超分子分子自组装
超分子化学和分子自组装的研究进展与应用

超分子化学和分子自组装的研究进展与应用简介超分子化学和分子自组装是当今化学领域的一个重要分支,它们研究物质在分子层面的组装和性质,为跨学科和应用研究提供了强有力的支持。
这两种研究方法既具有基础研究的价值,又拥有广泛的应用前景。
本文旨在对超分子化学和分子自组装的基本概念、研究进展和应用进行简述。
一、超分子化学和分子自组装的概念超分子化学是指物质在分子层面上自发形成的具有特殊功能和性质的超大分子结构。
超分子化学主要研究分子之间的非共价相互作用,如氢键和静电相互作用等,这些相互作用导致了分子之间的自组装。
分子自组装是指在无外加力作用下,分散的分子自然而然地自组装成为更大、更复杂的结构。
分子自组装是超分子化学的实现途径,通过调节分子相互作用的强度和性质,可以实现自组装的控制和序列化。
超分子化学和分子自组装是相互补充的研究方法,它们共同构建了超分子材料领域的理论基础。
二、超分子化学和分子自组装的研究进展1、分子组装的分级分子自组装是一种高度有序的过程,分子的排列方式和结构的形成由分子之间的相互作用决定。
分子组装可分为一级、二级和三级。
一级自组装是指单个分子自组装成为一个比单个分子大、更定向和有序的结构。
二级自组装是指多个单个分子组装成为更大的孤立分子或超分子。
三级自组装是指在大分子中形成的超分子结构。
2、分子组装的驱动力分子自组装的驱动力是分子之间的相互作用力。
这些作用力通常包括氢键、范德华力、静电作用、π-π堆积和金属配位等。
不同的相互作用力对自组装的形成有不同的影响。
例如,氢键作用使分子之间的距离缩短,范德华力能够使分子低能地堆积在一起。
因此,在分子组装的过程中,属于不同相互作用力的能量对比显得十分重要。
3、组装体系的设计分子组装的研究和应用通常需要设计具有特定空间结构和相互作用的原料。
这些原料可以是单个分子或已经组成的超分子。
例如,在纳米电子学中,通过设计分子和超分子间的相互作用力构建器件,可以实现分子电子器件的组装。
超分子自组装的结构及其性质研究

超分子自组装的结构及其性质研究超分子自组装是指分子间通过非共价相互作用形成的一个有序的结构体系。
超分子自组装在化学、生物、纳米科技等领域具有重要应用价值。
在这个可控的自组装过程中,分子间的相互作用被精确地调整,以实现特定的结构和性能。
自组装的超分子结构从最简单的分子晶体、液晶、胶体,到复杂的蛋白质、DNA和纳米结构等,广泛存在于自然界和人工设计的各种材料和化合物中。
相较于普通的化学合成和物理制备方法,超分子自组装具有独特的优势:一是可以在理论上预测自组装的结构和性能;二是自组装可以在常温下,以定向和可控的方式进行,不需要额外的能量输入;三是所得到的超分子自组装体可与大分子、导体等组成新的结构层次,形成一类高级材料。
超分子自组装的研究现状:超分子自组装的研究可以追溯到上世纪50年代。
随着近年来分子自组装理论的不断发展和实验技术的不断进步,大量的理论研究和实验成果应用于化学、生物、物理和工程等领域。
其中,常见的自组装结构有:1. 胶束:由复杂的分子结构自组装而成,通常是水溶液中的表面活性剂、脂肪酸和聚合物等分子构建;2. 溶胶-凝胶:由单体或高分子的自组装形成孔洞结构,在化学、生物学、环境科学等领域具有重要的应用;3. 液晶:由分子间作用力在杂化体系中形成非常有序的分子排列,常被应用于电子技术中的显示器;4. 天然的自组装结构:指自然界中生物大分子(DNA, RNA, 蛋白质)的自组装结构,如细胞膜、病毒衣壳等。
在自组装过程中,分子需要满足一定的条件和相互作用类型才能形成有序的超分子结构。
一般包括分子间的范德华力、静电力、氢键等即非共价相互作用力,以及以下条件:1. 能提供建立氢键、范德华力、离子偶极、极化等非共价相互作用的分子性质;2. 具有形成结晶、液晶、胶体、自组装薄膜等形态的分子(例如聚酰胺纳米复合体等);3. 构建分子自组装的有利条件(pH控制、形态设计等)。
近年来,随着纳米科技的发展,开发新的超分子自组装体和材料成为了一个热门的研究方向。
超分子自组装技术的研究与应用

超分子自组装技术的研究与应用超分子自组装技术是一种基于分子尺度上的组装和自组装的技术,它是化学、物理学、材料科学等学科交叉的前沿科学领域。
随着科技的发展和研究的深入,超分子自组装技术的研究和应用已经得到不断地推进和完善,成为目前前沿科学领域中备受关注的研究方向。
一、超分子自组装技术的概念超分子自组装技术是指利用分子间相互作用力,如范德华力、氢键、静电作用力等,进行有序组装和自组装的技术,从而形成具有特定功能和性能的超分子结构。
它既与传统的构筑方法不同,又是一种全新的自组装方法。
与传统方法相比,超分子自组装的优势主要表现在以下几个方面:首先,超分子自组装是一种自然的组装方式,可以得到高度有序的微纳米结构,这对于微纳米半导体器件、微纳米晶体和新型生物医用材料等有很大意义;其次,超分子自组装是一种非常灵活和可控的组装方式,可以根据所需的结构和性能调整设备参数、反应体系和组装条件,从而得到满足需求的微纳米结构;最后,超分子自组装具有成本低廉和易于大规模生产等优点,可以应用于许多领域,如生物医学、生物传感器、光电材料等。
二、超分子自组装技术的研究方法超分子自组装技术主要包括自组装控制和晶体生长控制两种方法。
自组装控制是一种利用分子之间特定相互作用的自组装方法,可以在液态或固态下得到高度有序的微纳米结构;晶体生长控制是一种利用物质在多相界面上的自组装方式,可以得到具有晶体结构的材料。
超分子自组装技术的研究方法包括传统试验方法和计算机模拟方法。
传统试验方法通常采用透射电子显微镜、原子力显微镜、X 射线衍射等技术,对组装结构进行表征和分析;计算机模拟方法则通过计算机仿真模拟分子间相互作用力,以反映组装结构和性能的变化规律。
三、超分子自组装技术在生物医学、传感器和光电材料等领域的应用1.生物医学方面的应用:超分子自组装技术可以制备一种新型的基于核酸荧光探针材料,用于细胞信号传递和病毒检测等方面研究,具有很高的灵敏度和特异性;超分子自组装技术还可以利用DNA的自组装特性,构筑出具有药物缓释功能的纳米微粒,并能够实现药物的定向输送和减少副作用等优点;超分子自组装技术与纳米技术相结合,可以制备一种新型的仿生荷磁性载体,该载体结构稳定,具有较强的磁活性和细胞特异性吸附,可用于癌症诊断和治疗等方面。
超分子化学研究中的自组装现象

超分子化学研究中的自组装现象超分子化学研究是当今化学界的热门研究领域之一,它以分子为基本单位,研究分子之间的相互作用和组装形成的结构性质。
其中,自组装现象是超分子化学研究中的一个关键点。
在这篇文章中,我们将探讨超分子化学研究中的自组装现象,从原理、应用等方面展开讨论。
一、自组装现象的基本原理自组装是指由分子之间的相互作用而形成的结构。
自组装具有以下几个基本特征:(1)无需外界能量的干扰即可自发进行;(2)由初始分子集合形成;(3)由静态平衡所确定。
其中,分子之间的诸多相互作用力是自组装现象的基本驱动力,其中包括静电作用力、范德华力、氢键作用力、金属配位作用力等。
自组装是一个自我组织的过程,涉及到分子之间的相互作用。
分子之间的作用力可为黏附力、范德华力、氢键力、离子键、金属配位键、静电力、π-π相互作用、水合力、疏水作用、磁相互作用等,而这些作用力的大小和特性不同,在自组装过程中发挥着不同的作用。
二、自组装现象的应用A、超分子化学超分子化学是指基于分子间非共价相互作用而实现物理、化学、生物学等领域的功能材料设计和构建。
这项技术通常涉及到自组装现象,可以用于制造材料、用于催化、在药物研究、基因方法和高分子合成等。
B、纳米技术纳米技术是一种能够制造纳米尺寸的物质和工具的知识体系。
纳米技术中的自组装技术是通过分子间的相互作用可以形成不同的结构,控制体系在纳米尺度下的结构和性能。
C、药物研究在药物研究中,自组装技术可以用于开发新型药物,如用于智能药物释放和治疗癌症的载体。
D、智能材料智能材料是指一类能够根据自身内在的能量和信息,自我调整、调节、感知、反应、适应甚至主动控制自身形态和性能的功能材料。
自组装技术在智能材料的设计上拥有重要的作用,从而实现智能电子器件、生物传感器等领域的技术应用。
三、自组装现象的发展与展望随着科技的不断推进,超分子化学作为一种新兴领域在分子材料科学与工程学中占有了举足轻重的地位。
超分子自组装

三、超分子化学、分子组装、超分 子组装及自组装
分子间相互作用的应用领域十分广阔,除了在生命 科学、高分子改性等领域外,过去20年里,在超分子化学 中尤其占有重要地位。所谓超分子化学,正如Lehn在其诺 贝尔演讲中所述:“Supermolecular Chemistry may be defined as chemistry beyond the molecule.”。一般地讲, 超分子体系是由一种或两种以上化学物质经过非共价键缔 合而成,它具有较高的结构复杂性。超分子化学的严格定 义必须包括分子识别、分子转变及分子易位过程。所以超 分子化学不仅包括化学、生物及物理问题,而且包括很多 技术问题。超分子化学研究的内容与主-客体化学(HostGuest Chemistry)、生物有机化学、生物无机化学、两 亲化合物、液晶、分子器件、新型超分子化合物的合成等 有关,其中关于分子组装、超分子组装及自组装的讨论很 多。
五、综述
超分子自组装机理,不仅阐明了所观察到的实验现象,而且 对其他不规则大分子自组装具有指导作用。由于诸多的自然现象, 如血管、腔肠和植物茎杆都是由有机分子通过宏观自组装形成的, 研究成果对相关学科的发展提供了有益的启示。 超分子组装技术的研究自起步以来已取得了很多非常有意义的 研究成果。有理由相信,随着超分子自组装技术的进一步发展, 超分子的各种奇异性质和功能必将得到更充分的发挥和利用,将 在科技、生产、生活等各领域发挥越来越大的作用,将成为21世 纪有重大突破的领域。
目前文献中所报道的纳米团簇超分子化学组装方法可 分为两类: 一类是利用胶体的自组装特性使团簇组装成 胶态晶体,得到二维或三维的纳米团簇超晶格;另一类 是利用纳米团簇与组装模板之间的分子识别来完成纳米 团簇的组装。 1.胶态晶体法 众所周知,胶体具有自组装的特性,而纳米团簇又很 容易在溶剂中分散形成胶体溶液,因此,只要具备合适 这一自组装过程所需要的条件[4]是:(1) 硬球排斥, (2) 统一的粒径,(3) 粒子间的范德华力和(4)体系逐渐的 去稳定。其中条件(1)和(3)是纳米团簇胶体溶液体系本身 固有的性质,条件(2)主要通过纳米团簇制备条件的控制 和适当分离方法的应用来实现[5],因此实际上组装过 程中的可操作因素主要是胶体溶液体系稳定性的控制。
超分子自组装材料的合成及应用

超分子自组装材料的合成及应用自组装是一种具有自发性和规律性的物理过程,可以在不需要外部干预的情况下形成有序、稳定的体系。
自组装材料是一种重要的材料科学研究领域,近年来受到了广泛的关注和研究。
超分子自组装材料作为自组装材料的分支之一,是应用最广泛的一种,它具有许多优越的特性,如高度有序性、可预测性、开放性等。
本文将介绍超分子自组装材料的合成方法及其应用研究现状。
一、超分子自组装材料的合成方法超分子自组装材料的合成方法非常多样化,涉及到多种有机化学、物理化学等知识。
下面将介绍一些常用的方法。
1. 溶液法溶液法是超分子自组装材料最常用的合成方法之一。
该方法适用于将有机分子或金属离子通过氢键、范德华力、离子键等相互作用组装成超分子结构。
在该方法中,通常选择适量的有机溶剂,将反应物溶解在其中,控制温度和反应物浓度,使其发生自组装反应。
在反应中,溶液中的物种会自发形成空间有序性较高的超分子结构,形成晶体或胶体等材料。
2. 涂层法涂层法是将预先有机化学反应得到的化合物涂在基材上,再进行热处理或光照等条件下自组装成超分子结构。
涂层法一般适用于制备表面自组装材料和壳层自组装材料等。
该方法可以采用喷雾涂覆、悬滴涂覆等不同的涂层方式,具有简便、易操作等特点。
3. 模板法模板法是利用外部模板或生物模板的作用,将小分子或高分子有机分子以不同的方式组合成超分子材料。
该法包括硅胶溶胶法、电镀法、微乳液法等。
模板法的优点在于可以精确地控制纳米结构的形态、大小和组成等,制备的超分子材料具有具有明显的分子识别、催化反应等应用前景。
二、超分子自组装材料应用的研究现状超分子自组装材料具有广泛的应用前景,尤其注重在生物医学和能源领域的研究。
下面分别介绍两个领域的应用现状。
1. 生物医学领域超分子自组装材料在生物医学领域有着广泛的应用,包括基因传递、药物控释、生物成像、生物仿生等领域。
利用超分子自组装材料可控制自组装体的结构和性质,形成不同形态的纳米粒子,实现药物释放的规范化、有选择性地传递DNA片段和小分子药物,将具有明显治疗效果的药物与纳米材料结合起来,提高生物体对其的可持续利用率。
超分子自组装的基本原理和应用

超分子自组装的基本原理和应用超分子自组装是一种自然界普遍存在的现象,也是一种新兴的科学研究领域。
它源于分子自组装,在分子层面上实现了自组组装,从而形成了更为复杂和功能性的超分子结构。
这种自组装过程既简单又神奇,被广泛应用于化学、生物学、材料学等领域,展现出了极其广泛的应用前景。
本文将着重探讨超分子自组装的基本原理和应用。
一、超分子自组装的基本原理超分子自组装的基本原理是靠分子间的非共价作用力(如范德华力、静电作用力、氢键、疏水作用等)来实现的。
这些作用力,来源于分子间的相互作用和键合,而不是来自于共价键。
因此,这种自组装过程不仅仅是化学反应,而更像是一种热力学平衡过程。
在这种平衡过程中,自组装的超分子结构具有高度的稳定性和适应性。
同时,这种自组装也具有很高的快速性和简便性,能够在不需要外界介入的情况下自发完成。
二、超分子自组装的应用1、药物传输和纳米医疗超分子自组装可以用于药物传输和纳米医疗。
药物分子可以与载体分子(如脂质、高分子等)自组装形成纳米粒子,从而增加药物的溶解度和稳定性,提高药物的生物利用度,实现靶向释放。
同时,这种自组装的纳米结构具有良好的生物相容性和低毒性,能够用于生物传感和诊断。
2、高分子材料与超分子自组装高分子材料与超分子自组装的有机结合,不仅能够增加材料的稳定性和耐久性,而且还可以实现材料的形态调控和性能优化。
例如,超分子自组装可以用于高分子降解性的调控、表面性质的改变、荧光分子探针的设计等。
3、光、电和催化材料超分子自组装还可以应用于光、电和催化材料领域,在这些领域中,超分子自组装的特殊结构和功能起到了非常关键的作用。
例如,催化剂在吸附分子时能够通过超分子自组装的方式实现更高的活性面积和更完整的基元,从而提高催化剂的催化性能和稳定性。
在电子材料领域,超分子自组装可以用于有机半导体、薄膜太阳能电池和OLED等领域的研究。
4、功能性大分子和智能材料超分子自组装还可以用于设计功能性大分子和智能材料。
超分子化学研究中的自组装现象分析

超分子化学研究中的自组装现象分析超分子化学是研究分子与分子之间相互作用和构成超大分子聚集体的学科,其研究范围包括自组装、反应性晶体和功能材料等领域。
自组装是超分子化学的重要基础,也是超分子化学研究中的一个热门话题。
本文将主要探讨超分子化学研究中的自组装现象。
一、自组装的定义自组装是指分子在一定的条件下按照一定的规则自发地组合成为3D的超大分子聚集体。
自组装的关键在于相互作用,包括范德华力、静电作用、氢键作用等。
自组装过程中分子之间的相对位置往往非常有序,可以形成不同形态的超分子结构。
自组装现象在自然界中普遍存在,如DNA分子的双螺旋结构、脂质双层结构等均是基于自组装规律构建的。
二、自组装在超分子化学中的应用自组装是超分子化学的核心研究内容之一,研究分子自组装所形成的超分子结构及其性质是超分子化学研究的重要方向之一。
自组装现象可以被广泛应用于生物医学、材料科学和纳米技术等领域。
下面分别从三个角度探讨自组装在超分子化学中的应用。
1、生物医学中的应用自组装在生物医学中得到了广泛的应用,如用于药物传递、免疫诊断、疫苗制备、组织工程等。
自组装的一种典型应用是通过自组装构筑的脂质纳米粒子,其在药物传递方面表现出了很好的应用前景。
这是因为这种粒子具有生物相容性好、可被定向靶向、增强药效等优点。
2、材料科学中的应用利用自组装技术可以合成出具有特殊功能的超分子材料,如柔性显示器、光伏材料、铁电材料、传感器等。
自组装在材料科学领域中的应用前景仍然非常广阔,其潜在未来的应用主要有两个方面,即在生物组织修复中的应用以及在纳米电子学领域中的应用。
3、纳米技术中的应用纳米技术的核心是对物质研究与处理,因此利用自组装技术构建纳米材料是一个核心研究方向。
利用自组装技术可以合成具有一定形态和特殊性质的纳米结构,例如表面修饰过的金属纳米粒子、自组装模板、柔性传感器等。
这些材料在生物医学、催化、磁性材料、生物传感器、光学材料等领域之中有潜在的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超分子分子自组装摘要简单介绍基于氢键、主客体化学、以及金属配位作用形成超分子聚合物的研究进展,着重概述r 金属配位超分子聚合物的形成、特点及其与异电荷物质的静电自纽装。
Yin Guanggen(Lightchemical engineer of Nanjing University of Technology P080418)Abstract : Brief based on hydrogen bonding, host-guest chemistry, and metal coordination supramolecular polymer formed by the research progress, focusing on an overview of r metal coordination supramolecular polymer formation, features and materials with different electrostatic charge from the New York installation.最近10年,超分子聚合物作为一种通过非共价键形成的自组装的高分子在高分子和小分子自组装领域备受瞩目。
顾名思义,这类分子具有超分子和聚合物的双重特点。
说它是超分子,是因为这类分子是由小分子单体通过氢键、主客体化学、配位键等非共价键连接而成的分子自组装结构;ig 它是高分子,是因为这样的自组装结构拥有数量众多的重复单元,就像由许多结构基元聚合而成的高分子一样。
不同的是,传统的高分子一般是在引发剂存在下,在一定温度和压力下通过聚合反应形成的,其聚合物骨架是由共价键连接的单体形成的。
而超分子聚合物多为具有双官能团的单体在合适的溶剂中通过分子自组装自发形成的,不需要任何引发剂。
由非共价键首尾连接的小分子单体构成了聚合物骨架。
超分子聚合物骨架中非共价键的存在,使得这类分子的聚合与解聚可以非常容易地发生,这赋予了这类物质独特的机械、电子以及光学性质。
本文介绍氢键、主客体化学以及配位作用驱动的超分子聚合物的形成及特点,并着重介绍金属配位超分子聚合物,以及基于金属配位超分子聚合物的高级静电自组装1氢键诱导的超分子聚合物——可自愈及修补的高分子氢键诱导形成的超分子聚合物一般发生在两个能够形成多重氢键的分子体系。
两个分子中至少有两对互为对方的质子给体和受体的官能团,每个官能团都能与对方分子的官能团形成多重氢键。
超分子化学的开创者Lehn及其合作者?利用氢键形成的榫卯结构在具有双官能团的ADA AD型质子给体与DA—DA型质子受体的 1 I 1 混合体系中通过自组装形成6氢键连接的单体(A:Acceptor ,质子受体;D: Doner,质子给体)(如图1A所示);这样的单体通过位于尾端的给-受体进一步进行自组装,最终形成高分子结构。
其结构可用图1B表示。
可以想象,如果分子中含有多个ADAS DA基团,就可以形成交联的网络状高分子。
此外,通过首尾交互形成的多重氢键也可以形成高分子状结构。
Meijer等人[2o使用ADAD DAD型单体四重氢键的协同与定向效应制备了聚合度很高的螺旋状超分子聚合物(图2)。
当一个单体中含有3个这样的四重氢键结合单元时,形成的交联结构的超分子聚合物具有热塑性弹性体的性质,在90C解体并熔化%3(图3),因此,这类超分子聚合物具有温度修补性。
更多的实例可参见综述文章MJ 。
值得关注的是,虽然这类具有温度修补性能的超分子聚1万方数据AE?—堪卜_{卜——}—甸——{_卜—} ——雪一• ?图1 ADA ADAS质子给体与DAD-DA ffl 质子受体形成的六重氢键【A)及二者形成的榫卯结构超分子聚合物(B)示意图图2四重氢键诱导形成的螺旋状超分子聚物图片12编辑自文献[2]图3由氢键形成的超分子聚合物材料的温度敏感行为图片图1 ADA AD型质子给体与DAD-DA型质子受体形成的六重氢键【A)及二者形成的榫卯结构超分子聚合物(B)示意图图2四重氢键诱导形成的螺旋状超分子聚合物图片编辑自文献[2]图3由氢键形成的超分子聚合物材料的温度敏感行为图片编辑乌文献【3]合物在最近10年才发展起来,但由于其表现出来的优异加工性能在工业上的巨大应用价值,部分化合物已经走出实验室实现了工业化。
例如现有的工业化产品SupraPolix就是基于氧键的超分子聚合物。
向普通高分子材料中添加很少一部分这样的超分子聚合物就可以极大的改善材料的机械及加工性能。
2主客体化学诱导的超分子聚合物环糊精及杯芳烃类化合物的空腔能够选择性结合极性及尺寸与之相匹配的客体。
Harada等人刮利用客体修饰的环糊精的大尺寸空腔可容纳来自另一分子的客体的特点,成功制备了一系列由主客体化学诱导的超分子聚合物,如图4所示。
因为环糊精的外壳含有多个羟基,这类超分子聚合物町望进一步通过“聚合物”间的氢键形成刚性的高分子材料。
2万方数据图4基于环糊精的主客体化学的两种超分子聚合物示意图图片编辑白文献[5-6]3金属配位超分子聚合物金属配位超分子聚合物一般由双头配体分子与金属离子在溶液中自组装而成。
当配位反应在溶液中发生时,一个金属离子一般能与来自两个配体分子的两个头基发生配位作用,每个配体分子剩余的头基能够与更多的金属离子发生类似的反应,保证了链的增长。
这种金属配位高分子的形成可用图5表示。
0二僅隱离于> - 「定体头基-毘眞配怵图5金属离子与双头配体形成1: 1型金属配位超分子聚合物示意图金属配位超分子链的最终长度取决于体系的化学组成,浓度和平衡常数。
当金属离子和双头配体的摩尔比为1: l时,体系能够形成具有链状结构的高分子,而且浓度越高,平衡常数越大,聚合度越高。
与氢键诱导的高分子体系类似,当配体分子含有多个头基的时候,体系容易形成具有交联结构的网络状聚合物。
目前已报道的金属配位超分子体系主要有Schubert等报导的双三联吡啶头基配体(图6,化合物1)与Fe “,Ru3+ Ni “,C02+等的I : 1复合体系"],Rowan 等合成的2,6—苯并咪唑4•羟吡啶•头基的双头配体(图6,化合物2—4)与zn2+的I :I复合体系坤J,Vermondenc等合成的白屈草酸头基的双头配体(图6,化合物5)与zn2+,Nd3+, La3+体系一1等。
其中前两类体系多在极性有机溶剂中形成金属配位高分子,而后者是第一例在水溶液中形成的金属配位超分子聚合物。
这得益于金属离子与配体之间的高配位平衡常数。
其中,当金属离子为zn 2+时,体系在1:1摩尔比时形成低聚合度的环状和高聚合度的链状的高分子结构,其环与链状结构的比例具有浓度依赖性。
浓度越高,链状结构越占主导地位。
而当使用Nd3+,La3+等离子时,由于金属离子的半径增大,其空的f轨道也能够容纳来自配体的孤对电子,体系在配体与金属离子的摩尔比为3:2时形成交联的网络状高分子。
这时,金属离子表现为交联中心。
这类基于金属配位超分子聚合物一般具有荧光、紫外等光谱响应性。
所以,根据选用的金属离子的不同,可以制备覆盖在整个紫外一可见光区域的具有光谱吸收或荧光发射性质的高分子材料;同时因为金属离子的存在,这类超分子聚合物还具有电学、磁学响应性。
3万方数据图6几种双头配体结构简式4基于金属超分子的自组装不同于氢键及主客体化学驱动的超分子聚合物,金属配位超分子一般在配位中心荷电,因此,容易与带反电荷的物种进行静电自组装。
这使得金属配位超分子聚合物的光学、电学、磁学性质能够表达在不同的材料制备领域。
同时,这种更高层次的自组装方式也能够对金属配位超分子的性质进行修饰和调控。
下面就一些典型的金属配位超分子聚合物的高级静电自组装结构进行简单的介绍。
4. 1与异电荷的表面活性剂(两亲分子)形成离子有序组合体当金属配位高分子与异电荷的表面活性剂在溶液中混合后,形成的静电复合物(PAC,图7)不溶于水,但能够溶解于氯仿等有机溶剂,所以能够在空气/ 水界面铺展成Langmuir膜(图7)。
Kurth等人[1叫研究了双三联吡啶头基配体(图6,化合物1)与Fe2+形成的配位超分子聚合物(MEPE与双十六烷基磷酸钠形成的Lan gmuir膜的核磁响应性。
他们发现,在室温下原本抗磁性的金属配位超分子 /表面活性剂复合物膜在温度高于45C时变成顺磁性。
这种核磁性质的温度响应性被归结为表面活性剂单分子层的在45C时的相变释放的热量导致配位中心晶体场由强变弱,从而导致Fe2+■外层电子由反平行的低自旋转变为平行的高自旋态(图7),复合膜也因此有了核磁响应性。
类似的,他们也在由此金属配位超分子聚合物与表面活性剂形成的液晶体系中发现了热诱导的核磁性质逆转现象…1|。
4. 2与异电荷聚电解质在固体基底上的层层组装将固体基底交替浸入正、负电性的聚电解质溶液中,就可以得到正负聚电解质层交替的多层膜结构。
通过这种层层组装技术可以制备高分子薄膜,也可以得到以此薄膜为壁的囊状结构。
Kurth等人[121利用金属配位超分子聚合物的荷电性质,将其与带反电荷的聚电解质溶液分别在平板与二氧化硅球表面进行层层组装,得到了含有金属配位超分子聚合物的多层膜和胶囊结构(图8)。
这些多层膜和胶囊在紫外和可见光区有非常鲜明的吸收,可望在制备具有特定光学性质材料方面发挥重要的作用。
4万方数据X1EPF图7金属配位超分子聚合物MEP与双十六烷基磷酸钠形成的静电复合物(PAC),其在水溶液表面形成的Langmuir膜。
及其在温度变化下诱导的膜结构和Fez+电子自旋状态的改变图片编辑自文献【10 • 12】图8利用金属配位超分子聚合物和异电性的聚电辫质在平板I a)和球形I b)基底上进行层屡自组装4. 3与荷异电的嵌段聚电解质在溶液中的静电自组装金属配位超分子聚合物与电解质同聚物的组装只能在固体基底上进行,但如果用中性一异电性嵌段共聚电解质取代电鳃质同聚物,静电自组装则可在溶液相中进行。
金属配位超分子聚合物与嵌段共聚电解质的带电链段形成的静电复合物被嵌段共聚电解质的水溶性中性链段所保护,形成几十纳米大小的粒子,一般为球形胶束,悬浮在水溶液中。
有趣的是,即使当金属配位超分子体系因浓度很低只能形成环状低聚物时,在带反电荷的嵌段共聚嵌段共聚电解质存在下,该低聚物因在嵌段聚电解质区域富集,导致局部浓度升高,形成链状高聚物。
与此同时,该链状超分子聚合物与嵌段聚电解质在溶液中形成静电自组装的复合胶束••纠(图9A)。
随着嵌段聚电解质的结构不同,静电复合胶束的形貌可以为球形、椭球形甚至带状。
当体系中5万方数据形成带状聚集体时(图9B),在略高的浓度下即可形成凝胶‘ 13。
141。
这样的体系可用做金属离子载体,在放射性治疗、核磁共振显影、治理重金属污染等领域有潜在应用价值图9金属配位超分子聚合物与不同结构的嵌段共聚电解质形成的球形(A)、带状(B)聚集体示意图图片编辑自文献[13 一14]5结语本文概述了通过氢键、主客体化学以及配位作用形成的超分子聚合物的结构与性质,重点介绍了金属配位超分子聚合物与异电性物种,包括表面活性剂、聚电解质、嵌段共聚电解质的静电复合结构。