最新冠层反射率模型辐射传输专业知识讲座
定量遥感-第四章植被定量遥感模型-3
§4.3.2 叶片反射率模型
2.平板模型
R R12 T12T21 2 R23 (1 2 R23 R21 ...) R12 T12T21 2 R23 /(1 2 R23 R21 ) T T21T23 (1 2 R23 R21 ...) T21T23 /(1 R23 R21 )
23
§4.3.2 叶片反射率模型
2.平板模型 n为两种介质的相对折射指数,τ为平板的透射系数;Tij为介 质i和j的界面的透射比。两个介质界面对入射角为α 立体角范围 内辐射的平均透射比,由下式给出:
Tav ( , n)
sin 2 ( )
0
[1/ 2Ts ( , n) 1/ 2Tp ( , n)]2 cos sin d
1.随机模型(stochastic model)
随机模型通过马尔可夫链来模拟辐射传输
它将叶片分割为两个独立的组织: 栅栏组织和海棉组织。定义了四种辐 射状态:太阳光、反射、吸收、透过 以及在不同的间隔间从一种辐射状态 到另一种辐射状态的转换概率。这些 概率是以叶片物质的光学特性为基础 确定的。 给定一个表述入射辐射的初始失量,通过迭代方式直到平稳 状态,就可以获得叶片的反射率和透过率。
1.随机模型
例: 假设在下列假设条件下进行数值模拟。
(1)光线垂直直射叶子表面
(2)上表面蜡层的反射率为1% (3)上、下表皮层为透明层 (4)叶绿素a 与b 之间的比例为3 : 1,总浓度为0.024mg/cm2 (5)胡罗卜素的含量比例为25%,总浓度为0.008mg/ cm2 (6)水分含量为总重的70%,总等值水厚度为0.014cm (7) R 10, 9 =0.12, R3,9 =0.08
第3章 植被冠层反射模型
单片叶子的非朗伯体特性 单叶片光谱模型
平板模型 Perspect模型
叶子的剖面结构
正常生长的植被在多数情 况,其波谱特征基本上被 叶簇所控制,因此讨论植 被的波谱特征,首先应当 了解单片叶子的光谱特征, 光辐射与单叶子的相互作 用基本上包括两种物理过 程,散射(反射)与吸收。
单叶波谱特征的理论模型
随机模型
1977 年C.J.Tucker 对单片叶子的波谱特征进行了数值模拟, 他把光子与叶子的相互作用分解为十个相互独立,而又有 联系的子过程。
1
太阳 辐射
2
蜡质层 反射
6
漫反射 能量
3 栅栏组织 5
栅栏组 织散射
4
栅栏组 织吸收
9 海绵组织
海绵组 织散射
8
海绵组 织吸收
组织中有四种吸收物质,它们是液态水,叶绿素a 与b 以及胡萝卜 素,因此: 4
R4,3
(1 exp(k (i) Xpp(i)))
1
如果假定光子进入栅栏组织后被吸收的概率有一半是经多次散射得到, 则R4,5=1/2R4,3。同理可得R8,7,其中XSM 代表第i 种物质在海绵状 叶肉层的总含量
单叶波谱特征的理论模型
随机模型模拟的黑枫树叶片反射率与实测值比较
叶子的剖面结构 单片叶子的波谱特征 单片叶子波谱特征的理论模型
随机模型
单片叶子的非朗伯体特性 单叶片光谱模型
平板模型 Perspect模型
单片叶子的非朗伯体特性
意义
是建立正确植被冠层双向反射率模型的基础 建立单片叶子的非朗伯体模型将为人们利用偏振 度测量获取更多有用的植被信息铺平道路。
第三类复杂型。如处于返青期的冬小麦 地,又如荒漠或半荒漠地区的灌从。
【国家自然科学基金】_冠层反射率_基金支持热词逐年推荐_【万方软件创新助手】_20140802
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
53 54 55 56 57 58 59 60 61 62 63 64 65
光谱反射率 光谱 估算研究 人工神经网络 产量损失 互信息 so2 rgm模型 mtvi2 mcari2 lai fpar fapar
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
1 1 1 1 1 1 1 1 1 1 1 1 1
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
性能分析 干旱胁迫 尺度转换规律 尺度效应 小麦 导数光谱 多角度 多光谱 城市热岛(uhi) 城市植被 城市冠层模式(ucm) 呼伦贝尔 吸收性光合有效辐射 含水量 同步反演 叶绿素 反演模型 反射率差值(δ r) 反射光谱 凯氏定氮 几何光学模型 减产率 关系模型 光谱指数 光学遥感 光合有效辐射吸收比例 光合有效辐射 作物生长模型 低覆盖条件 估算方法 二向性反射分布函数(brdf) sail lai hyperion fmc ewt
推荐指数 8 6 6 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
第六章 冠层反射率模型-辐射传输
8/11 植被遥感传输理论的三个里程碑成果:
• 1950年,Chandrasekhar给出辐射传输方程的具体表达式, 并在大气和核物理等研究领域迅速得到应用和发展。 • 1953年,门司正三和佐伯敏郎(Monsi and Saeki)从实 测测定和理论推导两方面建立了光强对叶面积的依赖关系。 其中所采用的理论就是辐射传输的基本定律—BeerLambert消光定律,从而开始了用辐射传输理论对植被冠 层的研究。 • 1975年,在总结前人多年工作的基础上,Ross出版了他 的论著(俄文版),正式确定了植被内部的辐射传输方程, 进而建立植被光学特性和结构特性与辐射场之间的关系。
下标 L 表示 leaf。 uL(z)对dz在 0-H 区域积分,等于?
3/12 对于叶面积密度分布,存在:
H
0
uL (z )dz L0
式中积分上限H为植被冠层深度,z的取向向下(即z=0为 植被上界,z=H为植被下界),L0为叶面积指数(无单位
量纲),是农学、植被生态学中最重要、最常用的参数。
a(θv,υv)
a(θi,υi)
O(θi,θv,υ)
7/11
辐射传输模型
植被遥感接收的信息是植被上界的出射辐射(不考 虑大气影响),它是辐射在植被—土壤耦合体系中 多次散射和吸收的结果,而辐射传输理论可以比较 系统、较完整地描述该过程。通过辐射传输理论, 我们可以准确地计算植被上界的出射辐射量,或根 据这一信息反演植被的光学特性和结构特性,因而 从理论的高度解决了植被遥感的定量化问题。同时 在解决问题的过程中,还可以借鉴许多辐射传输理 论的最新进展和突破,从而将使这一领域充满活力。 , L )d L 1
式中积分区域 2π+ 为上半球空间,这是因为叶片只 能计算单面。对于平面平行假设,存在 gL(r, ΩL) = gL(z, ΩL) 。 叶片在2π+空间均匀分布时, g (z, Ω ) = ?
2.2辐射传输方程
其中 τ = u l ( z ) dz ,即 dτ ( z ) = ul ( z )dz
∂
∫
z
如果单片叶子的单次散射反照率是一个常数,那么辐射传输方程可变换为另一种形式。
Q
1
π
1
Γ ( Ω' → Ω ) =
1 2π
2π
∫ g l (Ω l ) | Ω l ⋅ Ω' | f (Ω' → Ω, Ω l )dΩ l
−µ
dL( Z , Ω) + σ e ( Z , Ω) L( Z , Ω) = ∫ σ s ( Z , Ω ' → Ω)L( Z , Ω ' )dΩ ' dz φπ
此处 L 代表光亮度,其中
σ e 称为消光系数,它代表光路介质对光子的吸收与散射致使
57
光亮度在传播方向上减弱,
σ s 称为散射削弱系数(包含了相位函数) ,它描述了经多次散射
f s = K ( k , µ ' ) F ( n, µ ' )δ ( µ − µ ' )
其中 K ( k , µ ) = exp −
'
2 kt gθ ' π
K 为描述叶子表面粗糙程度而引入的修正系数(0<K<1) ,其中 k 称为叶毛系数,取值 范围为 0.1~0.3。
1 sin 2 (θ '−θ s ) t g (θ '−θ s ) F ( n, µ ' ) = 2 + 2 sin (θ '+θ s ) t g (θ '+θ s )
− +
↓
−
−
F + 与F − ,这样微分——积分辐射传输方程便可简化为一组线性微分方程。
定量遥感-第四章植被定量遥感模型-2
1
GL (z, ) 2 2 gL (z, L ) L dL
Ω 为辐射传输方向,方向夹角的余弦:
L cos cos cos L sin sinL cos( L )
、L分别为传输方向和叶片法向的天顶角,、 L分别为两个方向的方位角。
1/27
《定量遥感》
第四章 植被定量遥感模型
武汉大学遥感信息工程学院 龚龑
第四章 植被定量遥感模型
§4.1 冠层反射率模型概述 §4.2 冠层反射率几何光学模型 §4.3 植被辐射传输模型
§4.3.1 植被辐射传输中常用参数 §4.3.2 植被辐射传输方程及解 §4.3.3 辐射传输模型改进
2
§4.3.1 植被辐射传输中常用参数
(2) G 函数
如果叶片垂直取向且方位独立,即gL(z, ΩL) = δ(μL-0)时, G 函数:
GL
(z, )
1
2
2 0
2 0
gL
(z,
L
)
L
dLdL
GL
(
z,
)
2
sin
注意绝对值 |cosυ| 在2π空间积分为4
12
§4.3.1 植被辐射传输中常用参数
(2) G 函数
当叶片均匀(或球型)取向,gL(z, ΩL) = 1
H
0 uL(z)dz L0
式中积分上限H为植被冠层深度,z的取向向下(即 z=0为植被上界,z=H为植被下界),L0为叶面积指数(无 单位量纲),是农学、植被生态学中最重要的常用参数。
叶面积指数的含义
7
§4.3.1 植被辐射传输中常用参数
遥感物理-辐射传输模型
若叶片的散射特征可以看成是两个半径不同的反射 和透射半球,即:
叶片的物理特性包括叶片尺度、叶片取向、叶表 面粗糙度以及叶片光学性质(如反射率、透过率 和吸收率)等。
考虑由叶片所组成的整体性质,需要定义一些植 被群体特性参数,它们是对植被冠层结构和光学 特征的一种提炼化描述,是对全体叶片分布统计 平均的结果。这些统计量包括叶面积密度分布、 G函数和函数。
叶面积密度分布
当然,由于相互融合,两类模型现在已经区分不明显了, 即以几何光学为基础的模型加入了对多次散射的考虑,而 以辐射传输为基础的模型加入了对热点现象的考虑。
热点(hot spot)现象
所谓热点(hot spot)现象,即当传感器与太阳位于同 一方向时,传感器所接收的地面辐射最强(地面反 射率最大、地面光强最强、最热)。 几何光学模型可以较好地解释热点现象。 光照背景的比例
植被辐射传输过程的特殊性
• 大气中散射和吸收粒子的分布可以看成是平面平行 分布,即粒子特性仅随高度发生变化,同一高度上的 分布可以看成均一分布;而植被则在三维空间上均有 变化,植被个体间往往存在一不定期的间隙,造成其 在水平面上的不连续性,因而使问题复杂化。
植被辐射传输过程的特殊性
• 大气中散射体为粒状分布,而植被中散射体—叶片 则有一定的取向和大小。前者造成植被中的辐射不仅 与传输路径长度和路径上叶片密度有关,而且与路径 上叶片的取向有关;后者则造成明显的“热点”现象, 即当观测方向与辐射方向正好相反时,出现较强的反 射亮度。
2)植被累积面积增大
“丘形”分布
在背景土壤反射率较高(如红 光波段)而且植被较为稀疏的 情况下,反射率会出现“丘形” 分布。 原因:1)星下点背景反射率 影响较大
植被冠层3D辐射传输模型及热辐射方向性模拟
c l a ac l td i al ,t e dr cin ema a it n o a o yc u d b ere e r m e itg a a c l t n o el W c lu ae .F n ly h i t a t r l r da i fc n p o l e r t v d fo t n e r c u ai f s s e ol h o i h l l o aldf r ni o i si h e s h r . l i e e t b d e t e h mi ee l a n p ee it g i -i aa w r s d t e t h D a it e t se d l n h xsi n s u d t e e u e o ts t e 3 r d ai r f rmo e d t e n t v a n a
第2 9卷第 1 期 2 1 2月 0 0年 文章编号 :0 1 9 1 (0 0 0 — 0 8— 7 10 — 04 2 1 ) 1 0 3 0
LAI与FAPAR反演-定量遥感精品课程班-讲课文档
•天空散射光
天空散射光到达冠层的辐照度
i
L
a
m L acosi(1ecG osiLA)Id 2
对于均匀连续植被冠层,当叶倾角分布为球形分布时,其与叶面积指
数LAI的经验关系为:
m(1e0.8LA0.9I)M (MLa)
平均拦截概率:
~ i01e0.8LA0.9I
28
第二十八页,共43页。
•平均拦截概率
24
第二十四页,共43页。
•一个光子在其生命周期内的吸收
a c ( ) ( 1 ) p ( 1 ) ( p ) 2 ( 1 ) ( p ) n 1 ( 1 )
对于前n次碰撞
ac()(1)11(pp)n
由于 0<p<1,对于无限次碰撞来说
ac
()
1 1p
25
第二十五页,共43页。
基于:连续植被冠层模型( Gobron et al., 1997)
6S模型模拟陆地表面特征(
Vermote et al., 1997)
第十八页,共43页。
118818
•基于:连续植被冠层模型(Gobron et al., 1997) •6S模型模拟陆地表面特征(Vermote et al., 1997)
FAPAR算法步骤:
第一:进行大气校正,消除大气及角度的影响;
第二,与数学方法相结合,计算FAPAR值。
第十九页,共43页。
1199 19
5 FAPAR模型
i
v
第二十页,共43页。
a1()
a2 ()
吸收项由两部分组成:
植被冠层对辐射的直接吸收 a1() 植被-地表多次反弹造成的植被冠层的吸收 a2()
~ i01e0.8LA0.9I
遥感物理-辐射传输模型
考虑由叶片所组成的整体性质,需要定义一些植 被群体特性参数,它们是对植被冠层结构和光学 特征的一种提炼化描述,是对全体叶片分布统计 平均的结果。这些统计量包括叶面积密度分布、 G函数和函数。
叶面积密度分布
2)植被累积面积增大
“丘形”分布
在背景土壤反射率较高(如红 光波段)而且植被较为稀疏的 情况下,反射率会出现“丘形” 分布。 原因:1)星下点背景反射率 影响较大
叶面积指数
单位面积内所有叶子单面面积之总和。也可表示为叶 面面积之总和与所占面积之比。 无单位量纲,是农学、植被生态学中最重要、最常用 的参数。
植被辐射传输过程的特殊性
• 大气中散射和吸收粒子的分布可以看成是平面平行 分布,即粒子特性仅随高度发生变化,同一高度上的 分布可以看成均一分布;而植被则在三维空间上Байду номын сангаас有 变化,植被个体间往往存在一不定期的间隙,造成其 在水平面上的不连续性,因而使问题复杂化。
植被辐射传输过程的特殊性
• 大气中散射体为粒状分布,而植被中散射体—叶片 则有一定的取向和大小。前者造成植被中的辐射不仅 与传输路径长度和路径上叶片密度有关,而且与路径 上叶片的取向有关;后者则造成明显的“热点”现象, 即当观测方向与辐射方向正好相反时,出现较强的反 射亮度。
植被辐射传输模型的假设
• 在本节中,我们考虑连续植被分布,或者植被 个体间虽有间断,但却均匀分布(其体现的效 果相当于个体密度之和在整个平面上的平均), 这时植被叶片密度呈平面平行分布。这种假设 符合农作物、自然草场以及一些较密的森林的 状况。
植被辐射传输模型中的三个参数
植被遥感上机课程-植被辐射传输模型
直接照射冠层
直接照射冠层与非直接照射冠层
非直接照射的冠层
5-SCALE建模
叶片 独立个体的冠层 空间分布
5-SCALE软件的特色
突出植被冠层的二向性
植被光谱的二向性?
不同观测角度,观测到 不同强度的遥感反射率
5-SCALE软件的功能
使用5-SCALE的三种模式
(1)太阳平面上的反射率二向性模式 (2)单波段反射率的二向性模式 (3)太阳平面上的反射率高光谱模式
使用5-SCALE模型,可关注针叶林的 BRDF响应。
5-SCALE模型输入参数
• • • • • • • • • • • • • 观测天顶角度 太阳天顶角 相对方位角 叶面积指数 LAI 丛生指数 树木密度 树冠垂直高度 杆高 冠层半径 冠层形状(1 圆锥加圆柱;2 椭圆) 枝叶几何参数 叶片光谱 下界面(背景)光谱
植被辐射模型上机课程
焦全军 jiaoqj@
1
植被辐射传输过程
400-2500nm: 地表反射率
植被患病变色
叶绿素 chlorophylls
叶片光谱受到叶片色素的影响
花青素anthocyanins 类胡萝卜素carotenoids 叶黄素 brown pigments
输出:
叶片反射率和透过率(400-2500nm,5nm间隔)
PROSPECT模型(WINSail软件中) 实习
从WINSail软件中 打开PROSPECT
PROSPECT 界面
叶肉结构参数N 叶绿素含量 叶片含水量 干物质含量 叶黄素含量
PROSPECT 模型的参数输入表
输入参数 描述 取值范围 默认值
第二种方式:COPY文本进入EXCEL,利用分列工具,对数据进行分列
利用辐射度模型实现冠层光合有效辐射分布
利用辐射度模型实现冠层光合有效辐射分布段辉丽;王晶晶;王芳洁【摘要】提出基于辐射度模型模拟单株虚拟植物冠层光合有效辐射分布的技术流程,采用半立方体算法计算辐射度模型的形状因子,逐步求精迭代法解辐射度线性方程组,计算虚拟植物模型任意空间位置的辐射度值和能量值.通过对比基于光线跟踪模型和辐射度模型模拟冠层太阳直射光合有效辐射,不仅发现基于两种模型的模拟结果具有较好的一致性,而且基于辐射度模型的模拟更具合理性.最后,分析冠层净光合速率进一步验证基于辐射度模型模拟冠层光合有效辐射的有效性.%This paper proposes a method, which is based on radiosity simulating the 3D distribution of photosynthetic active radiation of virtual plant canopy. Firstly, the radiosity model is obtained by using the semi-cube algorithm of form factor. Then, linear equations are solved by incremental refinement radiosity iterative solution method. Finally, the value of radiosity and energy of virtual plant model at any spatial location are calculated. Compared with ray tracing model simulating direct sun canopy PAR, the results of the radiation model are not only good and consistent, but also more reasonable. Analysis on canopy net photosynthetic rate further validates the effectiveness of the proposed method.【期刊名称】《计算机工程与应用》【年(卷),期】2017(053)023【总页数】6页(P184-189)【关键词】光合有效辐射;虚拟植物;辐射度模型;三维空间分布;三维可视化【作者】段辉丽;王晶晶;王芳洁【作者单位】宜昌市测绘大队,湖北宜昌 443000;军事经济学院襄阳士官学校基础部,湖北襄阳 441118;宜昌市测绘大队,湖北宜昌 443000【正文语种】中文【中图分类】TP391.9随着虚拟植物解释功能越来越强大,光合有效辐射(Photosynthetic Active Radiation,PAR)已成为植物生理生态学研究的热点。
森林冠层反射率模拟模型敏感参数研究——以INFORM模型为例
林地面积2940km2,森林覆盖率达77%,主要林种有茶园、板栗、毛竹、马尾松、杉木、栎树等。
设置了21个样地,样地统一采用正方形,面积为10000m2(100m100m)。每个样地内确定两个
30m30m的样方。每个样方调查内容包括经纬度、海拔、群落类型、坡度、坡向、树种、树高、冠幅、LAI、
森林密度等,且所有的测量工作均在10:00~16:00完成,观测了共42个样方信息。
犛狋狌犱狔狅犳狋犺犲犛犲犚狀犲狊犳犻犾狋犲犻犮狏狋犲犪狀犘犮犪犲狉犪犝犿狊犻犲狀狋犲犵狉犐狊犖犻狀犉犗犛犻犚犿犕狌犾犪犕狋犻狅狀犱犵犲犾犉狅狉犲狊狋犆犪狀狅狆狔
YUANHuili1,LIJiying2 (1.JinlingInstituteofTechnology,Nanjing211169,China;2.BinzhouUniversity,Binzhou256603,China) 犃犫狊狋狉犪犮狋:Inthispaper,theINFORMmodel,whichspeciallysimulatedforestcanopyreflectance, wasusedtoanalyzethesensitivityofeightinputparametersandoptimizethestepsizeofthesensitive parameters.Theresultsshowedthatthe犔犃犐,canopyheight,meancrownbreadthandforestdensity weresensitiveparameters.The犔犃犐,canopyheight,meancrownwereinputatthestepof0.66m, 1mand0.555m,respectively.Theforestdensitywereinputatthestepof100trees·hm-2within thescopeof244~1244trees·hm-2,whileatthestepof400trees·hm-2withinthescopeof 1244~5244trees·hm-2.Theresearchcansimplifythemodelcalculation,improveopera tionalefficiencyandensuretheaccuracyofthesimulationresults. 犓犲狔狑狅狉犱狊:simulatingreflectance;INFORMmodel;parameterssensitivity;optimumstep 森林冠层反射率是有效进行植被类型解译、森林冠层叶面积指数(LAI)、光合有效辐射吸收系数、叶 绿素等固碳参量遥感反演的重要依据。辐射传输模型通过实测叶片反射率和相关理化参数,揭示植被冠 层对太阳辐射的吸收、二向反射、透射及其辐射在冠层传递的物理机制[1],分析电磁波与冠层参数之间的 相互作用,可以高精度地模拟不同植被类型的冠层反射率[24]。因此,基于辐射传输模型的森林冠层反射 率模拟及其应用成为近年研究的热点。 除了常用的PROSPECT模型[5]、SAIL模型[6]、LiStrahler几何光学模型[7]等,近几年出现的专门针
植被参数与反射率关系的模型
作业目标:建立农作物冠层反射与农作物生长参数关系的冠层反射模型对给定生育期或不同生育期的农作物建模可能采用的模型与模型的基本参数说明冠层反射模型用于解释遥感数据时候需要考虑的因素建立模型的基本步骤:1.建立概念模型2.转化为数学模型3.编写为程序4.进行数据测试5.评价模型不断修改使其输出值更接近实际观测值我的理解是在这里我们不需要重新建立模型,而可以直接利用别人已经建立好的模型可能用到的模型及参数1)在辐射传输模型:如果我们将suits模型用于农作物上,对于给定生育期的农作物,需要不断纠正的值有h、H、V等参量,但由于其缺点(只考虑叶片在水平与垂直方向的投影)并不能解释热点效应,因此,我们再来看看sail模型sail模型sail模型是考虑了任意叶倾角影响来进行纠正suits的的问题的。
在模型中,用叶倾角分布函数来对冠层的叶片倾角进行模拟。
SAIL模型的基本植被冠层参数包括:叶面积指数LAI,叶倾角分布系数叶片反射率,叶片透射率,土壤反射率,天空漫反射光比例,通过这些系数,我们可以很好的建立起农作物冠层反射模型但在sail模型中,也有方向性的缺陷,在对这个模型进行改进之后,得到的是sailh模型。
该模型需要7 个输入参数,分别是:叶面积指数(LAI)、平均叶倾角(ALA)、叶长-冠层高度比(SL)、叶片半球反射率(LR)和透过率(LT)、土壤反射率(SR)、水平能见度(VIS)。
该模型能较好的体现出农作物的热点效应KUUSK模型该模型将连续植被冠层视为若干水平均匀薄层的叠加,建立了入射方向与观察方向间隙率之间的的相关概率。
该模型中所需要的参数很多,其中与植被相关的主要有:冠层厚度、单面叶面积的密度、叶面积体密度、冠层中叶子的尺寸、分层的叶面积密度、叶倾角分布函数。
该模型被长期验证后广泛采纳,我们可以看出该模型可以很好的解释方向性问题,通过模拟不同的入射与观测方向,模拟不同的冠层情况,解释了热点效应与碗边效应。
第六章 冠层反射率模型-辐射传输 ppt课件
分布可以看成均一分布;而植被则在三维空间上均有
变化,植被个体间往往存在一不定期的间隙,造成其
在水平面上的不连续性,因而使问题复杂化。在本节
中,我们考虑连续植被分布,或者植被个体间虽有间
断,但却均匀分布(其体现的效果相当于个体密度之
和在整个平面上的平均),这时植被叶片密度呈平面
平行分布。这种假设符合农作物、自然草场以及一些
ppt课件
3
3/11
在研究植被等地物的光谱特征时,人们逐渐发现了“同物 异谱、异物同谱”的现象,地面测量的光谱曲线与实际遥 感测量的光谱曲线很难一一对应。研究者考虑到这种现象 可能是混合象元引起的,于是引进了混合象元模型及其求 解方法。在混合象元中,植被的反射率是已知的。
但是实际上,由于植被反射率是由叶片、下层土壤等形成 的综合因素,即植被区域不是一个平面刚体,辐射是可以 穿过冠层表面的,通过各种散射后,再从冠层上界逸出, 被传感器所接收。因而形成冠层反射率模型。
ppt课G件1(z, ' )
21
11/12
比较函数与P函数,前者更具有直接的物理意义、更简单, 而后者则更规范。目前的植被辐射传输问题更普遍采用的 还是函数。
当然,由于相互融合,两类模型现在已经区分不明显了, 即以几何光学为基础的模型加入了对多次散射的考虑,而 以辐射传输为基础的模型加入了对热点现象的考虑。
ppt课件
6
6/11
热点 (hot spot) 现象
所谓热点(hot spot)现象,即当传感器与太阳位于同 一方向时,传感器所接收的地面辐射最强(地面反 射率最大、地面光强最强、最热)。 几何光学模型可以较好地解释热点现象。
K e[a(i,i) a(v,v)O(i,v,)] G
基于prosail模型并在冠层覆盖度参与优化下作物叶面积指数反演方法
基于ProSAIL模型的作物叶面积指数反演方法一、引言作物叶面积指数(Leaf Area Index, LAI)是衡量作物生长状态和生产力的重要指标之一。
准确地估计作物的叶面积指数对于作物生长监测、农业管理和粮食生产预测具有重要意义。
然而,传统的基于实地测量或遥感数据分析的LAI估算方法存在成本高、工作量大和时间耗费长等问题。
为了克服这些问题,基于反射率模型的LAI估算方法被广泛研究和应用。
本文将探讨基于ProSAIL模型并在冠层覆盖度参与优化下的作物叶面积指数反演方法。
二、ProSAIL模型基本原理ProSAIL模型是植被反射率模型的一种,它基于能量守恒和光传输原理模拟植被光谱响应。
该模型考虑了植被结构对光的吸收、散射和透射的影响,可以通过输入植被参数如叶面积指数、叶片角度分布和冠层覆盖度等来模拟不同植被类型的光谱响应。
三、冠层覆盖度参与优化的作物LAI反演3.1 数据采集和处理进行作物LAI反演需要获取多光谱遥感数据,如Landsat、MODIS等。
同时,还需要获取作物生长期间的实地LAI观测数据作为参考。
将遥感数据进行预处理,包括大气校正、几何校正和辐射校正等。
3.2 ProSAIL模型参数化ProSAIL模型的参数化是指根据实地观测数据或遥感数据来确定模型的输入参数,如叶面积指数、叶片角度分布和冠层覆盖度等。
通过对接触到的光的比例和各种辐射的比例进行测量与建模,可以获取作物的生物物理参数。
3.3 冠层覆盖度的优化传统的作物LAI反演方法往往忽略了冠层覆盖度的影响,将其视为一个固定的参数。
然而,作物的生长过程中,冠层覆盖度会发生变化,对LAI的估计产生影响。
因此,本方法引入冠层覆盖度作为优化参数,使用优化算法对LAI进行反演。
3.4 优化算法冠层覆盖度的优化可以使用多种优化算法,如遗传算法、粒子群算法等。
这些算法可以通过迭代计算,不断优化冠层覆盖度参数,使得ProSAIL模型得到的光谱响应与实际观测数据拟合最优。
定量遥感-第二章遥感物理基础精讲
25
通量密度很多时候简称通量
•太阳常数与太阳辐射亮度
基本物理量
太阳光是平行光入射,即只在Ω0方向存在 亮度,注意到公式:
Lλ =³ Φ / A λ Ω
波长与穿透性的关系?
32
• 地物反射光谱特性
物体反射率随波长而改变的特性称为地物 反射光谱特性。
光谱曲线:
植物? 水体? 土壤? 云?雪?
水体+叶绿素? 水体+泥沙? 新雪、旧雪?
地物波谱(特性)
33
• 电磁波与介质的相互作用总结:
作用类型
散射
反射 透射
吸收(发射)
率:以比例形式表征的反射、透射和吸收强度 与入射辐射强度无关 ρ + τ + α = 1(无自身发射)
Ω0
Fλ =² Φ / A λ
因此,太阳的辐射亮度与Ω0方向上的辐射通量 (即太阳常数)之间的关系为:
L0=δ(Ω,Ω0)F0
26
• 各向同性辐射时亮度与通量的关系 基本物理量
假设地表为各向同性辐射,即辐射亮度L 在各方向分布均一,则其垂直地表向上的辐射
通量为:
F L cosd 2 θ
由于dΩ = dσ/r2 = sinθdθdφ 因此:
这三种反射形式分别在什么情 况下发生?
根据表面光滑或粗糙?
37
二、瑞利判据分析
L.Rayleigh提出表面为光滑或粗糙的标准为:
θi θr
镜面反射
当 h cos 为光滑表面
8
当 h cos 为粗糙表面
测绘技术陆地卫星图像的大气校正与反射率获取方法
测绘技术陆地卫星图像的大气校正与反射率获取方法测绘技术是现代科技的重要组成部分,涉及到多个领域,包括地理信息系统、遥感技术和测绘仪器等。
其中,测绘技术中的大气校正与反射率获取方法在陆地卫星图像处理中起着至关重要的作用。
本文将探讨大气校正与反射率获取方法在测绘技术中的应用。
一、大气校正的意义与目的大气校正是将卫星图像中因大气吸收、散射等原因引起的扰动进行校正,以获得真实的地物反射率。
大气校正的目的是消除大气影响,提高图像的可解译性和定量性。
大气校正能够使卫星图像更加精确和真实地反映地表特征,为后续的测绘工作提供准确的数据基础。
二、大气校正的原理与方法大气校正的原理是基于大气对太阳辐射的吸收、散射以及陆地表面反射的特性。
常见的大气校正方法包括大气传输模型法、辐射传输模型法和方法转换法等。
其中,大气传输模型法是将大气光通量和大气的散射成分分开计算,进而校正图像。
辐射传输模型法则是通过建立大气模型,利用辐射传输方程求解大气校正系数。
方法转换法则是通过选择合适的目标和背景进行校正,从而获得真实的地物反射率。
三、反射率获取方法反射率获取方法是在大气校正基础上,通过分析卫星图像中的光谱数据,计算地物的反射率。
常用的反射率获取方法包括比值法、冠层反射率模型法和统计学方法等。
比值法是通过地物的光谱特征反映地物的反射率,通过计算不同波段之间的比值,来获得反射率信息。
冠层反射率模型法是通过建立地物与大气之间的传输模型,将卫星观测值与地物的反射率联系起来。
统计学方法是通过统计分析卫星图像中的光谱分布,来获得地物反射率的估计值。
四、测绘技术中的应用大气校正与反射率获取方法在测绘技术中有着广泛的应用。
首先,在地理信息系统中,通过对卫星图像进行大气校正和反射率获取,可以获取准确的地表反射率,提供高质量的地表特征信息。
其次,在环境监测领域,通过大气校正和反射率获取可以对空气质量、土壤水分等环境因素进行精确监测。
此外,大气校正和反射率获取也广泛应用于农业、遥感地质勘探等领域,为相关工作提供重要的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文档来源于网络,文档所提供的信息仅供参考之用,不能作为科学依据,请勿模
仿。文档如有不当之处,请联系本人或网站删除。 6/11
热点 (hot spot) 现象
• 1975年,在总结前人多年工作的基础上,Ross出版了他 的论著(俄文版),正式确定了植被内部的辐射传输方程, 进而建立植被光学特性和结构特性与辐射场之间的关系。
文档来源于网络,文档所提供的信息仅供参考之用,不能作为科学依据,请勿模
仿。文档如有不当之处,请联系本人或网站删除。 9/11
与大气相比,植被中的辐射传输过程要复杂得多,这集中 表现在两点:
如果我们遥感专业的研究生只懂植被指数,那么遥感专业就可以取消了。
文档来源于网络,文档所提供的信息仅供参考之用,不能作为科学依据,请勿模
仿。文档如有不当之处,请联系本人或网站删除。 2/11
但是不可否认的是,遥感也象其它学科一样,经历着从简 单到复杂、从定性到定量的发展过程和发展趋势,尤其是 作为一门新兴学科,更是如此。以植被指数、光谱-地物相 关方法为代表的工作是在实验数据和感官经验的基础上完 成的,缺乏一套有力完整的理论体系作支撑,因而是经验 或半经验的。其理论基础是统计相关,其根本弱点在于主 观性和片面性,具有数据的局限性和结果的难以重复性。 随着遥感定量化呼声日高和遥感手段的日益丰富完备,迫 切需要发展有物理意义的理论模型,解决植被遥感中存在 的问题和不足。
文档来源于网络,文档所提供的信息仅供参考之用,不能作为科学依据,请勿模
仿。文档如有不当之处,请联系本人或网站删除。 3/11
在研究植被等地物的光谱特征时,人们逐渐发现了“同物 异谱、异物同谱”的现象,地面测量的光谱曲线与实际遥 感测量的光谱曲线很难一一对应。研究者考虑到这种现象 可能是混合象元引起的,于是引进了混合象元模型及其求 解方法。在混合象元中,植被的反射率是已知的。
文档来源于网络,文档所提供的信息仅供参考之用,不能作为科学依据,请勿模
仿。文档如有不当之处,请联系本人或网站删除。 8/11
植被遥感传输理论的三个里程碑成果:
• 1950年,Chandrasekhar给出辐射传输方程的具体表达式, 并在大气和核物理等研究领域迅速得到应用和发展。
• 1953年,门司正三和佐伯敏郎(Monsi and Saeki)从实 测测定和理论推导两方面建立了光强对叶面积的依赖关系。 其中所采用的理论就是辐射传输的基本定律—BeerLambert消光定律,从而开始了用辐射传输理论对植被冠 层的研究。
但是实际上,由于植被反射率是由叶片、下层土壤等形成 的综合因素,即植被区域不是一个平面刚体,辐射是可以 穿过冠层表面的,通过各种散射后,再从冠层上界逸出, 被传感器所接收。因而形成冠层反射率模型。
可以这样认为,混合象元是二维的,冠层反射率模型是三 维的。
文档来源于网络,文档所提供的信息仅供参考之用,不能作为科学依据,请勿模
所谓热点(hot spot)现象,即当传感器与太阳位于同 一方向时,传感器所接收的地面辐射最强(地面反 射率最大、地面光强最强、最热)。 几何光学模型可以较好地解释热点现象。
K e [ a ( i, i) a ( v , v ) O ( i, v , ) G
a(θv,φv)
其中第一个属于遥感数字图象处理研究范畴,后两个属于 遥感物理研究范畴,而中间两个则属于二者交叉研究范畴。
文档来源于网络,文档所提供的信息仅供参考之用,不能作为科学依据,请勿模
仿。文档如有不当之处,请联系本人或网站删除。 5/11
在冠层反射率模型中,通常分为两类,即几何光学模型与 辐射传输模型。
之所以分成两类模型,主要是由于地面的植被(在生态学 上就是森林、草地、农作物)主要有两种外在形态。一种 是几何特征明显(如树木、灌丛、成垄分布的农作物等), 另一种则无明显几何特征(如大面积的草地、已封垄的农 作物等)。
仿。文档如有不当之处,请联系本人或网站删除。 4/11
如果从遥感分析的角度,我们可以依据尺度由大向小排列 顺序如下:
• 象元之间的关系,即遥感影象上的纹理特征; • 象元本身的属性,如根据象元光谱特征,进行分类; • 混合象元,即判断象元内部各种地物所占比例; • 端元(冠层)反射,表征端元内部由于辐射进入, 或邻近遮挡而引起的辐射变化; • 材料波谱,如叶片内部各组分的结构与光谱特征。
文档来源于网络,文档所提供的信息仅供参考之用,不能作为科学依据,请勿模
仿。文档如有不当之处,请联系本人或网站删除。 1/11
我们如何定量地研究植被覆盖区域的反射特征?
植被遥感中,从一开始就被普遍认同和采用的方法 是,利用植被反射光谱在可见光和近红外波段上明 显的不同,构建遥感植被指数,在研究纠正植被形 态、土壤光学特性、太阳位置以及云和大气等影响 的基础上,反演地表状况,用以与各种植被变量 (包括LAI)、植株生物量、植被覆盖度、光合组织 总量、光合有效辐射和初级生产力等因子进行相关。 这种方法抓住了植被的光谱特征,简单而明确,具 有很强的实用性,易于为大多数研究者所接受。目 前开展的大部分植被遥感的研究工作都是从这方面 展开的。
a(θi,φi) O(θi,θv,φ)
文档来源于网络,文档所提供的信息仅供参考之用,当之处,请联系本人或网站删除。 7/11
辐射传输模型
植被遥感接收的信息是植被上界的出射辐射(不考 虑大气影响),它是辐射在植被—土壤耦合体系中 多次散射和吸收的结果,而辐射传输理论可以比较 系统、较完整地描述该过程。通过辐射传输理论, 我们可以准确地计算植被上界的出射辐射量,或根 据这一信息反演植被的光学特性和结构特性,因而 从理论的高度解决了植被遥感的定量化问题。同时 在解决问题的过程中,还可以借鉴许多辐射传输理 论的最新进展和突破,从而将使这一领域充满活力。