机械设计螺栓组强度计算求合力公式

合集下载

螺栓强度计算

螺栓强度计算
――制造工艺因数,切制螺纹 =1,滚制、搓制螺纹, =1.25;
――受力不均匀因数,受压螺母 =1,受拉螺母 =1.5~1.6;
――缺口应力集中因数,按表3查得;
――抗压疲劳极限,按表4查得;
――安全因数,控制预紧力 =1.5~2.5,不控制预紧力 =2.5~5。
表1螺栓连接
一、螺栓受力分析:
螺栓为受轴向载荷紧螺栓连接(动载荷),受轴向载荷紧螺栓连接(动载荷)的基本形式如下图所示:
二、受轴向载荷紧螺栓连接(动载荷)的基本公式:
(1)许用应力计算公式:
(2)强度校核计算公式:
式中:
――轴向载荷,N;
――螺栓小径,mm,查表获得;
――相对刚度,按表1选取;
――尺寸因数,按表2查得;
表3缺口应力集中因数
表4抗压疲劳极限
三、计算内容:
相关参数如下表:
(1)许用应力计算:
(2)强度校核计算:
四、结论:
由上述计算可知,螺栓强度满足要求。

螺栓组受力分析与计算

螺栓组受力分析与计算

螺栓组受力分析与计算前言螺栓组是机械结构中常用的连接元件,常见于机器零件和设备中。

在机械结构中,螺栓组的受力分析和计算是非常重要的。

其中,螺栓组受力的大小和方向,不仅决定了螺栓的抗拉强度,还决定了整个机械结构的稳定性和可靠性。

在本文中,我们将介绍螺栓组的受力分析和计算,包括螺栓组的受力特点、受力方向、计算公式和实际案例。

螺栓组受力特点螺栓组是由若干个螺栓组成的一种连接结构。

在受到外力作用时,螺栓组的受力特点主要表现为:1.拉力:螺栓组一般是在拉伸状态下进行工作的,拉力是螺栓组受力的主要形式。

2.压力:螺栓组在受到工作装置的压力时,螺栓头和垫圈会承受一定的压力。

3.剪力:螺栓组在受到横向力或剪切力时,螺栓会发生剪切变形。

4.扭矩:螺栓组在受到扭矩力时,螺栓会扭转变形。

螺栓组受力方向螺栓组的受力方向可以分为两种类型:轴向力和剪力。

轴向力轴向力是螺栓组最常见的受力形式,是指沿着螺栓中心线方向的受力。

当受到轴向拉力和压力时,螺栓组会发生轴向变形,通过计算轴向力和剪力的大小和方向,可以确定螺栓组的破坏形式。

剪力剪力是指横向力或者剪切力在螺栓组上的作用。

当受到横向力或者剪切力时,螺栓组会承受剪切变形,通过计算剪力和轴向力的大小和方向,可以确定螺栓组的破坏形式。

螺栓组的计算公式为了确定螺栓组的受力方向和大小,可以使用材料力学的基本公式进行计算。

下面是螺栓组的计算公式。

轴向力的计算公式轴向拉力的计算公式如下:F = A * σ其中,F表示轴向拉力;A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。

轴向压力的计算公式如下:F = A * σ其中,F表示轴向压力;A表示螺栓的截面积;σ表示螺栓材料的压缩强度。

剪力的计算公式剪力的计算公式如下:F = A * τ其中,F表示剪切力;A表示螺栓的截面积;τ表示螺栓材料的剪切强度。

实例分析螺栓组的实际应用非常广泛,下面介绍几个实际案例。

案例1:车轮螺栓的受力分析和计算车轮螺栓是汽车结构中常见的连接元件,其受力情况如下图所示:在这个情况下,车轮螺栓的轴向拉力如下所示:F = A * σ = 3.14 * (12.52/2)^2 * 780 = 23161.3 N其中,A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。

机械设计螺纹连接的强度计算

机械设计螺纹连接的强度计算

Ob 螺栓
λb

变形
合并后 Ob
θb θm
λb
λm
λm Om 被联接件
tg b C b tg m C m
变形 Om
力与变形线图
△F
预紧且有工作载荷后:
力 B
A
F0
C
θb
θm
Ob △λ
Om
λb
λm
力与变形线图
F1
F
F2
变形
F2 F1F
为保证连接的紧密性,应使残余预紧力F1 >0, 一般根据连接的性质确定F1的大小。 推荐采用的F1为: 对于用密封要求的连接,F1=(1.5~1.8)F 对于一般连接,工作载荷稳定时,F1=(0.2~0.6)F
工作载荷不稳定时,F1=(0.6~1.0)F
F
Dp D
各力定义: 1、预紧力F0(拧紧螺母后,作用在螺栓上的拉力和被联件
上压力) 2、工作拉力F(对螺栓联接施加的外载荷) 3、 残余预紧力F1 4、螺栓的总拉力F2
F
Dp D
F0
△F
F1 F F2
力 B
A
Ob θb △λ
λb
C θm Om
λm
F2 F1F (1)
1.3F0
d 1
2
4
1
F 0 f nF
p
F
ds h
p
F
1 4
ds2
m
F0 F f n
d1
41.3F0
取二式计算结果中较 大的ds 选择螺栓
F2F0CbC bCmFF1F
ca
1.3F2
1 4
d12
d1
41.3F2
aCbC bCm2d F 1 2 a

机械设计基础螺纹连接的强度计算

机械设计基础螺纹连接的强度计算


1.3F0
d12
[ ]
4
设计公式为
d1
4 1.3F0
[ ]
(2)受横向外载荷的紧螺栓联接
载荷与螺栓轴向垂直,靠被
联接件间的摩擦力传递。螺栓
内部危险截面上既有轴向预紧
力F0形成的拉应力σ,又有因螺 栓与螺纹牙面间的摩擦力矩T1
而形成的扭转剪应力τ。
螺栓预紧力
F0

Kf f
FR m
防偏载措施:
复习思考题
1.在常用的螺旋传动中,传动效率最高的螺纹是 ( )。
A .三角形螺纹 B. 梯形螺纹 C .锯齿形螺纹 D . 矩形螺纹
2.当两个被联接件之一太厚,不宜制成通孔,且 联接不需要经常拆卸时,往往采用( )。
A 螺栓联接 B 螺钉联接 C 双头螺柱联接 D 紧 定螺钉联接
3.两被联接件之一较厚,盲孔且经常拆卸时,常用()。 A.螺栓联接 B.双头螺柱联接 C.螺钉联接
A.螺纹上的应力集中 B.螺栓杆横截面上的扭转应力 C.载荷沿螺纹圈分布的不均匀性 D.螺纹毛刺的部分挤压
13.螺纹连接的基本形式有哪几种?各适用于何种场合?有 何特点? 14.为什么螺纹连接通常要采用防松设施?常用的防松方法 和装置有哪些? 15.常见的螺栓失效形式有哪几种?失效发生的部位通常在 何处?
(二)受剪切螺栓联接
螺栓受载前后不需预紧, 横向载荷靠源自栓杆与螺栓 孔壁之间的相互挤压传递。
➢挤压强度条件
p

FR
ds
[ p ]
➢剪切强度条件


FR
m ds2
/4
[]
四、螺栓组联接的结构设计和受力分析
工程中螺栓成组使用,单个使用极少。因此,必须研 究栓组设计和受力分析,它是单个螺栓计算基础和前提 条件。

螺纹强度校核公式

螺纹强度校核公式

螺栓是应用广泛的可拆卸紧固件,实际工程中经常需要进行螺栓强度校核和选型。

机械设计手册中给出了螺栓选型的经验公式,这些公式是合理有效的,但需要明确输入螺栓的轴向和横向载荷,这些载荷通常很难用理论计算或经验估计方法确定。

有限元分析能够处理螺栓连接的结构,但有限元分析中的螺栓连接通常是做了大量简化,导致螺栓应力结果不准确,无法作为螺栓校核选型的依据。

因此,本文考虑将经验公式与有限元分析相结合来进行螺栓校核选型。

通过有限元分析来确定螺栓所受的轴向和横向载荷,以此作为经验公式的输入,完成螺栓校核选型计算。

关于螺栓选型,需要明确最小拉力载荷和保证载荷这两个概念。

当试验拉力达到最小拉力载荷时,要求螺栓不得发生断裂。

在试件上施加保证载荷后,其永久伸长量(包括测量误差),不应大于12.5微米。

最小拉力载荷和保证载荷的具体数值参见GB/T 3098.1-2000~ GB/T 3098.17-2000。

跟螺栓选型相关的几个标准规范如下:•GB/T 3098-2000 紧固件机械性能•GB/T 16823.1-1997 螺纹紧固件应力截面积和承载面积•QC/T 518-2007 汽车用螺纹紧固件紧固扭矩•GB/T 5277-1985 紧固件螺栓和螺钉通孔2. 螺栓强度校核经验公式2.1 受横向载荷普通紧螺栓在预紧力作用下,压紧被连接件,被连接件间产生摩擦力,抵抗横向载荷。

螺栓杆受拉伸扭转综合作用。

如果连接件之间的摩擦力不足以抵消横向载荷,则被连接件发生横向错动,螺杆可能被剪断。

其强度校核计算公式如下:螺栓所受横向外载荷为F A。

为产生足够的摩擦力抵抗F A,所需最小预紧力F p为:上式中,K f为可靠性系数,一般取1.1-1.3;m为结合面数目;f为结合面摩擦系数。

按照最小预紧力F p计算螺栓应力σ,进而确定所需的螺栓屈服强度σs,最终可选定螺栓公称直径和强度等级。

其中,d1为螺纹小径;S s为安全系数,取值参见表1。

螺栓强度计算

螺栓强度计算

参考材料:螺栓的性能等级8.8指材料的抗拉强度极限800MPa,屈服极限640MPa。

螺栓、螺柱、螺柱的性能等级共分10个等级:自3.6至12.9。

小数点前面的数字代表材料的拉强度极限的1/100,小数点后面的代表材料的屈服极限与抗拉强度极限之比的10倍。

螺母的性能等级分7个等级,从4到12。

数字粗略表示螺母保证能承受的最小应力的1/100。

对统一英制螺纹,外螺纹有三种螺纹等级:1A、2A和3A级,内螺纹有三种等级:1B、2B 和3B级,全部都是间隙配合。

等级数字越高,配合越紧。

1、1A和1B级,非常松的公差等级,其适用于内外螺纹的允差配合。

2、2A和2B级,是英制系列机械紧固件规定最通用的螺纹公差等级。

3、3A和3B级,旋合形成最紧的配合,适用于公差紧的紧固件,用于安全性的关键设计。

公制螺纹,外螺纹有三种螺纹等级:4h、6h和6g,内螺纹有三种螺纹等级:5H、6 H、7H。

螺纹配合最好组合成H/g、H/h或G/h,对于螺栓、螺母等精制紧固件螺纹,标准推荐采用6H/6g的配合.碳钢:强度等级标记代号由“?”隔开的两部分数字组成。

标记代号中“?”前数字部分的含义表示公称抗拉强度,如4.8级的“4”表示公称抗拉强度400N/MM2 的1/100。

标记代号中“?”和点后数字部分的含义表示屈强比,即公称屈服点或公称屈服强度与公称抗拉强度之比。

如4.8级产品的屈服点为320 N/mm2。

不锈钢产品强度等级标志由“—”隔开的两部分组成。

标志代号中“—”前符号表示材料。

如:A2,A4等标志“—”后表示强度,如:A2-70碳钢:公制螺栓机械性能等级可分为:3.6、4.6、4.8、5.6、5.8、6.8、8.8、9.8、10.9、12.9共10个性能等级钢结构连接用螺栓性能等级分3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9 等10 余个等级,其中8.8 级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。

螺栓强度计算方法(附公式)

螺栓强度计算方法(附公式)

螺栓强度计算方法详解螺栓强度计算方法详解((附公式附公式))
螺栓强度计算是利用公式对螺栓连接强度进行有效计算,确定螺栓的受力状况。

不同的螺栓强度计算的方法和公式也不相同。

下面,世界泵阀网为大家汇总螺栓强度计算方法公式。

以供学习参考。

螺栓强度计算,主要是根据联接的类型、联接的装配情况(是否预紧)和受载状态等条件,确定螺栓的受力;然后按相应的强度条件计算螺栓危险截面的直径(螺纹小径)或校核其强度。

螺栓强度计算:
承载力=强度 x 面积;
螺栓有螺纹,以M24螺栓为例,其横截面面积不是24直径的圆面积,而是353平方毫米,称之为有效面积。

普通螺栓C 级(4.6和4.8级)抗拉强度是170N/平方毫米。

那么承载力就是:170x353=60010N 。

换算一下,1吨相当于1000KG ,相当于10000N ,那么M24螺栓也就是可以承受约6吨的拉力。

紧螺栓强度校核与设计计算式:
松螺栓强度计算:
危险截面拉伸强度条件为:
d1——螺纹小径,mm; F——螺栓承受的轴向工作载荷,N:;[σ]——松螺栓联接的许用应力,N/m㎡。

螺栓与螺母统计计算公式

螺栓与螺母统计计算公式

螺栓与螺母统计计算公式螺栓和螺母是机械连接中常用的零件,它们的质量和尺寸对于机械设备的安全运行至关重要。

在工程设计中,需要对螺栓和螺母进行统计计算,以确保其符合设计要求并能够承受相应的载荷。

本文将介绍螺栓与螺母的统计计算公式,并探讨其在工程设计中的应用。

螺栓与螺母的统计计算公式主要涉及到其受力分析和强度计算。

在实际工程中,螺栓和螺母通常承受拉力、剪力和扭矩等多种受力形式,因此需要综合考虑各种受力情况下的强度计算。

下面将分别介绍螺栓和螺母的统计计算公式。

螺栓的统计计算公式:1. 拉力计算公式。

螺栓在受拉力作用下,其拉力计算公式为:F = P / A。

其中,F为螺栓的拉力,P为受力,A为螺栓的横截面积。

根据受力情况和螺栓的材料性能,可以确定螺栓的横截面积A,从而计算出螺栓的拉力。

2. 剪力计算公式。

螺栓在受剪力作用下,其剪力计算公式为:V = T / (d π)。

其中,V为螺栓的剪力,T为受力,d为螺栓的直径,π为圆周率。

根据受力情况和螺栓的材料性能,可以确定螺栓的直径d,从而计算出螺栓的剪力。

3. 扭矩计算公式。

螺栓在受扭矩作用下,其扭矩计算公式为:T = F r。

其中,T为螺栓的扭矩,F为螺栓的拉力,r为螺栓的臂长。

根据受力情况和螺栓的材料性能,可以确定螺栓的臂长r,从而计算出螺栓的扭矩。

螺母的统计计算公式:1. 拉力计算公式。

螺母在受拉力作用下,其拉力计算公式与螺栓相似,为:F = P / A。

其中,F为螺母的拉力,P为受力,A为螺母的横截面积。

根据受力情况和螺母的材料性能,可以确定螺母的横截面积A,从而计算出螺母的拉力。

2. 剪力计算公式。

螺母在受剪力作用下,其剪力计算公式与螺栓相似,为:V = T / (d π)。

其中,V为螺母的剪力,T为受力,d为螺母的直径,π为圆周率。

根据受力情况和螺母的材料性能,可以确定螺母的直径d,从而计算出螺母的剪力。

3. 扭矩计算公式。

螺母在受扭矩作用下,其扭矩计算公式与螺栓相似,为:T = F r。

《机械设计》第九版 公式大全

《机械设计》第九版 公式大全

第五章螺纹连接和螺旋传动受拉螺栓连接1、受轴向力FΣ每个螺栓所受轴向工作载荷:zFF/∑=z:螺栓数目;F:每个螺栓所受工作载荷2、受横向力FΣ每个螺栓预紧力:fizFKF s∑>f:接合面摩擦系数;i:接合面对数;sK:防滑系数;z:螺栓数目3、受旋转力矩T每个螺栓所受预紧力:∑=≥niisrfTKF10sK:防滑系数;f:摩擦系数;4、受翻转力矩M螺栓受最大工作载荷:≥zMLF maxmax5、受横向力FΣ每个螺栓所受工作剪力:F==ii1螺栓连接强度计算松螺栓连接:]σπσ≤=421d只受预紧力的紧螺栓连接:[]σπσ≤=43.121dF受预紧力和轴向工作载荷的紧螺栓连接:受轴向静载荷:[]σπσ≤=43.1212dF受轴向动载荷:[]pmbba dFCCCσπσ≤∙+=212受剪力的铰制孔用螺栓连接剪力:螺栓的剪切强度条件:[]σπτ≤=4/2dF螺栓与孔壁挤压强度:[]pp LdFσσ≤=min螺纹连接的许用应力许用拉应力:[]S Sσσ=许用切应力:[]τστSS=许用挤压应力: 钢:[]PS P S σσ=铸铁:[]PB P S σσ=S σ:螺纹连接件的屈服极限;B σ:螺纹连接件的强度极限;p S S S ⋅⋅τ:安全系数第六章 键、花键、无键连接和销连接普通平键强度条件:[]p p kldT σσ≤⨯=3102 导向平键连接和滑键连接的强度条件:p kldT p ≤⨯=3102T :传递的转矩,N.mkl :键的工作长度,d :轴的直径,mmMPa静连接强度条件:[]p mp zhld T σϕσ≤⨯=3102动连接强度条件:[]p zhld T p m≤⨯=ϕ3102ϕ:载荷分配不均系数,与齿数多少有关,一般取8.0~7.0=ϕ,齿数多时取偏小值z :花键齿数l :齿的工作长度,mm h :齿侧面工作高度,C dD h 22--=,C 倒角尺寸m d :花键的平均直径,矩形花键2dD d m +=,渐开线花键1d d m =,1d 为分度圆直径,mm[]pσ:花键许用挤压应力,MPa[]p :花键许用压力,MPa第八章 带传动1、带传动受力分析的基本公式2001F F F F -=-201eF F F +=1F :紧边接力,N ; N ; e F :有效拉力,N ; αf eec F :临界摩擦力,N ; αf F :临界有效拉力,N ; f :摩擦系数,N ; α:带在轮上的包角,rad 3、带的应力分析 紧边拉应力:A F 11=σ 松边拉应力:AF 22=σ 离心拉应力:Aqv A F e c 2==σ带绕过带轮产生的弯曲应力:db d hE=σA :带的横剖面面积,mm 2; q :带的单位长度质量,kg/m ;v :带速,m/s ; E :带的弹性模量,N/mm2; h :带的厚度,mm ; d d :带轮基准直径,mm带的最大应力发生在紧边绕入小带轮之处:b c σσσσ++=1max第十章 齿轮传动直齿轮 圆周力:1112d T F t = αcos 1t n F =向力:βtan t a F F = 法向力直齿轮齿根弯曲疲劳强度校核公式:[]F Sa Fa t F F bmY Y Y F K σσε≥=1设计计算公式[]32112F SaFa d F Y Y z Y T K m σφε∙≥ Fa Y :齿形系数;Sa Y 应力校正系数; F K 弯曲疲劳强度计算载荷系数,βF Fa v A F K K K K K =εY 弯曲疲劳计算的重合度系数直齿圆柱齿轮齿面疲劳接触强度计算[]H Z H d H H T Z Z uu d T K σφσε≤±∙=12311 设计计算公式321112⎪⎪⎭⎫⎝⎛∙±∙≥HE H d H Z Z Z u u T K d σφε斜齿轮齿根弯曲疲劳强度校核公式[]F n d Sa Fa F F Z m Y Y Y Y T K σφβσβε≤=21321cos 2设计计算公式[]32121cos 2F SaFa d F n Y Y z Y T K m σφββ⋅≥锥齿轮轮齿受力分析 圆周力112m t d T F =径向力211cos tan a t r F F F ==δα 轴向力211cos tan r t a F F F ==δα 法向载荷αcos tn F F =齿根弯曲疲劳强度校核计算公式()[]F R R SaFa F F u zm Y Y T K σφφσ≤+-=15.01221321设计计算公式()[]32212115.01F SaFa R R F Y Y u zT K m σφφ∙+-≥齿面接触疲劳强度校核计算公式()[]H R R H EH H ud T K Z Z σφφσ≤-=31215.014 设计计算公式[]()321215.014u T K Z Z d RR H HEH φφσ-⎪⎪⎭⎫ ⎝⎛≥ 第十一章 蜗杆传动 蜗杆圆周力11212d T F F a t ==]H K :载荷系数,v A K K K K β=,A K 使用系数,βK 齿向载荷分布系数,v K 动载系数[]H H σσ/:分别为蜗轮齿面的接触应力和许用接触应力,MPa蜗轮齿根弯曲疲劳强度校核公式[]F Fa F Y Y md d KT σσβ≤=221253.1 设计公式[]βσY Y z KT d m Fa F 221253.1≥F σ:蜗轮齿根弯曲应力,MPa2Fa Y :蜗轮齿形系数[]F σ:蜗轮的许用弯曲应力,MPa第十二章滑动轴承一、不完全液体润滑径向滑动轴承计算在设计时,通常已知轴承所受的径向载荷F<N>,轴颈转速n<r/min>,轴颈直径d<mm>,进行以下验算: 1、验算轴承平均压力p<MPa>MPa pv 许用值MPa.m/s[]v :许用滑动速度,m/s二、不完全液体润滑止推滑动轴承的计算在设计止推轴承时,通常已知轴承所受轴向载荷Fa ,轴颈转速n ,轴颈直径2d 和轴承孔直径1d 以及轴环数目z ,处于混合润滑状态下的止推轴承需校核p 和pv 。

《机械设计》公式

《机械设计》公式

αt 端面压力角 mn 用来合标准的,指导加工的 mt 用来计算尺寸的 mt=mn/cosβ
d1=mt∙Z1=mn∙Z1/cosβ
d2=mt∙Z2=mn∙Z2/cosβ
可以通过改变 β 来改变中心距
备注
为了使轴向力不太大, β=8°~20° αn=20°法向压力角
.
.
直齿锥齿轮传动是以大端参数为标准值的。
在强度计算式,则以齿宽中点处的当量齿轮作为计算的依据。
标准锥齿轮
符号 参数名称
公式
u 齿数比
R
锥距(最大处)
备注
d1 分度圆直径
d2 分度圆直径
dm1 平均分度圆直径
b=B
dm2 平均分度圆直径
ΦR 锥齿轮传动的齿宽系数
rv
当量齿轮分度圆半径
dv 当量齿轮分度圆直径
dm 上的那
个圆
mm 当量直齿圆柱齿轮的模数 锥齿轮平均分度圆上轮齿的模数 平均模数
ψ=Δ/d=δ/r χ=e/δ
hmin=δ−e=δ(1−χ)=rψ(1−χ)
h=δ(1+χcosφ)=rψ(1+χcosφ)
h0=δ(1+χcosφ0) h0 在 hmin 前 注意符号
轴承工作能力
.
滚动轴承 三锥五推七接触
符号 参数名称
公式
L10 基本额定寿命
.
备注 L10 的 单 位是: r
C
小的代入计算
K 载荷系数 [ ]许用弯曲应力
弯曲应力
T1 小齿轮传递的转矩 N∙mm
YFa 齿形系数,当 Z 或 Zv↑YFa↓,由于斜齿轮
轮的 YFa 较小。 YSa 应力校正系数,当 Z 或 Zv↑YSa↑ 由于 YFa 与 YSa 的关系,两个相啮合的齿轮,弯曲应力不同 ∅d=b/d1 齿宽系数,b 用大齿轮的 b,小齿轮的比 b 大一点 d1 分度圆直径

机械设计习题--螺栓连接

机械设计习题--螺栓连接

− bh13 12
=b 12
h3 − h13
( ) = 150 3403 − 2203
12
= 358200000(mm 4 )
K
α
O
O
h h1 220
280 160
W
=
Ioo h2
=
35820000 170
150
= 2107059(mm 3)
b
1.接合面下端
σ pmax
=
zF1 A
+
M W
=
4 × 5783 + 150 × (340 - 220)
116
作业:
P101-102 思考题: 5-1、5-2、5-3、5-4 习题:5-5、5-6、5-8、5-10*
138
FPV
=
PV 4
= 3677 4
= 919(N )
PH
(3)在翻转力矩M作用下,上面两个螺栓受轴向力:
Pv
M PH α Pv
150
力的合成?
∑ FM
=
MLmax
z
L2i
= 1051070×140 4 × 1402
= 1877(N)
i=1
横向力: FH = 771(N )
可见受力最大的单个联接所受力为:
0.2× 2796
=
7079(N )
F1+Fmax来计算F2
114
280 160
Pv
解:(一)受力分析 (二)按拉伸强度确定螺栓直径
选4.6级螺栓,控制预紧力,S=1.5 则许用应力[σ]=240/1.5=160MPa
d1 ≥
4 ×1.3F2
π [σ ]

机械设计-螺栓组受力分析计

机械设计-螺栓组受力分析计

每个螺栓受的轴向载荷为: 每个螺栓受的轴向载荷为:
F = Q / 4 = 16000 / 4 = 4000 N
螺栓的螺栓的总拉力 F2 = F1 +F = 10000 +4000 = 14000N 螺栓材料的许用拉应力为: 螺栓材料的许用拉应力为:
[σ ] = σ S
S
=
640 = 320 2
由螺栓拉伸强度条件: 由螺栓拉伸强度条件:
由接合面摩擦条件
f
F0 ≥K S
F2
1.1 × 1800 ⇒ F0 = = 13200 N 0.15
由拉伸强度条件: 由拉伸强度条件:
4 × 1.3 F0 ≤[σ ] 2 πd 1
σ=
4 × 1.3 F0 5.2 × 13200 ⇒ d1 ≥ = = 16.53mm π [σ ] π × 80
图示方形盖板用四个螺钉与箱体联接,吊环作用 的力, 图示方形盖板用四个螺钉与箱体联接,吊环作用10KN的力,吊环因制造误差中 的力 心O′与螺栓组形心 偏差 5 2mm ,求受力最大的螺栓所受的工作拉力。 ′与螺栓组形心O偏差 求受力最大的螺栓所受的工作拉力。 解:将外载荷向螺栓组形心简化, 将外载荷向螺栓组形心简化, 轴向载荷为F 轴向载荷为 =10KN 倾覆力矩M=FL= 10 × 5 2 = 50 2 倾覆力矩 在F作用下,单个螺栓所受的工作载荷为: 作用下, 作用下 单个螺栓所受的工作载荷为:
解:由挤压强度条件: 由挤压强度条件:
σP = F L min d0 ≤[σ ]P
F 即 ≤200 ⇒ F ≤14400 N (14 8) 12 ×
由剪切强度条件: 由剪切强度条件:
4F τ= ≤[τ ] 2 πd 0 即 4F ≤120 ⇒ F ≤13571.68 N 2 π × 12

螺栓强度校核

螺栓强度校核

依照机械设计手册中的“螺纹拧紧力矩计算”和“单个螺栓的强度计算”公式,可得: 1.螺栓的拧紧力矩:k T =()22303020213121d D d D f F d tg F T T w w c v --⨯⨯⨯+⨯+⨯⨯=+ρφ0F ()22332236d D d D f d tg T w w c v k--⨯⨯+⨯+⨯=ρφF 0: 单个螺栓的拉紧力(KN ); T k : 螺栓的拧紧力矩规定值(Nm ); φ: 螺纹升角ρ v :螺旋副当量摩擦角:ρv =arctgf v 。

其中f v : 螺旋副当量摩擦系数,取f v =0.17; d 1: 螺纹小径(mm ); d 2: 螺纹中径(mm );f c : 螺栓工作面摩擦系数,取f c =0.15~0.20; D w :螺栓头摩擦面外径(mm ); d 0: 螺栓通孔直径(mm.); T 1 :螺旋副螺纹阻力矩(Nm ),()20121d tg F T v ⨯+⨯⨯=ρφ T 2: 螺栓头与其接触面的摩擦力矩(Nm ),223030231d D d D f F T w w c --⨯⨯⨯=2.螺栓螺纹部分的拉应力:2104d F πσ=3.螺栓的螺纹部分剪应力:()3120311816d d tg F d T v πρφπτ⨯+==4.对一般的钢制螺栓,其强度条件为:[]στσσ≤+=22135.螺栓安全系数: n 1=[σ]/σl[σ]: 螺栓的极限许用应力,[σ]=σS / n (n 安全系数取1.25)6.螺栓组能传递的摩擦力矩:ncmK f z r F T ⨯⨯⨯=z:螺栓个数;r:螺栓组半径;K n:螺栓组可靠性系数。

7.传递扭矩的安全系数:n2= T m/T T:联轴器承受的扭矩。

校核结果如下表:。

螺栓连接的强度计算

螺栓连接的强度计算

强度条件验算公式:
设计公式:
分析:由上式可知,当f=0.2,i=1,KS=1则QP=5R,说明这种联接螺栓直径大,且在冲击振动变载下工作极不可靠
为增加可靠性,减小直径,简化结构,提高承载能力
可采用如下减载装置: 减载销 减载套筒 减载键
2、铰制孔螺栓联接——防滑动
特点:螺杆与孔间紧密配合,无间隙,由光杆直接承受挤压和剪切来传递外载荷R进行工作
1、防松目的
01
开槽螺母与开口销,圆螺母与止动垫圈,弹簧垫片,轴用带翅垫片,止动垫片,串联钢丝等
2)机械防松:
自锁螺母——螺母一端做成非圆形收口或开峰后径面收口,螺母拧紧后收口涨开,利用收口的弹力使旋合螺纹间压紧
弹簧垫圈
01
02
开槽螺母
与开口销
永久防松:端铆、冲点、点焊
化学防松——粘合 圆螺母 与止动垫圈 串联钢丝
扳手拧紧力矩——T=FH·L,
拧紧时螺母:T=T1+T2 T——拧紧力矩 T1——螺纹摩擦阻力矩 T2——螺母端环形面与被联接件间的摩擦力矩
FH—作用于手柄上的力,L——力臂
一般 K=0.1~0.3
——拧紧力矩系数
由于直径过小的螺栓,容易在拧紧时过载拉断,所以对于重要的联接不宜小于M10~M14
材料 螺栓级别: 点后数字为 螺母级别:
螺母、螺栓强度级别:
1)根据机械性能,把栓母分级并以数字表示,此乃强度级别
带点数字表示 , 点前数字为 注意:选择对螺母的强度级别应低于螺栓材料的强度级别,螺母的硬度稍低于螺栓的硬度(均低于20~40HB)
2)所依据机械性能为抗拉强度极限σBmin和屈服极限σSmin
作图,为了更明确以简化计算(受力变形图) 设:材料变形在弹性极限内,力与变形成正比

螺栓有效载荷计算公式

螺栓有效载荷计算公式

螺栓有效载荷计算公式
螺栓有效载荷是指螺栓或螺钉能够承受的最大拉力或剪力。

它是工程设计中非常重要的一个指标,能够保证机械装置的安全运行。

螺栓有效载荷的计算公式是根据螺栓的材料、直径、螺纹规格以及紧固力等参数来确定的。

一般而言,螺栓的有效载荷计算公式可分为拉力和剪力两种情况。

对于拉力情况,螺栓的有效载荷计算公式为:
P = F / A
其中,P代表螺栓的有效载荷,F代表螺栓所承受的拉力,A代表螺栓的截面积。

对于剪力情况,螺栓的有效载荷计算公式为:
P = F / A_s
其中,P代表螺栓的有效载荷,F代表螺栓所承受的剪力,A_s代表螺栓的剪切截面积。

在实际应用中,为了保证螺栓的安全性,通常会对螺栓的有效载荷进行安全系数的调整。

安全系数可以根据具体的工程要求来确定,一般建议在设计时选择适当的安全系数,以确保螺栓的可靠性和稳定性。

螺栓有效载荷的计算公式在工程设计中起着重要的作用,它能够帮助工程师评估螺栓的承载能力,从而选择合适的螺栓规格和数量。

合理的螺栓设计不仅可以提高机械装置的安全性和可靠性,还能够减少材料的浪费,降低成本。

螺栓有效载荷计算公式是工程设计中不可或缺的一部分,它能够帮助工程师评估螺栓的承载能力,确保机械装置的安全运行。

在实际应用中,我们需要根据具体情况选择合适的螺栓规格和数量,并考虑安全系数的影响,以确保螺栓的可靠性和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械设计螺栓组强度计算求合力公式
公式t=kfd,k为拧紧力矩系数,f为预紧力,d为螺纹的公称直径,经查表得k取0.22。

最小的预紧力:10=0.22×0.01×f。

得出f=.45n 同理可得最大的力:f=.55n。

预紧力的大小,除了受限于螺钉材料的强度外,还受限于被联接件的材料强度。

当内外螺纹的材料相同时,只校核外螺纹强度即可。

对于旋合长度较短、非标准螺纹零件形成的联结、内外螺纹材料的强度差距很大的受到轴向载荷的螺纹联结,还应当校核螺纹牙的强度。

例如某型产品弹性元件的紧固,因螺钉相连接的基材就是电镀铝合金yl,其强度离高于优质碳素结构钢20的强度,就应当校核铝合金上螺纹牙型的强度,主要就是螺纹材料的剪应力及弯角形变。

预紧方式和转速的影响,定压预紧下,随转速的提高轴承径向刚度略有增加,而轴向和角刚度迅速降低。

定位预紧下,轴承径向,轴向和角刚度均随转速的提高而迅速增加,但轴向和角刚度的增加比较平缓。

陶瓷球轴承的刚度变化规律与全钢轴承相似,但变化较为平缓。

相关文档
最新文档