又∵点M在圆C上,∴圆C与圆D的关系为相交或相切,∴1≤|CD|≤3,其中|CD|=,∴1≤≤3,化简可得0≤a≤,故答案为:[0,].三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或验算步骤)17.(12分)如图,在△ABC中,BC边上的中线AD长为3,且sinB=,cos ∠ADC=﹣.(Ⅰ)求sin∠BAD的值;(Ⅱ)求AC边的长.【解答】解:(Ⅰ)由题意,因为sinB=,所以cosB=…(2分)又cos∠ADC=﹣,所以sin∠ADC=…(4分)所以sin∠BAD=sin(∠ADC﹣∠B)=×﹣(﹣)×=…(7分)(Ⅱ)在△ABD中,由正弦定理,得,解得BD=…(10分)故BC=15,CD=从而在△ADC中,由余弦定理,得AC2=9+225﹣2×3××(﹣)=,所以AC=…(14分)18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q是AD的中点.(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在线段PC上是否存在点M,使二面角M﹣BQ﹣C的大小为60°.若存在,试确定点M的位置,若不存在,请说明理由.【解答】(1)证明:∵PA=PD,Q为AD的中点,∴PQ⊥AD,又∵底面ABCD为菱形,∠BAD=60°,∴BQ⊥AD,又PQ∩BQ=Q,∴AD⊥平面PQB,又∵AD⊂平面PAD,∴平面PQB⊥平面PAD.(2)解:∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,∴PQ⊥平面ABCD,以Q为坐标原点,分别以QA,QB,QP为x,y,z轴,建立空间直角坐标系,如图则Q(0,0,0),P(0,0,),B(0,,0),C(﹣2,,0)设,0<λ<1,则M(﹣2λ,,),平面CBQ的一个法向量=(0,0,1),设平面MBQ的法向量为=(x,y,z),由,得=(,0,),∵二面角M﹣BQ﹣C的大小为60°,∴cos60°=|cos<>|=||=,解得,∴=,∴存在点M为线段PC靠近P的三等分点满足题意.19.(12分)设不等式组所表示的平面区域为D n,记D n内整点的个数为a n(横纵坐标均为整数的点称为整点).(1)n=2时,先在平面直角坐标系中作出区域D2,再求a2的值;(2)求数列{a n}的通项公式;(3)记数列{a n}的前n项的和为S n,试证明:对任意n∈N*恒有++…+<成立.【解答】解:(1)D2如图中阴影部分所示,∵在4×8的矩形区域内有5×9个整点,对角线上有5个整点,∴a2==25.(3分)(另解:a2=1+3+5+7+9=25)(2)直线y=nx与x=4交于点P(4,4n),据题意有a n==10n+5.(6分)(另解:a n=1+(n+1)+(2n+1)+(3n+1)+(4n+1)=10n+5)(3)S n=5n(n+2).(8分)∵==•<,∴++…+<++…+=(﹣+…+﹣)=(+﹣﹣)<(13分)20.(12分)定圆M:=16,动圆N过点F且与圆M相切,记圆心N的轨迹为E.(I)求轨迹E的方程;(Ⅱ)设点A,B,C在E上运动,A与B关于原点对称,且|AC|=|CB|,当△ABC 的面积最小时,求直线AB的方程.【解答】解:(Ⅰ)因为点在圆内,所以圆N内切于圆M,因为|NM|+|NF|=4>|FM|,所以点N的轨迹E为椭圆,且,所以b=1,所以轨迹E的方程为.…(4分)(Ⅱ)(i)当AB为长轴(或短轴)时,依题意知,点C就是椭圆的上下顶点(或左右顶点),此时|AB|=2.…(5分)(ii)当直线AB的斜率存在且不为0时,设其斜率为k,直线AB的方程为y=kx,联立方程得,所以|OA|2=.…(7分)由|AC|=|CB|知,△ABC为等腰三角形,O为AB的中点,OC⊥AB,所以直线OC 的方程为,由解得,=,,…(9分)S△ABC=2S△OAC=|OA|×|OC|=,由于,所以,…(11分)当且仅当1+4k2=k2+4,即k=±1时等号成立,此时△ABC面积的最小值是,因为,所以△ABC面积的最小值为,此时直线AB的方程为y=x或y=﹣x.…(12分)21.(12分)已知函数f(x)=x+alnx在x=1处的切线与直线x+2y=0垂直,函数g(x)=f(x)+x2﹣bx.(1)求实数a的值;(2)若函数g(x)存在单调递减区间,求实数b的取值范围;(3)设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥,求g(x1)﹣g (x2)的最小值.【解答】解:(1)∵f(x)=x+alnx,∴f′(x)=1+,∵f(x)在x=1处的切线l与直线x+2y=0垂直,∴k=f′(x)|x=1=1+a=2,解得a=1.(2)∵g(x)=lnx+﹣(b﹣1)x,∴g′(x)=,x>0,由题意知g′(x)<0在(0,+∞)上有解,即x++1﹣b<0有解,∵定义域x>0,∴x+≥2,x+<b﹣1有解,只需要x+的最小值小于b﹣1,∴2<b﹣1,解得实数b的取值范围是{b|b>3}.(3)∵g(x)=lnx+﹣(b﹣1)x,∴g′(x)==0,∴x1+x2=b﹣1,x1x2=1∴g(x1)﹣g(x2)=ln﹣(﹣)∵0<x1<x2,∴设t=,0<t<1,令h(t)=lnt﹣(t﹣),0<t<1,则h′(t)=﹣<0,∴h(t)在(0,1)上单调递减,又∵b≥,∴(b﹣1)2≥,∵0<t<1,∴4t2﹣17t+4≥0,∴0<t≤,h(t)≥h()=﹣2ln2,故所求的最小值为﹣2ln2.四、选修4-1:几何证明选讲22.(10分)如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线.【解答】证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.可得△BFC∽△DGC,△FEC∽△GAC.∴,得.∵G是AD的中点,即DG=AG.∴BF=EF.(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°.由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB.又∵OA=OB,∴∠ABO=∠BAO.∵BE是圆O的切线,∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.五、选修4-5:不等式选讲23.已知函数f(x)=|x﹣1|.(Ⅰ)解不等式:f(x)+f(x﹣1)≤2;(Ⅱ)当a>0时,不等式2a﹣3≥f(ax)﹣af(x)恒成立,求实数a的取值范围.【解答】解:(Ⅰ)原不等式等价于:当x ≤1时,﹣2x +3≤2,即≤x ≤1.当1<x ≤2时,1≤2,即 1<x ≤2. 当x >2时,2x ﹣3≤2,即2<x ≤.综上所述,原不等式的解集为{x |≤x≤}.(Ⅱ)当a >0时,f (ax )﹣af (x )=|ax ﹣1|﹣|ax ﹣a |=|ax ﹣1|﹣|a ﹣ax |≤|ax ﹣1+a ﹣ax |=|a ﹣1|,所以,2a ﹣3≥|a ﹣1|,解得a ≥2.赠送—高中数学知识点【1.3.1】单调性与最大(小)值 (1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则yxo[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
河南省开封四中2015届高三上学期期中考试数学理试题 Word版含答案
2014—2015学年上期中考试 高三数学(理)试题说明: 1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)满分150分,考试时间120分钟。
2、将第Ⅰ卷的答案代表字母填(涂)在第Ⅱ卷的答题表(答题卡)中。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,复数1z i =+,z 为其共轭复数,则22z zz-等于( )A . 1i -- B. 1i - C. 1i -+ D. 1i +2. 某程序框图如图所示,该程序运行后输出的结果为( ) A . 6 B . 5 C . 8 D . 73. 为了得到函数cos(2)3y x π=-的图像,可将函数sin 2y x =的图像( )A . 向左平移6πB .向右平移6πC .向左平移12πD .向右平移12π4. 数列{}n a 满足11112,1n n n a a a a ++-==+,其前n 项积为n T ,则2015T =( ) A . 2 B . 1 C . 3 D .-6 5. 一个几何体的三视图如图所示,则这个几何体的体积为( )A .16643π-B .32643π- C .6416π- D .64643π-6.在ABC ∆中,,,a b c 分别为,,A B C 的对边,如果,,a b c 成等差数列,30B =,ABC ∆的面积为32,那么b =( )A. B. 1 C. D .2俯视图侧视图正视图第(5)题图(第2题)7. 已知双曲线22221(0,0)y x a b a b-=>> 的渐近线与圆22(2)1x y -+=相交,则双曲线的离心率的取值范围是( )A . (1,2)B .(233, +∞) C . (1,233) D .(2, +∞)8. 若28mn+<(,)m n 必在( )A .直线1x y +=的左下方B .直线1x y +=的右上方C .直线31x y +=的左下方D .直线31x y +=的右上方9. 在二项式n 的展开式中,只有第五项的二项式系数最大,把展开式中所有的项重新排成一列,则有理项不相邻的概率为( )A .16 B . 14 C . 13 D . 51210.在ABC ∆中,133,2,,24AB AC AD AB AC ===+则直线AD 通过ABC ∆的( ) A . 垂心 B . 外心 C . 内心 D . 重心11. 已知抛物线1C :212y x p =(0)p >的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M ,若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( )A .B .CD 12. 函数223,0()2ln ,0x x x f x x x ⎧--+≤⎪=⎨->⎪⎩,直线y m =与函数()f x 的图像相交于四个不同的点,交点横坐标从小到大依次记为,,,a b c d ,下列说法中错误的是 ( )A .[)3,4m ∈B .)40,abcd e ⎡∈⎣C .562112,2a b c d e e e e ⎡⎫+++∈+-+-⎪⎢⎣⎭D .若关于x 的方程()=f x x m +恰有三个不同实根,则m 的取值唯一二、填空题:本大题共4小题,每小题 5分,共20分.13. 如图,矩形ABCD 内的阴影部分是由曲线f (x )=2x 2-2x 与直线y =2x 围成的,现向矩形ABCD 内随机投掷一点,则该点落在阴影部分的概率为__________.14. 已知变量,x y 满足约束条件1,4,1,x y y x y +≥⎧⎪≤⎨⎪-≤⎩,若z kx y =+的最大值为5,则实数k =__________.15.已知直角梯形ABCD ,AB AD ⊥,CD AD ⊥ ,222AB AD CD ===,沿AC 折叠成三棱锥,当三棱锥体积最大时,求此时三棱锥外接球的体积__________.16.给出下列命题,其中正确的命题是________(把所有正确的命题的选项都填上).①函数(2)y f x =-和(2)y f x =-的图象关于直线2x =对称;②在R 上连续的函数()f x 若是增函数,则对任意0x R ∈均有0()0f x '>成立; ③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;④若P 为双曲线2219y x -=上一点,1F 、2F 为双曲线的左右焦点,且24PF =,则1||2PF =或6;⑤如果52))(1(a x x x -++(a 为实常数)的展开式中所有项的系数和为0,则展开式中含4x 项的系数为-5.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)数列{}n a 满足112a =,*11()2n na n N a +=∈-; (Ⅰ)求证:1{}1n a -为等差数列,并求出{}n a 的通项公式; (Ⅱ)设11n nb a =-,数列{}n b 的前n 项和为n B ,对任意2n ≥都有320n n m B B ->成立,求整数m 的最大值.18. (本小题满分12分)某单位从一所学校招收某类特殊人才.对20位已经选拔入围的学或逻辑思维能力优秀的学生的概率为25. (Ⅰ)求a ,b 的值;(II)从参加测试的20位学生中任意抽取2位,求其中至少有一位运动协调能力或逻辑思维能力优秀的学生的概率; (III)从参加测试的20位学生中任意抽取2位,设运动协调能力或逻辑思维能力优秀的学生人数为ξ,求随机变量ξ的分布列及其数学期望E ξ.19. (本小题满分12分)如图,在三棱柱111ABC A B C -中,已知AB ⊥侧面11BB C C ,1AB BC ==,12BB =,13BCC π∠=. (Ⅰ)求证:1C B ⊥平面ABC ;(II)设1(01)CE CC λλ=≤≤,且平面1AB E 与1BB E 所成的锐二面角的大小为30°,试求λ的值.20. (本小题满分12分)定圆M:(2216x y ++=,动圆N 过点F)且与圆M相切,记圆心N 的轨迹为E .(Ⅰ)求轨迹E 的方程;(II )设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且AC CB =,当ABC ∆的面积最小时,求直线AB 的方程.21. (本小题满分12分)已知函数2()ln ,2x f x a x x a R =--∈. (Ⅰ)讨论函数()f x 的单调性; (II) 证明:2(1)()2ln 3xx ex x ---+<.请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲已知,如图,AB 是⊙O 的直径,AC 切⊙O 于点A ,AC =AB ,CO 交⊙O 于点P ,CO 的延长线交⊙O 于点F ,BP 的延长线交AC 于点E . (Ⅰ)求证:AP FAPC AB= ; (II)若⊙O 的直径AB =2,求tan ∠CPE 的值.23.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l的参数方程为112x y t ⎧=--⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()6πρθ=-.(Ⅰ)求圆C 的直角坐标方程;(II)若(,)P x y 是直线l 与圆面ρ≤4sin()6πθ-y +的取值范围.24.(本小题满分10分)选修4-5:不等式选讲 已知实数0,0a b >>,且2292a b +=,若a b m +≤恒成立. (Ⅰ)求实数m 的最小值;(II)若2|1|||x x a b -+≥+对任意的,a b 恒成立,求实数x 的取值范围.15届 高三数学(理科)答案一、选择题:本大题共12小题,每小题5分,共60分.13.827 14. 13-或15 15. 43π 16.①⑤ 三.解答题:本大题共6小题,共70分. 17. (Ⅰ)112n n a a +=- ,21111111112n n n n na a a a a -===-+----- , ∴111111n n a a +-=--- ∴1{}1n a -为首项为-2,公差为-1的等差数列,∴11n a -2(1)1n n =---=--, ∴1n n a n =+ …………… 6分 (Ⅱ) 111n n b n n +=-=,3111++1+23n n n n C B B n n =-=++ , 11111310313*******n n C C n n n n n n +-=++->-=++++++,所以{}n C 为单调递增数列,max 262111119()345620n C C B B ==-=+++=,192020m ∴<,m 最大值为18. …………… 12分 18. (Ⅰ)设事件A :从20位学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生.由题意可知,运动协调能力或逻辑思维能力优秀的学生共有6a +人.则62()205a P A +==.解得 2a =.所以4b =. ……………3分 (II )设事件B :从20人中任意抽取2人,至少有一位运动协调能力或逻辑思维能力优秀的学生.由题意可知,至少有一项能力测试优秀的学生共有8人.则21222062()1()195C P B P B C =-=-=. …………… 6分(III )ξ的可能取值为0,1,2.所以21222033(0)95C P C ξ===,1112822048(1)95C C P C ξ===,2822014(2)95C P C ξ===.所以ξ的分布列为所以,334814764012959595955E ξ=⨯+⨯+⨯==. ………………… 12分 19. 解:(Ⅰ)因为AB ⊥侧面11BB C C ,故1AB BC ⊥, 在1BCC ∆中, 111,2,,3BC CC BCC π==∠=由余弦定理得:1BC == ……3 分故22211BC BC CC +=,所以1BC BC ⊥,又BCAB B =,所以1C B ⊥平面ABC .…………… 4分(II )以B 为坐标原点,1,,BC BA BC 所在直线为,,x y z 轴建立空间直角坐标系,则11(1,0,0),(1C C CC =-,()CE λ=-,所以(1,),E λ-又1(1(0,1,0)B A -,所以11(2,0,3(1)),(1,1,B E B A λλ=--=,设平面1AB E 的法向量1(,,)n x y z =,则0,(2)1)0,x y x z λλ⎧+=⎪⎨--=⎪⎩可得1(3(1),2))n λλ=-- …………… 7分 又平面1BB E 的法向量2(0,1,0)n =,12cos |cos ,|n n θ===,22530λλ-+=,1λ=或32λ=(舍去) . …………… 12分 20. 解:(Ⅰ)因为点0)F在圆22:(16M x y +=内,所以圆N 内切于圆M . 因为||NM +||4||NF FM =>,所以点N 的轨迹E 为椭圆,且24,a c ==所以1b =,所以轨迹E 的方程为2214x y +=. …………… 4分(Ⅱ)(i )当AB 为长轴(或短轴)时,依题意知,点C 就是椭圆的上下顶点(或左右顶点),此时1||2ABC S OC ∆=⨯⨯||2AB =. (ii )当直线AB 的斜率存在且不为0时,设其斜率为k ,直线AB 的方程为y kx =,联立方程221,4,x y y kx ⎧+=⎪⎨⎪=⎩得2222244,,1414A A k x y k k ==++ 所以2||OA =2A x2224(1)14Ak y k++=+. 由||||AC CB =知,ABC △为等腰三角形,O 为AB 的中点,OC AB ⊥,所以直线OC 的方程为1y x k =-,由221,41,x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩解得2224,4C k x k =+2C y =24,4k +2224(1)||4k OC k +=+, 2||||ABC OAC S S OA OC ∆∆==⨯=2=由于222(14)(4)5(1)22k k k ++++=,所以85ABC S ∆…,当且仅当22144k k +=+,即1k =±时等号成立,此时ABC △面积的最小值是85. 因为825>,所以ABC △面积的最小值为85,此时直线AB 的方程为y x =或y x =-. ……………12分21.解:(Ⅰ)()f x 的定义域为(0,)+∞,2()()1a x x a f x x x x-+-'=--=,当0,a ≤'()0f x <,()f x 在(0,)+∞内单调递减;当0a >,1)2x ∈时,()0f x '>,()f x 单调递增;)x ∈+∞时,()0f x '<,()f x 单调递减. …………… 6分 (Ⅱ)当2a =时,由(Ⅰ)可知()f x 在(0,1)内单调递增,在(1,)+∞内单调递减,max 3()(1)2f x f ==-, 即 232ln 22x x x --≤-;令2()(1)2,02xx g x x e x x -=--+>,()(2)(1)x g x x e -'=-+,易知max 21()(2)2g x g e==+,所以 2233(1)()2ln (1)()(1)22222xxxx x x e x x x e x x x e x -----+<--++-=--+-21322.23e ≤+-< …………… 12分 22. (Ⅰ)∵AC 为⊙O 的切线,PA 是弦 ∴∠PAC =∠F ,∵∠C =∠C ∴△APC ∽△FAC ∴AP PC FA AC = ,∵AB=AC , ∴AP FA PC AB= …………… 5分 (Ⅱ)∵AC 切⊙O 于点A ,CPF 为⊙O 的割线,则有AC 2=CP •CF =CP (CP +PF ),∵PF =AB =AC =2 ∴CP (CP +2)=4,整理得CP 2+2CP -4=0, 解得1PC =-±∵CP >0 ∴CP =1,∵FA ∥BE ∴∠CPE =∠F ,∵FP 为⊙O 的直径, ∴∠FAP =90°, 由(Ⅰ)中证得AP PCFA AC= ,在Rt △FAP 中, 1tan 2AP PC F FA AC ∠===∴tan F ∠=.…..10分23. (Ⅰ) ∵14cos )2sin 2ρθθθθ=⋅-=-2222x x y ρ=-=+, ∴22(1)(4x y ++=. ………… 5分(Ⅱ) ∵221(11)02t -++≤,∴22t -≤≤,3122y t t t +=+=-,∴22y -+≤. ……..10分24.(Ⅰ)∵322a b +≤=当且仅当a b =时,max ()3a b +=∴3m ≥,m 的最小值为3. ………… 5分(Ⅱ)令32,1()212,0123,0x x f x x x x x x x -≥⎧⎪=-+=-<<⎨⎪-≤⎩,当53233x x -≥≥时;当231x x -≥≤-时(舍去);当12333x x -≥≤-时. 综上:13x ≤-或53x ≥. ……..10分。
2015届高三上学期期中数学理科试卷(附答案)
2015届高三上学期期中数学理科试卷(附答案)一、选择题(本大题共10小题,每小题5分,共50分.在每个小题给出的四个选项中只有一项是符合题目要求的)1.已知集合,,则(▲)A.B.C.D.2.设函数是偶函数,且在上单调递增,则(▲)A.B.C.D.3.“3a>3b”是“lna>lnb”的(▲)A.充分不必要条件B.既不充分也不必要条件C.充要条件D.必要不充分条件4.已知为第二象限角,,则(▲)A.B.C.D.5.若m.n是两条不同的直线,、是两个不同的平面,则下列命题不正确的是(▲)A.若∥,m⊥,则m⊥.若,n与、所成的角相等,则m⊥nC.若m∥,m⊥,则⊥.若m∥n,m⊥,则n⊥6.设实数列分别为等差数列与等比数列,且,则以下结论正确的是(▲)A.B.C.D.7.若,则向量与的夹角为(▲)A.B.C.D.8.已知函数的图象与直线y=m有三个交点的横坐标分别为x1,x2,x3(x1<x2<x3),那么x1+2x2+x3的值是(▲)A.B.C.D.9.已知直线与圆交于不同的两点、,是坐标原点,且有,那么的取值范围是(▲)A.B.C.D.10.已知函数.设关于x的不等式的解集为A,若,则实数a的取值范围是(▲)A.B.C.D.二、填空题(本大题共7小题,每小题4分,共28分)11.一个几何体的三视图如图所示,已知这个几何体的体积为,则的值为▲12.设为定义在上的奇函数,当时,则▲.13.设变量满足,若目标函数的最小值为0,则的值等于▲14.已知实数,且,那么的最大值为▲15.已知双曲线(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为▲16.若数列满足(n∈N*),则该数列的前2015项的乘积__▲____ 17.对函数f(x),若任意a,b,c∈R,f(a),f(b),f(c)为一三角形的三边长,则称f(x)为“三角型函数”,已知函数f(x)=(m>0)是“三角型函数”,则实数m的取值范围是▲三、解答题(本大题共5小题,满分72分.解答须写出文字说明,证明过程和演算步骤)18.(本小题满分14分)已知函数.设时取到最大值.(1)求的最大值及的值;(2)在中,角所对的边分别为,,且,求的值.19.(本小题满分14分)数列的前项和是,且.⑴求数列的通项公式;⑵记,数列的前项和为,若不等式,对任意的正整数恒成立,求的取值范围。
浙江省桐乡第一中学等四校2015届高三上学期期中联考数学(理)试题 Word版含答案
浙江省桐乡第一中学等四校2015届高三上学期期中联考数学(理)试题第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的). 1.已知全集U=R ,集合A ={}0,2|>-<x x x 或,B ={}11|<xx ,则=⋂B A C U )( (A )(2,0)- (B ))0,2[-(C )φ (D )(2,1)-2.若0.522,log 3,log 2a b c π===,则有 (A ) a b c >> (B )b a c >> (C )c a b >> (D )b c a >>3.设,a b 为实数,命题甲:2ab b > .命题乙:110b a<< ,则甲是乙的(A )充分不必要条件 (B )必要不充分条件(C )充要条件(D )既不充分也不必要条件 4.已知{}n a 是等比数列,其中18,a a 是关于x的方程22sin 0x x -αα=的两根,且21836()26a a a a +=+,则锐角α的值为(A )6π (B )4π (C )3π (D )512π 5.设a ,b ,c 是空间三条直线,α,β是空间两个平面,则下列命题中,逆命题...不成立的是(A )当α⊥c 时,若c ⊥β,则α∥β (B )当α⊂b 时,若b ⊥β,则βα⊥ (C )当α⊂b ,且c 是a 在α内的射影时,若c b ⊥,则b a ⊥ (D )当α⊂b ,且α⊄c 时,若c ∥α,则b ∥c6.已知α为第二象限角,sin cos αα+=,则cos 2α= (A(B(C)-(D)-7.如果在约束条件1020(01)0x y x y a ax y -+≥⎧⎪+-≤<<⎨⎪-≤⎩下,目标函数x ay +最大值是53,则a =(A )23 (B )13 (C )1123或 (D )128.点P 是双曲线)0,0(1:22221>>=-b a by a x C 与圆22222:b a y x C +=+的一个交点,且12212F PF F PF ∠=∠,其中1F 、2F 分别为双曲线1C 的左右焦点,则双曲线1C 的离心率为(A1(B)12 (C)12(D )1 9.已知一个高度不限的直三棱柱111ABC A B C -,4AB =,5BC =,6CA =,点P 是侧棱1AA 上一点,过A 作平面截三棱柱得截面,ADE 给出下列结论:①ADE ∆是直角三角形;②ADE ∆是等边三角形;③四面体APDE 为在一个顶点处的三条棱两两垂直的四面体。
2015届北京师范大学附属中学高三上学期期中考试数学(理)试卷Word版含答案(已解析)
2015届北师大附中高三上期中考试理数试卷一、选择题(10小题,每小题5分,共50分.请将答案填入第Ⅱ卷选择题的答案表中.) 1、若集合{}x y x A 2==,集合{}x y x B ==,则=⋂B A ( )A .()0,+∞B .()+∞,1 C.[)+∞,0 D .()+∞∞-, 【答案】C【解析】因为{}{{}2,0xA x y RB x y x x ======≥所以{}{}00A B R x x x x =≥=≥ ,故答案为:C【考点】集合的运算 【难度】 12、下列有关命题的说法中错误的是 ( )A .对于命题P :∃R x ∈,使得2x 01<++x ,则:,p x R ⌝∀∈均有2x 01≥++xB .“1=x ”是“2x 023=+-x ”的充分不必要条件C .命题“若“2x 023=+-x ”,则1=x ”的逆否命题为:“若1≠x ,则2x 023≠+-x ”D .若p q ∧为假命题,则q p ,均为假命题【答案】D 【解析】A 选项:对于命题P :∃R x ∈,使得2x 01<++x , 则:,p x R ⌝∀∈均有2x 01≥++x 故A 为真命题;B 选项:“1=x ”是“2x 023=+-x ”的充分不必要条件,故B 为真命题;C 选项:命题“若“2x 023=+-x ”,则1=x ”的逆否命题为:“若1≠x ,则2x 023≠+-x ”故C 为真命题;D 选项:若p q ∧为假命题,则q p ,存在至少一个假命题,但q p ,不一定均为假命题,故D 为假命题; 故答案为:D【考点】简单的逻辑联结词;全称量词与存在性量词;充分条件与必要条件 【难度】23、曲线31y x =+在点(1,0)-处的切线方程为( )A .330x y ++=B .330x y -+=C .30x y -=D .330x y --= 【答案】B【解析】2'33,1x y x y =∴+= ,3|1'=∴=x y ,∴曲线31y x =+在点(1,0)-处的切线的斜率3=k ,∴切线方程为330x y -+=. 故答案为:B【考点】导数的概念和几何意义 【难度】 1 4、若0sin 2cos tt xdx =⎰,其中t ∈(0,π),则t=( ) A.3π B.2π C.23πD.π【答案】C 【解析】00sin 2cos sin |sin ttt xdx x t ==-=-⎰ 且t ∈(0,π), 所以sin 2sin t t ∴=-2cos 1t ∴=- 1c o s2t t ∴=-∴=23π. 故答案为:C【考点】积分 【难度】 15、已知6,3,12a b a b ==⋅=-,则向量a 在b 方向上的投影为( )A .4-B .4C .2-D .2 【答案】A【解析】向量a 在b 方向上的投影为12cos 43a b a bθ⋅-===-,故答案为:A【考点】数量积的定义 【难度】 16、设,x y ∈R ,向量(,1),(1,),(2,4)===-a xb yc 且//,⊥,则=a b + ( )【答案】C【解析】()21402a c x x ⊥⇒+⨯-=⇒= ;()//14202b c y y ⇒⨯--=⇒=-.则()()()2,1,1,23,1a b a b ==-⇒+=-,所以a b +== 故答案为:C【考点】平面向量的的坐标运算 【难度】 17、如图,在△OAB 中,P 为线段AB 上的一点,OP =x OA +y OB ,且BP =2PA,则( )A 、x =23,y =13B 、x =13,y =23C 、x =14,y =34D 、x =34,y =14【答案】A【解析】由题可知OP =OB +BP ,又BP =2PA ,所以OP =OB +23BA =OB +23 (OA -OB )=23OA+13OB ,所以x =23,y =13,故答案为:A【考点】平面向量的线性运算 【难度】 18、函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到x x g 2sin )(=的图像,则只要将()f x 的图像( )A .向右平移6π个单位长度 B .向右平移12π个单位长度C .向左平移6π个单位长度 D .向左平移12π个单位长度【答案】A【解析】由图可知,πππ=⎪⎭⎫⎝⎛-==31274,1T A ,故22==T πω, 由于⎪⎭⎫⎝⎛0,3π为五点作图的第三点,πϕπ=+⨯∴32,解得3πϕ=,所以()⎪⎭⎫⎝⎛+=32sin πx x f , 将函数()f x 的图象向右平移6π个单位长度 得()x g x x y ==⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=2sin 362sin ππ, 故答案为:A【考点】三角函数图像变换【难度】 29、如图,某海上缉私小分队驾驶缉私艇以40 km/h 的速度由A 处出发,沿北偏东60°方向进行海面巡逻,当航行半小时到达B 处时,发现北偏西45°方向有一艘船C ,若船C 位于A 的北偏东30°方向上,则缉私艇所在的B 处与船C 的距离是( )kmA 、、C 、、【答案】C【解析】由题意知:∠BAC =60°-30°=30°, ∠ABC =30°+45°=75°,∠ACB =180°-75°-30°=75°, ∴AC =AB =40×12=20(km).由余弦定理, 得BC 2=AC 2+AB 2-2AC·AB·cos∠BAC=202+202-2×20×20×cos30°=800-400(2,∴BC=1)=. 故答案为:C【考点】解斜三角形 【难度】 210、若函数()f x 满足1()1(1)f x f x +=+,当x ∈[0,1]时,()f x x =,若在区间(-1,1]上, ()()2g x f x mx m =--有两个零点,则实数m 的取值范围是( ) A 、0<m≤13 B 、0<m<13 C 、13<m≤l D、13<m<1 【答案】A【解析】()()2g x f x mx m =--有两个零点, 即曲线(),2y f x y mx m ==+有两个交点. 令(1,0)x ∈-,则1(0,1)x +∈,所以11(1)1,()1()11f x x f x f x x +==+=-++.在同一坐标系中,画出(),2y f x y mx m ==+的图象(如图所示):直线2y mx m =+过定点(2,0)-, 所以,m 满足1(1)0,1(2)m --<≤--即10,3m <≤故答案为:A【考点】零点与方程 【难度】 3二、填空题(每小题5分,共25分) 11、若21cos sin =+αα,则α2sin 的值是 . 【答案】34-【解析】由21cos sin =+αα得:()2113sin cos 12sin cos sin 2444ααααα+=⇒+=⇒=- 故答案为:34-【考点】恒等变换综合 【难度】 112、若扇形的周长是8cm ,面积4cm 2,则扇形的圆心角为 rad. 【答案】2【解析】设扇形的圆心角为α,半径为R ,则⎩⎨⎧==⇒⎪⎩⎪⎨⎧==+22421822R R R R ααα 故答案为:2【考点】任意角和弧度制 【难度】 1【考点】三角函数的的图像与性质 【难度】 214、已知函数)(x f 满足0)()6(=++x f x f ,函数)1(-=x f y 关于点)0,1(对称,4)2(=f ,则=)2014(f _________. 【答案】4-【解析】由于()()6+-=x f x f ,()()[]()()x f x f x f x f =+-=++=+∴66612,故函数的周期为12,把函数()x f y =的图象向右平移1个单位,得()1-=x f y , 因此()x f y =的图象关于()0,0对称,为奇函数,()()()()()()42212101010121672014-=-=-=-==+⨯=∴f f f f f f ,故答案为:4- 【考点】函数综合 【难度】 2 ()y f x =]b D ⊆,的取值【答案】(1,]2--【解析】若函数(f x k 为闭函数,则存在区间[,]a b , 在区间[,]a b 上,函数()f x 的值域为[,]a b ,即a k b k⎧=⎪⎨=⎪⎩,∴,a b是方程x k =的两个实数根, 即,a b S 股方程221(22)10(,)2x k x k x x k -++-=≥≥的两个不相等的实数根,当12k ≤时,222[(22)]4(1)0111()(22)10242222k k f k k k k ⎧⎪∆=-+-->⎪⎪=+++-≥⎨⎪+⎪>⎪⎩,解得112k -<≤,当12k >时,2222[(22)]4(1)0()(22)10222k k f k k k k k k k ⎧⎪∆=-+-->⎪=+++->⎨⎪+⎪>⎩,无解。
河南省洛阳市2015届高三上学期期中考试数学理试题 Word版含解析
2014-2015学年河南省洛阳市高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={x|x2﹣2x<0},N={x||x|<1}则M∩N=()A.(﹣1,0)B.(0,1)C.(1,2)D.(0,2)考点:交集及其运算.专题:计算题.分析:根据题意,由一元二次不等式的解法可得集合M,由绝对值不等式的解法可得集合N,进而有交集的意义可得答案.解答:解:集合M={x|x2﹣2x<0}={x|0<x<2},N={x||x|<1}={x|﹣1<x<1},则M∩N={x|0<x<1}=(0,1),故选B.点评:本题考查集合的交集运算,关键是求出集合M、N.2.已知(1+)2=a+bi(a,b∈R,i为虚数单位),则a+b=A.﹣4 B.4C.﹣7 D.7考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数相等,求出a,b的值,然后利用复数的几何意义即可得到结论.解答:解:由(1+)2=a+bi得1+﹣4=a+bi,即﹣3﹣4i=a+bi,则a=﹣3,b=﹣4,解得a=1,b=2,则a+b=﹣3﹣4=﹣7,故选:C点评:本题主要考查复数的基本运算,利用复数相等求出a,b是解决本题的关键,比较基础.3.设等差数列{a n}的前n项和为S n,若a6=18﹣a7,则S12=()A.18 B.54 C.72 D.108考点:等差数列的前n项和.专题:等差数列与等比数列.分析:利用等差数列的通项公式和前n项和公式求解.解答:解:∵等差数列{a n}的前n项和为S n,a6=18﹣a7,∴S12=(a1+a12)=6(a6+a7)=6×18=108.故选:D.点评:本题考查等差数列的前12项和的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.4.已知双曲线﹣=1的实轴长、虚轴长、焦距依次成等比数列,则其离心率为()A.B.C.D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由实轴长、虚轴长、焦距成等比数列可得b2=ac再结合b2=c2﹣a2可得c2﹣a2=ac即e2﹣e﹣1=0则可求出e解答:解:∵双曲线﹣=1的实轴长、虚轴长、焦距成等比数列∴(2b)2=(2a)•(2c)∴b2=ac又∵b2=c2﹣a2∴c2﹣a2=ac∴e2﹣e﹣1=0∴e=又在双曲线中e>1∴e=故选A.点评:此题主要考查了求双曲线的离心率.关键是要利用题中的条件建立a,b,c的关系式再结合c2=a2+b2和两边同除ab即得到关于e的方程求解即可,但要注意双曲线中e>1,椭圆中0<e<1这一隐含条件!5.已知向量=(2,0),向量=(2,2),向量=(cosα,sinα),则向量与向量的夹角范围为()A.[0,]B.[,]C.[,]D.[,]考点:数量积表示两个向量的夹角.专题:计算题;数形结合.分析:利用CA是常数,判断出A的轨迹为圆,作出A的轨迹;数形结合求出两个向量的夹角范围.解答:解:||=,∴A点在以C为圆心,为半径的圆上,当OA与圆相切时对应的位置是OA 与OB所成的角最大和最小的位置OC与x轴所成的角为;与切线所成的为所以两个向量所成的最小值为;最大值为故选D点评:本题考查圆的定义、数形结合求两个向量的夹角范围.6.执行如图所示的程序框图,若输出的S是127,则条件①可以为()A.n≤5 B.n≤6 C.n≤7 D.n≤8考点:程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加2n的值到S并输出S.解答:解:循环前,S=1,n=1第一次循环:S=1+2=3,n=1+1=2,继续循环;第二次循环:S=3+22=7,n=2+1=3,继续循环;第三次循环:S=7+23=15,n=3+1=4,继续循环;第四次循环:S=15+24=31,n=4+1=5,继续循环;第五次循环:S=31+25=63,n=5+1=6,继续循环;第六次循环:S=63+26=127,n=6+1=7,停止循环,输出S=127.故选B.点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.7.已知p:≤2x≤,q:﹣≤x+≤﹣2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:首先对p,q两个命题进行整理,得到关于x的范围,把两个条件对应的范围进行比较,得到前者的范围小于后者的范围,即属于前者一定属于后者,但是属于后者不一定属于前者,得到结论.解答:解:p:≤2x≤,即为﹣2≤x≤﹣1,q:﹣≤x+≤﹣2,即为﹣2≤x≤﹣∴属于前者一定属于后者,但是属于后者不一定属于前者,∴前者是后者的充分不必要条件,故选:A点评:本题考查必要条件,充分条件与充要条件的判断,本题解题的关键是对于所给的条件进行整理,得到两个条件对应的集合的范围的大小,本题是一个基础题8.已知x、y都是区间[0,]内任取的一个实数,则使得y≤sinx的取值的概率是()A.B.C.D.考点:几何概型;定积分.专题:概率与统计.分析:根据几何概型的概率公式,结合积分的应用求出对应的面积即可得到结论.解答:解:此题为几何概型,事件A的度量为函数y=sinx的图象在内与x轴围成的图形的面积,即,则事件A的概率为,故选A点评:本题主要考查几何概型的概率计算以及利用积分求面积,要求熟练掌握几何概型的求解方法.9.的展开式中各项系数的和为2,则该展开式中常数项为()A.﹣40 B.﹣20 C.20 D.40考点:二项式系数的性质.专题:计算题.分析:给x赋值1求出各项系数和,列出方程求出a;将问题转化为二项式的系数和;利用二项展开式的通项公式求出通项,求出特定项的系数.解答:解:令二项式中的x为1得到展开式的各项系数和为1+a∴1+a=2∴a=1∴==∴展开式中常数项为的的系数和∵展开式的通项为T r+1=(﹣1)r25﹣r C5r x5﹣2r令5﹣2r=1得r=2;令5﹣2r=﹣1得r=3展开式中常数项为8C52﹣4C53=40故选D点评:本题考查求系数和问题常用赋值法、考查利用二项展开式的通项公式解决二项展开式的特定项问题.10.若f(x)=2cos(ωx+φ)+m,对任意实数t都有f(t+)=f(﹣t),且f()=﹣1则实数m的值等于()A.±1 B.﹣3或1 C.±3 D.﹣1或3考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:通过f(t+)=f(﹣t),判断函数的对称轴,就是函数取得最值的x值,结合f()=﹣1,即可求出m的值.解答:解:因为f(x)=2cos(ωx+φ)+m,对任意实数t都有f(t+)=f(﹣t),所以函数的对称轴是x=,就是函数取得最值,又f()=﹣1,所以﹣1=±2+m,所以m=1或﹣3.故选B.点评:本题是基础题,考查三角函数的对称轴的应用,不求解析式,直接判断字母的值的方法,考查学生灵活解答问题的能力.11.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=3,则△AOF 的面积为()A.B.C.D.2考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用抛物线的定义,求出A的坐标,再计算△AOF的面积.解答:解:抛物线y2=4x的准线l:x=﹣1.∵|AF|=3,∴点A到准线l:x=﹣1的距离为3∴1+x A=3∴x A=2,∴y A=±2,∴△AOF的面积为=.故选:B.点评:本题考查抛物线的定义,考查三角形的面积的计算,确定A的坐标是解题的关键.12.设f(x)是定义在R上的函数,其导函数为f′(x),若f(x)+f′(x)>1,f(0)=2015,则不等式e x f(x)>e x+2014(其中e为自然对数的底数)的解集为()A.(2014,+∞)B.(﹣∞,0)∪(2014,+∞)C.(﹣∞,0)∪(0,+∞)D.(0,+∞)考点:函数单调性的性质.专题:导数的综合应用.分析:构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值即可求解.解答:解:设g(x)=e x f(x)﹣e x,(x∈R),则g(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+2014,∴g(x)>2014,又∵g(0)=e0f(0)﹣e0=2015﹣1=2014,∴g(x)>g(0),∴x>0故选:D.点评:本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键,属于中档题.二、填空题(每小题5分,共20分)13.若等比数列{a n}满足a2+a4=20,a3+a5=40.则a5+a7=160.考点:等比数列的性质.专题:计算题;等差数列与等比数列.分析:设出等比数列的首项和公比,由已知列方程组求出首项和公比,即可求出a5+a7.解答:解:设等比数列的公比为q,∵a2+a4=20,a3+a5=40,∴a1q+a1q3=20,a1q2+a1q4=40,解得a1=q=2∴a n=a1q n﹣1=2n,∴a5+a7=160,故答案为:160.点评:本题考查的知识点是等比数列的前n项和,等比数列的通项公式,其中根据已知构造关于首项和公比的方程组,是解答的关键.14.(2014•嘉定区三模)若实数x,y满足如果目标函数z=x﹣y的最小值为﹣1,则实数m=5.考点:简单线性规划.专题:计算题.分析:画出不等式组表示的平面区域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数m的方程组,消参后即可得到m的取值解答:解:画出x,y满足的可行域如下图:可得直线y=2x﹣1与直线x+y=m的交点使目标函数z=x﹣y取得最小值,由可得,代入x﹣y=﹣1得∴m=5故答案为:5点评:如果约束条件中含有参数,先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.15.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体的体积为.考点:由三视图求面积、体积.专题:计算题.分析:三视图复原的几何体是四棱锥,利用几何体的数据求解几何体的体积即可.解答:解:由题意可知三视图复原的几何体是底面为边长为2的正方形,一条侧棱垂直底面正方形的顶点的四棱锥,并且棱锥的高为2,所以几何体的体积为:=.故答案为:.点评:本题考查三视图与几何体的直观图的关系,考查空间想象能力与计算能力.16.函数f(x)=的最大值与最小值之积等于﹣.考点:函数的最值及其几何意义.专题:计算题;不等式的解法及应用.分析:分类讨论,利用基本不等式,求出函数f(x)=的最大值与最小值,即可得出结论.解答:解:f(x)==,x=0时,f(0)=0,x≠0时,f(x)=,x>0时,x+≥2,∴0<f(x)≤,x<0时,x+≤﹣2,∴﹣≤f(x)<0,综上,∴﹣≤f(x)≤,∴函数f(x)=的最大值与最小值之积等于﹣.故答案为:﹣.点评:本题考查函数的最值及其几何意义,考查基本不等式,考查学生分析解决问题的能力,属于中档题.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且∠A满足:2cos2A﹣2sinAcosA=﹣1.(Ⅰ)若a=2,c=2,求△ABC的面积;(Ⅱ)求的值.考点:余弦定理;三角函数中的恒等变换应用;正弦定理.专题:三角函数的求值.分析:(Ⅰ)已知等式左边利用二倍角的正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式变形,利用特殊角的三角函数值求出A的度数,进而得到sinA的值,再由a 与c的值,利用三角形面积公式即可求出三角形ABC面积;(Ⅱ)原式分子分母利用正弦定理变形,再利用两角和与差的余弦函数公式化简,约分即可得到结果.解答:解:(Ⅰ)∵2cos2A﹣2sinAcosA=﹣1,∴1+cos2A﹣sin2A=1﹣2(sin2A﹣cos2A)=1﹣2sin(2A﹣)=﹣1,即sin(2A﹣)=1,∵A为三角形内角,即0<A<π,∴2A﹣∈(﹣,),∴2A﹣=,即A=,在△ABC中,由余弦定理得:cosA===,解得:b=4或b=﹣2(舍去),∴S△ABC=bcsinA=×4×2×=2;(Ⅱ)已知等式,利用正弦定理===2R,变形得:=====2.点评:此题考查了正弦、余弦定理,三角形的面积公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.18.(12分)某旅行社为3个旅游团提供甲、乙、丙、丁共4条旅游线路,每个旅游团任选其中一条.(1)求恰有2条线路没有被选择的概率;(2)设选择甲旅行线路的旅游团数为ξ,求ξ的分布列和数学期望.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(Ⅰ)利用等可能事件概率计算公式能求出恰有两条线路没有被选择的概率.(Ⅱ)设选择甲线路旅游团数为ξ,则ξ=0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和数学期望.解答:(Ⅰ)恰有两条线路没有被选择的概率为:P==.(Ⅱ)设选择甲线路旅游团数为ξ,则ξ=0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==.∴ξ的分布列为:ξ0 1 2 3P∴期望Eξ=0×+1×+2×+3×=.点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,是中档题.19.(12分)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.考点:与二面角有关的立体几何综合题;异面直线及其所成的角.专题:空间位置关系与距离.分析:(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,利用向量法能求出异面直线A1B与C1D所成角的余弦值.(2)分别求出平面ABA1的法向量和平面ADC1的法向量,利用向量法能求出平面ADC1与ABA1所成二面角的余弦值,再由三角函数知识能求出平面ADC1与ABA1所成二面角的正弦值.解答:解:(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,则由题意知A(0,0,0),B(2,0,0),C(0,2,0),A1(0,0,4),D(1,1,0),C1(0,2,4),∴,=(1,﹣1,﹣4),∴cos<>===,∴异面直线A1B与C1D所成角的余弦值为.(2)是平面ABA1的一个法向量,设平面ADC1的法向量为,∵,∴,取z=1,得y=﹣2,x=2,∴平面ADC1的法向量为,设平面ADC1与ABA1所成二面角为θ,∴cosθ=|cos<>|=||=,∴sinθ==.∴平面ADC1与ABA1所成二面角的正弦值为.点评:本题考查两条异面直线所成角的余弦值的求法,考查平面与平面所成角的正弦值的求法,解题时要注意向量法的合理运用.20.(12分)椭圆C:+=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)利用两点间的距离公式可得c,再利用椭圆的标准方程及其性质即可得出a,b;(Ⅱ)把直线l的方程与椭圆的方程联立可得根与系数的关系,再利用以AB为直径的圆过椭圆的右顶点D,可得k AD•k BD=﹣1,即可得出m与k的关系,从而得出答案.解答:解:(Ⅰ)∵左焦点(﹣c,0)到点P(2,1)的距离为,∴,解得c=1.又,解得a=2,∴b2=a2﹣c2=3.∴所求椭圆C的方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),由得(3+4k2)x2+8mkx+4(m2﹣3)=0,△=64m2k2﹣16(3+4k2)(m2﹣3)>0,化为3+4k2>m2.∴,.y1y2=(kx1+m)(kx2+m)==.∵以AB为直径的圆过椭圆的右顶点D(2,0),k AD•k BD=﹣1,∴,∴y1y2+x1x2﹣2(x1+x2)+4=0,∴.化为7m2+16mk+4k2=0,解得m1=﹣2k,.,且满足3+4k2﹣m2>0.当m=﹣2k时,l:y=k(x﹣2),直线过定点(2,0)与已知矛盾;当m=﹣时,l:y=k,直线过定点.综上可知,直线l过定点,定点坐标为.点评:本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、圆的性质、两点间的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.21.(12分)已知函数f(x)=x2﹣ex3+e x(x﹣1)(其中e为自然对数的底数),记f(x)的导函数为f′(x).(1)求函数y=f(x)的单调区间;(2)求证:当x>0时,不等式f′(x)≥1+lnx恒成立.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)利用导数判断函数的单调性,求出单调区间;(2)当x>0时,令h(x)=1+lnx+ex2﹣x﹣e x x,求出导数h′(x),当x=1时,h′(x)=0,由(1)得,e x﹣ex≥0,讨论当x>1时,当0<x<1时,导数的符号,从而得到h(x)的最大值,即可得证.解答:(1)解:)∵f(x)=x2﹣ex3+e x(x﹣1),∴f′(x)=﹣ex2+x+e x(x﹣1)+e x=x(e x+1﹣ex),令y=e x+1﹣ex,则y′=ex﹣e,y′>0,得x>1,y′<0,得x<1,则x=1取极小,也是最小,则y≥1.即e x+1﹣ex>0恒成立,则g′(x)>0得x>0;g′(x)<0得x<0.故g(x)的增区间为(0,+∞),减区间为(﹣∞,0).(2)证明:当x>0时,1+lnx﹣f′(x)=1+lnx+ex2﹣x﹣e x x,令h(x)=1+lnx+ex2﹣x﹣e x x,h′(x)=+2ex﹣1﹣e x x﹣e x,当x=1时,h′(x)=0,由(1)得,e x﹣ex≥0,当x>1时,h′(x)<0,当0<x<1时,h′(x)>0,故x=1为极大值,也为最大值,且为h(1)=0.故当x>0时,h(x)≤h(1),即有h(x)≤0,故当x>0时,1+lnx﹣f′(x)≤0,即f′(x)≥1+lnx.点评:本题考查导数的应用:求单调区间、求极值,求最值,考查构造函数证明不等式恒成立问题,转化为求函数的最值问题,应用导数求解,本题属于中档题.下面的三个选作题,考生选择一个题作答【选修4—1】几何证明选讲22.(10分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)证明:AE是⊙O的切线;(2)如果AB=2,AE=,求CD.考点:与圆有关的比例线段.专题:几何证明.分析:(1)首先通过连接半径,进一步证明∠DAE+∠OAD=90°,得到结论.(2)利用第一步的结论,找到△ADE∽△BDA的条件,进一步利用勾股定理求的结果解答:(1)证明:连结OA,在△ADE中,AE⊥CD于点E,∴∠DAE+∠ADE=90°∵DA平分∠BDC.∴∠ADE=∠BDA∵OA=OD∴∠BDA=∠OAD∴∠OAD=∠ADE∴∠DAE+∠OAD=90°即:AE是⊙O的切线(2)在△ADE和△BDA中,∵BD是⊙O的直径∴∠BAD=90°由(1)得:∠DAE=∠ABD又∵∠BAD=∠AED∵AB=2求得:BD=4,AD=2∴∠BDA=∠ADE=∠BDC=60°进一步求得:CD=2故答案为:(1)略(2)CD=2点评:本题考查的知识点:证明切线的方法:连半径,证垂直.三角形相似的判定,勾股定理的应用.【选修4—4】坐标系参数方程23.已知直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半径为极轴)中,曲线C的极坐标方程为ρ=4cosθ.(1)分别将直线l和曲线C的方程化为直角坐标系下的普通方程;(2)设直线l与曲线C交于P、Q两点,求|PQ|.考点:参数方程化成普通方程;点的极坐标和直角坐标的互化.专题:选作题;坐标系和参数方程.分析:(1)消去参数,可得直线l的普通方程,圆ρ=4cosθ,等式两边同时乘以ρ,可得曲线C的方程化为直角坐标系下的普通方程;(2)求出圆心和半径,再求出圆心到直线的距离,即可求|PQ|.解答:解:(1)直线l的参数方程为(t为参数),普通方程为y=x+2﹣2;圆ρ=4cosθ,等式两边同时乘以ρ得到ρ2=4ρcosθ,即x2+y2=4x,即(x﹣2)2+y2=4;(2)x2+y2=4x,即(x﹣2)2+y2=4,表示以(2,0)为圆心,半径等于2的圆.圆心到直线的距离为=1,∴|PQ|=2=2.点评:本题考查参数方程化成普通方程、极坐标方程化为直角坐标方程,考查直线与圆的位置关系,比较基础.【选修4—5】不等式选讲24.设函数f(x)=+的最大值为M.(Ⅰ)求实数M的值;(Ⅱ)求关于x的不等式|x﹣1|+|x+2|≤M的解集.考点:二维形式的柯西不等式;绝对值不等式.专题:不等式的解法及应用.分析:(Ⅰ)根据函数f(x)=+=•+≤•=3,求得实数M的值.(Ⅱ)关于x的不等式即|x﹣1|+|x+2|≤3,由绝对值三角不等式可得|x﹣1|+|x+2|≥3,可得|x﹣1|+|x+2|=3.根据绝对值的意义可得x的范围.解答:解:(Ⅰ)函数f(x)=+=•+≤•=3,当且仅当=,即x=4时,取等号,故实数M=3.(Ⅱ)关于x的不等式|x﹣1|+|x+2|≤M,即|x﹣1|+|x+2|≤3.由绝对值三角不等式可得|x﹣1|+|x+2|≥|(x﹣1)﹣(x+2)|=3,∴|x﹣1|+|x+2|=3.根据绝对值的意义可得,当且仅当﹣2≤x≤1时,|x﹣1|+|x+2|=3,故不等式的解集为[﹣2,1].点评:本题主要考查二维形式的柯西不等式的应用,绝对值的意义,绝对值三角不等式,属于基础题.。
高三上学期期中考试数学(理)试题(解析版).docx
高中数学学习材料马鸣风萧萧*整理制作广东省广州市执信中学2015届高三上学期期中数学试卷(理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)若集合A={x|x≥0},且A∩B=B,则集合B可能是()A.{1,2} B.{x|x≤1} C.{﹣1,0,1} D.R2.(5分)下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.命题“∀x≥0,x2+x﹣1<0”的否定是“∃x0<0,x02+x0﹣1≥0”C.命题“若x=y,则sin x=sin y”的逆否命题为假命题D.若“p∨q”为真命题,则p,q中至少有一个为真命题3.(5分)设{a n}为等差数列,公差d=﹣2,s n为其前n项和,若S10=S11,则a1=()A.18 B.20 C.22 D.244.(5分)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.5.(5分)在△ABC中,已知AB=4,则△ABC的面积是()A.B.C.或D.6.(5分)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2B.C.D.﹣27.(5分)在△ABC中,点P在BC上,且,点Q是AC的中点,若,,则=()A.(﹣2,7)B.(﹣6,21)C.(2,﹣7)D.(6,﹣21)8.(5分)已知函数f(x)=,把函数g(x)=f(x)﹣x的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为()A.B.a n=n﹣1 C.a n=n(n﹣1)D.二、填空题(本大题共5小题,每小题5分,共30分)(一)必做题(9~13题)9.(5分)已知复数a+bi=i(1﹣i)(其中a,b∈R,i是虚数单位),则a+b的值为.10.(5分)若,则常数T的值为.11.(5分)设x,y满足约束条件,则z=2x+y的最大值是.12.(5分)已知(+)n的展开式中第5项的系数与第3项的系数比为56:3,则n=.13.(5分)如图,在平面直角坐标系xOy中,点A为椭圆E:+=1 (a>b>0)的左顶点,B,C在椭圆E上,若四边形OABC为平行四边形,且∠OAB=30°,则椭圆E的离心率等于.(二)选做题(14~15题,考生只能从中选做一题)14.(5分)在极坐标系中,曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为.15.(5分)(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF:FB:BE=4:2:1,若CE与圆相切,则线段CE的长为.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)16.(13分)已知函数f(x)=(sinx+cosx)cosx﹣.(Ⅰ)用五点作图法列表,作出函数f(x)在x∈[0,π]上的图象简图;(Ⅱ)若f(+)=,﹣<a<0,求sin(2a﹣)的值.17.(14分)在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1=,BC=4,A1在底面ABC 的射影是线段BC的中点O.(Ⅰ)证明:在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(Ⅱ)求二面角A1﹣B1C﹣C1的余弦值.18.(14分)袋中装着标有数字1、2、3、4、5的小球各2个,从袋中任取3个小球,每个小球被取出的可能性都相等,用ξ表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量ξ的概率分布列和数学期望.19.(12分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)•(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记b n=,求数列{b n}的前n项和S n.20.(13分)已知椭圆C1的离心率为e=,过C1的左焦点F1的直线l:x﹣y+2=0被圆C2:(x﹣3)2+(y﹣3)2=r2(r>0)截得的弦长为2.(1)求椭圆C1的方程;(2)设C1的右焦点为F2,在圆C2上是否存在点P,满足|PF1|=|PF2|,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.21.(14分)设函数.(1)当k=1时,判断函数f(x)的单调性,并加以证明;(2)当k=0时,求证:f(x)>0对一切x>0恒成立;(3)若k<0,且k为常数,求证:f(x)的极小值是一个与a无关的常数.广东省广州市执信中学2015届高三上学期期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)若集合A={x|x≥0},且A∩B=B,则集合B可能是()A.{1,2} B.{x|x≤1} C.{﹣1,0,1} D.R考点:交集及其运算.专题:计算题;集合.分析:由集合A={x|x≥0},且A∩B=B,得B⊆A,由此能求出结果.解答:解:∵集合A={x|x≥0},且A∩B=B,∴B⊆A,观察备选答案中的4个选项,只有{1,2}⊆A.故选:A.点评:本题考查交集性质的应用,是基础题,解题时要认真审题.2.(5分)下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.命题“∀x≥0,x2+x﹣1<0”的否定是“∃x0<0,x02+x0﹣1≥0”C.命题“若x=y,则sin x=sin y”的逆否命题为假命题D.若“p∨q”为真命题,则p,q中至少有一个为真命题考点:复合命题的真假;四种命题间的逆否关系;命题的否定.专题:简易逻辑.分析:通过复合命题的定义,四种命题的关系,命题的否定,逐项进行判断.解答:解:对于A:否命题为“若x2≠1,则x≠1”,故A错误;对于B:否定是“∃x0≥0,x02+x0﹣1≥0”,故B错误;对于C:逆否命题为:若“sin x≠sin y,则x≠y”,是真命题,故C错误;A,B,C,都错误,故D正确,故选:D.点评:本题考查了复合命题的定义,四种命题的关系,命题的否定,是一道基础题.3.(5分)设{a n}为等差数列,公差d=﹣2,s n为其前n项和,若S10=S11,则a1=()A.18 B.20 C.22 D.24考点:等差数列的性质.专题:计算题.分析:由等差数列的前10项的和等于前11项的和可知,第11项的值为0,然后根据等差数列的通项公式,利用首项和公差d表示出第11项,让其等于0列出关于首项的方程,求出方程的解即可得到首项的值.解答:解:由s10=s11,得到a1+a2+…+a10=a1+a2+…+a10+a11即a11=0,所以a1﹣2(11﹣1)=0,解得a1=20.故选B点评:此题考查学生掌握等差数列的性质,灵活运用等差数列的通项公式化简求值,是一道基础题.4.(5分)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.考点:简单空间图形的三视图.专题:计算题.分析:直接利用三视图的画法,画出几何体的左视图即可.解答:解:由题意可知几何体前面在右侧的射影为线段,上面的射影也是线段,后面与底面的射影都是线段,轮廓是正方形,AD1在右侧的射影是正方形的对角线,B1C在右侧的射影也是对角线是虚线.如图B.故选B.点评:本题考查几何体的三视图的画法,考查作图能力.5.(5分)在△ABC中,已知AB=4,则△ABC的面积是()A.B.C.或D.考点:正弦定理的应用.专题:解三角形.分析:在△ABC中,由余弦定理可得BC的值,再由△ABC的面积为×AB×BC×sinB 运算求得结果.解答:解:在△ABC中,由余弦定理可得42=+BC2﹣2×4×BC×cos30°,解得BC=4,或BC=8.当BC=4时,△ABC的面积为×AB×BC×sinB=×4×4×=4,当BC=8时,△ABC的面积为×AB×BC×sinB=×4×8×=8,故选C.点评:本题主要考查正弦定理、余弦定理的应用,属于中档题.6.(5分)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2B.C.D.﹣2考点:导数的几何意义.分析:(1)求出已知函数y在点(3,2)处的斜率;(2)利用两条直线互相垂直,斜率之间的关系k1•k2=﹣1,求出未知数a.解答:解:∵y=∴y′=﹣∵x=3∴y′=﹣即切线斜率为﹣∵切线与直线ax+y+1=0垂直∴直线ax+y+1=0的斜率为﹣a.∴﹣•(﹣a)=﹣1得a=﹣2故选D.点评:函数y=f(x)在x=x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,y0)处的切线的斜率,过点P的切线方程为:y﹣y0=f′(x0)(x﹣x0)7.(5分)在△ABC中,点P在BC上,且,点Q是AC的中点,若,,则=()A.(﹣2,7)B.(﹣6,21)C.(2,﹣7)D.(6,﹣21)考点:数量积的坐标表达式.专题:平面向量及应用.分析:利用向量的坐标形式的运算法则求出,利用向量共线的充要条件求出,利用向量共线的充要条件求出解答:解:=(﹣3,2)∵点Q是AC的中点∴∵=(﹣6,21)故选B点评:本题考查向量的运算法则、向量共线的充要条件:⇔8.(5分)已知函数f(x)=,把函数g(x)=f(x)﹣x的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为()A.B.a n=n﹣1 C.a n=n(n﹣1)D.考点:根的存在性及根的个数判断;等差数列的通项公式.专题:函数的性质及应用.分析:根据函数的零点的定义,构造两函数图象的交点,交点的横坐标即为函数的零点,再通过数列及通项公式的概念得所求的解.解答:解:当x∈(﹣∞,0]时,由g(x)=f(x)﹣x=2x﹣1﹣x=0,得2x=x+1.令y=2x,y=x+1.在同一个坐标系内作出两函数在区间(﹣∞,0]上的图象,由图象易知交点为(0,1),故得到函数的零点为x=0.当x∈(0,1]时,x﹣1∈(﹣1,0],f(x)=f(x﹣1)+1=2x﹣1﹣1+1=2x﹣1,由g(x)=f(x)﹣x=2x﹣1﹣x=0,得2x﹣1=x.令y=2x﹣1,y=x.在同一个坐标系内作出两函数在区间(0,1]上的图象,由图象易知交点为(1,1),故得到函数的零点为x=1.当x∈(1,2]时,x﹣1∈(0,1],f(x)=f(x﹣1)+1=2x﹣1﹣1+1=2x﹣2+1,由g(x)=f(x)﹣x=2x﹣2+1﹣x=0,得2x﹣2=x﹣1.令y=2x﹣2,y=x﹣1.在同一个坐标系内作出两函数在区间(1,2]上的图象,由图象易知交点为(2,1),故得到函数的零点为x=2.依此类推,当x∈(2,3],x∈(3,4],…,x∈(n,n+1]时,构造的两函数图象的交点依次为(3,1),(4,1),…,(n+1,1),得对应的零点分别为x=3,x=4,…,x=n+1.故所有的零点从小到大依次排列为0,1,2,…,n+1.其对应的数列的通项公式为a n=n﹣1.故选B.点评:本题主要考查了函数零点的概念及零点的求法、数列的概念及简单表示;培养学生观察、分析、归纳、推理的能力;解题中使用了数形结合及分类讨论的数学方法和数学思想.二、填空题(本大题共5小题,每小题5分,共30分)(一)必做题(9~13题)9.(5分)已知复数a+bi=i(1﹣i)(其中a,b∈R,i是虚数单位),则a+b的值为2.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数代数形式的乘法运算展开等式右边,由复数相等的条件求出a,b的值,则答案可求.解答:解:由a+bi=i(1﹣i)=1+i,得a=1,b=1,∴a+b=2.故答案为:2.点评:本题考查了复数代数形式的乘除运算,考查了复数相等的条件,是基础题.10.(5分)若,则常数T的值为3.考点:定积分.专题:计算题.分析:利用微积分基本定理即可求得.解答:解:==9,解得T=3,故答案为:3.点评:本题考查定积分、微积分基本定理,属基础题.11.(5分)设x,y满足约束条件,则z=2x+y的最大值是5.考点:简单线性规划.专题:计算题.分析:先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域内直线在y轴上的截距最大值即可.解答:解;作出不等式组表示的平面区域,如图所示做直线L:2x+y=0,然后把直线L向可行域平移,结合图象可知当直线z=2x+y过点A时,z最大由可得A(2,1)即当x=2,y=1时,z max=5.故答案为:5点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.12.(5分)已知(+)n的展开式中第5项的系数与第3项的系数比为56:3,则n=10.考点:二项式定理的应用.专题:计算题;二项式定理.分析:运用二项式的通项公式,求出通项并化简整理,再令r=4,r=2,求出系数,列出方程,解出即可得到n.解答:解:(+)n的展开式的通项为T r+1=()n﹣r()r=2r,则由题意可得24:22=56:3,则有14×=3×,解得,n=10.故答案为:10.点评:本题考查二项式定理及运用,考查二项式的通项公式及运用,考查运算能力,属于基础题.13.(5分)如图,在平面直角坐标系xOy中,点A为椭圆E:+=1 (a>b>0)的左顶点,B,C在椭圆E上,若四边形OABC为平行四边形,且∠OAB=30°,则椭圆E的离心率等于.考点:椭圆的简单性质.分析:首先利用椭圆的对称性和OABC为平行四边形,可以得出B、C两点是关于Y轴对称,进而得到BC=OA=a;设B(﹣,y)C(,y),从而求出|y|,然后由∠OAB=∠COD=30°,利用tan30°=b/=,求得a=3b,最后根据a2=c2+b2得出离心率.解答:解:∵AO是与X轴重合的,且四边形OABC为平行四边形∴BC∥OA,B、C两点的纵坐标相等,B、C的横坐标互为相反数∴B、C两点是关于Y轴对称的.由题知:OA=a四边形OABC为平行四边形,所以BC=OA=a可设B(﹣,y)C(,y)代入椭圆方程解得:|y|=b,设D为椭圆的右顶点,因为∠OAB=30°,四边形OABC为平行四边形所以∠COD=30°对C点:tan30°==解得:a=3b根据:a2=c2+b2得:a2=c2+e2=e=故答案为:.点评:本题考查了椭圆的对称性以及简单性质,由椭圆的对称性求出B、C两点的纵坐标进而得到a=3b是解题的关键,属于中档题.(二)选做题(14~15题,考生只能从中选做一题)14.(5分)在极坐标系中,曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为.考点:点的极坐标和直角坐标的互化;两点间的距离公式.专题:计算题.分析:联立ρ=cosθ+1与ρcosθ=1消掉θ即可求得ρ,即为答案.解答:解:由ρ=cosθ+1得,cosθ=ρ﹣1,代入ρcosθ=1得ρ(ρ﹣1)=1,解得ρ=或ρ=(舍),所以曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为,故答案为:.点评:本题考查两点间距离公式、极坐标与直角坐标的互化,属基础题.15.(5分)(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF:FB:BE=4:2:1,若CE与圆相切,则线段CE的长为.考点:与圆有关的比例线段.专题:计算题.分析:设出AF=4k,BF=2k,BE=k,由DF•FC=AF•BF求出k的值,利用切割定理求出CE.解答:解:设AF=4k,BF=2k,BE=k,由DF•FC=AF•BF,得2=8k2,即k=.∴AF=2,BF=1,BE=,AE=;由切割定理得CE2=BE•EA=×=.∴CE=.故答案为:.点评:本题是基础题,考查直线与圆的位置关系,考查计算能力,基本知识掌握的情况,是常考题型.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)16.(13分)已知函数f(x)=(sinx+cosx)cosx﹣.(Ⅰ)用五点作图法列表,作出函数f(x)在x∈[0,π]上的图象简图;(Ⅱ)若f(+)=,﹣<a<0,求sin(2a﹣)的值.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)分别取出对应的x值和y值列表,然后描点,再用平滑曲线连接得函数图象.(Ⅱ)由f(+)=,即可推得cosa=,从而可求sina的值,进而求出sin2a=2sinacosa=﹣,cos2a=2cos2a﹣1=﹣,故可求得sin(2a﹣)的值.解答:解:(1)f(x)=(sinx+cosx)cosx﹣=sinxcosx+cos2x==.列表:描点画出简图如下:(2)f(+)=sin[2(+)+]=sin(a+)=cosa=,∵﹣<a<0,∴sina=﹣,∴sin2a=2sinacosa=﹣,cos2a=2cos2a﹣1=﹣,sin(2a﹣)=(sin2a﹣cos2a)=﹣.点评:本题主要考察了三角函数中的恒等变换应用,考察了三角函数的图象与性质,属于基础题.17.(14分)在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1=,BC=4,A1在底面ABC 的射影是线段BC的中点O.(Ⅰ)证明:在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(Ⅱ)求二面角A1﹣B1C﹣C1的余弦值.考点:二面角的平面角及求法.专题:综合题;空间位置关系与距离;空间角.分析:(Ⅰ)连接AO,在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,所以,OE⊥BB1,证明BC⊥OE,可得结论,AE=;(Ⅱ)建立空间直角坐标系,求出平面B1CC1的一个法向量、平面A1B1C的法向量,利用向量的夹角公式求二面角A1﹣B1C﹣C1的余弦值.解答:解:(Ⅰ)证明:连接AO,在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,所以,OE⊥BB1因为A1O⊥平面ABC,所以BC⊥平面AA1O,所以BC⊥OE,所以OE⊥平面BB1CC1又AO==1,AA1=得AE==.(Ⅱ)解:如图,分别以OA,OB,OA1所在直线为x,y,z轴,建立空间直角坐标系,则A(1,0,0),B(0,2,0),C(0,﹣2,0),A1(0,0,2)由=,得点E的坐标是(,0,),由(Ⅰ)知平面B1CC1的一个法向量为=(,0,)设平面A1B1C的法向量是=(x,y,z),由得可取=(2,1,﹣1),所以cos<,>==.点评:本题考查线面垂直,考查二面角A1﹣B1C﹣C1的余弦值,考查向量法的运用,属于中档题.18.(14分)袋中装着标有数字1、2、3、4、5的小球各2个,从袋中任取3个小球,每个小球被取出的可能性都相等,用ξ表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量ξ的概率分布列和数学期望.考点:互斥事件的概率加法公式;离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:计算题.分析:(1)根据题意,一次取出的3个小球上的数字互不相同的事件记为A,一次取出的3个小球上有两个数字相同的事件记为B,易得事件A和事件B是互斥事件,易得事件B的概率,由互斥事件的意义,可得答案,(2)由题意ξ有可能的取值为:2,3,4,5,分别计算其取不同数值时的概率,列出分步列,进而计算可得答案.解答:解:(1)一次取出的3个小球上的数字互不相同的事件记为A,一次取出的3个小球上有两个数字相同的事件记为B,则事件A和事件B是互斥事件,因为所以.(4分)(2)由题意ξ有可能的取值为:2,3,4,5.(5分);(8分);(9分);(10分);(11分)所以随机变量ε的概率分布为(12分)因此ξ的数学期望为:(14分)点评:本题考查概率的计算以及随机变量的分布列的运用,注意其公式的正确运用即可.19.(12分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)•(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记b n=,求数列{b n}的前n项和S n.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)由题意得a n+1=a n2+2a n,变形得a n+1+1=(a n+1)2,再两边取对数化简后,由等比数列的定义可证明;(Ⅱ)由(Ⅰ)和等比数列的通项公式求出1+a n的表达式,代入T n根据指数的运算和等比数列的前n项公式化简;(Ⅲ)将a n+1=a n2+2a n化简后取倒数得,再代入b n=化简,利用前后项相消后求出数列{b n}的前n项和S n.解答:证明:(Ⅰ)由题意得a n+1=a n2+2a n,即a n+1+1=(a n+1)2,两边取对数得,lg(a n+1+1)=2lg(a n+1),即,由a1=2得,lg(a1+1)=lg3,即数列{lg(1+a n)}是公比为2、以lg3为首项的等比数列;解:(Ⅱ)由(Ⅰ)知,lg(1+a n)=2n﹣1lg3=,所以1+a n=,所以T n=(1+a1)•(1+a2)…(1+a n)=…==,由1+a n=,得a n=﹣1;(Ⅲ)由(Ⅰ)得,a n+1=a n2+2a n=2a n(a n+2),所以,即,又b n=,所以b n=,所以S n=b1+b2+…+b n=2[()+()+…+()]=2(),由a n=﹣1得,a1=2,a n+1=﹣1,代入上式得,S n=1﹣.点评:本题考查等比数列的定义,前n项公式,裂项相消法求数列的和,以及指数、对数的运算等,属于中档题.20.(13分)已知椭圆C1的离心率为e=,过C1的左焦点F1的直线l:x﹣y+2=0被圆C2:(x﹣3)2+(y﹣3)2=r2(r>0)截得的弦长为2.(1)求椭圆C1的方程;(2)设C1的右焦点为F2,在圆C2上是否存在点P,满足|PF1|=|PF2|,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:综合题;探究型;存在型.分析:对第(1)问,由a2=b2+c2,及F1的坐标满足直线l的方程,联立此三个方程,即得a2,b2,从而得椭圆方程;对第(2)问,根据弦长,利用垂径定理与勾股定理得方程,可求得圆的半径r,从而确定圆的方程,再由条件|PF1|=|PF2|,将点P满足的关系式列出,通过此关系式与已知圆C2的方程联系,再探求点P的存在性.解答:解:在直线l的方程x﹣y+2=0中,令y=0,得x=﹣2,即得F1(﹣2,0),∴c=2,又∵离心率,∴a2=6,b2=a2﹣c2=2,∴椭圆C1的方程为.(2)∵圆心C2(3,3)到直线l:x﹣y+2=0的距离为d=,又直线l被圆C2截得的弦长为,∴由垂径定理得,故圆C2的方程为.设圆C2上存在点P(x,y),满足,即|PF1|=3|PF2|.∵F1(﹣2,0),F2(2,0),则,整理得,此方程表示圆心在点,半径是的圆,∴|CC2|=,故有,即两圆相交,有两个公共点.∴圆C2上存在两个不同点P,满足|PF1|=.点评:1.求椭圆的方程,关键是确定a2,b2,常用到关系式及a2=b2+c2,再找一个关系式,一般可解出a,b.2.本题采用交集思想巧妙地处理了点P的存在性.本解法是用圆特有的方式判断两圆的公共点个数,若联立两曲线的方程,消去x或y,用判别式来判断也可以,其适用范围更广,但计算量相对大一些.21.(14分)设函数.(1)当k=1时,判断函数f(x)的单调性,并加以证明;(2)当k=0时,求证:f(x)>0对一切x>0恒成立;(3)若k<0,且k为常数,求证:f(x)的极小值是一个与a无关的常数.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:综合题.分析:(1)求出函数的导函数,判断出导函数小于等于0,判断出函数单调性.(2)求出导函数,令导函数为0,求出根,判断出根左右两边的符号,求出极小值,判断出极小值的符号得证.(3)求出导函数,令导函数为0,求出根,判断根左右两边的符号,求出极小值,判断出极小值是与a无关的常数.解答:解:(1)函数的定义域为x>0当k=1时,f(x)=∵=∴函数f(x)在(0,+∞)上是单调减函数(2)当k=0时,令当∴∵e>2∴∴f(x)>0恒成立(3)∵∴令解得(舍去)∴,f′(x)<0,f(x)是单调减函数时,f′(x)>0,f(x)是单调增函数因此,当x=f(x)有极小值令∵而是与a无关的常数∴均与a无关.∴f(x0)是与a无关的常数.则f(x)的极小值是一个与a无关的常数.点评:求函数的极小值时,令导函数为0求出根,但一定注意判断根左右两边的符号是否异号.。
精选题库2015年山东省德州市高三上学期期中数学试卷含解析答案(理科)
,下列关于函数 y=f[ f(x)] ﹣ 零
点个数的四个判断:
( 1)当 k>0 时,有 3 个零点;
( 2)当 k<0 时,有 2 个零点;
( 3)当 k>0 时,有 4 个零点;
( 4)当 k<0 时,有 1 个零点
则正确的判断是(
)
A.(1)( 4) B.(2)( 3) C.(1)(2)
D.( 3)(4)
当 x∈( 0,1)时, cosx>0,ln| x| <0,故 f (x)< 0; 当 x∈( 1, )时, cosx>0,ln| x| > 0,故 f(x)> 0;
此时选项 AD 都符合,但当 x 取正值且很小时, cosx∈( 0, 1),而 ln| x| =lnx 趋 向于﹣∞,故 f (x)取负值且绝对值很大,应是 A 的图象 故选: A.
18.( 12 分)已知 A,B,C 是△ ABC的三个内角,向量 =(1, ), =( sinA,
2+cosA),且 ∥ ,边 AC 长为 2.
(Ⅰ)求角 A; (Ⅱ)若
=3,求边 AB 的长.
19.( 12 分)已知函数 f(x)=ax3+bx2+cx+d,f ′(x)为其导函数,若 f ′(x)为偶 函数且 f(x)在 x=2 处取得极值 d﹣16 ( I)求 a, b,c 的值; (Ⅱ)若 f( x)有极大值 20,求 f(x)在区间 [ ﹣ 3, 3] 上的最小值. 20.(13 分)某工厂引入一条生产线,投人资金 250 万元,每生产 x 千件,需另 投入成本 w(x),当年产量不足 80 干件时, w( x)= x2+10x(万元),当年产量
可以分析到当 P 在 A 和 B 的中间的时候,距离和为线段 AB 的长度,此时最小.
福建省莆田市仙游一中2015届高三上学期期中考试数学理试题 Word版含答案
莆田市仙游一中2015届高三上学期期中考试数学(理科)试卷(命题人:杨超拔,满分:150分,答卷时间: 120分钟)一.选择题(本大题有10小题,每小题5分,共50分)1. 设为向量,则“a b a b ⋅=”是“b a //”的( ) A .充分必要条件 B .必要不充分条件 C .充分不必要条件 D.既不充分也不必要条件2.已知正角α的终边上一点的坐标为(32cos,32sinππ),则角α的最小值为( ) A .65π B .32π C .35π D .611π3.下列命题中是假命题...的是 ( )A .,)1()(,342是幂函数使+-⋅-=∈∃m m x m x f m R ),0(+∞且在上递减 B .有零点函数a x x x f a -+=>∀ln ln )(,02 C .βαβαβαsin cos )cos(,,+=+∈∃使R ;D .,()sin(2)f x x ϕϕ∀∈=+R 函数都不是偶函数4.将函数x x f y sin )('=的图象向左平移4π个单位,得到函数x y 2sin 21-=的图象,则)(x f 是( )A .2cos xB .x sin 2C .sin xD .cos x5.若4sin()sin cos()cos 5αββαββ---=,且α为第二象限角,则tan()4πα+=( )A .7B .17C .7-D .17-6.若函数[]1,1)(),(,0)()()(),(11-=⎰-为区间则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函数:①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f ==其中为区间]1,1[-的正交函数的组数是( )A.0B.1C.2D.3()的值域为函数x x x f 3123)(.7-+-= A.[1,2] B[1,2] C.[1,3] D[1,23]8的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐 A .2 B . 8 C . 4 D .69.已知向量,,a b c 满足4,22,a b ==a 与b 的夹角为4π,()()1c a c b -⋅-=-,则c a-的最大值为( )1211 10. 已知定义在[)+∞,0上的函数()x f ,当[]1,0∈x 时,;2142)(--=x x f 当1>x 时,()()a R a x af x f ,,1∈-=为常数.下列有关函数()x f 的描述:①当2=a 时,423=⎪⎭⎫⎝⎛f ; ②当,<1a 函数()x f 的值域为[]2,2-;③当0>a 时,不等式()212-≤x ax f 在区间[)+∞,0上恒成立;④当01-<<a 时,函数()x f 的图像与直线()*-∈=N n a y n 12在[]n ,0内的交点个数为()211nn -+-.其中描述正确的个数有( ) A.4 B.3 C.2D.1二.填空题(本大题有5小题,每小题4分,共20分)11.定义在R 上的奇函数)(x f ,当0<x 时,x xe x f -=)(,则当0>x 时,=)(x f ______ . 12.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67,30,此时气球的高是46m ,则河流的宽度BC 约等于 m . (用四舍五入法将结果精确到个位。
山东省潍坊市重点2015届高三上学期期中考试数学(理)试题 Word版含解析
高三阶段性教学质量检测数学(科学)试题第Ⅰ卷(共50分)一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
【题文】1.集合A={0,2,a},B={1,2, 2a },若A ∪B={-4,0,1,2,16},则a 的值为( )A .1B .2C .-4D .4 【知识点】集合及其运算A1【答案解析】C ∵集合A={0,2,a},B={1,2,a 2},A ∪B={-4,0,1,2,16}, ∴a ∈{-4,16},a 2∈{-4,16},故a=-4,或a 2=-4(舍去),故a=-4,故选C【思路点拨】由A={0,2,a},B={1,2,a 2},若A ∪B={-4,0,1,2,16},可得:a=-4,或a 2=-4,讨论后,可得答案.【题文】2.53,(3)2,(3)bx cx f f -+-=已知函数f(x)=ax 则的值为A ..2B .-2C .6D .-6 【知识点】函数的奇偶性与周期性B4【答案解析】B ∵函数f (x )=ax 5-bx 3+cx ,∴f (-x )=-f (x )∵f (-3)=2,∴f (3)=-2,故选B 【思路点拨】函数f (x )=ax 5-bx 3+cx ,可判断奇函数,运用奇函数定义式求解即可. 【题文】31,5x ααα=设是第二象限角,p(x,4)为其终边上的一点,且cos =则tan2 24.7A 24.7B - 12.7C 12.7D - 【知识点】两角和与差的正弦、余弦、正切C5 【答案解析】A 由三角函数的定义可得cosα=224x x +,又∵cosα=15x ,∴224xx +=15x , 又α是第二象限角,∴x <0,故可解得x=-3∴cosα=-35,sinα=21cos -∂=45, ∴tanα=sin cos ∂∂=-43∴tan2α=22tan 1tan ∂-∂=247故选A 【思路点拨】由三角函数的定义可得x 的方程,解方程可得cosα,再由同角三角函数的基本关系可得tanα,由二倍角的正切公式可得.【题文】4.(2,3),(1,2),42a b ma b a b m ==-+-已知向量若与共线,则的值为1.2A .2B 1.2C - .2D - 【知识点】平面向量基本定理及向量坐标运算F2【答案解析】D ∵a =(2, 3),b =(-1, 2)∴m a +4b =(2m-4,3m+8);a -2b =(4,-1)∵(m a +4b )∥(a -2b )∴4-2m=4(3m+8)解得m=-2故答案为D【思路点拨】利用向量的坐标运算求出两个向量的坐标;利用向量共线的充要条件列出方程求出m 的值. 【题文】5.若定义在R 上的函数y=f(x)满足55()(),22f x f x +=-且5()()02x f x '-<则对于任意的12x x <,都有1212()5f x x x +)>f(是x >的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【知识点】函数的单调性与最值B3【答案解析】C ∵55()()22f x f x +=-∴f (x )=f (5-x ),即函数y=f (x )的图象关于直线x=52对称.又因(x-52)f′(x )>0, 故函数y=f (x )在(52,+∞)上是增函数.再由对称性可得,函数y=f (x )在(-∞,52)上是减函数. ∵任意的x 1<x 2,都有f (x 1)>f (x 2),故x 1和x 2在区间(-∞,52)上,∴x 1+x 2<5.反之,若 x 1+x 2<5,则有x 2 -52<52-x 1,故x 1离对称轴较远,x 2 离对称轴较近,由函数的图象的对称性和单调性,可得f (x 1)>f (x 2).综上可得,“任意的x 1<x 2,都有f (x 1)>f (x 2)”是“x 1+x 2<5”的充要条件,故选C .【思路点拨】由已知中55()()22f x f x +=-可得函数y=f (x )的图象关于直线x=52对称, 由(x-52)f′(x )<0可得函数y=f (x )在( 52,+∞)上是增函数,在(-∞,52)上是减函数,结合函数的图象和性质和充要条件的定义,可判断f (x 1)>f (x 2)和x 1+x 2>5的充要关系,得到答案.【题文】6.如图,阴影区域的边界是直线y=0,x=2,x=0及曲线23y x =,则这个区域的面积是A 4B 8 C13 D 12【知识点】定积分与微积分基本定理B13 【答案解析】B 这个区域的面积是20⎰3x 2dx= 32x=23-0=8,故选B .【思路点拨】将阴影部分的面积是函数在[0,2]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案.【题文】7.2120ABC b A ==在中,若,,三角形的面积3S =,则三角形外接圆的半径为.3A .2B .23C .4D【知识点】解三角形C8【答案解析】B △ABC 中,∵b=2,A=120°,三角形的面积S=3=12bc•sinA=c•32,∴c=2=b ,故B=12(180°-A )=30°.再由正弦定理可得 02sin sin 30b cR B ===4,∴三角形外接圆的半径R=2,故选B .【思路点拨】由条件求得 c=2=b ,可得B 的值,再由正弦定理求得三角形外接圆的半径R 的值.【题文】8.已知222,0()1,0x tx t x f x x t x x ⎧-+⎪=⎨++⎪⎩≤>,若(0)f 是()f x 的最小值,则t 的取值范围为A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【知识点】函数的单调性与最值B3【答案解析】D 法一:排除法.当t=0时,结论成立,排除C ;当t=-1时,f (0)不是最小值,排除A 、B ,选D . 法二:直接法.由于当x >0时,f (x )=x+1x+t 在x=1时取得最小值为2+t ,由题意当x≤0时,f (x )=(x-t )2,若t≥0,此时最小值为f (0)=t 2,故t 2≤t+2,即t 2-t-2≤0,解得-1≤t≤2,此时0≤t≤2,若t <0,则f (t )<f (0),条件不成立,选D .【思路点拨】法1利用排除法进行判断,法2根据二次函数的图象以及基本不等式的性质即可得到结论. 【题文】9.已知2//1()cos ,()()()4f x x x f x f x f x =+为的导函数,则的图像是【知识点】导数的应用B12【答案解析】A 由题意得1()sin 2f x x x '=-为奇函数,所以排除B D ,当x= 6π, ()0f x '<,所以排除D ,故选A【思路点拨】求出导数判断奇偶性,然后利用特殊值求出结果。
2015年浙江省台州中学高三上学期期中数学试卷含解析答案(理科)
2014-2015学年浙江省台州中学高三(上)期中数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分.在每个小题给出的四个选项中只有一项是符合题目要求的)1.(5分)已知集合A={x|x2﹣x﹣2≤0},B={x|y=ln(1﹣x)},则A∩B=()A.(1,2) B.(1,2]C.[﹣1,1)D.(﹣1,1)2.(5分)设函数y=f(x)是偶函数,且在[0,+∞)上单调递增,则()A.f(﹣2)>f(1)B.f(﹣2)<f(﹣1) C.f(﹣2)>f(2)D.f (|x|)<f(x)3.(5分)“3a>3b”是“lna>lnb”的()A.充分不必要条件 B.既不充分也不必要条件C.充要条件D.必要不充分条件4.(5分)已知α为第二象限角,sinα+cosα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)若m.n是两条不同的直线,α、β是两个不同的平面,则下列命题不正确的是()A.若α∥β,m⊥α,则m⊥βB.若α∩β=m,n与α、β所成的角相等,则m⊥nC.若m∥α,m⊥β,则α⊥βD.若m∥n,m⊥α,则n⊥α6.(5分)设{a n},{b n}分别为等差数列与等比数列,且a1=b1=4,a4=b4=1,则以下结论正确的是()A.a2>b2B.a3<b3C.a5>b5D.a6>b67.(5分)若|+|=|﹣|=2||,则向量﹣与的夹角为()A.B.C. D.8.(5分)已知函数的图象与直线y=m有三个交点的横坐标分别为x1,x2,x3(x1<x2<x3),那么x1+2x2+x3的值是()A. B. C. D.9.(5分)已知直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,O是坐标原点,且有,那么k的取值范围是()A.B.C.D.10.(5分)已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若,则实数a的取值范围是()A. B.C.D.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)一个几何体的三视图如图所示,已知这个几何体的体积为10,则h=.12.(4分)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=log2(x+1)+m+1,则f(﹣3)=.13.(4分)设变量x,y满足,若目标函数z=x﹣y+1的最小值为0,则m的值等于.14.(4分)已知实数a<0,b<0,且ab=1,那么的最大值为.15.(4分)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px(p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为.16.(4分)若数列{a n}满足a1=2,a n+1=(n∈N*),则该数列的前2015项的乘积a1•a2•a3•…a2015=.17.(4分)对函数f(x),若任意a,b,c∈R,f(a),f(b),f(c)为一三角形的三边长,则称f(x)为“三角型函数”,已知函数f(x)=(m>0)是“三角型函数”,则实数m的取值范围是.三、解答题(本大题共5小题,满分72分.解答须写出文字说明,证明过程和演算步骤)18.(14分)已知函数f(x)=2sin2(x+)﹣cos2x,x∈[,].设x=α时f(x)取到最大值.(1)求f(x)的最大值及α的值;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,A=α﹣,且sinBsinC=sin2A,求b﹣c的值.19.(14分)数列{a n}的前n项和是S n,且S n+=1.(1)求数列{a n}的通项公式;(2)记b n=log3,数列的前n项和为T n,若不等式T n<m,对任意的正整数n恒成立,求m的取值范围.20.(15分)如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起到△APM,使得平面APM⊥平面ABCM,点E在线段PB上,且PE=PB.(Ⅰ)求证:AP⊥BM(Ⅱ)求二面角E﹣AM﹣P的大小.21.(15分)已知点在椭圆C:=1(a>b>0)上,椭圆C的左焦点为(﹣1,0)(1)求椭圆C的方程;(2)直线l过点T(m,0)交椭圆C于M、N两点,AB是椭圆C经过原点O的弦,且MN∥AB,问是否存在正数m,使为定值?若存在,请求m的值;若不存在,请说明理由.22.(14分)已知函数f(x)=x2﹣1,g(x)=a|x﹣1|,(1)若关于x的方程|f(x)|=g(x)只有一个实数解,求实数a的取值范围;(2)设h(x)=|f(x)|+g(x),当x∈[﹣2,2]时,不等式h(x)≤a2恒成立,求实数a的取值范围.2014-2015学年浙江省台州中学高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每个小题给出的四个选项中只有一项是符合题目要求的)1.(5分)已知集合A={x|x2﹣x﹣2≤0},B={x|y=ln(1﹣x)},则A∩B=()A.(1,2) B.(1,2]C.[﹣1,1)D.(﹣1,1)【解答】解:A={x|x2﹣x﹣2≤0}={x|﹣1≤x≤2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},则A∩B={x|﹣1≤x<1}=[﹣1,1).故选:C.2.(5分)设函数y=f(x)是偶函数,且在[0,+∞)上单调递增,则()A.f(﹣2)>f(1)B.f(﹣2)<f(﹣1) C.f(﹣2)>f(2)D.f (|x|)<f(x)【解答】解:∵函数y=f(x)是偶函数,∴f(﹣2)=f(2),∵函数在[0,+∞)上单调递增,∴f(2)>f(1),∴f(﹣2)>f(1),故选:A.3.(5分)“3a>3b”是“lna>lnb”的()A.充分不必要条件 B.既不充分也不必要条件C.充要条件D.必要不充分条件【解答】解:若3a>3b,则a>b,若lna>lnb,则a>b>0,∴“3a>3b”是“lna>lnb”的必要不充分条件,故选:D.4.(5分)已知α为第二象限角,sinα+cosα=,则cos2α=()A.B.C.﹣D.﹣【解答】解:把sinα+cosα=,两边平方得:(sinα+cosα)2=1+2sinαcosα=,整理得:2sinαcosα=﹣<0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,∵α为第二象限角,∴sinα>0,cosα<0,即sinα﹣cosα>0,∴sinα﹣cosα=,则cos2α=﹣(sinα+cosα)(sinα﹣cosα)=﹣.故选:C.5.(5分)若m.n是两条不同的直线,α、β是两个不同的平面,则下列命题不正确的是()A.若α∥β,m⊥α,则m⊥βB.若α∩β=m,n与α、β所成的角相等,则m⊥nC.若m∥α,m⊥β,则α⊥βD.若m∥n,m⊥α,则n⊥α【解答】解:对于A,若α∥β,m⊥α,由面面平行的性质可知,m⊥β,故A正确;对于B,α∩β=m,若m∥n,且n∥α,n∥β,则n与α、β所成的角相等,故B 错误;对于C,若m∥α,m⊥β,不妨令m在平面α内的射影为m′,则m∥m′,故m′⊥β,由面面垂直的性质定理可知,α⊥β,故C正确;对于D,若m∥n,m⊥α,由线线平行的性质可知n⊥α,故D正确.6.(5分)设{a n},{b n}分别为等差数列与等比数列,且a1=b1=4,a4=b4=1,则以下结论正确的是()A.a2>b2B.a3<b3C.a5>b5D.a6>b6【解答】解:∵a1=4,a4=1∴d=﹣1∵b1=4,b4=1又∵0<q<1∴q=∴b2=<a2=3∴b3=<a3=2∴b5=>a5=0∴b6=>a6=﹣1故选:A.7.(5分)若|+|=|﹣|=2||,则向量﹣与的夹角为()A.B.C. D.【解答】解:由题意可得,化简可得=0,=3•,∴OA⊥OB,OB=OA.设=,=,=+,则=﹣.则π﹣∠OBC即为向量与﹣的夹角.直角三角形OAB中,由于tan∠OBC==,∴∠OBC=,∴π﹣∠OBC=,即向量与﹣的夹角为,8.(5分)已知函数的图象与直线y=m有三个交点的横坐标分别为x1,x2,x3(x1<x2<x3),那么x1+2x2+x3的值是()A. B. C. D.【解答】解:函数的图象取得最值有2个x值,分别为x=和x=,由正弦函数图象的对称性可得x1+x2=2×=,x2+x3 =2×=.故x1+2x2+x3=x1+x2+x2+x3==,故选:C.9.(5分)已知直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,O是坐标原点,且有,那么k的取值范围是()A.B.C.D.【解答】解:设AB中点为D,则OD⊥AB∵,∴∴∵∴∵直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,∴∴4>∴4>∵k>0,∴故选:C.10.(5分)已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若,则实数a的取值范围是()A. B.C.D.【解答】解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选:A.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)一个几何体的三视图如图所示,已知这个几何体的体积为10,则h=.【解答】解:由三视图知几何体四棱锥,且四棱锥的一条侧棱与底面垂直,高为h,四棱锥的底面为矩形,矩形的长和宽分别为5和6;则几何体的体积V=×5×6×h=10,∴h=.故答案为:.12.(4分)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=log2(x+1)+m+1,则f(﹣3)=﹣2.【解答】解:f(x)为定义在R上的奇函数,所以f(0)=m+1=0,∴m=﹣1,f(﹣3)=﹣f(3)=﹣log2(3+1)=﹣log24=﹣2.故答案为:﹣2.13.(4分)设变量x,y满足,若目标函数z=x﹣y+1的最小值为0,则m的值等于5.【解答】解:由题意作出其平面区域,将z=x﹣y+1化为y=x+1﹣z,1﹣z相当于直线y=﹣y=x+1﹣z的纵截距,则由x﹣y+1=0与y=2x﹣1解得,x=2,y=3,则m=2+3=5.故答案为:5.14.(4分)已知实数a<0,b<0,且ab=1,那么的最大值为﹣1.【解答】解:由于ab=1,则又由a<0,b<0,则,故,当且仅当﹣a=﹣b即a=b=﹣1时,取“=”故答案为﹣1.15.(4分)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px(p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为2.【解答】解:∵双曲线﹣=1(a>0,b>0)的左顶点(﹣a,0)与抛物线y2=2px(p>0)的焦点F的距离为4,∴;又双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),∴渐近线的方程应是,而抛物线的准线方程为,因此,,联立得,解得,∴=2.故双曲线的焦距为.故答案为.16.(4分)若数列{a n}满足a1=2,a n+1=(n∈N*),则该数列的前2015项的乘积a1•a2•a3•…a2015=3.==﹣,则a n+4=a n.【解答】解:由递推关系式,得a n+2∴{a n}是以4为周期的一个周期数列.由计算,得a1=2,a2=﹣3,a3=﹣,a4=,a5=2,…∴a1a2a3a4=1,∴a1•a2…a2010•a2011•a2015=3.故答案为:3.17.(4分)对函数f(x),若任意a,b,c∈R,f(a),f(b),f(c)为一三角形的三边长,则称f(x)为“三角型函数”,已知函数f(x)=(m>0)是“三角型函数”,则实数m的取值范围是[1,4] .【解答】解:原函数可化为f(x)=.当m=2时,f(x)=1,显然符合题意;当m≠2时,f(x)=在R上是单调函数,此时若该函数为“三角形函数”,只需2f(x)min>f(x)max即可.当m>2时,易知f(x)在定义域内单调递减,此时当x→+∞时,→0,故f(x)→1;又x→﹣∞时,2x→0,故2x+2→2,所以f(x)→1+.此时只需2≥1+.解得2<m≤4;当m<2时,易知f(x)在定义域内单调递增,此时当x→+∞时,→0,故f(x)→1;又x→﹣∞时,2x→0,故2x+2→2,所以f(x)→1+.此时需1≤2+2×.解得1≤m<2;综上,m的范围是[1,4].三、解答题(本大题共5小题,满分72分.解答须写出文字说明,证明过程和演算步骤)18.(14分)已知函数f(x)=2sin2(x+)﹣cos2x,x∈[,].设x=α时f(x)取到最大值.(1)求f(x)的最大值及α的值;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,A=α﹣,且sinBsinC=sin2A,求b﹣c的值.【解答】解:(1)依题.又,则,故当即时,f(x)max=3.(2)由(1)知,由sinBsinC=sin2A即bc=a2,又a2=b2+c2﹣2bccosA=b2+c2﹣bc,则b2+c2﹣bc=bc即(b﹣c)2=0,故b﹣c=0.19.(14分)数列{a n}的前n项和是S n,且S n+=1.(1)求数列{a n}的通项公式;(2)记b n=log3,数列的前n项和为T n,若不等式T n<m,对任意的正整数n恒成立,求m的取值范围.【解答】解:(1)由①②①﹣②可得,∴,当n=1时,则,∴数列{a n}是以为首项,为公比的等比数列,因此.(2),∴,.∵不等式T n<m,对任意的正整数n恒成立,∴.20.(15分)如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起到△APM,使得平面APM⊥平面ABCM,点E在线段PB上,且PE=PB.(Ⅰ)求证:AP⊥BM(Ⅱ)求二面角E﹣AM﹣P的大小.【解答】(Ⅰ)证明:∵ABCD为长方形,AD=1,AB=2,M为DC的中点,∴AM=,BM=,AB2=AM2+BM2,∴BM⊥AM,又∵平面APM⊥平面ABCM,平面APM∩平面ABCM=AM,BM⊂平面ADM,∴BM⊥平面APM,又∵AP⊂平面APM,∴AP⊥BM.(Ⅱ)解:取AM的中点O,AB的中点N,则OA,ON,OP两两垂直,以O为原点建立空间直角坐标系,则A(),B(﹣),M(﹣),P(0,0,),N(0,,0),设E(x,y,z),由,得(x,y,z﹣)=,∴E(﹣),由题意为平面APM的一个法向量,令,设平面AME的一个法向量,,=(﹣),则,取b=1,tj ,∴cos<>=,∴二面角E﹣AM﹣P的大小为.21.(15分)已知点在椭圆C:=1(a>b>0)上,椭圆C的左焦点为(﹣1,0)(1)求椭圆C的方程;(2)直线l过点T(m,0)交椭圆C于M、N两点,AB是椭圆C经过原点O的弦,且MN∥AB,问是否存在正数m,使为定值?若存在,请求m的值;若不存在,请说明理由.【解答】解:(1)椭圆C的左焦点为(1,0),∴c=1,椭圆C的右焦点为(﹣1,0)可得,解得a=2,…(2分)∴b2=a2﹣c2=4﹣1=3,∴椭圆C的标准方程为…(4分)(2)设直线l:y=k(x﹣m),且M(x1,y1),N(x2,y2),由得(3+4k2)x2﹣8k2mx+4k2m2﹣12=0,∴x1+x2=,x1x2=…(7分)∴|MN|=…(10分)由得设A(x3,y3),B(x4,y4)得得…(12分)而64k4m2﹣16(3+4k2)(k2m2﹣3)=16[(12﹣3m2)k2+9]∴当12﹣3m2=9即m=1时为定值,当k不存在时,定值也为4,∴m=1…(15分)22.(14分)已知函数f(x)=x2﹣1,g(x)=a|x﹣1|,(1)若关于x的方程|f(x)|=g(x)只有一个实数解,求实数a的取值范围;(2)设h(x)=|f(x)|+g(x),当x∈[﹣2,2]时,不等式h(x)≤a2恒成立,求实数a的取值范围.【解答】解:(1)方程|f(x)|=g(x)可化为|x2﹣1|=a|x﹣1|,变形得|x﹣1|(|x+1|﹣a)=0,显然,x=1已是该方程的根,从而欲原方程只有一解,即要求方程|x+1|=a有且仅有一个等于1的解或无解,则a<0.(2)由题意,h(x)=|f(x)|+g(x)=|x2﹣1|+a|x﹣1|=,①当>1,即a>2时,结合图形可知h(x)在[﹣2,1]上递减,在[1,2]上递增,且h(﹣2)=3a+3,h(2)=a+3,经比较,此时h(x)在[﹣2,2]上的最大值为3a+3,则当x∈[﹣2,2]时,不等式h(x)≤a2恒成立可化为3a+3≤a2,解得a≥;②当0≤≤1,即0≤a≤2时,结合图形可知h(x)在[﹣2,﹣1],[﹣,1]上递减,在[﹣1,﹣],[1,2]上递增;且h(﹣2)=3a+3,h(2)=a+3,h(﹣)=+a+1,经比较,知此时h(x)在[﹣2,2]上的最大值为3a+3,则当x∈[﹣2,2]时,不等式h(x)≤a2恒成立可化为3a+3≤a2,无解;③当﹣1≤<0,即﹣2≤a<0时,结合图形可知h(x)在[﹣2,﹣1],[﹣,1]上递减,在[﹣1,﹣],[1,2]上递增;且h(﹣2)=3a+3,h(2)=a+3,h(﹣)=+a+1,经比较,知此时h(x)在[﹣2,2]上的最大值为a+3,则当x∈[﹣2,2]时,不等式h(x)≤a2恒成立可化为a+3≤a2,解得,﹣2≤a≤;④当﹣≤<﹣1,即﹣3≤a<﹣2时,结合图形可知h(x)在[﹣2,],[1,﹣]上递减,在[,1],[﹣,2]上递增,且h (﹣2)=3a +3<0,h (2)=a +3≥0,经比较,知此时h (x )在[﹣2,2]上的最大值为a +3.则当x ∈[﹣2,2]时,不等式h (x )≤a 2恒成立可化为a +3≤a 2, 解得,﹣3≤a <﹣2;⑤当<﹣,即a <﹣3时,结合图形可知h (x )在[﹣2,1]上递减,在[1,2]上递增,故此时h (x )在[﹣2,2]上的最大值为h (1)=0,则当x ∈[﹣2,2]时,不等式h (x )≤a 2恒成立可化为0≤a 2, 则a <﹣3;综上所述,实数a 的取值范围为(﹣∞,]∪[,+∞).赠送—高中数学知识点【2.1.1】指数与指数幂的运算 (1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n a n 是偶数时,正数a 的正的n n a 表示,负的n 次方根用符号n a -0的n 次方根是0;负数a 没有n 次方根.n a n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0) nna a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m nm na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,mm m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈【2.1.2】指数函数及其性质〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质。
北京市月坛中学2015届高三上学期期中考试数学(理)试题 Word版含答案
北京市月坛中学2014-2015学年度第一学期高三数学(理)期中试题一、选择题(每小题4分,共40分)1.若集合{}{}|0,|3A x x B x x =>=<,则A B 等于( )A .{|0}x x <B .{|03}x x <<C .{|4}x x >D .R 2. 命题“R ∈∀x ,x x ≠2”的否定是( ) A .R ∈∀x ,x x =2B .R ∉∀x ,x x ≠2C .R ∈∃x ,x x =2D .R ∉∃x ,x x ≠23. 设a R ∈,则1a >是11a< 的( )A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件4.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A .①和②B .③和①C . ④和③D .④和② 5.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14 6.已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( ) A. 1 B. 2 C. 3 D. 1-7.已知平面向量(2,1)=-a ,(1,1)=b ,(5,1)=-c . 若()//k +a b c ,则实数k 的值为( ) A .2 B .12 C .114 D .114-班级 姓名 成绩8. 函数x x f xsin )21()(-=在区间[0,2]π上的零点个数为( )A.1B.2C.3D.4 9. 已知函数2()cos f x x x =-,则(0.5)f -,(0)f ,(0.6)f 的大小关系是A .(0)(0.5)(0.6)f f f <-<B . (0.5)(0.6)(0)f f f -<<C .(0)(0.6)(0.5)f f f <<-D . (0.5)(0)(0.6)f f f -<<10.定义一种新运算:,(),()b a b a b a a b ≥⎧⊗=⎨<⎩已知函数24()(1)log f x x x =+⊗,若函数()()g x f x k =-恰有两个零点,则k 的取值范围为A . (]1,2B . (1,2)C . (0,2)D . (0,1) 二、填空题(每小题5分,共30分)11. 若4sin ,tan 05θθ=->,则cos θ= .12. 在各项均为正数的等比数列{}n a 中,若2228log log 1a a +=,则37a a ⋅= . 13.已知平面向量a ,b 满足2==a b ,(2)()=2⋅--a +b a b ,则a 与b 的夹角为 .14. 在ABC ∆中,1a =,2b =,1cos 4C =,则c = ;sin A = .15.设函数⎩⎨⎧>≤-=.0,,0,)(2x x x x x f ,若4)(=αf ,则实数α= .16. 如图放置的边长为1的正方形P ABC 沿x 轴滚动。
2015届高三上学期期中考试数学(理)试题(含答案)
①若 m 1,则 S 1 ;②若 m
11
1
, 则 n 1; ③若 n , 则
24
2
其中正确命题的是( ▲ )
A. ①
B.
①②
C.
②③
D.
①②③
二、填空题(本大题共 7 小题,每小题 4 分,共 28 分)
2 m 0.
2
11. 若 sin cos
3 ,则 sin 2 3
▲.
12. 如图是某几何体的三视图 , 其中正视图和侧视图是全等的矩形 , 底边长为 2,
于 __▲ .
15. 设抛物线 C : y2 4x 的焦点为 F, 过点 F 的直线与抛物线 C 交于 A, B 两点 , 过 AB 的中点 M作准
线的垂线与抛物线交于点
P, 若 PF
3
, 则弦长
AB 等于 __▲
.
2
16. 记数列
an 的前 n 和为 sn ,若
sn an
是公差为 d 的等差数列,则
an 为等差数列时 , d 的值为
▲.
17. 设 x, y 是正实数,且 x y 1,则 x2
y2
的最小值是 ___▲
.
x 2 y1
三、解答题:本大题共 5 小题,共 72 分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分 14 分)
已知函数 f ( x)
sin
x cos x
sin 2
an
是等比数列,并求
2
an 的通项公式 an ;
( 2 ) 数 列 bn 满 足 bn
(3n
n 1) 2 n an , 数 列 bn
的 前 n 项 和 为 Tn , 若 不 等 式
北京师范大学附属实验中学2015届高三上学期期中考试数学(理)试题 Word版含答案
北京师范大学附属实验中学2014—2015学年度第一学期高三年级数学(理)期中试卷第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|}M x x a =≤,{|20}N x x =-<<,若MN φ=,则a 的取值范围为A.0a >B. 0a ≥C.2a ≤-D. 2a <- 2.下列函数中,在定义域内是减函数的是A .1()f x x=-B.()f x =C .()2x f x -=D .()tan f x x =3.已知点P 是函数()sin()6f x x πω=+的图像C 的一个对称中心,若点P 到图像C 的对称轴距离的最小值为4π,则)(x f 的最小正周期是 A .2π B. π C.2π D. 4π 4.已知向量1(3,1),(2,),2a b ==-则下列向量可以与2a b +垂直的是 A. (1,2)- B. (2,1)- C. (4,2)D. (4,2)-5.“1t >”是“1t t<”成立的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件6. 已知数列{}n a 的通项公式2(313)nn a n =-,则数列的前n 项和n S 的最小值是 A. 3S B. 4S C. 5S D. 6S 7.数列{}n a 中,112a =,111n n na a a ++=-(其中*n ∈N ),则使得12372n a a a a ++++≥成立的n 的最小值为A. 236B. 238C. 240D. 2428.已知集合12{,,,}(2)n A a a a n =>,令{},1A i j T x x a a i j n ==+? ,card()A T 表示集合A T 中元素的个数.关于card()A T 有下列四个命题 ①card()A T 的最大值为212n ; ②card()A T 的最大值为1(1)2n n -; ③card()A T 的最小值为2n ; ④card()A T 的最小值为23n -. 其中,正确的是( )A. ①③B. ①④C. ②③D. ②④第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.在ABC D 中,若tan 2A =-,则cos()B C += .10.设0.5a e =,log 2b π=,cos 2c =,则,,a b c 从大到小....的顺序为 . 11.已知函数()2sin f x x x =-,则函数()f x 在(0,(0))f 处的切线方程为 ;在(0,)π上的单调递增区间为 .12.若函数(1)0()()0ax x x f x x a x x +≥⎧=⎨-<⎩为奇函数,则a 的值为 ,满足(1)(2)f t f t -<的实数t的取值范围是 .13.如图,线段2AB =,点,A B 分别在x 轴和y 轴的非负半轴上运 动.以AB 为一边,在第一象限内作矩形ABCD ,1BC =.设O 为 原点,则OC OD ⋅的取值范围是______.14.对于函数()y f x =,若在其定义域内存在0x ,使得00()1x f x =成立,则称函数()f x 具有性质P.(1)下列函数中具有性质P 的有 .①()2f x x =-+ ②()sin f x x =([0,2])x π∈③1()f x x x=+,((0,))x ∈+∞ ④()ln(1)f x x =+ (2)若函数()ln f x a x =具有性质P ,则实数a 的取值范围是 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.设0c >.命题:log c P y x =是减函数;命题:120Q x x c --+>对任意x R ∈恒成立.若或P Q 为真,且P Q 为假,试求c 的取值范围.16.如图,已知点(10,0)A ,直线(010)x t t =<<与函数21x y e +=的图象交于点P ,与x 轴交于点H ,记APH ∆的面积为()f t . (I )求函数()f t 的解析式; (II )求函数()f t 的最大值.17.在△ABC 中,已知34C π=,21cos 2sin 2B A =+. (Ⅰ)求tan B ;(Ⅱ)若2BC =,求△ABC 的面积.18.已知函数()ln(1)()f x x ax a R =+-∈.(Ⅰ)若1a =,求证:当0x >时,()0f x <; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)求证:e n <+++)211()411)(211( .19.已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --= (Ⅰ)求抛物线C 的方程;(Ⅱ)设点()00,P x y 为直线l 上一动点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点,求直线AB 的方程,并证明直线AB 过定点Q .(Ⅲ)过(Ⅱ)中的点Q 的直线m 交抛物线C 于,A B 两点,过点,A B 分别作抛物线C 的切线12,l l ,求12,l l 交点M 满足的轨迹方程.20.已知数列{}n a 的首项1,a a =其中*a ∈N ,*1*,3,,31,3,.nn n nn a a l l a a a l l +⎧=∈⎪=⎨⎪+≠∈⎩N N 令集合*{|,}n A x x a n ==∈N .(Ⅰ)若4a 是数列{}n a 中首次为1的项,请写出所有这样数列的前三项; (Ⅱ)求证:{1,2,3}A ⊆;(Ⅲ)当2014a ≤时,求集合A 中元素个数()Card A 的最大值.北京师范大学附属实验中学2014—2015学年度第一学期期中高三年级考试答题纸理科数学一、选择题请将选择题的答案填涂在机读卡上二、填空题9. . 10..11.;.12. ;13..14. ;.三、解答题15.(本题13分)13分)17.(本题13分)18.(本题14分)2014—2015学年度第一学期期中高三年级考试答题纸理科数学19.(本题14分)20.(本题13分)北京师范大学附属实验中学2014—2015学年度第一学期高三年级数学(理)期中试卷答案一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.二、填空题:本大题共6小题,每小题5分,共30分.9.10. a b c >> 11. y x =-, (,)3ππ12. 1,1t >- 13. [1,3] 14. (1) ①②④,(2)0a a e >≤-或 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. P 真:01c << Q 真:12c >1(0,][1,)2c ∈+∞16.解:(I )由已知2110,t AH t PH e +=-=所以APH ∆的面积为211()(10),0102t f t t e t +=-<<. (II )解: 21212111'()(10)2(192)22t t t f t e t e e t +++=-+⨯-⨯=-由'()0f t =得9.5t =, 函数()f t 与'()f t 在定义域上的情况下表:所以当9.5t =时,函数()f t 取得最大值2014t e =.17.(Ⅰ)解:由34C π=,得 2111cos 2sin ()[1cos(2)]24222B B B ππ=+-=+--. 所以 2112sin 1sin 21sin cos 2B B B B -=-=-,即 22sin sin cos B B B =.因为 04B π<<,所以sin 0B >, 所以 1tan 2B =.(Ⅱ)解:由04B π<<,1tan 2B =,得 sin B =,cos B =.所以 sin sin()sin cos cos sin 444A B B B πππ=-=-=由正弦定理得sin sin AC BCB A =, 所以 AC = 所以 △ABC 的面积1sin 22S AC BC C =⋅=.18.(Ⅰ)易证(Ⅱ)当0a ≤时,()f x 在(1,)-+∞单调递增;当0a >时,()f x 在1(1,1)a --+单调递增,在1(1,)a-++∞单调递减 (Ⅲ)要证e n <+++)211()411)(211( ,两边取以e 为底的对数,即只需证明 1)211ln()411ln()211ln(<+++++n由(Ⅰ)可知,ln(1)(0)x x x +<>,分别取111,,,242n x =,得到 111111ln(1),ln(1),,ln(1)224422n n +<+<+<将上述n 个不等式相加,得n n 214121)211ln()411ln()211ln(+++<+++++1211<-=n .从而结论成立.19.(Ⅰ)24x y =(Ⅱ)直线AB :00220x x y y --= 定点(2,2)Q (Ⅲ)点M 满足的轨迹方程:20x y --= 20.解:(I )27,9,3;8,9,3;6,2,3.(II )若k a 被3除余1,则由已知可得11k k a a +=+,2312,(2)3k k k k a a a a ++=+=+;若k a 被3除余2,则由已知可得11k k a a +=+,21(1)3k k a a +=+,31(1)13k k a a +≤++;若k a 被3除余0,则由已知可得113k k a a +=,3123k k a a +≤+;所以3123k k a a +≤+,所以312(2)(3)33k k k k k a a a a a +-≥-+=-所以,对于数列{}n a 中的任意一项k a ,“若3k a >,则3k k a a +>”. 因为*k a ∈N ,所以31k k a a +-≥.所以数列{}n a 中必存在某一项3m a ≤(否则会与上述结论矛盾!)若3m a =,则121,2m m a a ++==;若2m a =,则123,1m m a a ++==,若1m a =,则122,3m m a a ++==,由递推关系易得{1,2,3}A ⊆. (III )集合A 中元素个数()Card A 的最大值为21.由已知递推关系可推得数列{}n a 满足:当{1,2,3}m a ∈时,总有3n n a a +=成立,其中,1,2,n m m m =++.下面考虑当12014a a =≤时,数列{}n a 中大于3的各项: 按逆序排列各项,构成的数列记为{}n b ,由(I )可得16b =或9, 由(II )的证明过程可知数列{}n b 的项满足:3n n b b +>,且当n b 是3的倍数时,若使3n n b b +-最小,需使2112n n n b b b ++=-=-,所以,满足3n n b b +-最小的数列{}n b 中,34b =或7,且33332k k b b +=-,所以33(1)13(1)k k b b +-=-,所以数列3{1}k b -是首项为41-或71-的公比为3的等比数列,所以131(41)3k k b --=-⨯或131(71)3k k b --=-⨯,即331k k b =+或3231k k b =⨯+, 因为67320143<<,所以,当2014a ≤时,k 的最大值是6,所以118a b ,所以集合A 重元素个数()Card A 的最大值为21.。
2015年山东省威海市文登市高三上学期期中数学试卷含解析答案(理科)
2014-2015学年山东省威海市文登市高三(上)期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.(5分)已知集合A={x|a﹣2<x<a+2},B={x|x≤﹣2或x≥4},则A∩B=∅的充要条件是()A.0≤a≤2 B.﹣2<a<2 C.0<a≤2 D.0<a<22.(5分)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列D.若数列{S n}是递增数列,则对任意n∈N*,均有S n>03.(5分)对于下列四个命题p1:∃x∈(0,+∞),()x<()xp 2:∃x∈(0,1),log x>log xp 3:∀x∈(0,+∞),()x>log xp 4:∀x∈(0,),()x<log x.其中的真命题是()A.p1,p3B.p1,p4C.p2,p3D.p2,p44.(5分)将函数y=sin(2x﹣)图象向左平移个单位,所得函数图象的一条对称轴的方程是()A.x=B.x=C.x=D.x=﹣5.(5分)若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.6 D.56.(5分)x,y满足约束条件,若z=y﹣2ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.1或﹣ C.2或1 D.2或﹣17.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[0,+∞)8.(5分)已知函数f(x)是奇函数,当x>0时,f(x)=a x(a>0,a≠1),且f(log4)=﹣,则a的值为()A.B.3 C.9 D.9.(5分)△ABC中,∠A=90°,AB=2,AC=1,设点P,Q满足=λ,=(1﹣λ),λ∈R.若•=﹣2,则λ=()A.B.C.D.210.(5分)对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=16}中的元素个数是()A.18 B.17 C.16 D.15二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡中相应题的横线上.11.(5分)对于x∈R,不等式|2x﹣3|﹣x≥3的解集为.12.(5分)设,则=.13.(5分)已知sin(+x)=,则sin2x的值为.14.(5分)若等比数列{a n}的各项均为正数,且a7a11+a8a10=2e4,lna1+lna2+lna3+…+lna17=.15.(5分)已知函数f(x)=|x+2|+1,g(x)=kx,若f(x)=g(x)有两个不相等的实根,则实数k的取值范围是.三、解答题:本大题共6小题,共75分.把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤.16.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC.(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.17.(12分)有一种新型的洗衣液,去污速度特别快.已知每投放k(1≤k≤4且k∈R)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=k•f(x),其中f(x)=.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.(Ⅰ)若投放k个单位的洗衣液,3分钟时水中洗衣液的浓度为4(克/升),求k 的值;(Ⅱ)若投放4个单位的洗衣液,则有效去污时间可达几分钟?18.(12分)已知=(sin(π+ωx),cosωx),=(sin(π﹣ωx),﹣cosωx),ω>0,设f(x)=•的最小正周期为π.(Ⅰ)求f(x)的单调增区间;(Ⅱ)当x∈(﹣,)时,求f(x)的值域;(Ⅲ)求满足f(α)=0且﹣1<α<π的角α的值.19.(12分)已知二次函数f(x)=ax2+bx+c满足f(0)=1,对任意x∈R,都有1﹣x≤f(x),且f(x)=f(1﹣x).(Ⅰ)求函数f(x)的解析式;(Ⅱ)若∃x∈[﹣2,2],使方程f(x)+2x=f(m)成立,求实数m的取值范围.20.(13分)等差数列{a n}的前n项和为S n,已知a1=10,a2为整数,且在前n 项和中S4最大.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,n∈N*.<b n;(1)求证:b n+1(2)求数列{b2n}的前n项和T n.21.(14分)已知函数f(x)=lnx+(a+1)x2+1.(Ⅰ)当时,求f(x)在区间上的最小值;(Ⅱ)讨论函数f(x)的单调性;(Ⅲ)当﹣1<a<0时,有f(x)>1+ln(﹣a)恒成立,求a的取值范围.2014-2015学年山东省威海市文登市高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.(5分)已知集合A={x|a﹣2<x<a+2},B={x|x≤﹣2或x≥4},则A∩B=∅的充要条件是()A.0≤a≤2 B.﹣2<a<2 C.0<a≤2 D.0<a<2【解答】解:法一:当a=0时,符合,所以排除C.D,再令a=2,符合,排除B,故选A;法二:根据题意,分析可得,,解可得,0≤a≤2;故选:A.2.(5分)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列D.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0【解答】解:由等差数列的求和公式可得S n=na1+d=n2+(a1﹣)n,选项A,若d<0,由二次函数的性质可得数列{S n}有最大项,故正确;选项B,若数列{S n}有最大项,则对应抛物线开口向下,则有d<0,故正确;选项C,若对任意n∈N*,均有S n>0,对应抛物线开口向上,d>0,可得数列{S n}是递增数列,故正确;选项D,若数列{S n}是递增数列,则对应抛物线开口向上,但不一定有任意n∈N*,均有S n>0,故错误.故选:D.3.(5分)对于下列四个命题p1:∃x∈(0,+∞),()x<()xp 2:∃x∈(0,1),log x>log xp 3:∀x∈(0,+∞),()x>log xp 4:∀x∈(0,),()x<log x.其中的真命题是()A.p1,p3B.p1,p4C.p2,p3D.p2,p4【解答】解:p1:∃x0∈(0,+∞),()x0<()x0,是假命题,原因是当x0∈(0,+∞),幂函数在第一象限为增函数;:∃x0∈(0,1),log x0>log x0,是真命题,如;p2p 3:∀x∈(0,+∞),()x>log x,是假命题,如x=时,;p4:∀x∈(0,),<<1,,是真命题.故选:D.4.(5分)将函数y=sin(2x﹣)图象向左平移个单位,所得函数图象的一条对称轴的方程是()A.x=B.x=C.x=D.x=﹣【解答】解:将函数y=sin(2x﹣)图象向左平移个单位,所得函数图象对应的解析式为y=sin[2(x+)﹣]=sin(2x+).令2x+=kπ+,k∈z,求得x=+,故函数的一条对称轴的方程是x=,故选:A.5.(5分)若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.6 D.5【解答】解:∵正数x,y满足x+3y=5xy,∴=1,即=1,∴3x+4y=(3x+4y)()=++≥+2=5当且仅当=即x=1且y=时取等号,∴3x+4y的最小值为:5故选:D.6.(5分)x,y满足约束条件,若z=y﹣2ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.1或﹣ C.2或1 D.2或﹣1【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y﹣2ax得y=2ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=2ax+z的斜率k=2a>0,要使z=y﹣2ax取得最大值的最优解不唯一,则直线y=2ax+z与直线2x﹣y+2=0平行,此时2a=2,即a=1.若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣2ax取得最大值的最优解不唯一,则直线y=2ax+z与直线x+y﹣2=0,平行,此时2a=﹣1,解得a=﹣综上a=1或a=﹣,故选:B.7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[0,+∞)【解答】解:由解析式可知当x≤0时,f(x)=cosx+1为周期函数,当x>0时,f(x)=x2+2,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[0,2],当x>0时,函数的值域为值域为(2,+∞),故函数f(x)的值域为[0,+∞),故正确.故选:D.8.(5分)已知函数f(x)是奇函数,当x>0时,f(x)=a x(a>0,a≠1),且f(log4)=﹣,则a的值为()A.B.3 C.9 D.【解答】解:∵函数f(x)是奇函数,∴=f(log4)=f(﹣2)=﹣f(2),∴.∵当x>0时,f(x)=a x(a>0,a≠1),∴,解得a=.故选:D.9.(5分)△ABC中,∠A=90°,AB=2,AC=1,设点P,Q满足=λ,=(1﹣λ),λ∈R.若•=﹣2,则λ=()A.B.C.D.2【解答】解:由题意可得=0,因为=λ,=(1﹣λ),所以=(1﹣λ)﹣,=﹣,代入•=﹣2,并化简整理得:﹣(1﹣λ)+[λ(1﹣λ)+1]﹣λ=﹣2,即﹣(1﹣λ)﹣4λ=﹣2,解得λ=,故选:A.10.(5分)对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=16}中的元素个数是()A.18 B.17 C.16 D.15【解答】解:(1)a,b都是正偶数时:a从2,4,6,8,10,12,14,16任取一个有8种取法,而对应的b有一种取法;∴(a,b)有7种取法,即这种情况下集合M有8个元素;(2)a,b都为正奇数时:a从1,3,5,7,9,11,13,15任取一个有8种取法,而对应的b有一种取法;∴(a,b)有8种取法,即这种情况下集合M有8个元素;(3)当m=16,n=1,和m=1,n=16,即这种情况下集合M有两个元素;∴集合M的元素个数是7+8+2=17.故选:B.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡中相应题的横线上.11.(5分)对于x∈R,不等式|2x﹣3|﹣x≥3的解集为(﹣∞,0]∪[6,+∞).【解答】解:当2x≥3,即x≥时,2x﹣3﹣x≥3,解得x≥6;当2x<3,即x<时,3﹣2x﹣x≥3,解得x≤0;所以原不等式的解集为(﹣∞,0]∪[6,+∞).故答案为:(﹣∞,0]∪[6,+∞).12.(5分)设,则=.【解答】解:由于,定义当x∈[1,e]时,f(x)=,则====,故答案为.13.(5分)已知sin(+x)=,则sin2x的值为﹣.【解答】解:∵sin(+x)=sin cosx+cos sinx=(sinx+cosx)=,∴sinx+cosx=,两边平方得:(sinx+cosx)2=1+sin2x=,解得:sin2x=﹣.故答案为:﹣14.(5分)若等比数列{a n}的各项均为正数,且a7a11+a8a10=2e4,lna1+lna2+lna3+…+lna17=34.【解答】解:∵数列{a n}为等比数列,且a7a11+a8a10=2e4,∴a7a11+a8a10=2a8a10=2e4,则a8a10=e4,∴lna1+lna2+…ln a17=ln(a1a2…a17)=34,故答案为:34.15.(5分)已知函数f(x)=|x+2|+1,g(x)=kx,若f(x)=g(x)有两个不相等的实根,则实数k的取值范围是.【解答】解:由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,如图所示:K OA=﹣,数形结合可得﹣1<k<﹣,故答案为:.三、解答题:本大题共6小题,共75分.把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤.16.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC.(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.【解答】解:(Ⅰ)在△ABC中,由,及,可得,又由,有a=2c,所以,.(Ⅱ)在△ABC中,由,可得,∴,所以,cos(2A﹣)=cos2Acos+sin2Asin=.17.(12分)有一种新型的洗衣液,去污速度特别快.已知每投放k(1≤k≤4且k∈R)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=k•f(x),其中f(x)=.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.(Ⅰ)若投放k个单位的洗衣液,3分钟时水中洗衣液的浓度为4(克/升),求k 的值;(Ⅱ)若投放4个单位的洗衣液,则有效去污时间可达几分钟?【解答】解:(Ⅰ)由题意知,,解得;…(3分)(Ⅱ)当k=4,所以y=…(5分)当0≤x≤5时,由解得x≥1,所以1≤x≤5.…(8分)当5<x<16时,由解得:﹣15≤x≤15所以5<x≤15综上,1≤x≤15 …(11分)故若投放4个单位的洗衣液,则有效去污时间可达14分钟…(12分)18.(12分)已知=(sin(π+ωx),cosωx),=(sin(π﹣ωx),﹣cosωx),ω>0,设f(x)=•的最小正周期为π.(Ⅰ)求f(x)的单调增区间;(Ⅱ)当x∈(﹣,)时,求f(x)的值域;(Ⅲ)求满足f(α)=0且﹣1<α<π的角α的值.【解答】解:(Ⅰ)===sin2ωx﹣cos2ωx=sin(2)﹣…(1分)∴y=f(x)的最小正周期为T=π,ω>0,即:=π,∴ω=1,∴f(x)=sin(2x﹣)﹣.…(2分)由,得所以f(x)的单调递增区间为…(4分)(Ⅱ)∵∴∴…(6分)∴∴…(8分)(Ⅲ)∵f(α)=0,∴,∴∵0<α<π,∴,…(10分)∴∴…(12分)19.(12分)已知二次函数f(x)=ax2+bx+c满足f(0)=1,对任意x∈R,都有1﹣x≤f(x),且f(x)=f(1﹣x).(Ⅰ)求函数f(x)的解析式;(Ⅱ)若∃x∈[﹣2,2],使方程f(x)+2x=f(m)成立,求实数m的取值范围.【解答】解:(Ⅰ)∵f(x)=ax2+bx+c(a≠0),f(0)=1,∴c=1,又对任意x∈R,f(x)=f(1﹣x)∴f(x)图象的对称轴为直线,则,∴a=﹣b,又对任意x∈R都有1﹣x≤f(x),即ax2﹣(a﹣1)x≥0对任意x∈R都成立,∴,故a=1,b=﹣1∴f(x)=x2﹣x+1;(Ⅱ)由f(x)+2x=f(m)得x2+x=m2﹣m,由题意知方程x2+x=m2﹣m在x∈[﹣2,2]有解.令,∴g(x)min=g(﹣)=﹣,g(x)max=g(2)=6,∴≤m2﹣m≤6,∴,所以满足题意的实数m取值范围[﹣2,3].20.(13分)等差数列{a n}的前n项和为S n,已知a1=10,a2为整数,且在前n 项和中S4最大.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,n∈N*.<b n;(1)求证:b n+1(2)求数列{b2n}的前n项和T n.【解答】解:(Ⅰ)由a1=10,a2为整数知,等差数列{a n}的公差d为整数,又S n≤S4,故a4≥0,a5≤0,即10+3d≥0,10+4d≤0,解得,因此d=﹣3,数列{a n}的通项公式为a n=13﹣3n.(Ⅱ)(1)由题意知,∴,∴数列{b n}是单调递减数列,{b n}的最大项为,所以b n<b n.+1(2),T n=+++…+,两式相减得:=+++…+,=∴.21.(14分)已知函数f(x)=lnx+(a+1)x2+1.(Ⅰ)当时,求f(x)在区间上的最小值;(Ⅱ)讨论函数f(x)的单调性;(Ⅲ)当﹣1<a<0时,有f(x)>1+ln(﹣a)恒成立,求a的取值范围.【解答】解:(Ⅰ)当时,f(x)=﹣+1,∴.∵f(x)的定义域为(0,+∞),∴由f′(x)≥0 得;由f′(x)≤0 得.∴f(x)在区间上单调递减,在区间上单调递增,∴f′(x)min==.(Ⅱ),x∈(0,+∞).①当a+1≤0,即a≤﹣1时,f′(x)<0,∴f(x)在(0,+∞)上单调递减;②当a≥0时,f′(x)>0,∴f(x)在(0,+∞)单调递增;③当﹣1<a<0时,由f′(x)>0,得,解得.∴f(x)在单调递增,在上单调递减;综上可得:当a ≥0时,f (x )在(0,+∞)单调递增; 当﹣1<a <0时,f (x )在单调递增,在上单调递减;当a ≤﹣1时,f (x )在(0,+∞)上单调递减. (Ⅲ)由(Ⅱ)知,当﹣1<a <0时,f min (x )=,f (x )>1+ln (﹣a )恒成立等价于,化为ln (4a +4)>﹣1, ∴,又∵﹣1<a <0, ∴a 的取值范围为.赠送—高中数学知识点【2.1.1】指数与指数幂的运算 (1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n a n 是偶数时,正数a 的正的n n a 表示,负的n 次方根用符号n a -0的n 次方根是0;负数a 没有n 次方根.n a n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0)nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m nm na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m n n aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈【2.1.2】指数函数及其性质〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014—2015学年第一学期期中考试 高三数学(理科) 试题卷满分[ 150]分 ,时间[120]分钟 2014年11月参考公式:柱体的体积公式:V Sh =( 其中S 表示柱体的底面积,h 表示柱体的高)锥体的体积公式: 13V Sh =(其中S 表示锥体的底面积,h 表示锥体的高)台体的体积公式: ()1213V h S S =(其中12,S S 分别表示台体的上底、下底面积,h 表示台体的高)球的表面积公式: 24πS R =, 球的体积公式 34π3V R =(其中R 表示球的半径) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}A=|2x x x R ≤∈,,{}2B=|y y x x R =-∈,,则A B ⋂=( ▲ )A .{}|02x x ≤≤ B.{}|2x x ≤ C.{}|20x x -≤≤ D .∅ 2.函数()176log 221+-=x x y 的值域是 ( ▲ )A .RB .(]3,-∞-C .[)+∞,3D .(]3,0 3.已知m 为一条直线,βα,为两个不同的平面,则下列说法正确的是( ▲ ) A.若ββαα//,//,//m m 则 B.若,m αβα⊥⊥,则m β⊥ C.若ββαα⊥⊥m m 则,,// D. 若ββαα⊥⊥m m 则,//, 4.已知函数211()log ,(),()12x f x f a f a x -==-+若则=( ▲ ) A .2 B .—2 C .12 D .—125.已知:11,:(2)(6)0p m x m q x x -<<+--<,且q 是p 的必要不充分条件,则m 的取值范围为(▲)A .35m << B. 35m ≤≤ C .53m m ><或 D. 53m m ≥≤或 6.函数())cos 3(sin sin 21x x x x f +-=的图象向左平移3π个单位得函数()x g 的图象,则函数()x g 的解析式是 ( ▲ )A . ()⎪⎭⎫⎝⎛-=22sin 2πx x g B .()x x g 2cos 2=C .()⎪⎭⎫ ⎝⎛+=322cos 2πx x g D .()⎪⎭⎫ ⎝⎛+=22sin 2πx x g7.已知等差数列{}n a 的前n 项和为n S 且满足0,01817<>S S ,则17172211,,,a Sa S a S 中最大的项为( ▲ ) A .66a S B .77a SC .88a SD .99a S8.已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,F 1,F 2是双曲线的左、右两个焦点,且PF 1⊥PF 2,PF 2与两条渐近线相交M ,N 两点(如图),点N 恰好平分线段PF 2,则双曲线的离心率是( ▲ )AB .2CD9.已知B A ,是圆O :122=+y x 上的两个点,P 是AB 线段上的动点,当AOB ∆的面积最大时,则2AP AP AO -⋅的最大值是( ▲ ) A.1- B. 0 C.81 D.2110.设非空集合{}S x m x n =≤≤满足:当x S ∈时,有2x S ∈,给出如下三个命题:①若1,m =则{}1S =;②若1,2m =-则114n ≤≤; ③若1,2n =则02m -≤≤.其中正确命题的是( ▲ )A.①B.①②C.②③D.①②③ 二、填空题(本大题共7小题,每小题4分,共28分) 11.若33cos sin =+αα,则=α2sin ▲ . 12.如图是某几何体的三视图,其中正视图和侧视图是全等的矩形,底边长为 2, 高为3,俯视图是半径为1的圆,则该几何体的体积是_▲ .13.若x ,y 满足不等式组0,2100,0,x y x y y ⎧-≥⎪--≤⎨+- 则2x +y 的最大值是__▲ .14.已知向量,a b 满足1,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于__▲ .15.设抛物线x y C 4:2=的焦点为F,过点F 的直线与抛物线C 交于B A ,两点,过AB 的中点M 作准线的垂线与抛物线交于点P,若32PF =,则弦长AB 等于__▲ . 16.记数列{}n a 的前n 和为n s ,若n n s a ⎧⎫⎨⎬⎩⎭是公差为d 的等差数列,则{}n a 为等差数列时,d 的值为▲ .17.设,x y 是正实数,且1x y +=,则2221x y x y +++的最小值是___▲ . 三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分14分)已知函数21()sin cos sin (0)2f x x x x ωωωω=⋅+->,其相邻两个零点间的距离为2π. (1)求()f x 的解析式; (2)锐角ABC ∆中,1(),4,282A f AB ABC π+==∆的面积为6,求BC 的值.19.(本小题满分14分) 已知数列{}n a 中,)(3,1*11N n a a a a n nn ∈+==+ (1)求证:⎭⎬⎫⎩⎨⎧+211n a 是等比数列,并求{}n a 的通项公式n a ; (2)数列{}n b 满足n n nn a nb ⋅⋅-=2)13(,数列{}n b 的前n 项和为n T ,若不等式12)1(-+<-n n n n T λ对一切*N n ∈恒成立,求λ的取值范围.20. (本小题满分14分)如图,在梯形ABCD 中,//AB CD ,1,60AD DC CB ABC ===∠=,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =. (1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角的平面角为(90)θθ≤,试求cos θ的取值范围.21. (本小题满分15分)已知椭圆2222:1(0)x y C a b a b +=>>(0,1)A -.(1)求椭圆的方程;(2)如果过点3(0,)5的直线与椭圆交于,M N 两点(,M N 点与A 点不重合),○1求AM AN ⋅的值; ○2当AMN ∆为等腰直角三角形时,求直线MN 的方程.22. (本小题满分15分) 已知函数()2f x x x a x =-+.(1)当3a =时,求函数()f x 的单调递增区间;(2)求所有的实数a ,使得对任意[1,2]x ∈时,函数()f x 的图象恒在函数()21g x x =+图象的下方;(3)若存在[4,4]a ∈-,使得关于x 的方程()()f x t f a =有三个不相等的实数根,求实数t 的取值范围.参考答案三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分14分) 解:(1))42sin(222cos 212sin 21)(πωωω-=-=x x x x f …………………3分 由题可知,122,,22=⇒=∴=∴=ωπωππTT T ………………………5分 )42s i n (22)(π-=∴x x f …………………………………………………7分 (2)22sin ,21sin 22,21)82(=∴=∴=+A A A f π 又由锐角ABC ∆知,角A 为锐角,4π=∴A …………………………9分62sin 421sin 21==⋅⋅⋅=⋅⋅⋅=∆AC A AC A AC AB S ABC 23=∴AC ……………………………………………………………12分 10cos 2222=⋅⋅⋅-+=∴A AC AB AC AB BC10=∴BC ……………………………………………………………14分19.(本小题满分14分)(2)12-=n n n b122102121)1(213212211--⨯+⨯-++⨯+⨯+⨯=n n n n n T n n n n n T 2121)1(2122112121⨯+⨯-++⨯+⨯=- , 两式相减得 n n n n n n T 222212121212121210+-=⨯-++++=- 1224-+-=∴n n n T1224)1(--<-∴n n λ若n 为偶数,则3,2241<∴-<∴-λλn若n 为奇数,则2,2,2241->∴<-∴-<-∴-λλλn32<<-∴λ(2)由(I )可建立分别以直线,,CA CB CF 为轴轴轴,z y x ,的如图所示空间直角坐标系,令)30(≤≤=λλFM ,则)0,0,3(),0,0,0(A C ,()()1,0,,0,1,0λM B∴ ()()1,1,,0,1,3-=-=λ 设()z y x n ,,1=为平面MAB 的一个法向量, 由⎩⎨⎧=⋅=⋅0011BM n n 得⎩⎨⎧=+-=+-03z y x y x λ取1=x ,则()λ-=3,3,11n ,…………8分 ∵ ()0,0,12=n 是平面FCB 的一个法向量 ∴1212||cos ||||n n n n θ⋅===⋅…10分∵0λ≤≤∴当0λ=时,θcos有最小值7, 当λ=θcos 有最大值12。
∴ 1cos 72θ⎤∈⎥⎣⎦…………………14分21. (本小题满分15分)解:(1)因为椭圆经过点(0,1)A -1b =,因为ce a ===2a =, 所以椭圆的方程为2214x y +=.(2)○1若过点3(0,)5的直线的斜率不存在,此时,M N 两点中有一个点与A 点重合,不满足题目条件.所以直线MN 的斜率存在,设其斜率为k ,则MN 的方程为35y kx =+,把35y kx =+代入椭圆方程得222464(14)0525k x kx ++-=,设1122(,),(,)M x y N x y ,则1212222464,5(14)25(14)k x x x x k k +=-⋅=-++,1212266()55(14)y y k x x k +=++=+,221212122391009()52525(14)k y y k x x k x x k -+⋅=⋅+++=+,因为(0,1)A -,所以1122121212(,1)(,1)()1AM AN x y x y x x y y y y ⋅=+⋅+=++++22264100925(14)25(14)k k k -+=-+++26105(14)k ++=+ ○2由○1知:90MAN ∠=,如果AMN ∆为等腰直角三角形,设MN 的中点为P ,则 AP MN ⊥,且P 22123(,)5(14)5(14)k k k -++若0k =,则3(0,)5P ,显然满足AP MN ⊥,此时直线MN 的方程为35y =;若0k ≠,则2208112APk k k k+=-=-,解得k =MN的方程为35y x =+,即530y -+=530y +-=.综上所述:直线MN 的方程为35y =530y -+=530y +-=.22. (本小题满分15分)解:(1)由22-,,()5,3x x x f x x x x ⎧⎪=⎨-+<⎪⎩≥3得函数的单调递增区间为5-2⎛⎫∞ ⎪⎝⎭,和()+∞3,;(2)由题意得对任意的实数[1,2]x ∈,()()f x g x <恒成立, 即1x x a -<,当[1,2]x ∈恒成立,即1x a x -<,11x a x x -<-<,11x a x x x-<<+, 故只要1x a x-<且1a x x <+在[1,2]x ∈上恒成立即可,在[1,2]x ∈时,只要1x x -的最大值小于a 且1x x +的最小值大于a 即可,而当[1,2]x ∈时,21110x x x '⎛⎫-=+> ⎪⎝⎭,1x x -为增函数,max 132x x ⎛⎫-= ⎪⎝⎭;当[1,2]x ∈时,21110x x x '⎛⎫+=-> ⎪⎝⎭,1x x +为增函数,min 12x x ⎛⎫+= ⎪⎝⎭,所以322a <<;(3)当22a -≤≤时,()f x 在R 上是增函数,则关于x 的方程()()f x t f a =不可能有三个不等的实数根; 则当(2,4]a ∈时,由22(2),,()(2),x a x x a f x x a x x a⎧+-⎪=⎨-++<⎪⎩≥得x a ≥时,2()(2)f x x a x =+-对称轴22a x a -=<,则()f x 在[,)x a ∈+∞为增函数,此时()f x 的值域为[(),)[2,)f a a +∞=+∞,x a <时,2()(2)f x x a x =-++对称轴22a x a +=<, 则()f x 在2,2a x +⎛⎤∈-∞ ⎥⎝⎦为增函数,此时()f x 的值域为2(2),4a ⎛⎤+-∞ ⎥⎝⎦, ()f x 在2,2a x a +⎡⎫∈⎪⎢⎣⎭为减函数,此时()f x 的值域为2(2)2,4a a ⎛⎤+ ⎥⎝⎦;由存在(2,4]a ∈,方程()()2f x t f a ta ==有三个不相等的实根,则2(2)22,4a ta a ⎛⎫+∈ ⎪⎝⎭,即存在(2,4]a ∈,使得2(2)1,8a t a ⎛⎫+∈ ⎪⎝⎭即可,令2(2)14()488a g a a a a +⎛⎫==++⎪⎝⎭, 只要使()max ()t g a <即可,而()g a 在(2,4]a ∈上是增函数,()max 9()(4)8g a g ==, 故实数t 的取值范围为91,8⎛⎫ ⎪⎝⎭; 同理可求当[4,2)a ∈--时,t 的取值范围为91,8⎛⎫⎪⎝⎭;综上所述,实数t 的取值范围为91,8⎛⎫⎪⎝⎭.。