机械力化学法制备纳米材料研究进展及发展趋势
纳米材料制备和应用技术研究
纳米材料制备和应用技术研究一、纳米材料制备技术纳米材料是以纳米尺度为特征尺度的物质,具有晶粒级数、尺寸等特殊性质,广泛应用于能源、材料、环境等领域。
纳米材料制备技术的发展极大地推动了纳米材料的应用。
目前,纳米材料的制备方法主要有几种:1. 物理制备法物理制备法主要包括机械法、蒸发凝聚法、纳米微影技术等。
其中,在机械法制备纳米材料的方法中,超声波震荡折叠技术是最常用的方法之一。
这种方法采用超声波高频震荡、牵引力和折叠等多种力学效应作用于金属,使其在有限次折叠后出现纳米晶粒,从而实现纳米材料制备。
2. 化学制备法化学制备法主要包括溶胶凝胶法、水热法、电化学制备法等。
其中水热法是较为常见的一种方法。
该方法通过控制温度、压力、pH值等参数,使单质或化合物在特定环境条件下热液处理,得到具有纳米特征的材料。
此外,还有微乳液法、胶体化学法、聚合物模板法等化学制备法。
二、纳米材料应用技术纳米材料应用技术在各种领域推动了革命性的变化,下面列举几种纳米材料的应用:1. 纳米催化剂技术纳米材料可以作为催化剂,在能源、环保、新材料等领域中发挥至关重要的作用。
利用纳米催化剂可实现对废水、废气的清洁处理,以及延长催化剂的使用寿命等。
2. 纳米材料在能源领域的应用纳米材料应用于能源领域是目前的研究热点,如纳米材料在生物燃料电池领域的应用、纳米太阳能电池等。
纳米材料大小、形态等方面的特性使其在能源领域具有广泛应用前景。
3. 纳米材料在生物医学领域的应用纳米材料在生物医学领域的应用是热点领域之一,如纳米药物在癌症治疗中的应用。
纳米材料通过其特异性的体内和体外分布,可在小剂量下达到较好的疗效。
4. 纳米传感器技术纳米传感器技术是当前应用前景广泛的领域之一。
纳米材料作为传感器材料,可以实现对环境、食品、化学品等多方面的监测,更好地维护人类的健康和环境的安全。
三、纳米材料市场发展前景随着纳米科技的飞速发展,国内外纳米材料技术研究越来越多,纳米材料的应用领域得到了极大的拓展,其市场发展前景也越来越受到关注。
纳米材料的研究进展与应用
纳米材料的研究进展与应用随着科技的不断发展,纳米科技的应用范围也越来越广泛,纳米材料也成为科学研究领域的热点之一。
纳米材料指分子组成的金属或非金属材料中,至少存在一个微小的维度小于100纳米的物质。
纳米材料的细小尺寸使其具有许多特殊的物理、化学和生物学性质,因此在能源、电子、医学等领域有着广泛的应用前景。
一、研究进展1.合成方法目前,纳米材料的制备方法主要分为物理法和化学法两种。
物理法包括蒸发冷凝法、溅射法等,这些方法已经广泛应用于半导体材料和金属氧化物的合成;而化学法包括溶剂热法、水热法等,这些方法已经发展成为制备全新材料的有力工具,具有制备精度高、成本低等优点。
2.性质特点纳米材料的独特性质主要来源于其表面效应、量子效应和缺陷效应。
在表面效应方面,由于纳米材料的表面积较大,表面能就会比普通材料大,表面位错和表面尺寸效应对其性质的影响也将更加明显。
此外,纳米粒子的量子效应体现在其光学、电学等方面,例如量子点可以作为荧光探针等。
缺陷效应是纳米材料的另一个独特性质,在制备过程中容易产生氧化物等缺陷结构,这些结构能够影响其机械、热学等性质。
二、应用研究1.催化剂纳米材料是优异的催化剂,能够提高催化反应速率和选择性,提高催化效率,降低催化剂用量等。
例如,纳米金属催化剂可用于CO和H₂O反应生成CO₂和H₂,广泛应用于环保领域。
2.生物医学应用纳米材料在癌症治疗、药物输送、光疗、核磁共振成像、生物传感器等方面都有广泛的应用。
例如,纳米粒子通过改变表面功能化基团实现具有肿瘤特异性的分子靶向治疗,可较好地避免正常细胞的损伤。
3.能源储存在绿色能源和新能源研究中,纳米材料是很重要的研究方向。
例如,利用石墨烯、纳米碳管等纳米材料设计超级电容器、超级电池、锂离子电池等,可以提高能量密度和导电性能。
4.环保领域纳米材料还可应用于净水和废气处理等方面。
比如引入纳米银材料,能够有效杀灭细菌、减小污染物浓度。
纳米材料在环境净化领域的应用深受关注,并在实际中展现出良好的发展前景。
机械工程中的材料研究进展
机械工程中的材料研究进展近年来,随着先进制造技术的不断发展和机械工程领域的突破性进展,材料科学研究日益成为该领域的关键。
机械工程中的材料研究致力于发现新的材料、改进基础材料的特性以及开发新的制造工艺。
这些研究对于提高机械制造过程的效率、减少能源消耗、提高产品质量和延长使用寿命都具有重要意义。
一、新材料的发现机械工程中,新材料的发展一直是研究人员关注的焦点。
近年来,一些新材料的出现给机械工程领域带来了巨大的变革。
例如,纳米材料被发现具有惊人的力学性能,比如高强度和韧性,同时具有轻质和耐腐蚀的特点,广泛应用于航空航天、汽车制造等领域,大大提高了产品的性能。
此外,复合材料也成为机械工程领域的一个热门研究方向。
利用纳米技术和增强材料之间的结合,复合材料在轻量化和高强度方面显示出了潜在的巨大优势。
二、改进基础材料的特性在机械工程中,改进基础材料的特性可以提高产品的性能,并使其适应更多的工作环境和应用。
例如,钢材是机械工程中最基础的材料之一,对于提高强度和耐磨性一直是研究人员的关注点。
通过应用现代材料科学研究的成果,研究人员不断改进钢材的制备工艺,改变其微观结构,提高其强度和硬度。
此外,在增材制造领域,研究人员利用3D打印技术,结合合金材料的研究,开发出了一系列能够满足不同工业领域需求的特殊合金材料。
三、开发新的制造工艺机械工程中的材料研究还致力于开发新的制造工艺,以提高产品的制造效率和质量。
例如,超塑性成形技术是一种能够在低温下对金属材料进行成形的新型制造工艺。
通过应用超塑性成形技术,金属制品可以获得更高的形状复杂度和优良的力学性能,满足高端产品的需求。
此外,激光切割技术也成为当今机械工程中研究的热点。
激光切割技术可以对不同材料进行无接触、精密的切割,不仅提高了生产效率,还减少了废料的产生。
总的来说,机械工程中的材料研究取得了一系列重要的进展。
新材料的发现、改进基础材料的特性以及开发新的制造工艺,都为机械工程领域带来了巨大的推动力。
纳米制造技术的现状与未来趋势
纳米制造技术的现状与未来趋势随着科学技术的不断进步,纳米科技也越来越受到关注。
纳米技术作为一种新型的材料制造技术,不仅能够大幅度提高材料的性能,还可以带来更好的经济效益。
近年来,纳米制造技术在各个领域都有着不同的应用,包括电子、医药、能源、材料等。
本文将对纳米制造技术的现状和未来趋势进行探讨。
一、纳米制造技术的现状近几年来,越来越多的公司和研究机构投入了大量的资源和精力开展纳米制造技术的研究和开发。
纳米制造技术与传统制造技术相比,其最大的优势就是可以使用纳米级别的材料进行制造,这样制造出来的产品具有更加优异的性能和更高的可靠性。
电子行业是纳米制造技术最早应用的领域。
目前,许多公司都开始使用纳米制造技术制造高性能的电子产品。
借助纳米材料的优异性能和特点,纳米材料可以制造出更小、更轻、更快的芯片和其他电子元器件。
此外,纳米制造技术还在医疗领域、能源领域、材料领域等领域得到了广泛的应用。
在医药领域,纳米制造技术已经被广泛应用于药物输送系统的制造。
这些纳米药物可以通过血液进入人体,通过专门的目标化技术来靶向治疗某些疾病,取得了良好的治疗效果。
例如,通过纳米药物可以更加精确地治疗肿瘤疾病,从而减少对正常人体细胞的侵害。
二、纳米制造技术的未来趋势纳米制造技术虽然在许多领域已经取得了显著的进展,但是仍然有很多可开发的领域。
未来,纳米制造技术将会在以下几个方面取得更好的发展。
1、绿色制造绿色制造是未来纳米制造技术发展的一个重点。
绿色制造是指以节约能源、减少废物排放、降低环境污染和改进生产工艺为目标的制造方式。
绿色制造逐渐得到重视,使得各种精细制造技术得到了很大的改进。
2、纳米传感器未来,纳米传感器将是纳米制造技术的重点研究方向之一。
纳米传感器可以用于检测和监测各种化学分子、生物分子等微小的物质。
这些纳米传感器可以广泛应用于环境监测、食品安全、健康医疗等领域,使得人们的生活更加便利和安全。
3、生命科学生命科学领域是未来纳米制造技术的重要研究领域。
纳米材料的研究进展以及应用前景研究
纳米材料的研究进展以及应用现状1.绪论从概念来说,纳米材料是由无数个晶体组成的,它的大小尺寸在1~100纳米范围内的一种固体材料。
主要包括晶态、非晶态的金属、陶瓷等材料组成。
因为它的大小尺寸已经接近电子的相干长度,它有着特殊的性质。
这些特殊性质所表现出来的有导电、导热、光学、磁性等。
目前国内、国际的科学家都在研究纳米材料,试图打造一种全新的新技术材料,将来为人类创造更大的价值。
纳米科学技术也引起了科学家的重视,在当代的科学界有着举足轻重的地位。
纳米技术的范围包括纳米加工技术、纳米测量技术,纳米材料技术等。
其中纳米材料技术主要应用于材料的生产,主要包括航天材料、生物技术材料,超声波材料等等。
从1861年开始,因为胶体化学的建立,人们开始了对直径为1~100纳米粒子的研究工作。
然而真正意义上的研究工作可以追溯到20世纪30年代的日本为了战争的胜利进行了“沉烟实验”,由于当时科技水平落后研究失败。
2.纳米材料的应用现状研究表明在纺织和化纤制品中添加纳米微粒,不仅可以除去异味和消毒。
还使得衣服不易出现折叠的痕迹。
很多衣服都是纤维材料制成的,通常衣服上都会出现静电现象,在衣服中加入金属纳米微粒就可消除静电现象。
利用纳米材料,冰箱可以消毒。
利用纳米材料做的无菌餐具、无菌食品包装用品已经可以在商场买到了。
另外利用纳米粉末,可以快速使废水彻底变清水,完全达到饮用标准。
这个技术可以提高水的重复使用率,可以运用到化学工业中。
比如污水处理厂、化肥厂等,一方面使得水资源可以再次利用,另一方面节约资源。
纳米技术还可以应用到食品加工领域,有益健康。
纳米技术运用到建筑的装修领域,可以使墙面涂料的耐洗刷性可提高11倍。
玻璃和瓷砖表面涂上纳米材料,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。
这样就可以节约成本,提高装修公司的经济效益。
使用纳米微粒的建筑材料,可以高效快速吸收对人体有害的紫外线。
纳米材料可以提高汽车、轮船,飞机性能指标。
未来纳米材料科学发展方向展望
未来纳米材料科学发展方向展望随着科技的飞速发展,纳米材料科学已经成为当前研究的热点领域之一。
纳米材料的独特性能和应用潜力已经引起了全球科学家和工程师的广泛关注。
未来的纳米材料科学发展将进一步加强对纳米材料的研究,通过改进材料结构和性能,推动纳米材料应用于诸如能源、环境、生物医学、电子器件等领域的突破性创新。
一、改善纳米材料的可控性制备纳米材料的可控性制备是纳米科技的关键。
随着纳米加工技术的不断发展,纳米材料的制备方法越来越多样化,但仍存在一些挑战和困难。
因此,未来纳米材料科学发展的重要方向之一是改善纳米材料的可控性制备。
这需要开发出更加高效、环境友好、一致性较好的制备方法,实现对纳米材料形貌、尺寸、结构和性能的有效控制。
二、探索纳米材料的新型性能及应用纳米材料的尺寸效应、界面效应和量子效应等独特性质使其在传统材料无法达到的领域展现出巨大的应用潜力。
未来纳米材料科学的发展方向之一是探索纳米材料的新型性能及应用。
例如,制备具有特殊光学、电学、磁学、热学性质的纳米材料,以及设计可调控的纳米结构和纳米器件等。
在能源领域,纳米材料可以用于提高太阳能电池的效率、储能材料的性能以及电池的稳定性。
在环境保护方面,纳米材料可以被应用于污水处理、污染物检测和气体吸附等。
在生物医学领域,纳米材料可以应用于肿瘤治疗、疾病诊断以及生物传感器等。
在电子器件方面,纳米材料可以用于柔性电子器件和高速电子器件等新型技术的开发。
三、研究纳米材料的可持续性与环境友好性随着纳米材料的广泛应用,人们也越来越关注纳米材料的可持续性和环境友好性。
未来纳米材料科学将继续研究纳米材料在生命周期中的生产、使用和废弃过程中对环境和人体健康的潜在影响。
通过合理设计纳米材料的制备方法和使用方式,减少对环境的污染和危害,实现纳米材料的可持续发展。
此外,还需要加强纳米材料的毒理学研究,评估纳米材料对人体健康的潜在风险,并开发相关的监测和管理技术。
通过制定严格的标准和规范,确保纳米材料的安全使用和管理。
纳米材料行业发展现状及前景趋势分1
纳米材料行业发展现状及前景趋势分析纳米材料行业发展现状及前景趋势分析纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100 nm)或由它们作为基本单元构成的材料,大约相当于10-100个原子紧密排列在一起的尺度。
纳米材料行业发展现状:在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。
新材料的创新,以及在此基础上诱发的新技术、新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。
纳米材料自问世以来,受到科学界追捧,成为材料科学现今最为活跃的研究领域。
纳米材料根据不同尺寸和性质,在电子行业、生物医药、环保、光学等领域都有着开发的巨大潜能。
在将纳米材料应用到各行各业的同时,对纳米材料本身的制备方法和性质的研究也是目前国际上非常重视和争相探索的方向。
中国在纳米科技领域的研究起步较早,基本上与国际发展同步。
中国已经初步具备开展纳米科技的研究条件,国家重点研究机构及相关高科技技术企业对纳米材料的研究步伐不断加快;在纳米科技领域,我国“十五”、“十一五”期间取得了一批重要的研究成果,在部分领域已达到国际先进水平。
这些都为实现跨越式发展提供了可能。
中国在经济高速发展、在节省能源和资源方面,纳米材料和纳米技术将发挥重要作用。
结合国家战略需求,纳米材料和纳米技术在能源、环境、资源和水处理产业应用近年来出现了良好的开端。
纳米净化剂、纳米助燃剂、纳米固硫剂、用于水处理的纳米絮凝剂等新型产品相继开发成功,在这些产品基础上,发展了一些新型纳米产业,前景看好。
纳米材料行业前景趋势分析:市场成长迅速、国家对高科技新材料产业的重视、中国的纳米材料技术水平的进一步突破、纳米材料与日常起居结合紧密、纳米材料应用领域不断开拓等等这些因素必将使中国的纳米产业未来更加光明。
纳米材料制备和应用技术
纳米材料制备和应用技术随着科技的进步,纳米材料的制备和应用技术越来越成熟,正在成为重要的技术领域之一。
纳米材料是指粒径小于百纳米的物质,具有很多特殊的物理、化学和生物学性质,并具有广泛的应用前景。
本文将介绍纳米材料的制备和应用技术的发展情况和现状。
一、纳米材料的制备技术1、传统制备方法传统制备方法主要包括物理法、化学法、生物法等。
物理法包括溅射法、光化学合成法、热蒸发法、机械合成法等,化学法包括溶胶凝胶法、水热法、组装法、电化学法等,生物法包括基因工程法、细胞工程法等。
这些方法虽然成本比较低,但是制备的纳米材料品质不稳定,品纯度低,且容易受到环境污染,不适用于一些高质量要求或特殊用途的纳米材料制备。
2、先进制备方法随着纳米材料制备和应用技术的发展,先进制备方法逐渐被广泛应用。
其中,纳米结构模板法、分子束外延法、激光化学气相沉积法、磁控溅射法、离子束沉积法等已经成为制备高品质、高稳定性、高纯度、高晶化度纳米材料的有效手段。
二、纳米材料的应用技术1、纳米材料在能源领域的应用纳米材料在能源领域的应用有着广泛的前景。
例如,利用纳米材料制备太阳能电池、燃料电池、超级电容器、锂离子电池等,不仅可以提高能量密度和电化学性能,更可以节约能源消耗和提高能源利用效率。
2、纳米材料在材料领域的应用纳米材料在材料领域的应用同样有着广泛的发展前景。
例如,利用纳米材料制备高强度、高韧性、高导电性、高导热性的材料,可以大幅提高机械强度、导电性、传热性等性能,为电子、光电、精密机械等领域提供高品质的材料选择。
3、纳米材料在医学领域的应用近年来,纳米材料在医学领域的应用愈发受到重视。
利用纳米材料制备生物传感器、纳米药物、纳米成像等,不仅可以提高治疗效果和生物检测灵敏度,更可以实现针对性治疗、高通量筛选等特殊功能。
三、纳米材料应用面临的挑战纳米材料的应用虽然在取得巨大成功的同时也面临着一些挑战。
例如,纳米材料对环境和人体的生态安全具有一定的潜在危害,纳米材料分散性、稳定性、可控性也有待进一步提高,纳米材料的现有制备和应用技术亟待研究,等等。
材料科学中纳米材料设计合成方法创新思路回顾并展望
材料科学中纳米材料设计合成方法创新思路回顾并展望纳米材料作为材料科学领域中的一种重要研究对象,具有独特的物理、化学和生物学性质,广泛应用于能源、电子、医药等领域。
在过去的几十年里,人们不断探索并创新纳米材料的设计和合成方法,推动了纳米材料科学的快速发展。
本文旨在回顾过去的研究成果,并展望未来纳米材料设计合成方法的创新思路。
一、纳米材料设计合成方法的回顾1. 物理法合成纳米材料物理法合成纳米材料是一种利用物理力学原理来制备纳米材料的方法。
常见的方法包括熔融法、气相法和沉积法等。
熔融法是通过高温熔化材料后迅速冷却,使得晶体结构不完全形成,从而形成纳米颗粒。
气相法则是将气相中的原料转化为纳米颗粒,常见的方法有化学气相沉积和物理气相沉积。
沉积法则是将材料溶液通过沉积在基底上的方式制备纳米材料。
2. 化学法合成纳米材料化学法合成纳米材料是利用化学反应原理制备纳米材料的方法,常见的方法包括溶胶-凝胶法、水热法和微乳液法等。
溶胶-凝胶法是通过溶胶的形成和凝胶的固化过程来制备纳米材料,适用于陶瓷材料和金属氧化物等材料的合成。
水热法则是将溶液置于高温高压条件下,利用水的溶解性和反应性来制备纳米材料。
微乳液法是一种在水和界面活性剂的存在下,通过控制溶剂条件和反应条件来制备纳米材料。
3. 生物法合成纳米材料生物法合成纳米材料是一种利用生物体或其代谢产物合成纳米材料的方法。
常见的方法包括植物法、微生物法和酶法等。
植物法是利用植物组织中的物质在适宜条件下还原金属盐或聚集成纳米颗粒。
微生物法则是利用微生物的代谢过程合成纳米材料,例如利用银盐的还原性物质还原成银纳米颗粒。
酶法则是利用酶催化反应来合成纳米材料。
二、纳米材料设计合成方法的展望1. 多组分合成纳米材料当前大多数合成方法仅能制备单一成分的纳米材料,而实际应用中许多需要具有特定功能的纳米材料往往由多种组分构成。
因此,未来的研究应重点探索多组分合成纳米材料的方法。
通过控制不同组分的比例和形貌,可以获得更加复杂的纳米结构和性能。
机械力化学在纳米无机材料制备中的应用
机械力化学在纳米无机材料制备中的应用摘要:本文首先介绍了机械力化学技术的发展情况,然后对机械力化学效应进行了介绍,接着介绍了机械力化学制备纳米材料的基本原理,最后介绍了机械力化学合成纳米材料的应用。
关键词:机械力化学;纳米无机材料;应用一、前言化学领域是有着许多分支的学科,其中机械力化学是一门新兴的交叉型学科,已经成为了一种制备纳米材料的重要方法。
二、机械力化学技术的发展机械力化学法发展历史已久,早在原始社会人们就利用钻木取火,这也是机械力化学法最早的应用之一。
如今,机械力化学仍在人们许多活动领域取得了广泛的应用。
在传统的采矿和军事技术中,爆炸对撞击和摩擦的敏感性的利用就是很好的一个例子。
1893 年Lea 是最早进行有关机械力化学实验的,在研磨HgCl2 时观察到有少量Cl2 逸出,说明HgCl2 有部分分解,而HgCl2 在蒸发的状态下不发生分解,这说明局部温升不是引发分解的原因。
20 世纪20 年代德国的Osywald 对机械力化学的发展做出了重要的贡献,他根据化学能量来源的不同对化学学科进行了分类,首次提出了机械力诱发化学反应的机械化学的分支,并对机械能和化学能之间的联系进行了理论分析,但对机械力化学的基本原理尚不十分清楚。
20 世纪50 年代,Peters 和Cremer 对机械力化学反应进行系统研究并发表了《机械力化学反应》的论文。
直到60 年代末期,机械力化学在材料科学和应用领域取得了关键性的进步,并已经通过球磨技术制备了镍基和铁基氧化物弥散强化合金。
三、机械力化学效应机械力化学效应是通过对物质施加机械力而引起物质发生结构及物理化学性质变化的过程。
在机械力的不断作用下,起始阶段主要是物质颗粒尺寸的减小和比表面积的增大,但是达到一定程度后,由于小颗粒的聚集而出现粉磨平衡,但并不意味着粉磨过程中粉体的性质不变,事实上它会发生诸多的机械力化学效应。
1、晶体结构的变化在超细粉碎过程中,随着机械力的持续作用,矿物的晶体结构和性质会发生多种变化,如颗粒表面层离子的极化变形与重排,使粉体表面结构产生晶格缺陷、晶格畸变、晶型转变、结晶程度降低甚至无定形化等。
纳米材料的发展现状与未来趋势
纳米材料的发展现状与未来趋势近年来,纳米科技已经成为各领域研究的热点,纳米材料作为纳米科技的重要组成部分,也备受关注。
纳米材料由于其特殊的物理、化学和机械性质,在能源、医疗、环境等领域具有广阔的应用前景。
本文将探讨纳米材料的发展现状以及未来的趋势。
纳米材料的发展现状纳米材料的概念最早提出于20世纪80年代,纳米级尺度的制备和研究成为纳米科技的核心内容。
随着纳米科技的深入发展,纳米材料的制备方法也不断创新。
目前,纳米材料的制备方法主要包括溶胶凝胶法、溅射法、气相沉积法等。
这些制备方法的不断演进使得纳米材料的制备更加精确和可控。
纳米材料的应用领域也日益扩大。
在能源领域,纳米材料的高比表面积和特殊的电子性质使其成为新一代的能源材料。
例如,纳米材料在光伏领域的应用已取得重要突破,提高了太阳能电池的效率。
同时,纳米材料在锂离子电池中的应用也取得了显著的进展,提高了电池的充放电性能。
在医疗领域,纳米材料的应用被广泛研究和开发。
纳米材料具有较大的比表面积和良好的生物相容性,可以用于药物传输、肿瘤治疗和医学成像等方面。
例如,纳米药物载体可以提高药物的溶解度和生物利用度,从而增强药效。
同时,纳米材料在肿瘤治疗方面的应用也取得了突破,如纳米磁性颗粒可用于磁性热疗。
此外,在环境领域,纳米材料也发挥着重要作用。
纳米材料可以应用于固体废物的处理、水污染的治理等方面。
例如,纳米材料在固体废物处理中的应用使得废物的资源化利用成为可能,提高了废物处理的效率。
同时,纳米材料在水污染治理方面的应用也被广泛研究,如纳米颗粒可以用于废水的吸附和催化降解。
纳米材料的未来趋势纳米材料的未来发展将在以下几个方向上取得突破。
首先,纳米材料的精确制备方法将得到进一步发展和改进。
现有的纳米材料制备方法仍然存在着一定的局限性,例如制备过程复杂、成本高昂等问题。
新的纳米材料制备方法将更加精确和可控,以满足更多领域的需求。
其次,纳米材料的性能优化仍然是研究的重点。
我国纳米材料技术发展现状、挑战与对策
我国纳米材料技术发展现状、挑战与对策大家好,今天我们来聊聊我国纳米材料技术的发展的现状、挑战以及对策。
让我们来了解一下什么是纳米材料技术。
纳米材料技术是一种研究和开发尺寸在1-100纳米之间的材料的技术。
这种材料具有很多特殊的性质,比如说它们的物理、化学和生物学性质都会发生很大的变化。
这些性质使得纳米材料在很多领域都有很大的应用前景,比如说能源、环保、医疗等。
我国在纳米材料技术方面的发展现状是怎样的呢?总体来说,我国在纳米材料技术方面已经取得了很大的进展。
在过去的几年里,我国政府和企业都在大力支持纳米材料技术的研究和发展。
据我了解,我国已经成为了世界上纳米材料技术研究和产业化最活跃的国家之一。
在很多领域,我国都已经取得了世界领先的成果。
比如说在纳米电池、纳米传感器、纳米复合材料等方面,我国都已经取得了很大的突破。
尽管我国在纳米材料技术方面取得了很大的进展,但是我们还面临着很多挑战。
我们的科研投入还不够充足。
虽然政府和企业都在大力支持纳米材料技术的研究和发展,但是相对于其他发达国家来说,我们的投入还是不够多的。
我们的人才储备还比较薄弱。
纳米材料技术是一项高度专业化的技术,需要大量的专业人才来进行研究和开发。
目前我国在这方面的人才储备还比较不足。
我们的国际合作还不够紧密。
虽然我们在很多领域都取得了世界领先的成果,但是我们还需要加强与其他国家和地区的合作,共同推动纳米材料技术的发展。
面对这些挑战,我们应该采取什么样的对策呢?我们应该加大科研投入。
政府和企业应该加大对纳米材料技术研究和发展的资金支持,吸引更多的人才投身于这个领域。
我们应该加强人才培养。
学校和科研机构应该加强对纳米材料技术专业人才的培养,提高我国在这一领域的人才储备。
我们应该加强国际合作。
我们应该积极参与国际交流和合作,与其他国家和地区共同推动纳米材料技术的发展。
我国在纳米材料技术方面已经取得了很大的进展,但是我们还面临着很多挑战。
面对这些挑战,我们应该采取相应的对策,加大科研投入、加强人才培养和加强国际合作,共同推动纳米材料技术的发展。
纳米纤维素的制备及应用研究进展
直径 5 ~ 70 nm,
长度 100 ~ 250 nm
低分子量糖,醇类
细菌合成
直径 20 ~ 100 nm
纤维素微纤丝( MFC)
1 纳米纤维素的制备方法
径 10 ~ 30 nm、长度 50 ~ 200 nm 的棒状纳米纤维素
素无定形区分子排列松散,从天然纤维素中提取分
纳米纤维素的最优工艺条件为:反应时间 204 min、
Key words:nanocellulose; preparation; nanomaterials;广义上是指至少有一维空间尺
( cellulose nanoparticle, CNP) 等 [1] 。 按照纳米纤维
纤 维 素 纳 米 晶 体 ( cellulose nanocrystals, CNCs;
理,或是将用于制备纳米纤维素的纤维原料进行羧
低;磷酸对纤维素的溶解能力强,溶解速度快,不易
物理、化学或者酶处理的方法对纤维原料进行预处
甲基化预处理
[12]
,在纤维表面引入电荷,然后再进
纳米纤维素对纤维素降解损伤小,操作简单,成本
因反应 时 间 过 长 而 导 致 纤 维 素 的 过 度 降 解。 欧
度、高结晶性、高比表面积、高抗张强度等特性,能够明显改善材料的光、电、磁等性能,在复合材料、精细化工、医
药载体、药物缓释等领域具有广阔的应用前景。 进一步对纳米纤维素的结构进行调控,在纳米尺度操控纤维素
超分子聚集体,进行结构设计并组装出稳定的功能性纤维素基纳米材料,即可以纤维素为原料构建具有优异性
能的生物质材料,这也正是目前生物质材料和纤维素科学领域的研究热点。 概括了目前纳米纤维素的主要制备
素主要分为 3 种类别,如表 1 所示。 如果在分子水
纳米材料科学的前沿研究与应用发展
纳米材料科学的前沿研究与应用发展在当今科技发展的时代,纳米技术已经成为了一种前沿科研领域,对于新材料的探索和应用发展起到了极为重要的作用。
纳米材料,指的是尺寸在10^-9米级别的物质,具有一些非常独特的性质,如高比表面积、高强度、高硬度和低排斥力等。
这些特点让纳米材料成为了一种研究和应用的热点领域。
本文将介绍一些关于纳米材料方面的前沿研究和应用发展的相关内容。
1. 纳米材料的制备与控制纳米材料的制备和控制是纳米材料科学研究的基础,是实现纳米材料应用的前提。
目前,主要有三种方法进行纳米材料的制备,包括物理法、化学法和生物法。
其中物理法包括惰性气体凝固、溅射和热蚀刻法等;化学制备法包括水热合成、溶胶凝胶、浸渍沉淀和化学气相沉积等;生物制备法则包括生物矿化法、生物酶法,以及利用微生物和细胞生成的纳米材料等。
然而,纳米材料较小粒径所带来的难以对其进行精确的制备和控制也是制约其发展的因素。
因此,人们提出了一系列制备和控制纳米材料的方法,如溶液方法,等离子体化学方法、生物纳米技术和表面功能化等。
这些技术方法能够使得纳米材料的合成和控制更具精准度,为纳米材料的应用提供了更好的可能。
2. 纳米材料的应用发展(1) 纳米材料在能源领域的应用纳米材料在能源领域中的应用是其发展和应用的主要方向之一。
如,利用纳米材料的优异特性,成功地制备了一些高性能锂离子电池电极材料。
此外,纳米材料同样在太阳能电池、燃料电池、水分解等领域发挥了极大的作用。
(2) 纳米材料在医药领域的应用另一个纳米材料的应用领域是医药领域,如开发小分子修饰纳米材料的药物导向传输平台、制造替代免疫器官等。
此外,利用纳米金属粒子的吸收和散射我们可以很好地实现癌症的治疗。
(3) 纳米材料在环境领域的应用在环境领域,纳米技术同样得到了广泛的应用,如控制大气中的有害气体的排放、污水的处理、油烟处理等。
利用分散纳米材料的特性,使其在各种化学和物理反应中表现出优异的性能,从而为环境治理提供了新的途径。
先进材料制备技术的研究现状与未来发展方向
先进材料制备技术的研究现状与未来发展方向近年来,随着社会科技的不断进步,材料科学也在不断的发展和完善。
其中,先进材料制备技术是材料科学领域的重要组成部分,它的研究与发展关系到现有技术的优化和升级,也承载着未来科技的应用与发展。
本文将就这一话题,分享一些现有的先进材料制备技术和未来的发展方向。
一、现有的先进材料制备技术1. 纳米材料制备技术纳米材料制备技术是一种将材料制备至纳米尺度的技术,其中最常见的是溶胶-凝胶法、高温合成法、气相沉积法和溶液法等。
这种技术制得的纳米材料比传统的同类材料拥有更高的比表面积和更多的活性位点,使其在能量、化学、光学和生物等各个领域都有着广泛的应用。
2. 材料电子束处理技术材料电子束处理技术通过射束对材料进行加工和改性,是一种非常有效的材料处理手段。
这种技术可以利用高能电子束对材料进行刻蚀、表面改性和再生等操作,得到一些具有特殊性质和性能的材料,比如说纳米材料、功能薄膜等。
3. 3D 打印技术3D 打印技术是指通过一种层层叠加的方式生产三维实体模型的技术,需要使用计算机辅助设计进行模型的建立。
3D 打印技术可以大大缩短材料制备周期和减少废弃材料的产生,同时在制备高难度组件方面也有着显著的优势。
3D 打印技术具有很广泛应用价值,例如食品、医疗和航空等领域。
4. 聚合物材料技术聚合物材料技术是一种利用特定的化学反应,将单体转化为高分子材料的技术。
目前在聚合物材料制备中,常用的方法包括自由基聚合、离子聚合、环状开环聚合和交联聚合等。
聚合物材料属于一类高分子材料,由于其良好的加工性、透明性、耐磨性等物性表现,因此在许多领域具有广泛应用,如塑料、橡胶、涂料等等。
二、未来的发展方向1. 智能材料制备技术随着电子、计算机技术和通讯技术的发展,智能材料制备技术得以迅速发展。
这种材料可以响应特定的外部刺激,如声音、温度、电场等,从而实现一些特定的功能。
未来的智能材料将首先用于智能城市、智能家居、人工智能等领域,并且具有广阔的应用前景。
纳米技术在材料科学与工程中的创新进展
纳米技术在材料科学与工程中的创新进展摘要:纳米技术作为一种应用广泛的前沿技术,已经在材料科学与工程领域取得了许多创新进展。
本文将重点介绍纳米技术在材料制备、表征、性能优化以及应用领域的创新应用。
通过对纳米技术的发展历程和当前研究热点的分析,以期为材料科学与工程领域的研究者提供一个全面的了解和展望。
1. 引言材料科学与工程一直以来都是科学研究和工程应用的重要领域。
随着纳米粒子的制备、表征和控制能力的提高,纳米技术作为一种新兴技术逐渐引起了人们的关注。
纳米技术的研究和应用不仅在材料制备方面具有巨大潜力,也能够为材料的性能改善和应用领域的拓展提供新的思路。
下面将分别从纳米材料的制备、表征和性能优化以及应用领域的创新应用三个方面展开论述。
2. 纳米材料的制备纳米材料的制备是纳米技术的核心内容之一。
目前,有许多不同的方法可用于制备纳米材料,如溶液法、气相法、机械法等。
其中,溶液法是一种常用的纳米材料制备方法,通过控制反应条件和添加剂的种类和浓度可以得到具有不同形貌和大小的纳米颗粒。
气相法主要是通过热蒸发、热分解和溅射等方法制备纳米材料,其优点在于制备过程简单,可以得到高纯度的纳米材料。
机械法主要包括球磨法和电化学法等,通过机械能和电化学作用将材料粉末制备成纳米尺寸的颗粒。
这些制备方法的发展为纳米材料的大规模制备提供了可行的途径。
3. 纳米材料的表征纳米材料的表征是纳米技术研究的重要环节。
由于纳米材料具有特殊的尺寸效应和表面效应,对纳米材料的表征需要更高的分辨率和敏感性。
目前,常用的表征手段包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)等。
SEM可以直观地观察纳米颗粒的形貌和分布情况,TEM 能够观察到纳米颗粒的晶体结构和晶界等细节,AFM则可以提供纳米尺度的表面形貌和力学性质等信息。
此外,还可以利用X射线衍射(XRD)、拉曼光谱、热重分析(TGA)等技术对纳米材料进行结构、组成和热力学性质的分析。
新材料制备技术的研究现状和未来发展趋势
新材料制备技术的研究现状和未来发展趋势随着科技的进步和经济的发展,新材料制备技术已经成为了当今科技领域中备受关注的一个热门话题。
尤其是在工业、建筑、医药等领域中,新材料制备技术的应用愈发广泛。
本文将就新材料制备技术的研究现状和未来发展趋势进行探讨。
一、新材料制备技术的研究现状(一)材料基础研究作为新材料制备技术的基础,材料基础研究一直是研究者们的关注重点。
这一领域包括材料结构、材料性质等方面的研究。
目前,一些前沿的材料研究已经取得了一些重要的成果。
例如,石墨烯这一材料就非常的抢眼,其特殊的结构和性质,使得它在电子器件、传感器、能源等领域中具有非常大的潜力。
(二)材料制备技术对于材料制备技术来说,新材料的合成方法和制备工艺是研究的重点。
而单一的物理或化学合成方法已经不能完全满足制备新材料的需求,为此研究人员必须追求多效合成方法。
在新材料制备技术领域,还有一些其他的研究方向,包括材料构筑、表面改性、纳米材料等等。
这些研究方向都有望为新材料的开发提供更多的思路和技术支持。
二、新材料制备技术的发展趋势(一)材料以性能为导向在新材料的开发中,性能已经成为了最主要的考虑因素,这一点也体现在了材料的研究和开发上。
例如,在医药领域中,强调的是材料的生物相容性,而在能源领域中,则重点在于材料的传导性。
(二)新材料的基础研究将更深入材料科学的研究已经从简单的物理化学范畴中超出来,向更加复杂和综合的材料学科发展。
未来的材料研究将更加注重基础研究的深度,以从根本上解决一些材料领域中已知的问题。
(三)纳米材料将成为重点发展对象随着科学技术的不断发展,纳米材料已经被认为是下一代材料,其在工业、能源等领域中都有广泛的应用前景。
预计在未来的10年里,纳米材料将成为材料科学中非常活跃的领域之一,其应用前景不可限量。
(四)材料专业将渗透到多个领域整个经济和社会的快速发展,将带来越来越多的机会和挑战。
材料专业的人才将更加广泛的应用于各行各业。
机械力化学研究进展及其展望
产 生极 高 的 碰撞 力 , 高达 3 3 ~6 1 P , . 0 . 8G a 如此 高
量也 不会 超过 4e 即使 光化 学 的紫 外 电子 的能 量 V, 也不 会超 过 6e 而 机 械 力作 用 下 , 激发 状 态 诱 V, 高
发 的等离 子体产 生 的电子 能量则 可 以超过 l e 因 O V, 此 机械力 化学 有可 能进行 通常情 况 下热化 学所 不能
型并进 行分 析计算 , 果表 明 : 能球磨 过程 中 固态 结 高 反应 能否发 生取决 于体 系在 球磨 过程 中能量 升高 的 程度 , 而反应 完成 与 否则受 体系 中 的扩散过 程控 制 ,
一
和应 变 , 粒 内产 生 品格 缺 陷 和 晶形 转 变 、 晶化 , 颗 非 显著 降低 了元素 的扩 散激 活能使 得组元 间在 室温下
可显 著进 行原子 或 离 子 扩散 , 粒不 断 冷 焊 、 颗 断裂 、 组织 细 化 、 成 了无 数 的扩 散一 应偶 ; 形 反 另一 方 面 因 颗 粒表 面化学 键断 裂 而 产生 不 饱 和 键 、 自由离 子 和
1 )等 离子体 模 型_ 1 l 机械 作用 等 离 子体 模 型认 为 , 机械 力作 用 导 致
晶格 松弛 与结构 裂解 , 激发 出高 能 电子和 等离子 区 。
一
般 的热 化学 反应 温度 在 高 于 10 0 C时 , 0 电子 能
纳米材料研究现状及展望
纳米材料研究现状及展望摘要:在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,组件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。
新材料的创新,以及在此基础上诱发的新技术。
本文介绍了纳米材料和纳米技术的概念及其研究进展,并且着重介绍了纳米科技在催化、精细化工、浆料等领域的应用。
关键词:纳米材料纳米技术研究进展应用发展趋势前言新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。
纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。
1、纳米材料和纳米技术什么是纳米材料?纳米[1](nm)是长度单位,一纳米是十亿分之一米,对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000—8000nm,人体红细胞的直径一般为3000—5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。
一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1—100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。
所谓的纳米技术是指:用纳米材料制造新型产品的科学技术。
它是现代科学(混沌物理、量子力学、介观物理学、分子生物学、化学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术、合成技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如纳米电子学、纳米材料学、纳米机械学等。
在新的世纪,纳米将带给人们更多功能超常的生产生活工具,把人们带向一个从未见过的生活环境。
纳米颗粒材料的制备及应用前景
纳米颗粒材料的制备及应用前景近年来,随着纳米技术的发展,纳米颗粒材料逐渐成为了研究的热点。
纳米颗粒材料具有小体积、巨大比表面积、优异光、电、磁、光催化性质等优点,广泛应用于催化、传感、光电、生物医药等领域。
本文将从制备技术、应用前景等方面详细介绍纳米颗粒材料。
一、制备技术1. 物理法制备纳米颗粒材料物理法主要包括化学气相沉积法(CVD)、物理气相沉积法(PVD)和溅射法等。
其中,CVD法是一种相对成熟的方法,可以制备高质量的有机纳米材料。
该方法的核心是通过控制气相反应条件及反应时间来控制纳米材料的形貌和大小。
在这些方法中,还有一些最新的方法,例如闪烁法、激微波法等。
2. 化学法制备纳米颗粒材料化学法主要包括化学气相沉积法(CVD)、溶胶-凝胶法、微乳液法等。
其中制备氧化物合成材料的溶胶-凝胶法是一种简单、重复性高、成本低的方法。
室温沉淀法是另一种常见的方法,可用于制备纳米颗粒。
纳米粒子的合成还包括水相和非水相反应。
水相反应主要用于合成金属纳米颗粒,非水相反应用于非晶态合成纳米颗粒。
3. 生物法制备纳米颗粒材料生物法制备纳米颗粒材料包括微生物发酵法、生物还原法、酶法等。
这些方法主要基于某些微生物或生物因素的生理反应以及其对宿主的影响。
例如,菌物可以通过微生物发酵法制备纳米颗粒材料。
该方法具有较高的重复性和可控性,可以得到高纯度和均一分布的纳米材料。
此外,某些酶也可以作为催化剂来制备纳米材料。
二、纳米颗粒材料的应用前景1. 催化应用纳米颗粒材料在催化领域应用广泛。
例如,纳米颗粒催化剂可用于制备燃料电池、汽车尾气去除、柴油发动机和航空发动机催化设备等。
纳米颗粒材料也可以被用于生产环保电缆、塑料橡胶等。
2. 生物医药应用纳米材料的独特物理和化学特性为生物医药应用领域提供了重要的机会。
例如,可以利用纳米颗粒作为载体来输送药品,同时还可以实现局部或靶向释放药品,提高药物的疗效。
此外,纳米技术还可用于生物成像、诊断、监控和治疗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械力化学法制备纳米材料的研究进展作者:熊夏华(201020117451)指导老师:刘仲武教授广州市华南理工大学材料科学与工程学院摘要:机械力化学技术是一门新兴交叉学科,已成为制备纳米材料的一种重要方法,尤其是在制备纳米陶瓷材料和纳米复合材料上的应用更加广泛。
本文主要综述了近几年来利用机械力化学法在制备纳米材料方面的研究现状,并总结了其优势和不足,进而展望了其发展趋势。
关键词:机械力化学法;纳米材料;研究现状;发展趋势Research Progress of Preparing Nano-materials byMechanochemical ProcessStudent:X.H. Xiong(201020117451) Instructor:Prof. LiuSchool of Material Science and Engineering,SCUT,GuangzhouAbstract:Mechanochemical Process is a new cross-disciplinary.It has been an important way of preparing naomaterials,especially in the application of preparing nano-ceramics and nano-composites.This paper aims to review the current research status of obtaining nano-materials via mechanochemical synthesis.What’s more,its merits and demerits are summarized in this paper in order to well prospect its development trend.Key words:mechanochemical method;nano-materials;research status;development trend1.概述机械力化学技术(Mechanochemical Process)也称高能球磨法(high-energy ball milling)是利用机械能诱发化学反应和诱导材料组织、结构和性能的变化,来制备新材料或对材料进行改性处理。
机械力化学技术从人们开始研究至今,已发展成为一门古老而又新兴的科学,也因此越来越引起材料、冶金、生物等行业研究者的广发兴趣。
尤其是成为了制备超细材料的一种重要途径,随着研究不断深入,现已广泛用于制备各种纳米材料。
1.1机械力化学技术的发展机械力化学法发展历史已久,早在原始社会人们就利用钻木取火,这也是机械力化学法最早的应用之一。
如今,机械力化学仍在人们许多活动领域取得了广泛的应用。
在传统的采矿和军事技术中,爆炸对撞击和摩擦的敏感性的利用就是很好的一个例子。
1893年Lea是最早进行有关机械力化学实验的,在研磨HgCl2时观察到有少量Cl2逸出,说明HgCl2有部分分解,而HgCl2在蒸发的状态下不发生分解,这说明局部温升不是引发分解的原因。
20世纪2 0年代德国的Osywald对机械力化学的发展做出了重要的贡献,他根据化学能量来源的不同对化学学科进行了分类,首次提出了机械力诱发化学反应的机械化学的分支,并对机械能和化学能之间的联系进行了理论分析,但对机械力化学的基本原理尚不十分清楚。
20世纪50年代,Peters和Cremer对机械力化学反应进行系统研究并发表了《机械力化学反应》的论文。
直到60年代末期,机械力化学在材料科学和应用领域取得了关键性的进步,并已经通过球磨技术制备了镍基和铁基氧化物弥散强化合金。
随后几十年,机械力化学法广泛用于非晶材料、纳米材料、陶瓷材料和纳米复合材料制备的研究[1,2]。
1.2机械力化学制备纳米材料的基本原理机械力化学方法制备纳米材料的基本原理[3]是利用机械能来诱发化学反应和诱导材料组织、结构和性能变化,以此来达到制备纳米材料的目的。
一般来说,有固相参加的多相化学反应过程是反应剂之间达到原子级别结合、克服反应势垒而发生化学反应的过程,其特点是反应剂之间有界面存在。
影响反应速度的因素有反应过程的自由能变化、温度、界面特性、扩散速度和扩散层厚度等。
粉末颗粒在高能球磨过程中机械力化学作用使晶格点阵排列部分失去周期性,形成晶格缺陷,发生晶格畸变。
粉末颗粒被强烈塑性变形,产生应力和应变,颗粒内产生大量的缺陷,颗粒非晶化。
这显著降低了元素的扩散激活能,使得组元间在室温下可显著进行原子或离子扩散;颗粒不断冷焊、断裂和组织细化,形成了无数的扩散/反应偶,同时扩散距离也大大缩短。
应力、应变、缺陷和大量纳米晶界、相界的产生,使系统储能很高(达十几kJ/mol),粉末活性大大提高,甚至产生多相化学反应,从而成功合成新物质。
1.3 固体物质在机械力作用下的变化物质受到机械力作用时尤其是受到粉碎材料的机械力时,如球磨、冲击等,常因此受到激活作用并使固体物质产生一系列变化[4]。
若体系的化学组成不发生变化时称为机械激活;若化学组成或结构发生变化,则称之为机械化学激活。
1.3.1 物理效应固体物质受到球磨冲击等机械作用时,其物理状态发生一系列变化,其最初表现出的就是颗粒粒径变小,相应的比表面积增大,根据相关文献记载和以往的研究表明,颗粒粒径虽然随着粉磨时间的增加而不断地减少,然而比表面积却会在经过一定球磨时间后下降。
其中典型的一个例子是利用粉磨方法制备Al2O3粉末,根据图1中Al2O3粉末比表面积与粉磨时间的关系可知:所处理的Al2O3粉末经120 min粉磨之后,比表面积达到最大值,之后继续粉磨比表面积急剧下降,甚至比原来的比表面积还小,其原因是颗粒发生了严重团聚。
因此,为了提高物料细度,从而提高物料的活化程度,应该选择合适的处理时间[5]。
图1 Al2O3粉末比表面积与粉磨时间之间的关系Fig.1 Relationship between specific surface area and grinding time 此外,在细化的过程当中,颗粒粒径的减少,伴随着颗粒裂纹的产生。
裂纹的存在,使颗粒产生应力集中,当应力积累到一定程度时,就会使材料发生破碎而产生粒度的细化,必然导致物料密度的变化。
如图2所示,物料密度随着球磨时间减少而减少,其外观密度的变化是由于颗粒大小级配不一造成的;而真密度的变化则是由于晶体物质结构的变化或是发生了化学反应。
粉磨作用可能会使体系结晶程度减弱,或是发生化学变化生成新生物。
图2 密度随粉磨时间的变化Fig.2 Density of the mixture as a function of grinding time1.3.2 结构的变化固体物质经过机械力作用引起的结构变化直接影响到随后化学反应的进行,主要体现在物体结晶度的退化,表面层结构发生破坏,并趋于无定形化和晶形转变,同时内部缺陷增多,晶格发生畸变。
从而使表面位能更高,活化能更小,表面活性更强[6]。
雪硅钙石C5S6H5经过240 min粉磨后,粉末产物已完全无定形化。
1.3.3 化学变化混合物料间的反应主要有含结晶水或者OH羟基的脱水,体系反应活化能的降低,形成新化合物的晶核或细晶,形成合金或固溶体以及化学键的断裂以至体系发生通常条件下不会发生的化学反应。
可是机械处理的过程冗长,耗能极大导致反应往往不能进行完全,因此,常通过后续热处理或者粉磨中加入其他物质加速反应的进行。
例如利用高岭土、CaO、Ca(OH)2和Al2O3合成C3AH6水合物中,加入三水铝石后的反应更加完全,如下面的方程式所示:1/ 2[Al4Si4O10 (OH) 8 ] + 3Ca (OH) 2 + H2O=3CaO · Al2O3 ·6H2O + 2SiO22Al (OH) 3 + 3Ca (OH) 2=3CaO · Al2O3 ·6H2O2.机械力化学法制备纳米材料的研究进展利用机械力化学法制备纳米材料,可采用常用的化学原料,具有成本低、易工业化等特点。
采用机械力化学技术已经制造出了Fe、Ti、Cu、Ni等纯金属纳米材料和一系列合金纳米材料,如Fe-Al、Ni-Si、Fe-Cu 等以及纳米复合材料,如金属碳化物、氮化物、氧化物、硅化物纳米材料。
此外,采用高能球磨技术处理金属与陶瓷混合粉末,制得了纳米陶瓷复合材料,如Iwase等球磨Ti/Si3N4时,制得了TiN-TiSi2复合纳米粉末,进一步制备出了纳米陶瓷复合材料,这种材料在高温下具有很强的超塑性质[7]。
2.1 机械力化学法制备纳米陶瓷材料的研究进展Daniel Michel,Francoise Faudot,Eric Gaffe等[8]掺入各种外加剂机械力化学法制备出多种稳定立方ZrO2,将单斜型ZrO2分别与MgO,CaO,Y2O3外加剂放入行星磨的球磨罐内,氩气气氛,进行混合,经24 h粉磨,发生如下反应:0.8ZrO2+0.2CaO→Ca0.2Zr0.8O1.8(萤石型)0.8ZrO2+0.2MgO→Mg0.2Zr0.8O1.8(萤石型)0.8ZrO2+0.09Y2O3→Y0.18Zr0.82O1.81(萤石型)0.6ZrO2+0.2CaZrO3→Ca0.2Zr0.8O1.8(萤石型)经XRD及透射电镜分析,制备的各种稳定ZrO2的颗粒尺寸为10~40 nm,具有较大的形变,达0.7%~1.5%。
利用该原理还制备了纳米Al2O3和TiO2粉体。
近几年,利用机械力化学法制备纳米陶瓷材料有了进一步的发展,如BaTiO3晶体、PZT陶瓷、尖晶石型铁酸盐等。
2.1.1 BaTiO3纳米晶BaTiO3晶体[9]是最早被发现的铁电陶瓷,具有良好的介电性、铁电性和压电性能。
利用其电阻-温度特性、电压-电阻特性以及电流时间特性,BaTiO3分别在生产压电驱动器、多层陶瓷电容器以及具有正的温度系数的电阻器和各种家用电器上得到广泛的应用。
吴其胜等[3]已经利用机械力化学法制备了单相的BaTiO3纳米晶体。
在氮气保护或者真空条件下下,以BaO (粒度d50= 351 μm)和锐钛矿型TiO2 (粒度d50= 0. 39 μm)混合粉体为主要原料,采用ND2型行星球磨机,磨机的操作参数为公转转速为300 r/ min,自转转速为75 r/ min,球料质量比为20:1,并以三乙醇胺为助磨剂进行高能球磨,在机械力化学作用下成功合成了BaTiO3纳米晶并讨论了其反应机制。
其机制为机械力的作用使混合物粉体颗粒细化,晶粒尺寸减小,转变为无定形化,提高了粉体的反应活性,并可能形成BaTiO3 晶核;无定形混合物——晶核基元在机械力作用下发生固相反应,机械力通过增加扩散系数,降低固相反应的活化能来促进固相反应。