第四章电力的系统功率特性和功率极限实验2

合集下载

电力系统实验报告

电力系统实验报告

电⼒系统实验报告单机⽆穷⼤系统稳态实验:⼀、整理实验数据,说明单回路送电和双回路送电对电⼒系统稳定运⾏的影响,并对实验结果进⾏理论分析:实验数据如下:由实验数据,我们得到如下变化规律:(1)保证励磁不变的情况下,同⼀回路,随着有功输出的增加,回路上电流也在增加,这是因为输出功率P=UIcos Φ,机端电压不变所以电流随着功率的增加⽽增加;(2)励磁不变情况下,同⼀回路,随着输出功率的增⼤,⾸端电压减⼩,电压损耗也在减⼩,这是由于输出功率的增⼤会使发电机输出端电压降低,在功率流向为发电机到系统的情况下,即使电压虽好降低有由于电压降落的横向分量较⼩,所以电压降落近似为电压损耗;(3)出现电压降落为负的情况是因为系统倒送功率给发电机的原因。

单回路供电和双回路供电对电⼒系统稳定性均有⼀定的影响,其中双回路要稳定⼀些,单回路稳定性较差。

⼆、根据不同运⾏状态的线路⾸、末端和中间开关站的实验数据、分析、⽐较运⾏状态不同时,运⾏参数变化的特点和变化范围。

由实验数据,我们可以得到如下结论:(1)送出相同⽆功相同有功的情况下:单回路所需励磁电压⽐双回路多,线路电流⼤⼩相等,单回路的电压损耗⽐双回路多;(eg.P=1,Q=0.5时)(2)送出相同⽆功的条件下,双回路⽐单回路具有更好的静态稳定性,双回路能够输送的有功最⼤值要多于单回路;发⽣这些现象的原因是:双回路电抗⽐单回路⼩,所以所需的励磁电压⼩⼀些,电压损耗也要少⼀些,⽽线路电流由于系统电压不改变;此外,由于电抗越⼤,稳定性越差,所以单回路具有较好的稳定性。

三、思考题:1、影响简单系统静态稳定性的因素是哪些?答:由静稳系数S Eq=EV/X,所以影响电⼒系统静态稳定性的因素主要是:系统元件电抗,系统电压⼤⼩,发电机电势以及扰动的⼤⼩。

2、提⾼电⼒系统静态稳定有哪些措施?答:提⾼静态稳定性的措施很多,但是根本性措施是缩短"电⽓距离"。

主要措施有:(1)、减少系统各元件的电抗:减⼩发电机和变压器的电抗,减少线路电抗(采⽤分裂导线);(2)、提⾼运⾏电压⽔平;(3)、改善电⼒系统的结构;(4)、采⽤串联电容器补偿;(5)、采⽤⾃动励磁调节装置;(6)、采⽤直流输电。

电力系统实验报告

电力系统实验报告

一、实验目的1. 掌握电力系统基本元件的特性和参数测量方法。

2. 理解电力系统运行的基本原理,包括稳态运行和暂态过程。

3. 学习使用电力系统仿真软件进行潮流计算和分析。

4. 提高实验操作能力和数据分析能力。

二、实验内容1. 电力系统基本元件特性实验(1)实验原理本实验主要研究电力系统中常用元件的特性,包括电阻、电感、电容和变压器。

通过测量元件在不同条件下的电压、电流和功率,分析其特性。

(2)实验步骤1. 测量电阻元件的伏安特性,绘制伏安曲线。

2. 测量电感元件的伏安特性,分析其频率响应。

3. 测量电容元件的伏安特性,分析其频率响应。

4. 测量变压器变比和损耗。

(3)实验结果与分析通过实验,得到了电阻、电感、电容和变压器的伏安特性曲线,分析了其频率响应和损耗情况。

2. 电力系统稳态运行实验(1)实验原理本实验研究电力系统在稳态运行条件下的电压、电流和功率分布。

通过仿真软件模拟电力系统运行,分析稳态运行特性。

(2)实验步骤1. 建立电力系统模型,包括发电机、变压器、线路和负荷。

2. 设置电力系统运行参数,如电压、频率和负荷。

3. 运行仿真软件,观察电压、电流和功率分布情况。

4. 分析稳态运行特性,如电压分布、潮流分布和功率损耗。

(3)实验结果与分析通过仿真实验,得到了电力系统稳态运行时的电压分布、潮流分布和功率损耗情况。

分析了不同运行参数对系统性能的影响。

3. 电力系统暂态过程实验(1)实验原理本实验研究电力系统在发生故障或扰动时的暂态过程。

通过仿真软件模拟故障或扰动,分析暂态过程的电压、电流和功率变化。

(2)实验步骤1. 建立电力系统模型,包括发电机、变压器、线路和负荷。

2. 设置故障或扰动参数,如故障类型、故障位置和故障持续时间。

3. 运行仿真软件,观察电压、电流和功率变化情况。

4. 分析暂态过程特性,如电压恢复、频率变化和稳定裕度。

(3)实验结果与分析通过仿真实验,得到了电力系统发生故障或扰动时的暂态过程特性。

电力特性实验报告模板

电力特性实验报告模板

[实验名称]二、实验目的1. 理解并掌握电力系统基本特性和参数测量方法。

2. 学习电力电子器件及其驱动电路的基本原理和特性。

3. 掌握电力系统稳态和动态分析的基本方法。

4. 培养实验操作能力和数据分析能力。

三、实验原理[简要介绍实验涉及的原理和公式,包括但不限于电路分析方法、电力电子器件工作原理、电力系统稳态和动态特性等。

]四、实验仪器与设备1. [列出实验所需的仪器和设备,如示波器、万用表、直流稳压电源、电阻箱、电容箱、电力电子器件等。

]2. [说明仪器的使用方法和注意事项。

]五、实验步骤1. 连接电路- 按照实验电路图连接电路,确保连接正确无误。

- 检查电路连接是否牢固,防止短路或接触不良。

2. 参数设置- 根据实验要求设置电源电压、电流、频率等参数。

- 调整电阻箱、电容箱等元件的阻值或容量。

3. 稳态实验- 进行稳态实验,观察电路的稳态特性。

- 记录相关数据,如电压、电流、功率等。

- 进行动态实验,观察电路的动态特性。

- 记录相关数据,如电压、电流、功率等。

5. 数据分析- 对实验数据进行处理和分析,得出实验结论。

- 绘制实验曲线,如伏安特性曲线、相量图等。

6. 实验总结- 总结实验过程,分析实验结果,得出实验结论。

- 提出改进建议和注意事项。

六、实验数据[记录实验过程中获取的电压、电流、功率等数据,并附上表格或曲线图。

]七、实验结果与分析1. 稳态特性分析- 分析电路的稳态特性,如电压、电流、功率等。

- 对比理论值和实验值,分析误差原因。

2. 动态特性分析- 分析电路的动态特性,如过渡过程、稳态响应等。

- 对比理论值和实验值,分析误差原因。

3. 实验结论- 总结实验结果,得出实验结论。

- 对实验过程中遇到的问题进行分析和解决。

八、实验讨论1. 实验现象- 讨论实验过程中观察到的现象,如电路稳定性、电压波动等。

2. 实验误差- 分析实验过程中可能出现的误差,如测量误差、连接误差等。

3. 改进建议- 提出改进实验方案的建议,如提高精度、改进电路设计等。

电力系统及自动化综合实验报告

电力系统及自动化综合实验报告

电力系统及自动化综合实验报告姓名:学号:第三章一机中间开关站电压;DU 输电线路的电压降落3、单回路稳态非全相运行实验确定实现非全相运行的接线方式,断开一相时,与单回路稳态对称运行时相同的输送功率下比较其运行状态的变化。

具体操作方法如下:(1)首先按双回路对称运行的接线方式(不含QF5);(2)输送功率按实验1中单回路稳态对称运行的输送功率值一样;(3)微机保护定值整定:动作时间0秒,重合闸时间100秒;(4)在故障单元,选择单相故障相,整定故障时间为0²<t<100²;(5)进行单相短路故障,此时微机保护切除故障相,准备重合闸,这时迅速跳开“QF1”、“QF3”开关,即只有一回线路的两相在运行。

观察此状态下的三相电流、电压值与实验1进行比较;(6)故障100²以后,重合闸成功,系统恢复到实验1状态。

表3-2UAUBUCIAIBICPQS全相运行值2102102100000002102102100000、、1非全相运行值2102102050000002122152000000、100、121522518000、50、750、300、322023017001、221、320、500、52052152100000002122052100000、100、12251902100、350、500、300、32301752151、221、2300、500、5四、实验报告要求1、整理实验数据,说明单回路送电和双回路送电对电力系统稳定运行的影响,并对实验结果进行理论分析。

2、根据不同运行状态的线路首、末端和中间开关站的实验数据、分析、比较运行状态不同时,运行参数变化的特点和变化范围。

3、比较非全相运行实验的前、后实验数据,分析输电线路输送功率的变化。

五、思考题1、影响简单系统静态稳定性的因素是哪些?答:由静稳系数SEq=EV/X,所以影响电力系统静态稳定性的因素主要是:系统元件电抗,系统电压大小,发电机电势以及扰动的大小。

电力系统实验报告

电力系统实验报告

电力系统综合实验实验报告1实验目的1.通过实验一,观察发电机的四种运行状态。

2.通过实验二,观察系统在不同电压和不同拓扑结构中的静稳极限,观察失稳之后各相电压和电流波形。

3.通过实验三,观察不同短路情况下,短路切除时间对于电力系统稳定性的影响。

2实验内容2.1实验一:发电机不同象限运行实验2.1.1实验内容通过改变发电机的转速和励磁分别改变发电机的有功功率P与无功功率Q,实现发电机在不同象限的运行。

2.1.2理论分析发电机的四种运行状态:1.迟相运行(常态运行):发电机向电网同时送出有功功率和无功功率(容性)。

2.进相运行(超前运行):发电机向电网送出有功功率,吸收电网无功功率。

3.调相运行:发电机吸收电网的有功功率维持同步运转,向电网送出无功功率(容性)。

4.电动机运行(非正常运行):发电机同时吸收电网的有功功率和无功功率维持同步运行。

2.1.3实验步骤1.按照双回线方式,依次接入断路器,双回线,电动机,无穷大电网,组成简易电力系统。

2.测试各个接线端子的是否能够正常使用,闭合断路器。

3.启动发电机,并网运行。

4.改变发电机设定转速改变其有用功率,改变发电机励磁改变其无功功率,使其运行在四个象限,四个象限各取三组数据。

在正常状态下,设定三组不同转速使其保持正常运行状态,记录机端电压,有功功率,无功功率;然后降低转速,使其运行于第二象限,再次记录三组调相数据;接着降低励磁电压,使发电机运行于第三象限,记录三组电动机数据;最后提高转速使点击运行与第四象限,获得3组进相数据。

2.1.4实验结果具体现象如图所示,图. 1转速设定值0.90图. 2转速设定值0.91图. 3转速设定值0.89图. 4转速设定值0.875图. 5转速设定值0.865图. 6转速设定值0.855图. 7转速设定值0.860 4.P > 0, Q < 0 第四象限图. 8转速设定值0.882图. 9转速设定值0.892图. 10转速设定值0.9022.2实验二:线路静态稳定极限测试实验2.2.1实验内容测试线路的静态稳定运行极限,测试不同电压等级和不同电抗条件下,电压静态稳定极限的变化情况。

电力系统综合实验A报告书

电力系统综合实验A报告书

名称:电力系统综合实验题目:同步发电机准同期并列实验院系:电气与电子工程学院班级:学号:学生姓名:指导教师:实验周数:成绩:日期:年月日一、实验的目的与要求1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;2.掌握微机准同期控制器及模拟式综合整步表的使用方法;3.熟悉同步发电机准同期并列过程;二、实验正文1.偏离准同期并列条件合闸三、实验总结或结论1.比较手动准同期和自动准同期的调整并列过程;2.分析合闸时发电机有功无功在不同条件下有何差异;3.分析合闸冲击电流的大小与哪些因素有关;四、思考题1.相序不对(如系统侧相序为A、B、C、为发电机侧相序为A、C、B),能否并列?为什么?2.电压互感器的极性如果有一侧(系统侧或发电机侧)接反,会有何结果?3.准同期并列与自同期并列在本质上有何差别?如果在这套机组上实验自同期并列,应如何操作?4.合闸冲击电流的大小与哪些因素有关?频率差变化或电压差变化时,正弦整步电压的变化规律如何?5.当两侧频率几乎相等,电压差也在允许范围内,但合闸命令迟迟不能发出,这是一种什么现象?应采取什么措施解决?6.在f F>f X或者f F<f X,U F>U X或者U F<U X下并列,机端有功功率表及无功功率表的指示有何特点?为什么?五、参考文献1.《电力系统综合实验A指导书》,自编2.《电力系统稳态分析》,陈珩,中国电力出版社,2007年,第三版;3.《电力系统暂态分析》,李光琦,中国电力出版社,2007年,第三版;4.《电力系统自动化》,李先彬,中国电力出版社,2007年,第四版;名称:电力系统综合实验题目:单机—无穷大系统稳态运行方式实验院系:电气与电子工程学院班级:学号:学生姓名:指导教师:实验周数:成绩:日期:年月日一、实验的目的与要求1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围;2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。

武汉理工大学电分实验报告

武汉理工大学电分实验报告

学生学号实验课成绩实验课程名称电力系统分析开课学院自动化指导老师姓名谢建凯学生姓名学生专业班级电气 1203 班2014 —2015 学年第二学期实验课程名称:实验项目名称 电力系统功率特性和功率极限实验 实验成绩 实验者专业班级学号同组者实验日期年 月 日第一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验方案与技术路线等)一、实验目的1.初步掌握电力系统物理模拟实验的基本方法;2. 加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用;3.通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实际及分析问题的能力。

二、原理与说明所谓简单电力系统,一般是指发电机通过变压器、输电线路与无限大容量母线联接而且不计各元件的电阻和导纳的输电系统。

对于简单系统,如发电机至系统d 轴和q 轴总电抗分别为X d ∑和X q ∑,则发电机的功率特性为:δδ2sin 2sin 2∑∑∑∑∑⋅-⨯+=q d q d d q Eq X X X X U X U E P当发电机装有励磁调节器时,发电机电势E q 随运行情况而变化。

根据一般励磁调节器的性能,可认为保持发电机E 'q (或E ')恒定。

这时发电机的功率特性可表示成:δδ2sin 2sin 2∑∑∑∑∑⋅'-'⨯+''='q dq dd qEq X X X X U X U E P或 δ'''='∑sin dq EX U E P这时功率极限为∑'='d EmX UE P随着电力系统的发展和扩大,电力系统的稳定性问题更加突出,而提高电力系统稳定性和输送能力的最重要手段之一是尽可能提高电力系统的功率极限,从简单电力系统功率极限的表达式看,提高功率极限可以通过发电机装设性能良好的励磁调节器以提高发电机电势、增加并联运行线路回路数或串联电容补偿等手段以减少系统电抗、受端系统维持较高的运行电压水平或输电线采用中继同步调相机或中继电力系统以稳定系统中继点电压等手段实现。

电力系统实验报告

电力系统实验报告

电力系统实验报告篇一:电力系统实验报告单机无穷大系统稳态实验:一、整理实验数据,说明单回路送电和双回路送电对电力系统稳定运行的影响,并对实验结果进行理论分析:实验数据如下:由实验数据,我们得到如下变化规律:(1)保证励磁不变的情况下,同一回路,随着有功输出的增加,回路上电流也在增加,这是因为输出功率P=UIcos Φ,机端电压不变所以电流随着功率的增加而增加;(2)励磁不变情况下,同一回路,随着输出功率的增大,首端电压减小,电压损耗也在减小,这是由于输出功率的增大会使发电机输出端电压降低,在功率流向为发电机到系统的情况下,即使电压虽好降低有由于电压降落的横向分量较小,所以电压降落近似为电压损耗;(3)出现电压降落为负的情况是因为系统倒送功率给发电机的原因。

单回路供电和双回路供电对电力系统稳定性均有一定的影响,其中双回路要稳定一些,单回路稳定性较差。

二、根据不同运行状态的线路首、末端和中间开关站的实验数据、分析、比较运行状态不同时,运行参数变化的特点和变化范围。

由实验数据,我们可以得到如下结论:(1)送出相同无功相同有功的情况下:单回路所需励磁电压比双回路多,线路电流大小相等,单回路的电压损耗比双回路多;(eg.P=1,Q=0.5时)(2)送出相同无功的条件下,双回路比单回路具有更好的静态稳定性,双回路能够输送的有功最大值要多于单回路;发生这些现象的原因是:双回路电抗比单回路小,所以所需的励磁电压小一些,电压损耗也要少一些,而线路电流由于系统电压不改变;此外,由于电抗越大,稳定性越差,所以单回路具有较好的稳定性。

三、思考题:1、影响简单系统静态稳定性的因素是哪些?答:由静稳系数SEq=EV/X,所以影响电力系统静态稳定性的因素主要是:系统元件电抗,系统电压大小,发电机电势以及扰动的大小。

2、提高电力系统静态稳定有哪些措施?答:提高静态稳定性的措施很多,但是根本性措施是缩短"电气距离"。

电力系统分析实验报告四(理工类)

电力系统分析实验报告四(理工类)

西华大学实验报告(理工类)开课学院及实验室: 实验时间 : 年 月 日一、实验目的1)初步掌握电力系统物理模拟实验的基本方法。

2)加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用。

3)通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实际及分析问题的能力。

二、实验原理所谓简单电力系统,一般是指发电机通过变压器、输电线路与无限大容量母线联接而且不计各元件的电阻和导纳的输电系统。

对于简单系统,如发电机至系统d 轴和g 轴总电抗分别为d X ∑和q X ∑,则发电机的功率特性为2()sin sin 2q d q Eq d d q E UX X U P X X X δδ∑∑∑∑∑-=+⨯⨯当发电机装有励磁调节器时,发电机电势q E 随运行情况而变化,根据一般励磁调节器的性能,可认为保持发电机'q E (或'E )恒定。

这时发电机的功率特性可表示成''2'''''()sin sin 2Eq q d q d d q E UX X U P X X X δδ∑∑∑∑∑-=+⨯⨯ 或''''sin E q d E UP Xδ∑=这时功率极限为'''Em q d E UP X∑=随着电力系统的发展和扩大,电力系统的稳定性问题更加突出,而提高电力系统稳定性和输送能力的最重要手段之一,就是尽可能提高电力系统的功率极限。

从简单电力系统功率极限的表达式看,要提高功率极限,可以通过发电机装设性能良好的励磁调节器,以提高发电机电势、增加并联运行线路回路数;或通过串联电容补偿等手段,以减少系统电抗,使受端系统维持较高的运行电压水平;或输电线采用中继同步调相机、中继电力系统等手段以稳定系统中继点电压。

(3)实验内容1)无调节励磁时,功率特性和功率极隈的测定 ①网络结构变化对系统静态稳定的影响(改变戈):在相同的运行条件下(即系统电压U-、发电机电势E 。

(OA自动化)EAL电力系统综合自动化实验指导书.

(OA自动化)EAL电力系统综合自动化实验指导书.

(OA自动化)EAL电力系统综合自动化实验指导书目录实验一电机启动、建压和停机实验1实验二自动准同期条件测试实验4实验三线性整步电压测试实验11实验四导前时间整定及测量实验14实验五压差闭锁和整定实验17实验六频差方向及频差闭锁与整定实验21实验七相差闭锁与整定实验26实验八调频脉宽整定实验31实验九手动准同期并列实验34实验十半自动准同期并列实验37实验十一全自动准同期并列实验40实验十二同步发电机励磁控制实验44(一)同步发电机励磁起励控制实验47(二)控制方式相互切换实验51(三)可控励磁系统主电路负荷调节实验54(四)伏赫限制实验56(五)调差实验58实验十三同步发电机的解列、灭磁与停机实验61实验十四一机—无穷大系统稳态运行方式实验64实验十五电力系统功率特性和功率极限实验68(一)无调节励磁时功率特性和功率极限的测定69(二)手动调节励磁时功率特性和功率极限的测定74(三)自动调节励磁时功率特性和功率极限的测定76实验十六电力系统暂态稳定实验79(一)短路对电力系统暂态稳定的影响80(二)研究提高暂态稳定的措施83实验十七单机带负荷实验87实验十八微机线路保护实验92实验一电机启动、建压和停机实验一、实验目的1、掌握实验设备的正确使用方法。

二、预习与思考1、本实验系统由几部分组成?各部分的功能是什么?2、在实验中需要注意什么?三、原理说明实验台由三相交流电源、双回路、准同期控制器、微机线路保护、发电机励磁系统、原动机调速系统和发电机组几部分组成。

四、实验设备五、实验内容与步骤1、电机启动和建压实验1)、打开电脑;2)、合上实验台左侧的断路器;3)、打开LIBVIEW7.0软件,运行实验届面7.7点击如下图标;检查实验台(界面)各开关状态,EAL-01上的断开指示灯亮(绿灯),合闸指示灯熄灭。

进入实验届面EAL-02双回路中,将实验台上的各开关状态打在OFF(绿色)状态。

;(备注:在运行实验界面时先运行一分钟点后击停止按钮,再点击运行按停止钮)。

单机对无穷大系统稳态运行方式实验

单机对无穷大系统稳态运行方式实验

单机对无穷大系统稳态运行方式实验:1.数值概念:为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。

2本实验系统是物理模型,原动机采用直流电动机模拟,原动机的输出功率的大小,可通过给定直流电动机的电枢电压来调节;用标准小型三相同步发电机来模拟电力系统的同步发电机,发电机的励磁系统可以用外加直流电源通过手动调节,也可切换到台上的微机励磁调节器实现自动调节;输电线路由多个结成链型的电抗线圈来模拟,无穷大母线直接由实验室交流电源提供。

3为测量发电机转子与系统的功率角,装设了闪光测角装置。

4实验内容:①单回路稳态对称运行实验,原动机采用手动模拟方式开机,励磁采用手动励磁方式,然后启机、建压、并网后调整发电机电压和原动机功率,使输电系统处于不同的运行状态,观察各参数②将上步单回线改为双回线运行。

③确定实现非全相运行的接线方式,断开一相时,与单回路稳态对称运行时相同的输送功率下进行运行状态的比较。

操作方式:1按双回路对称运行接线方式2输送功率按单回路稳态对称运行的输送功率值3微机保护定值整定4选择单相故障相5进行单相短路故障,此时危机保护切除故障相,准备重合闸,迅速跳开QF1/QF3,观察三相电流与电压6,100”后重合闸成功。

多台发电机对无穷大系统稳态运行方式实验:1此环形电力网具有多个节点,通过投切线路灵活改变接线方式,XLC/XLF线路都断开,则电力网变成T型网络。

2在不改变网络主结构的前提下,通过分别改变发电机有功、无功来改变潮流分布,可以通过投切负荷来实现,也可以将双回路线改为单回路线输送来实现,还可以调整无穷大母线电压来改变潮流分布。

电力系统实时监控实验:1电力系统自动化有遥测、遥信、遥控、遥调等功能2电力系统是由许多发电厂,输电线路和各种形式的负荷组成的,作为电力系统的调度和通信中心担负着整个电力网络的调度问题,以实现电力系统的安全优质和经济运行的目标。

电力系统及自动化综合实验报告

电力系统及自动化综合实验报告

电⼒系统及⾃动化综合实验报告电⼒系统及⾃动化综合实验报告学院:专业:电⽓⼯程及其⾃动化姓名:学号:第三章⼀机—⽆穷⼤系统稳态运⾏⽅式实验⼀、实验⽬的1.了解和掌握对称稳定情况下,输电系统的各种运⾏状态与运⾏参数的数值变化范围;2.了解和掌握输电系统稳态不对称运⾏的条件;不对称度运⾏参数的影响;不对称运⾏对发电机的影响等。

⼆、原理与说明电⼒系统稳态对称和不对称运⾏分析,除了包含许多理论概念之外,还有⼀些重要的“数值概念”。

为⼀条不同电压等级的输电线路,在典型运⾏⽅式下,⽤相对值表⽰的电压损耗,电压降落等的数值范围,是⽤于判断运⾏报表或监视控制系统测量值是否正确的参数依据。

因此,除了通过结合实际的问题,让学⽣掌握此类“数值概念”外,实验也是⼀条很好的、更为直观、易于形成深刻记忆的⼿段之⼀。

实验⽤⼀次系统接线图如图2所⽰。

图2 ⼀次系统接线图本实验系统是⼀种物理模型。

原动机采⽤直流电动机来模拟,当然,它们的特性与⼤型原动机是不相似的。

原动机输出功率的⼤⼩,可通过给定直流电动机的电枢电压来调节。

实验系统⽤标准⼩型三相同步发电机来模拟电⼒系统的同步发电机,虽然其参数不能与⼤型发电机相似,但也可以看成是⼀种具有特殊参数的电⼒系统的发电机。

发电机的励磁系统可以⽤外加直流电源通过⼿动来调节,也可以切换到台上的微机励磁调节器来实现⾃动调节。

实验台的输电线路是⽤多个接成链型的电抗线圈来模拟,其电抗值满⾜相似条件。

“⽆穷⼤”母线就直接⽤实验室的交流电源,因为它是由实际电⼒系统供电的,因此,它基本上符合“⽆穷⼤”母线的条件。

为了进⾏测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。

为了测量发电机转⼦与系统的相对位置⾓(功率⾓),在发电机轴上装设了闪光测⾓装置。

此外,台上还设置了模拟短路故障等控制设备。

三、实验项⽬和⽅法1.单回路稳态对称运⾏实验在本章实验中,原动机采⽤⼿动模拟⽅式开机,励磁采⽤⼿动励磁⽅式,然后启机、建压、并⽹后调整发电机电压和原动机功率,使输电系统处于不同的运⾏状态(输送功率的⼤⼩,线路⾸、末端电压的差别等),观察记录线路⾸、末端的测量表计值及线路开关站的电压值,计算、分析、⽐较运⾏状态不同时,运⾏参数变化的特点及数值范围,为电压损耗、电压降落、沿线电压变化、两端⽆功功率的⽅向(根据沿线电压⼤⼩⽐较判断)等。

电力系统自动化实验指导书

电力系统自动化实验指导书

电力系统自动化实验指导书第一章同步发电机准同期并列实验(一)同步发电机准同期并列实验1、手动准同期2、半自动准同期3、全自动准同期4、准同期条件整定一、实验目的1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;2.掌握模拟式综合整步表的使用方法;3.熟悉同步发电机准同期并列过程。

二、原理与说明将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。

准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。

本实验台采用手动准同期方式。

手动准同期并列,应在正弦整步电压的最低点(同相点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。

三、实验项目和方法(一)机组启动与建压1.检查原动机调速上自耦调压器指针是否指在0位置,如不在则应调到0位置;2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄;3.励磁调节器选择它励、恒UF运行方式,合上励磁开关;4.把实验台上“同期方式”开关置“OFF”位置;5.合上系统电压开关和线路开关QF1,QF3,检查系统电压接近额定值380V;6.合上原动机开关,调节自耦调压器的输出,电动机将慢慢启动到额定转速;7.当机组转速升到95%以上时,微机励磁调节器自动将发电机电压建压到与系统电压相等。

(二)观察与分析1.操作原动机调速旋钮调整机组转速,记录微机励磁调节器显示的发电机频率。

观察并记录不同频差方向,不同频差大小时的模拟式整步表的指针旋转方向及旋转速度、频率平衡表指针的偏转方向及偏转角度的大小的对应关系;2.操作励磁调节器上的增磁或减磁按钮调节发电机端电压,观察并记录不同电压差方向、不同电压差大小时的模拟式电压平衡表指针的偏转方向和偏转角度的大小的对应关系。

电力系统分析综合实验二(2):单机-无穷大系统

电力系统分析综合实验二(2):单机-无穷大系统

课程名称:电力系统分析综合实验指导老师:成绩:实验名称:单机-无穷大系统实验类型:同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求了解和掌握三相对称稳态情况下,输出系统各种运行状态参数的变化范围二、实验内容和原理通过本实验了解和掌握电力系统稳态对称运行特性,在巩固理论概念的同时掌握“数值概念”-如在典型运行方式下,用相对值表示的电压损耗、电压降落等数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据等。

三、操作方法和实验步骤1.机组手动启动和建压(1)在调速装置上检查“模拟调节”电位器指针是否指在0位置,如不在,则应调到0位置。

将操作台上的“手动励磁”调节旋钮反时针旋到0;(2)合上操作台的“电源开关”,在调速装置、励磁调节器、微机准同期控制器上分别确认其“微机正常”灯为闪烁状态,在微机保护装置上确认“装置运行”灯为闪烁状态。

在调速装置上确认“并网”灯为熄灭状态,“输出0”、“停机”灯亮。

检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄;(3)按调速装置上的“模拟方式”按钮使“模拟方式”灯亮;(4)把操作台上“励磁方式”开关置于“手动励磁”位置,在励磁调节器上确认“它励”灯亮;(5)在励磁调节器上选择恒UF运行方式,合上“励磁开关”;(6)把实验台上“同期方式”开关置“断开”位置;(7)合上“系统开关”和线路开关“QF2、QF4、QF6”,检查系统电压接近额定值380V;(8)合上“原动机开关”,再顺时针旋转调速装置上的指针电位器,当发电机旋转后,观察机组稳定情况,然后通过顺时针旋转指针电位器缓慢加速到额定转速;(9)顺时针调节操作台上的“手动励磁”旋钮增加励磁电压,在维持发电机为额定频率时,增加发电机电压为额定电压。

2.并网请参照第三章中的手动准同期(按准同期并列条件合闸)的方法进行并网操作。

电力系统综合自动化测试报告

电力系统综合自动化测试报告

测试记录:THLWL-3型微机励磁装置测试记录报告一、技术指标THLWL-3型微机励磁装置电流调节精度为<0.5%I;电压调节精度为<0.5%U F;无功调节精度为<6.0%Q二、实验数据第一章发电机组的起动与运转实验测试结论:按实验步骤可顺利完成发电机组的起励建压、并网、解列、停机等相关操作,实验现象与指导书中的描述一致,满足要求。

第二章同步发电机励磁控制实验实验2 不同α角(控制角)对应的励磁电压波形1.观测三相全控桥的电压输出及其波形⑴测试记录及数据处理观测到的波形如下:0.029A励磁电压波形0.5A励磁电压波形0.5A励磁电压波形1.5A励磁电压波形2A励磁电压波形2.5A励磁电压波形2.5A励磁电压波形2.68A励磁电压波形⑵测试结论:观测到的波形与理论波形基本一致,满足要求。

⒊控制角α的测量⑴测试记录及数据处理:观测到的典型波形如下:α=60°时Uac和Uk的对应关系α=120°时Uac和Uk的对应关系α=120°时Uac和Uk的对应关系表2-2-1计算公式: Ud=1.35UacCOSα(0≤α≤π/3)⑵测试结论:由公式计算的α角和由示波器读出的α角相差4°以内,基本相等,满足要求。

实验3 典型方式下的同步发电机起励实验测试结论:按实验步骤可顺利完成恒UG方式起励、恒Ug方式起励和恒IL方式起励等三种方式的起励建压操作,过程中出现的实验现象与实验指导书中的描述一致,满足要求。

实验4 励磁调节器的控制方式及其相互切换⒈恒U G=400V⑴测试记录及数据处理:表2-4-1⑵测试结论:由测试数据可知,整定励磁调节方式为恒U G=400V时,当发电机频率在50±5Hz范围内变化时,励磁调节器可将发电机电压恒定在400±2V的范围内,即实现了恒U G=400V的功能,满足要求。

⒉恒IL=2A⑴测试记录及数据处理:表2-4-2⑵测试结论:由测试数据可知,整定励磁调节方式为恒IL=2A后,当发电机频率在50±5Hz范围内变化时,励磁调节器可将励磁电流恒定在2±0.01A的范围内,即实现了恒IL=2A的功能,故认为满足要求。

《功率特性》课件

《功率特性》课件
2 对工程实践的启示
掌握功率特性有助于电路设计和电力系统的运行与维护。
3 心得体会
通过学习功率特性,我们能够更好地理解电力和能量转换的过程。
参考文献
- 《电力系统分析与综合》(邬成志,刘建国,姚锦涛) - 《电气控制与PLC技术》(姜其永) - 《电路分析基础》(穆飞,宋兆东)
《功率特性》P介绍功率特性的基本定义、常用参 数、测量方法、应用以及重要性等内容。希望能为大家带来有趣且实用的知 识。
概述
1 什么是功率特性
功率特性是描述电路或电子器件在不同工作 状态下的功率表现。
2 为什么要了解功率特性
了解功率特性有助于优化电路设计、提高设 备效率,并确保电力系统稳定运行。
基本定义
1 功率的定义
功率是衡量能量转移速率 的物理量,表示单位时间 内能量的转移量。
2 电压、电流、功率的
关系
功率等于电压乘以电流, 在交流电路中还受到相位 角的影响。
3 相位角及其对功率的
影响
相位角指示电压和电流之 间的时间关系,对功率因 数和有功功率的计算具有 重要影响。
常用的功率参数
有功功率
表示电路或电子器件转化为有用功率的能力。
视在功率
是有功功率和无功功率的代数和,表示电路或 电子器件的总功率。
无功功率
指电路或电子器件所消耗或产生的非有用功率。
功率因数
反映有功功率与视在功率之间的比例关系,决 定了电路的效率和能耗。
功率特性的测量方法
直接测量
通过电力仪表或测试仪器直接测量电压、电流和功 率等参数。
间接测量
利用电路的其他特性,如电阻、电感和电容等来计 算功率。
功率特性的应用
1
电力系统中的功率特性

电力系统功率特性和功率极限实验报告

电力系统功率特性和功率极限实验报告
新增母线
A相
B相
C相
接地
短路
断线
接入时间
退出时间
接入电阻
接入电抗
1
GEN2-230
STNC-230
3
50
T
T
T
T
T
F
0.1
0.2
0
0
选择输出信息
点击输出信息栏中的“选择”按钮,弹出暂态稳定输出选择窗口:
①选中“自动分析”;
②选中“发电机功角”,选择发电1-发电2,发电2-发电3,发电1-发电3。
③选中“母线电压”:
下图退出时间T=1.0
下图退出时间T=10
六、实验结果及分析
由图可知,随着故障切除时间的推移,发电机的功角持续增大,系统的非周期性振荡逐渐加剧。
如其中所有相对功角均趋于稳定值,则系统暂态稳定,若有其中一个相对角随时间增长而一直增大或一直减小,则系统不具备暂态稳定。系统的暂态稳定跟故障切除时间有关,切除的过早或过晚都有可能导致系统暂态不稳定。
四、实验步骤
暂态稳定基础方案及其数据组构成如下:
在文本环境窗口中,点击“计算/暂态稳定”便可在暂态稳定计算信息窗口中定义作业1,如下图所示:
1.设置网络故障
选中“网络故障”,点击其后的“编辑”按钮,弹出暂态稳定网络故障数据窗口:
在该窗口中,录入和编辑故障数据如下:
表1
作业号
I侧母线
J侧母线
编号
位置
%
2014年12月18日学院机械与电气年级专工程业班姓名学号实验课程名称电力系统分析实验成绩实验项目名称电力系统功率特性和功率极限实验指导老师一实验目的了解电力系统暂态稳定的相关概念学习用根据相对功角判断系统的稳定性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统实验指导书第四章 电力系统功率特性和功率极限实验一、实验目的1. 初步掌握电力系统物理模拟实验的基本方法;2. 加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用; 3. 通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实际及分析问题的能力。

二、原理与说明所谓简单电力系统,一般是指发电机通过变压器、输电线路与无限大容量母线联接而且不计各元件的电阻和导纳的输电系统。

对于简单系统,如发电机至系统d 轴和q 轴总电抗分别为X d ∑和X q ∑,则发电机的功率特性为:δδ2sin 2sin 2∑∑∑∑∑⋅-⨯+=q d q d d q Eq X X X X U X U E P当发电机装有励磁调节器时,发电机电势E q 随运行情况而变化。

根据一般励磁调节器的性能,可认为保持发电机E 'q (或E ')恒定。

这时发电机的功率特性可表示成:δδ2sin 2sin 2∑∑∑∑∑⋅'-'⨯+''='q dq dd qEq X X X X U X U E P或 δ'''='∑sin dq EX U E P这时功率极限为∑'='d EmX UE P随着电力系统的发展和扩大,电力系统的稳定性问题更加突出,而提高电力系统稳定性和输送能力的最重要手段之一是尽可能提高电力系统的功率极限,从简单电力系统功率极限的表达式看,提高功率极限可以通过发电机装设性能良好的励磁调节器以提高发电机电势、增加并联运行线路回路数或串联电容补偿等手段以减少系统电抗、受端系统维持较高的运行电压水平或输电线采用中继同步调相机或中继电力系统以稳定系统中继点电压等手段实现。

三、实验项目和方法(一)无调节励磁时功率特性和功率极限的测定1.网络结构变化对系统静态稳定的影响(改变x)在相同的运行条件下(即系统电压U x、发电机电势保持E q保持不变,即并网前U x=E q),测定输电线单回线和双回线运行时,发电机的功一角特性曲线,功率极限值和达到功率极限时的功角值。

同时观察并记录系统中其他运行参数(如发电机端电压等)的变化。

将两种情况下的结果加以比较和分析。

实验步骤:(1)输电线路为单回线;(2)发电机与系统并列后,调节发电机使其输出的有功和无功功率为零;(3)功率角指示器调零;(4)逐步增加发电机输出的有功功率,而发电机不调节励磁;(5)观察并记录系统中运行参数的变化,填入表4-1中;(6)输电线路为双回线,重复上述步骤,填入表4-2中。

表4-1 单回线δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0表4-2 双回线δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0注意:(1)有功功率应缓慢调节,每次调节后,需等待一段时间,观察系统是否稳定,以取得准确的测量数值。

(2)当系统失稳时,减小原动机出力,使发电机拉入同步状态。

2.发电机电势E q不同对系统静态稳定的影响在同一接线及相同的系统电压下,测定发电机电势E q不同时(E q<U x或E q>U x)发电机的功一角特性曲线和功率极限。

实验步骤:(1)输电线为单回线,并网前E q<U x;(2)发电机与系统并列后,调节发电机使其输出有功功率为零;(3)逐步增加发电机输出的有功功率,而发电机不调节励磁;(4)观察并记录系统中运行参数的变化,填入表4-3中;(5)输电线为单回线,并网前E q>U x,重复上述步骤,填入表4-4中。

表4-3 单回线并网前Eq <Uxδ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0-表4-4 单回线并网前 Eq >Uxδ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0+(二)手动调节励磁时,功率特性和功率极限的测定给定初始运行方式,在增加发电机有功输出时,手动调节励磁保持发电机端电压恒定,测定发电机的功一角曲线和功率极限,并与无调节励磁时所得的结果比较分析,说明励磁调节对功率特性的影响。

实验步骤:(1)单回线输电线路;(2)发电机与系统并列后,使P=0,Q=0,δ=0,校正初始值;(3)逐步增加发电机输出的有功功率,调节发电机励磁,保持发电机端电压恒定或无功输出为零;(4)观察并记录系统中运行参数的变化,填入表4-5中。

表4-5 单回线手动调节励磁δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0表4-6 双回线手动调节励磁δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0(三)自动调节励磁时,功率特性和功率极限的测定将自动调节励磁装置接入发电机励磁系统,测定功率特性和功率极限,并将结果与无调节励磁和手动调节励磁时的结果比较,分析自动励磁调节器的作用。

1.微机自并励(恒流或恒压控制方式),实验步骤自拟;表4-7 单回线微机自并励方式δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0表4-8 双回线微机自并励方式δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 02.微机它励(恒流或恒压控制方式),实验步骤自拟。

表4-9 单回线微机它励方式δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0表4-10 双回线微机它励方式δ0︒20︒40︒60︒80︒P 0I A0UzU FI LQ 0注意事项:1.调速器处停机状态时,如果“输出零”灯不亮,不可开机;2.实验结束后,通过励磁调节使无功输出为零,通过调速器调节使有功输出为零,解列之后按下调速器的停机按钮使发电机转速至零。

跳开操作台所有开关之后,方可关断操作台上的操作电源开关。

四、实验报告要求1.根据实验装置给出的参数以及实验中的原始运行条件,进行理论计算。

将计算结果与实验结果进行比较。

2.认真整理实验记录,通过实验记录分析的结果对功率极限的原理进行阐述。

同时对理论计算和实验记录进行对比,说明产生误差的原因。

并作出Uz(δ),P(δ) Q(δ)特性曲线,对其进行描述。

3.分析、比较各种运行方式下发电机的功—角特性曲线和功率极限。

五、思考题1.功率角指示器的原理是什么?如何调节其零点?当日光灯供电的相发生改变时,所得的功角值发生什么变化?2.多机系统的输送功率与功角δ的关系和简单系统的功—角特性有什么区别?3.自并励和它励的区别和各自特性是什么?4.自动励磁调节器对系统静态稳定性有何影响?5.实验中,当发电机濒临失步时应采取哪些挽救措施才能避免电机失步?第五章电力系统暂态稳定实验一、实验目的1.通过实验加深对电力系统暂态稳定内容的理解,使课堂理论教学与实践结合,提高学生的感性认识。

2.学生通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施。

3.用数字式记忆示波器测出短路时短路电流的非周期分量波形图,并进行分析。

二、原理与说明电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否继续保持同步运行的问题。

在各种扰动中以短路故障的扰动最为严重。

正常运行时发电机功率特性为:P1=(Eo×Uo)×sinδ/X1;1/X2;短路运行时发电机功率特性为:P2=(Eo×Uo)×sinδ2/X3;故障切除发电机功率特性为: P3=(Eo×Uo)×sinδ3对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。

而系统保持稳定条件是切除故障角δc小于δmax,δmax可由等面积原则计算出来。

本实验就是基于此原理,由于不同短路状态下,系统阻抗X2不同,同时切除故障线路不同也使X3不同,δmax也不同,使对故障切除的时间要求也不同。

同时,在故障发生时及故障切除通过强励磁增加发电机的电势,使发电机功率特性中Eo增加,使δmax增加,相应故障切除的时间也可延长;由于电力系统发生瞬间单相接地故障较多,发生瞬间单相故障时采用自动重合闸,使系统进入正常工作状态。

这二种方法都有利于提高系统的稳定性。

三、实验项目与方法(一)短路对电力系统暂态稳定的影响1.短路类型对暂态稳定的影响本实验台通过对操作台上的短路选择按钮的组合可进行单相接地短路,两相相间短路,两相接地短路和三相短路试验。

固定短路地点,短路切除时间和系统运行条件,在发电机经双回线与“无穷大”电网联网运行时,某一回线发生某种类型短路,经一定时间切除故障成单回线运行。

短路的切除时间在微机保护装置中设定,同时要设定重合闸是否投切。

在手动励磁方式下通过调速器的增(减)速按钮调节发电机向电网的出力,测定不同短路运行时能保持系统稳定时发电机所能输出的最大功率,并进行比较,分析不同故障类型对暂态稳定的影响。

将实验结果与理论分析结果进行分析为系统可以稳定输出的极限,注意观察有功表的读数,当系统出于振比较。

Pmax荡临界状态时,记录有功表读数,最大电流读数可以从YHB-Ⅲ型微机保护装置读出,具体显示为:GL-⨯⨯⨯三相过流值GA-⨯⨯⨯ A相过流值GB-⨯⨯⨯ B相过流值GC-⨯⨯⨯ C相过流值微机保护装置的整定值代码如下:01:过流保护动作延迟时间02:重合闸动作延迟时间03:过电流整定值04:过流保护投切选择05:重合闸投切选择另外,短路时间T D由面板上“短路时间”继电器整定,具体整定参数为表5-1。

表5-1整定值代码01 02 03 04 05 T D整定值0.5(s) / 5.00(A) On Off 1.0(s)微机保护装置的整定方法如下:同时按“△”“▽”进入整定值修改画面。

进入整定值修改画面后,通过“△”“▽”选01整定项目,再按压触摸按钮“+”或“-”选择当保护时间(s);通过“△”“▽”选03整定项目,再按压触摸按钮“+”或“-”选择当过电流保护值;通过“△”“▽”选04整定项目,再按压触摸按钮“+”或“-”选择当过电流保护投切ON;通过“△”“▽”选05整定项目,再按压触摸按钮“+”或“-”选择重合闸投切为OFF。

(详细操作方法WDT-ⅢC综合自动化试验台使用说明书。

)注:同时按下“+”“—”按钮可以恢复到出厂默认值。

自动方式开机,建压,并网,待机组运行稳定后,在下面4种不同线路组合下做各种短路试验,观察并记录短路发生时的最大有功P max和最大短路电流。

表5-2 短路切除时间t=0.5s线路组合1:QF1=1 QF2=1 QF3=1 QF4=1 QF5=0 QF6=1: 短路类型P max(W) 最大短路电流(A)单相接地短路两相相间短路两相接地短路三相短路(0:表示对应线路开关断开状态1:表示对应线路开关闭合状态)表5-3 短路切除时间t=0.5s线路组合2:QF1=0 QF2=1 QF3=0 QF4=1 QF5=0 QF6=1: 短路类型P max(W) 最大短路电流(A)单相接地短路两相相间短路两相接地短路三相短路表5-4 短路切除时间t=0.5s线路组合3:QF1=1 QF2=1 QF3=0 QF4=1 QF5=1 QF6=1: 短路类型P max(W) 最大短路电流(A)单相接地短路两相相间短路两相接地短路三相短路表5-5 短路切除时间t=0.5s线路组合4:QF1=0 QF2=1 QF3=1 QF4=1 QF5=1 QF6=1: 短路类型P max(W) 最大短路电流(A)单相接地短路两相相间短路两相接地短路三相短路2.故障切除时间对暂态稳定的影响固定短路地点,短路类型和系统运行条件,通过调速器的增速按钮增加发电机向电网的出力,在测定不同故障切除时间能保持系统稳定时发电机所能输出的最大功率,分析故障切除时间对暂态稳定的影响。

相关文档
最新文档