开关电源环路设计及实例详解

合集下载

开关电源环路设计与计算_ON-Bright

开关电源环路设计与计算_ON-Bright

On-Bright confidential
23
零1234....极左右左右负系在系所位点半半半半反统f统有增l平平平平馈的y稳负益对b面面面面系环a定载带c环极极零零统路k性和宽O系路点点点点D补n产所为C统-::::固偿B生有1稳中/r有必i影电6g,-定h增不增增1须响压18为t/性益稳益益0使。输1C度了0衰定增增系o入f的相减sn减,大大统的(f移小开影id,导,,满情,右关e响引致引引足形n半频起系起起系稳t。及i平a率-统9-统定l909面)环t0震度0的性o度度零路荡相剩条T相相点e移下件n带移移影p的,响a宽零而o,选极且可点要择取将考单标对虑准
On-B开riOg关hn-tB电Erigleh源cttCr环oonnif路icdse设(nStiha计al tno与gThea计nip) aC算oo. Ltd
On-Bright confidential
1

开 开 开 一 讨关关关个论电电电基源源源于OO的环简nB-环路介B2r2i路分g6h3补析t的C偿(1以o2(内nW以反fid电容反激e源n激变ti环a变换l 路t换器o设器为Te计为例np实例)a例o)
18
DCvMvFB(ΛΛs(模s)O) ≈n式V-VBF0Br下ig⋅ 11h++PtRRoCoo12wCCooon11eSsfridSetnat由平对Figalye于面于lbtaoP零Cc小owwCkTw点zp系eM==e信(n1r统而RR/pSoHR2C更言t号aoao1PC1go容,Zoe1传)易D,无C补所函右M偿以半!相
On-Bright confidential
19
电流模式与电压模式的直观a理o 解 电压模式是占空比直接调制,变压器电感是开环状态,在外围电压回路 np 中引入一个DC极点(s=0) Te 电流模式是占空比间接调制,变压器电感是闭环状态。 l to 反激变换器类似于buck-boost架构,以buck-boost为例分析。 tia 无论是电压还是电流模式,CCM中RHZ始终存在,且频率相同。

开关电源环路设计与实例详解

开关电源环路设计与实例详解

$ "
2@)
!
第六章
反馈环路的稳定
的时刻开始的, 直到三角波结束时刻 ! ! 为止。对于这类芯片, "#$ 芯片输出晶体管导通 (驱动信号由芯片晶体管射极输出) 被触发导通, 这将使 " &’ 增大 时, %"% 型功率晶体管 时, 功率晶体管的导通时间增加。这时, 系统变成正反馈而不是负反馈。
图()*
一、 电路稳定的增益准则
电路稳定的第一个准则是: 在开环增益为 # 的频率 (通常称为剪切频率、 交越频率或 截止频率) 处, 系统所有环节的总开环相位延迟必须小于 /!01 (译者注: 作者表述和我们习 惯表述不一致。在 $*2%图中, 我们一般习惯讨论, 开环传递函数的相位裕量和幅值裕量是 。在剪 指开环传递函数幅频特性 (增益特性) 和相频特性, 不包括负反馈引起的 #301延迟) 切频率处, 总开环相位延迟小于 /!01 (在此频率处, 总开环增益为 #) 的角度, 称为相位裕 量。 为了使系统中各器件工作在最恶劣的情况下时, 仍然保持稳定, 通常的设计准则是, 使系统至少有 /41 5 641的相位裕量。
图 # $ % ( &) 开关整流 ’( 滤波器的幅频特性; ( )) 开关整流 ’( 滤波器的相频特性
图#$( 和图 # $ ( 所示是对应于不同输出阻抗 ! * 值, % &) % )) ’* (* 滤波器的幅频特性
# !
%+#
"
第六章
反馈环路的稳定
和相频特性。图中的曲线是对应于不同比率 ! ! " " # #( 和 !% " & $ # $$ %$ ) !! $ #$ " ! # %

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。

它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。

本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。

一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。

其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。

1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。

在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。

通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。

二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。

2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。

开关环路设计与计算

开关环路设计与计算

开关电源系统基本组成部分(Voltage Mode PWM System)开关电源环路分析和设计流程开关电源环路的小信号传函FlybackTL431Power StageFlyback PWM Stage右半平面零点PWM Stage()t d)+考虑斜率补偿后的考虑斜率补偿后的考虑斜率补偿后的考虑斜率补偿后的考虑斜率补偿后的DCM模式下电流模式与电压模式的直观理解()(O V D V D =−−1()(v d V V vI L 1ˆˆˆ−−+=()D I I L O −=1dI i L O ˆˆ−=电压模式的信号流程图(siˆ电流模式的信号流程图零极点对环路稳定性的影响及环路带宽选择标准环路的补偿方法把控制带宽拉低,在功率部分或加有其他补偿的部分相位达环路的补偿方法常用的补偿方式.补偿网络产生一个s=0(DC)极点,而且通常所以补偿网络需补偿网络的高频极点抵消输出滤波电容的ESR零点。

环路的补偿方法复杂,适用于输出带LC滤波的拓扑结构中.补偿网络产生一个s=0(DC)极点,以及两个零点和两个极点,反激变换器反馈回路的设计采用补偿方法Power Stage GainOB2263 控制芯片内部模块图OB2263OB2263基于OB2263的基于OB2263的基于OB2263的基于OB2263的5) 确定EA补偿网络的零点和极点的位置基于OB2263的基于OB2263的附录: 431及其补偿网络传函的推导6KR I v ⋅−=Thank you Any Questions?。

开关电源环路设计与计算

开关电源环路设计与计算

Ro
+ ss
LCo1 n2 D'2
)
right 系统右半平面零点: On-B 负载电容ESR 零点:
wrz
=
n2Ro (1− D)2 Lm D
wz
=
1 Ro1C
On-Bright confidential
11
右半平面零点(RHZ)的直观理ao解 RHZ在boost, buck-boost, flyback(占空比由输入输出电压和匝比决 np 定)CCM中都存在,而DCM中没有RHZ。 Te 负载突然增加→输出电压下降→EA+PWM 反应→占空比增大(Wrong to Way)→反激时间减小→输出电流减小(通过输出diode)→输出电压下降更多 l (临时)。此即典型RHZ响应特性。 On-Bright Confidentia 在DCM中,占空比增大导致输出电流增大,故不存在此RHZ
fiden 控制模式 n ¾ 电压模式 o ¾ 电流模式
ht C 开关电源系统可分为两大块 -Brig ¾ 负反馈回路(feedback loop) On ¾ 保护功能(OVP, OCP, OTP ……)
On-Bright confidenቤተ መጻሕፍቲ ባይዱial
4
开(OV关no-Bl电traigg源het MC系oon统dfeid基PeWn本tiaMl组tSo成yTsetn部epma分)o
On-Bright confidential
24
环路的补偿考虑

出况一环环通裕者位统对跨也些路路常量高增有(这接可高需补补(频益1G8样,以频要偿偿的带0ai-等n或适极补的网。宽9O0效m者当点偿目络内=na9为r-输引或以的放只0gB°环irn出入者获是在有ig)相路,到一零得:E一h位带A因t地些点足在个C裕宽(为e。零。够带极or量内环rn在点的宽点o)只rf路i环或相内(,da一有m存e路者位等pn个或一在l的极裕效itf导者个i很iae其点量为rl致一极多,t他以(单oP9个点例零h地抵极0Ta°极)如极es方消点.en相点.T点m,环系.pL移和,a4a根路统r3go,一1i据带.低)n个的)实宽从环频零和输际外而路的极增入情的系单或点益输

开关电源环路补偿设计

开关电源环路补偿设计

开关电源环路补偿设计开关电源环路补偿设计在开关电源设计中,环路补偿是至关重要的一步。

环路补偿的正确设计可以提高电源的稳定性和效率,从而提供更为可靠的电源输出。

本文将针对开关电源的环路补偿设计,从三个方面进行阐述。

一、开关电源环路补偿的基本原理开关电源的环路补偿,是指将部分输出信号回馈到反馈端口,通过正反馈作用来改善系统的动态性能。

补偿的目的,是使电源输出稳定,对负载的响应性更好。

为了实现这一目的,设计师需要对开关电源的基本原理有深入的理解。

在开关电源中,电容、电感和频率之间的相互影响是至关重要的。

通过合理的组合设计,可以提高电源的效率,降低功耗。

二、开关电源环路补偿的设计方法开关电源的环路补偿设计方法,需要综合考虑多个参数,如响应时间、阻尼稳定性、相位裕度等。

其中,响应时间涉及到电路响应时间、电源传输函数以及负载条件,需要根据具体情况予以调整。

阻尼稳定性关系到系统的稳态稳定性,需要根据不同负载条件下的阻尼因素予以设计。

相位裕度涉及到极点间距,可以通过更改反馈回路的增益稳定性来达到较好的效果。

三、开关电源环路补偿的优化在实际电路中,由于电容、电感和负载等多种因素的影响,开关电源环路补偿存在一定的误差。

优化环路补偿,可以通过在电路中加入滤波电容、降低负载电感等措施,提高电源输出的稳定性。

此外,在滤波器的选型方面,选择与系统肖特基二极管参数相匹配的器件,可以较为有效地降低噪声和振荡。

总之,开关电源环路补偿对整个系统的性能至关重要。

一个合理的补偿设计将使电源输出变得更加稳定、高效,具有更好的响应性。

因此,在开发开关电源的过程中,我们应该时刻保持对环路补偿原理的理解,并综合考虑各种参数和因素,以达到最优的设计效果。

反激式开关电源的环路分析与设计

反激式开关电源的环路分析与设计

反激式开关电源的环路分析与设计环路设计直接影响到电源的性能[1],本文以最常用的反激电源为例,分析了环路稳定的条件以及环路设计的方法,并通过实验验证了该方法的可行性。

1 反激电源环路与常见环节的分析反激式电源的系统模型如图1 所示[2]。

其中KPWM 和KLC 为功率部分放大倍数,KLC 表示次级等效电感与滤波电容构成的滤波器的放大倍数,Kfb 是反馈分压部分的放大倍数,Vref 是参考电压,Kea 是误差放大器的放大倍数,Kmod 是调制器的放大倍数。

可以得到开环传递函数为:反馈系统稳定一般要求其开环传递函数的幅相频特性曲线小于等于-10 dB 的幅值裕度和45°~60°的相位裕度。

在低频段有较高的增益以保证输出电压的精度,在中频段有较高的频率范围以加快系统的响应速度,在高频段有较快的衰减速度,以抑制高频纹波[3]。

在反激电源中,当一个电源基本参数确定时,KPWM、KLC、Kfb、Vref、Kmod 也相应确定,系统的开环传函只能通过误差放大器Kea 来调节。

调节误差放大器Kea 实际就是调节系统零极点的个数及其分布位置,以满足系统需要的相位裕度和幅值裕度。

在实际设计时,先画出除了误差放大器之外部分的伯德图,根据需要确定合适的补偿器类型,计算补偿器参数,并进行实际电路调试,以确定最优的补偿参数。

本文以一款多路输出电源为例,分析了电源功率部分和环路的设计过程。

参考文献[1] PRESSMAN A.Switching and linear power supply,power converter design[M].Switchtronix Press,Waban,Mass,1997.[2] BASSO C.Switch mode power supplies:SPICE simulations and practical designs[M].McGraw- Hill,2008.[3] BASSO C.Transient response counts when choosing phase margin[J]. Power Electronics and Technology,2008(11):18-21.[4] KOLLMAN R,BETTEN J.Closing the loop with a popular shunt regulator[J].Power Electronics。

开关电源反馈环路设计

开关电源反馈环路设计

开关电源反馈环路设计开关电源是一种将输入直流电压转换为所需输出电压的电源装置。

为了实现稳定可靠的输出电压,开关电源需要建立反馈环路进行控制。

开关电源的反馈环路主要包括内部反馈环路和外部反馈环路。

内部反馈环路是指内部电路中的反馈控制电路,用于控制开关管的导通与截止,以维持输出电压的稳定。

外部反馈环路是指从输出端以回路的形式连接到内部反馈电路,通过比较输出电压与参考电压的差异,产生一个控制信号,用于调整开关电源的开关时间和频率,从而调整输出电压。

设计开关电源的反馈环路时,需要考虑以下几个方面:1.选择合适的参考电压源:参考电压源是反馈环路的重要组成部分,它提供一个稳定的参考电压,用作与输出电压进行比较的基准。

一般可选择使用稳压二极管、参考电压芯片或者精密电位器来作为参考电压源。

2.设计错误放大器:错误放大器是反馈环路中的核心部分,它承担着将输出电压与参考电压进行比较的作用,并产生一个误差信号。

常见的错误放大器有比较器、运算放大器等。

在设计选择错误放大器时,需要考虑它的稳定性、带宽、输入阻抗等因素。

3.设计补偿网络:由于开关电源在转换过程中存在一定的延迟、输出的电压下降等因素,所以需要通过补偿网络来减小这些不稳定因素对输出电压的影响。

常见的补偿网络包括零点补偿网络和极点补偿网络。

零点补偿网络主要通过增加相位较大的零点,来提高系统稳定性;极点补偿网络主要通过增加相位较小的极点,来提高系统的相位裕度。

4.设计输出滤波器:开关电源的输出电压通常包含一定的纹波,需要通过输出滤波器来降低纹波,使输出电压更加稳定。

输出滤波器一般由电感、电容和电阻组成,通过调整它们的数值和组合方式,可以实现对纹波的去除或衰减。

在进行开关电源反馈环路的设计时,还需要进行一系列的仿真和实验,包括频率响应的模拟分析、稳态和动态的性能测试等,以确保设计的反馈环路能够实现对输出电压的稳定控制。

总之,开关电源的反馈环路设计是一项复杂的任务,需要综合考虑电源的性能要求、稳定性要求和实际应用需求等因素,通过选择适当的参考电压源、设计错误放大器、补偿网络和输出滤波器等,来实现对输出电压的稳定控制。

开关电源中的比较常见的双重环路及其应用

开关电源中的比较常见的双重环路及其应用

开关电源中的比较常见的双重环路及其应用
开关电源中的比较常见的双重环路及其应用
工程师都知道,开关电源中离不开环路设计。

环路影响到开关电源的诸多性能指标,譬如输出纹波,动态特性,稳定性,保护特性等。

这篇文章将从下面四个方面讲一讲开关电源中的比较常见的双重环路及其应用:
1.单电压环与单电流环
2.电压环和电流环的双环竞争
3.电压外环电流内环
4.两种双环控制在车载电源产品中的应用
一、单电压环与单电流环
闭环就是通过对被控制变量进行负反馈与设定值进行比较,得到他们之间的偏差,然后通过控制偏差,来实现被控变量稳定在设定值附近。

生活中最常见的一个负反馈闭环就是骑自行车,如果我们想走一条直线,而实际往左偏了,就会将车把手往右调整,如果往右偏了,就往左调整。

最后肯定稳定在这条想走的路线的附近。

如果自行车整个过程一直都是向左偏离一个角度,这个就是静差,也叫稳态误差。

如果自行车稳定在设定路线的左右偏差一点,这个就是误差摆幅,有些场景下也叫纹波峰峰值。

车辆一直行使在设定路线附近,而且偏差小,遇到紧急避让的情况下(动态扰动)也绝不摔倒——这就是好的环路设计。

在比较简单的开关电源中,只需要一个单闭环就可以实现产品的恒压或者恒流输出。

对于恒压源,只需要控制输出电压稳定,对于恒流源只需要控制输出电流稳定。

这里通过最常见的buck电路的单电压闭环和单电流闭环来来分析一下。

以最常见的PI控制作为补偿控制环节。

1)其电压单环的控制闭环框图如下:其中Kadc为采样及反馈环节,Plant。

开关电源控制环路设计(初级篇)

开关电源控制环路设计(初级篇)

开关电源控制环路设计(初级篇)电源联盟---高可靠电源行业第一自媒体在这里有电源技术干货、电源行业发展趋势分析、最新电源产品介绍、众多电源达人与您分享电源技术经验,关注我们,搜索微信公众号:Power-union,与中国电源行业共成长!开关电源控制环路设计(初级篇)1、环路和直流稳压电源的关系稳压电源工作原理我们需要什么样的电源?原文档:开关电源控制环路设计(初级篇)下载方法:请看文章底部第一条留言2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1( -20db/10倍频程) ■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。

一般需要6db的增益裕量。

备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。

要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。

传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。

把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。

开关电源环路设计与计算

开关电源环路设计与计算

开关电源系统基本组成部分(Voltage Mode PWM System)tlaitnedifnoCthg开关电源环路分析和设计流程开关电源环路的小信号传函Flyback On B ri g h tnf i dl to eTL431h entialtoTePower StageFlyback PWM Stage n t i al to T en p a o右半平面零点difnoCthPWM StageneT()t d)+考虑斜率补偿后的考虑斜率补偿后的neTotlaitnedifn考虑斜率补偿后的tnedif考虑斜率补偿后的pneTot考虑斜率补偿后的pneTotlaitnedifnoDCM 模式下n -B ri g h tCo nf i d e n t i电流模式与电压模式的直观理解()(O V D V D V V =−−=1()(v d V V vI L 1ˆˆˆ−−+=()D I I L O −=1dI i L O ˆˆ−=n -B ri g h tCo nf i d电压模式的信号流程图(s iˆn -B ri g h tCo ne n t i l电流模式的信号流程图tl零极点对环路稳定性的影响及环路带宽选择标准环路的补偿方法apneTotlaitnedifno把控制带宽拉低,在功率部分或加有其他补偿的部分相位达环路的补偿方法apneTotlaitnedifnoC常用的补偿方式.补偿网络产生一个s=0(DC)极点,而且通常所以补偿网络需补偿网络的高频极点抵消输出滤波电容的ESR零点。

复杂,适用于输出带LC滤波的拓扑结构中.补偿网络产生一个s=0(DC)极点,以及两个零点和两个极点,环路的补偿方法o nf i de n t i al to T en p a反激变换器反馈回路的设计Power Stage Gain 采用补偿方法n -B ri g h tCo nf i de n t i al to T en p aOB2263 控制芯片内部模块图On -B ri g h tCo nf i de n t i al to T en p a oOB2263eTotlaitnedifnoCthgirOB2263 On -B ri g h tCf i al to T n p基于OB2263的基于OB2263的基于OB2263的基于OB2263的5) 确定EA补偿网络的零点和极点的位置基于OB2263的基于OB2263的附录: 431及其补偿网络传函的推导6KR I v ⋅−=l to T enThank youAny Questions ?On -B ri g h tCo nf i de n t i al to T en p a o。

开关电源控制环路设计

开关电源控制环路设计

开关电源控制环路设计稳压电源工作原理我们需要什么样的电源?2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1( -20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。

一般需要6db的增益裕量。

备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。

要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。

传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。

把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。

由传递函数就可以绘制增益/相位曲线。

通过代数运算,把G(s)表示为G(s)=N(s)/D(s),其分子和分母都是s的函数,然后将分子和分母进行因式分解,表示成多个因式的乘积,即G(s)=N(s)/D(s)=[(1+s/2*pi*fz1)(1+s/2*pi*fz2)(1+/2*pi*fz3)]/[(s/2*pi*f0)*(1+s/2*pi*fp1)*( 1+s/2*pi*fp2)* (1+s/2*pi*fp3)],分子中对应的频率fz为零点频率,而与分母中对应的频率称fp为极点频率。

【干货分享】开关电源环路补偿设计步骤讲解

【干货分享】开关电源环路补偿设计步骤讲解

【干货分享】开关电源环路补偿设计步骤讲解1.对于硬件工程师来说,开关电源和运放的信号处理电路是最常遇到的,都是典型的带负反馈的闭环控制系统。

因此,这两类电路设计的稳定性和控制理论密切相关。

简化的闭环控制系统框图如图1所示,被控对象的传递函数为H,反馈部分的传递函数为G。

图1以上各式中的GH一般称为系统的环路增益或者开环增益。

根据式(2)可知,当1+GH=0,即GH=-1时,意味着环路增益为1,相位滞后180°,系统不稳定发生自激振荡。

当然也可以从另一个角度进行理解,系统发生自激振荡时,不需要输入量Xi,即净输入量,可得GH=-1,即反馈量Xf和输出量Xo形成彼此互相维持的关系。

从稳定性条件出发,我们可以知道环路增益小于1时系统可以稳定,相位滞后不到180°时系统可以稳定。

这表明左半平面的极点和零点都在某一方面提升稳定性,另一方面降低稳定性。

比如左半平面极点可以使增益降低,这能提升稳定性;但是极点增加了相位滞后,这降低了稳定性。

比如左半平面零点使相位超前,这能提升稳定性;但是零点使增益增加,这降低了稳定性。

只有右半平面零点是最特殊的,增加增益的同时相位滞后,这会加剧系统不稳定。

根据控制理论的稳定性条件可知,相位裕量至少为45°,转化为伯德图的话,就是要求在增益为0dB时的穿越频率处,斜率应该为-20dB/decade,即负20dB每十倍频,或斜率为,两者等价。

根据式(3)可知,当GH>>1时,即引入深度负反馈后,Xf=Xi。

这就是为什么运放的虚短需要在引入深度负反馈时才成立的原因。

由于运放本身的开环放大倍数H已经非常大,引入负反馈后一般都能满足深度负反馈的要求。

根据式(4)可知,如果想要直流稳态误差为0,则应满足。

这就是为什么控制系统的低频环路增益(开环增益)要尽量大的原因,这点在开关电源环路设计中很重要。

对于一般的运放电路而言,图1即是其控制系统框图。

而开关电源的系统框图则较为复杂,如图2所示,可以将PWM调制器,开关管和LC滤波器合并统称为功率级,用H表示,误差补偿器用G表示,反馈分压系数用k表示,实际设计中我们经常将k和G合并在一起称为G,则简化后的框图和图1类似,环路增益为GH。

多路输出反激式开关电源的反馈环路设计

多路输出反激式开关电源的反馈环路设计

多路输出反激式开关电源的反馈环路设计引言开关电源的输出是直流输入电压、占空比和负载的函数。

在开关电源设计中,反馈系统的设计目标是无论输入电压、占空比和负载如何变化,输出电压总在特定的范围内,并具有良好的动态响应性能。

电流模式的开关电源有连续电流模式(CCM)和不连续电流模式(DCM)两种工作模式。

连续电流模式由于有右半平面零点的作用,反馈环在负载电流增加时输出电压有下降趋势,经若干周期后最终校正输出电压,可能造成系统不稳定。

因此在设计反馈环时要特别注意避开右半平面零点频率。

当反激式开关电源工作在连续电流模式时,在最低输入电压和最重负载的工况下右半平面零点的频率最低,并且当输入电压升高时,传递函数的增益变化不明显。

当由于输入电压增加或负载减小,开关电源从连续模式进入到不连续模式时,右半平面零点消失从而使得系统稳定。

因此,在低输入电压和重输出负载的情况下,设计反馈环路补偿使得整个系统的传递函数留有足够的相位裕量和增益裕量,则开关电源无论在何种模式下都能稳定工作。

1 反激式开关电源典型设计图l是为变频器设计的反激式开关电源的典型电路,主要包括交流输入整流电路,反激式开关电源功率级电路(有PWM控制器、MOS管、变压器及整流二极管组成),RCD缓冲电路和反馈网络。

其中PWM控制芯片采用UC2844。

UC2844是电流模式控制器,芯片内部具有可微调的振荡器(能进行精确的占空比控制)、温度补偿的参考基准、高增益误差放大器、电流取样比较器。

开关电源设计输入参数如下:三相380V工业交流电经过整流作为开关电源的输入电压Udc,按最低直流输入电压Udcmin 为250V进行设计;开关电源工作频率f为60kHz,输出功率Po为60W。

当系统工作在最低输入电压、负载最重、最大占空比的工作情况下,设计开关电源工作在连续电流模式(CCM),纹波系数为0.4。

设计的开关电源参数如下:变压器的原边电感Lp=4.2mH,原边匝数Np=138;5V为反馈输出端,U5V=5V,负载R5=5Ω,匝数N5V=4,滤波电容为2个2200μF/16V电容并联,电容的等效串联电阻Resr=34mΩ;24V输出的负载R24=24Ω,匝数N24V=17;15V输出的负载R15=15Ω,匝数N15V=1l;一1 5V输出的负载R-15V=15Ω,匝数N-15V=11。

开关电源(Buck电路)的小信号模型及环路设计

开关电源(Buck电路)的小信号模型及环路设计

0 引言设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。

而环路的设计与主电路的拓扑和参数有极大关系。

为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。

在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。

由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。

好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。

开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。

采用其他拓扑的开关电源分析方法类似。

1 Buck电路电感电流连续时的小信号模型为理想开图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。

R为滤波电容C的等效串联电阻,R o为负载电阻。

各状态变量的正方向定义如图e1中所示。

图1 典型Buck电路S导通时,对电感列状态方程有L=U- U o (1)in续流导通时,状态方程变为S断开,D1L=-U(2)o占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DT s和(1-D)T s的时间(T s为开关周期),因此,一个周期内电感的平均状态方程为L=D(U-U o)+(1-D)(-U o)=DU in-U o(3)in稳态时,=0,则DU in=U o。

这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压U in成正比。

由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得L=(D+d)(Uin+)-(U o+) (4)式(4)由式(3)的稳态值加小信号波动值形成。

开关电源的环路设计及仿真

开关电源的环路设计及仿真

1 基本理论开关电源的输出电压Vo是由一个控制电压Vc来控制的,即由Vc与锯齿波信号比较,产生PWM波形。

根据锯齿波产生的方式不同,开关电源的控制方式可分为电压型控制和电流型控制。

电压型的锯齿波是由芯片内部产生的,如LM5025,电流型的锯齿波是输出电感的电流转化成电压波形得到的,如UC3843。

对于反激电路,变压器原边绕组的电流就是产生锯齿波的依据。

输出电压Vo与控制电压Vc的比值称为未补偿的开环传递函数Tu,Tu=Vo/Vc。

一般按频率的变化来反映Tu的变化,即Bode图。

电压型控制的电源其Tu是双极点,以非隔离的BUCK为例,形式为:电流型控制的电源其Tu是单极点,以非隔离的BUCK为例,形式为:各种电路的未补偿的开环传递函数Tu可以从资料中找到。

本讲座的目的是提供一种直观的环路设计手段。

2 计算机仿真开关电源未补偿的开环传递函数Tu2.1 开关平均模型开关电源的各个量经平均处理后,去掉高频开关分量,得到低频(包括直流)的分量。

开关电源的建模、静态工作点、反馈设计、动态分析等都是基于平均模型基础之上的。

若要得到实际的工作波形,应按实际电路进行时域仿真(Time Transient Analysis)。

将开关电路中的开关器件经平均化处理后,就得到开关平均模型,用开关平均模型可以搭建各种电路。

以下是几个开关电源的平均模型仿真例子,从电路波形中看不到开关量,只是平均量,比如电感中流过的电流是实际电感中的电流平均值,电容两端的电压是实际电容两端电压的平均值等等。

2.1.1 CCM BUCK(连续模式BUCK)先直流扫描Vc,得到所需的输出电压,即得到了电路的静态工作点。

然后交流扫描,得到Tu的Bode图。

Tu为双极点。

此处Vc等同于占空比d。

2.1.2 DCM BUCK(断续模式BUCK)按以上方法得到Tu,在DCM下,Tu变成单极点函数。

模型CCM-DCM即可用于连续模式,也可用于断续模式。

此处Vc仍等同于占空比d。

开关电源环路设计2

开关电源环路设计2

不可少的,因为没有ESR 的LC 滤波器相位滞后大。

6.4.12. Ⅲ型误差放大器电路、传递函数和零点、极点位置具有图6.41(b)的幅频特性电路如图6.42所示。

可以用第6.4.6节Ⅱ 型误差放大器的方法推导它的传递函数。

反馈和输入臂阻抗用复变量s 表示,并且传递函数简化为)(/)()(12s Z s Z s G =。

传递函数经代数处理得到 )]/((1)[1)((])(1)[1()()()(212123321133112C C C C sR C sR C C sR C R R s C sR s U s U s G in o +++++++== (6-69) 可以看到,此传递函数具有(a ) 一个原极点,频率为 )(212110C C R f p +=π (6-70) 在此频率R 1的阻抗与电容(C 1+C 2)的阻抗相等且与其并联。

(b ) 第一个零点,在频率 12121C R f z π= (6-71) 在此频率,R 2的阻抗与电容C 1的阻抗相等。

(c ) 第二个零点,在频率 31331221)(21C R C R R f z ππ≈+= (6-72) 在此频率,R 1+R 3的阻抗与电容C 3的阻抗相等。

(d ) 第一个极点,在频率 2221212121)]/([21C R C C C C R f p ππ≈+= (6-73) 在此频率,R 2的阻抗与电容C 2和C 1串联的阻抗相等。

(e ) 第二个极点,在频率 33221C R f p π= (6-74) 在此频率R 3的阻抗与电容C 3阻抗相等。

为画出图6.41(b)的幅频特性,以f z 1=f z 2,f p 1=f p 2选择RC 乘积。

双零点和双极点频率的位置由k 来决定。

根据k 获得希望的相位裕度。

图6.41(b)中误差放大器在希望的f c 0处以斜率+20dB/dec 处的增益(图6.41(a))令其等于LC 滤波器的衰减量,但符号相反。

开关电源控制环路设计(初级篇)

开关电源控制环路设计(初级篇)

开关电源控制环路设计(初级篇)电源联盟---高可靠电源行业第一自媒体在这里有电源技术干货、电源行业发展趋势分析、最新电源产品介绍、众多电源达人与您分享电源技术经验,关注我们,搜索微信公众号:Power-union,与中国电源行业共成长!开关电源控制环路设计(初级篇)1、环路和直流稳压电源的关系稳压电源工作原理我们需要什么样的电源?原文档:开关电源控制环路设计(初级篇)下载方法:请看文章底部第一条留言2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1(-20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。

一般需要6db的增益裕量。

备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。

要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。

传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。

把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。

开关电源环路设计(详细)

开关电源环路设计(详细)

6.4 开关电源闭环设计从反馈基本概念知道:放大器在深度负反馈时,如输入不变,电路参数变化、负载变化或干扰对输出影响减小。

反馈越深,干扰引起的输出误差越小。

但是,深反馈时,反馈环路在某一频率附加相位移如达到180°,同时输出信号等于输入信号,就会产生自激振荡。

开关电源不同于一般放大器,放大器加负反馈是为了有足够的通频带,足够的稳定增益,减少干扰和减少线性和非线性失真。

而开关电源,如果要等效为放大器的话,输入信号是基准(参考)电压U ref ,一般说来,基准电压是不变的;反馈网络就是取样电路,一般是一个分压器,当输出电压和基准一定时,取样电路分压比(k v )也是固定的(U o =k v U ref )。

开关电源不同于放大器,内部(开关频率)和外部干扰(输入电源和负载变化)非常严重,闭环设计目的不仅要求对以上的内部和外部干扰有很强抑制能力,保证静态精度,而且要有良好的动态响应。

对于恒压输出开关电源,就其反馈拓扑而言,输入信号(基准)相当于放大器的输入电压,分压器是反馈网络,这就是一个电压串联负反馈。

如果恒流输出,就是电流串联负反馈。

如果是恒压输出,对电压取样,闭环稳定输出电压。

因此,首先选择稳定的参考电压,通常为5~6V 或2.5V ,要求极小的动态电阻和温度漂移。

其次要求开环增益高,使得反馈为深度反馈,输出电压才不受电源电压和负载(干扰)影响和对开关频率纹波抑制。

一般功率电路、滤波和PWM 发生电路增益低,只有采用运放(误差放大器)来获得高增益。

再有,由于输出滤波器有两个极点,最大相移180°,如果直接加入运放组成反馈,很容易自激振荡,因此需要相位补偿。

根据不同的电路条件,可以采用Venable 三种补偿放大器。

补偿结果既满足稳态要求,又要获得良好的瞬态响应,同时能够抑制低频纹波和对高频分量衰减。

6.4.1 概述图6.31为一个典型的正激变换器闭环调节的例子。

可以看出是一个负反馈系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源环路设计及实例详解
一、开关电源的基本原理
开关电源是一种将交流电转换为直流电的电源,其基本原理是通过开关管控制变压器的工作状态,从而实现对输入交流电进行变换、整流和稳压的过程。

开关电源具有输出功率大、效率高、体积小等优点,因此被广泛应用于各种电子设备中。

二、开关电源环路的组成
1. 输入滤波器:用于滤除输入交流电中的高频噪声和杂波信号,保证后续环节能够正常工作。

2. 整流桥:将输入交流电转换为直流电信号。

3. 直流滤波器:用于滤除直流信号中的纹波和杂波信号,保证输出稳定。

4. 开关变换器:通过控制开关管的导通和截止状态来控制变压器的工作状态,从而实现对输入信号的变换。

5. 输出稳压器:用于对输出直流信号进行稳压处理,保证输出恒定。

三、开关电源环路设计步骤
1. 确定输出功率和输出电压范围。

2. 选择合适的变压器。

3. 设计整流桥和直流滤波器。

4. 设计开关变换器,包括选择合适的开关管和控制电路。

5. 设计输出稳压器,包括选择合适的稳压芯片和反馈电路。

6. 进行整个电路的仿真和优化。

7. 进行实际电路的搭建和调试。

四、开关电源环路设计实例
以12V/5A开关电源为例,进行具体设计。

1. 确定输出功率和输出电压范围:输出功率为60W,输出电压范围为11-13V。

2. 选择合适的变压器:根据需求选择带有多个二次侧绕组的变压器,
其中一个二次侧用于提供控制信号,另一个二次侧用于提供输出信号。

通过计算得到变压比为1:2。

3. 设计整流桥和直流滤波器:采用全波整流桥结构,并选用大容量滤
波电容进行直流滤波处理。

4. 设计开关变换器:选用MOS管作为开关管,并采用反激式结构进
行设计。

控制信号通过脉冲宽度调制(PWM)技术进行控制。

同时,在输入端加入输入滤波器进行滤波处理。

5. 设计输出稳压器:选用LM2576芯片进行稳压处理,通过反馈电路控制输出电压。

同时,加入输出滤波电容进行滤波处理。

6. 进行整个电路的仿真和优化:通过仿真软件进行各个环节的仿真和
优化,保证整个电路的性能符合要求。

7. 进行实际电路的搭建和调试:根据设计结果进行实际电路的搭建和
调试,保证整个开关电源的性能达到预期。

五、总结
开关电源环路设计是一项复杂而又重要的工作,需要考虑多方面因素,包括输出功率、输出电压范围、变压器选择、整流桥和直流滤波器设计、开关变换器设计以及输出稳压器设计等。

通过合理的设计和优化,可以实现高效、稳定、可靠的开关电源。

相关文档
最新文档