椭圆大题题型及方法总结

合集下载

(完整版)高考椭圆题型总结

(完整版)高考椭圆题型总结

椭圆题型总结一、 椭圆的定义和方程问题 (一) 定义:PA+PB=2a>2c1. 命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( )A 。

充分不必要条件 B.必要不充分条件 C 。

充要条件 D.既不充分又不必要条件2. 已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P 的轨迹是( )A 。

椭圆 B.圆 C.直线 D.线段3. 已知1F 、2F是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长P F 1到Q ,使得2PF PQ =,那么动点Q的轨迹是( )A.椭圆B.圆C.直线D.点4. 已知1F 、2F 是平面α内的定点,并且)0(221>=c c F F ,M 是α内的动点,且a MF MF 221=+,判断动点M 的轨迹。

5. 椭圆192522=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 。

(二) 标准方程求参数范围1. 若方程13522=-+-k y k x 表示椭圆,求k 的范围。

(3,4)U(4,5) 2.轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>( ) A.充分而不必要条件 B 。

必要不充分条件 C 。

充要条件 D 。

既不充分又不必要条件3. 已知方程112522=-+-m y m x 表示焦点在Y 轴上的椭圆,则实数m 的范围是 。

4. 已知方程222=+ky x 表示焦点在Y 轴上的椭圆,则实数k 的范围是 . 5. 方程231y x -=所表示的曲线是 .6. 如果方程222=+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围. 7. 已知椭圆06322=-+m y mx 的一个焦点为)2,0(,求m 的值。

椭圆题型及方法总结

椭圆题型及方法总结

椭圆题型及方法总结
椭圆题型及方法总结:
1. 求椭圆的标准方程:通过给定的信息,如焦点、顶点、直径长度等,使用定义式以及椭圆的性质,将椭圆的方程转化为标准方程:$(x-h)^2/a^2 + (y-k)^2/b^2 = 1$,其中$(h,k)$为椭圆的中心坐标。

2. 求椭圆的焦点坐标:已知椭圆的方程,可以通过标准方程得到椭圆的中心坐标$(h,k)$,然后使用椭圆的性质,计算出焦点的坐标。

3. 求椭圆的顶点坐标:已知椭圆的方程,可以通过标准方程得到椭圆的中心坐标$(h,k)$,然后使用椭圆的性质,计算出顶点的坐标。

4. 求椭圆的参数方程:已知椭圆的方程,可以通过给定的信息,如焦点、顶点、直径长度等,使用定义式以及椭圆的性质,将椭圆的方程转化为参数方程:$x = h + a \cos t$,$y = k + b \sin t$,其中$(h,k)$为椭圆的中心坐标,$a$和$b$分别为椭圆的半
长轴和半短轴长度。

5. 求椭圆的离心率:已知椭圆的方程,可以通过标准方程得到椭圆的半长轴长度$a$和半短轴长度$b$,然后使用离心率的定义式计算出椭圆的离心率:$e = \sqrt{1 - \frac{b^2}{a^2}}$。

6. 求椭圆的面积和周长:已知椭圆的方程,可以通过给定的信
息,如半长轴长度$a$和半短轴长度$b$,使用椭圆的性质计算出椭圆的面积和周长。

以上是常见的椭圆题型及解题方法的总结,具体问题具体分析,有时需要结合其他几何知识来解决问题。

高中数学椭圆大题题型归纳总结(145分推荐)

高中数学椭圆大题题型归纳总结(145分推荐)

高中数学椭圆大题题型归纳总结(145分推荐)一、解答题(本大题共30小题,共360.0分)1.已知椭圆M:x29+y2b2=1(b>0)的一个焦点为(2,0),设椭圆N的焦点恰为椭圆M短轴上的顶点,且椭圆N过点.(1)求N的方程;(2)若直线与椭圆N交于A,B两点,求|AB|.2.已知椭圆E:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A,B,离心率为√32,过点P(1,0)作直线交椭圆于点C,D(与A,B均不重合).当点D与椭圆E的上顶点重合时,|AD|=√5.(1)求椭圆E的方程(2)设直线AD,BC的斜率分别为k1,k2,求证:k1k2为定值.3.已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为√22,直线y=k(x−1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为√103时,求k的值.4.已知F是椭圆C:x2a2+y2b2=1(a>b>0)的左焦点,焦距为4,且C过点P(√3,1).(1)求C的方程;(2)过点F作两条互相垂直的直线l1,l2,若l1与C交于A,B两点,l2与C交于D,E两点,记AB的中点为M,DE的中点为N,试判断直线MN是否过定点,若过定点,请求出定点坐标;若不过定点,请说明理由.5.已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合,过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.6. 若椭圆C :x 2a 2+y 2a 2=1(a >b >0)的顶点到直线l 1:y =x 的距离分别为√2和√22. (1)求椭圆C 的标准方程(2)设平行于l 1的直线l 交C 于A ,B 两点,且OA ⊥OB ,求直线l 的方程.7. 设椭圆C :x 2a 2+y2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,椭圆的上顶点为点B ,点A 为椭圆C 上一点,且3F 1A ⃗⃗⃗⃗⃗⃗⃗ +F 1B ⃗⃗⃗⃗⃗⃗⃗ =0⃗ . (1)求椭圆C 的离心率;(2)若b =1,过点F 2的直线交椭圆于M ,N 两点,求线段MN 的中点P 的轨迹方程.8. 已知椭圆C :x 2a 2+y2b 2=1(a >b >0)的焦距为2,且长轴长与短轴长之比为√2:1. (Ⅰ)求椭圆方程;(Ⅱ)若不与坐标轴平行的直线l 与椭圆相切于点P ,O 为坐标原点,求直线OP 与直线l的斜率之积.9.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,短轴的一个端点到椭圆的一个焦点的距离为2√2.(1)求椭圆C的方程;(2)若直线y=x−1与椭圆C交于不同的A、B两点,求△AOB(O为坐标原点)的面积.10.已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F(1,0),离心率为√22.直线l过点F且不平行于坐标轴,l与C有两交点A,B,线段AB的中点为M.(Ⅰ)求椭圆C的方程;(Ⅱ)证明:直线OM的斜率与l的斜率的乘积为定值;(Ⅲ)延长线段OM与椭圆C交于点P,若四边形OAPB为平行四边形,求此时直线l的斜率.11.已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的标准方程;(2)若直线l:y=kx+m与椭圆C相交于A、B两点(A、B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.12.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,其左焦点到点P(2,1)的距离为√10,过原点O作直线OP的垂线l交椭圆C于A,B两点.(1)求椭圆C的方程;(2)求△ABP的面积.13. 已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,且经过点H(−2,1).(1)求椭圆C 的方程;(2)过点P(−3,0)的直线与椭圆C 相交于A ,B 两点,直线HA ,HB 分别交x 轴于M ,N 两点,点G(−2,0),若PM ⃗⃗⃗⃗⃗⃗ =λPG ⃗⃗⃗⃗⃗ ,PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,求证:1λ+1μ为定值.14. 设椭圆C :x 2a 2+y 2b 2=1(a >b >0),O 为原点,椭圆的右顶点和上顶点分别为A 、B ,点D(0,2),椭圆C 的离心率为√22,且∠OAB =∠ODA .(1)求椭圆C 的方程;(2)不与x 轴平行的直线l 与椭圆C 交于不同点P 、Q ,已知点P 关于x 轴对称点为点M ,点Q 关于原点的对称点为点N ,且D 、M 、N 三点共线,求证:直线l 过定点.15. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,短轴的一个端点到椭圆的一个焦点的距离为2√2. (1)求椭圆C 的方程;(2)若直线y =x −1与椭圆C 交于不同的A 、B 两点,求△AOB(O 为坐标原点)的面积.16. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,焦距为2. (1)求椭圆C 的方程;(2)设A ,B 为椭圆C 上两点,O 为坐标原点,k OA ⋅k OB =−12.点D 在线段AB 上,且AD ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ ,连接OD 并延长交椭圆C 于E ,试问|OE||OD|是否为定值?若是定值,求出定值;若不是定值,请说明理由.17. 设椭圆C:x 2a 2+y2b 2=1(a >b >0)过点(0,4),离心率为35. (1)求椭圆C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.18. 已知F(c,0)是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =x −c 交椭圆C 于M ,N 两点,交y 轴于点A ,AM ⃗⃗⃗⃗⃗⃗ =α1MF ⃗⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =β1NF ⃗⃗⃗⃗⃗⃗ ,α1+β1=−6. (1)求椭圆C 的离心率e ;(2)B 是椭圆C 上的点,O 是坐标原点,OB ⃗⃗⃗⃗⃗⃗ =α2OM ⃗⃗⃗⃗⃗⃗⃗ +β2ON⃗⃗⃗⃗⃗⃗ ,求α22+β22的值.19. 已知椭圆C :x 24+y 2=1,F 为右焦点,圆O :x 2+y 2=1,P 为椭圆C 上一点,且P 位于第一象限,过点P 作PT 与圆O 相切于点T ,使得点F ,T 在OP 的两侧. (1)求椭圆C 的焦距及离心率. (2)求四边形OFPT 面积的最大值.20.已知椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,P是椭圆E上的一动点,且|PF1|的最小值是1,当PF1垂直长轴时,|PF1|=32.(1)求椭圆E的方程;(2)是否存在斜率为−1的直线l与以线段F1F2为直径的圆相交于A、B两点,与椭圆E相交于C、D两点,且|CD|⋅|AB|=24√27若存在,求出直线l的方程;若不存在,说明理由.21.已知A,B为椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点,P是椭圆C上一点(异于A,B),满足k PA⋅k PB=−49,且a=6.斜率为−1的直线l交椭圆C于S,T两点,且|ST|=4.(1)求椭圆C的方程及离心率.(2)如图,设直线l1:y=x+m与椭圆C交于M,N两点,求四边形MSNT面积的最大值.22.已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F,短轴长等于焦距,且经过点P(0,1).(1)求椭圆E的方程;(2)设过点F且不与坐标轴垂直的直线与E交于A、B两点,线段AB的中点为C,D是y轴上一点,且CD⊥AB.求证:线段CD的中点在x轴上.23.已知椭圆C:x2a2+y2b2=1(a>b>0)长轴的两个端点分别为A(−2,0),B(2,0),离心率为√32.(1)求椭圆C的方程;(2)P为椭圆C上异于A,B的动点,直线AP,PB分别交直线x=−6于M,N两点,连接NA并延长交椭圆C于点Q.(ⅰ)求证:直线AP,AN的斜率之积为定值;(ⅰ)判断M,B,Q三点是否共线,并说明理由.24. 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是√22,点F 是椭圆E 的左焦点,点A 为椭圆E 的右顶点,点B 为椭圆E 的上顶点,且S ⅰABF =√2+12.(1)求椭圆E 的方程;(2)设点P(m,0)为椭圆E 长轴上的一个动点,过点P 作斜率为ba 的直线l 交椭圆E 于S ,T 两点,证明:|PS|2+|PT|2为定值.25. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为2√23,左、右焦点分别为F 1,F 2,短轴的上端点为P ,且PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =−7. (1)求椭圆C 的方程;(2)若过点Q(1,0)且不与y 轴垂直的直线与椭圆C 交于M ,N 两点,是否存在点T(t,0),使得直线TM 与TN 的斜率之积为定值?若存在,求出t 的值;若不存在,请说明理由.26.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,过椭圆C右焦点并垂直于x轴的直线PM交椭圆C于P,M(点P位于x轴上方)两点,且△OPM(O为坐标原点)的面积为32.(1)求椭圆C的标准方程;(2)若直线l交椭圆C于A,B(A,B异于点P)两点,且直线PA与PB的斜率之积为−94,求点P到直线l距离的最大值.27.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为√22,且点(2√33,−√33)在C上.(1)求椭圆C的标准方程;(2)设过F2的直线l与C交于A,B两点,若|AF1|⋅|BF1|=103,求|AB|.28.已知椭圆C:x2m2+y2=1(m>1)的左右焦点分别为F1,F2,过右焦点F2作直线l 交椭圆C于A(x1,y1),B(x2,y2),其中y1>0,y2<0,△AF1F2、△BF1F2的重心分别为G1、G2.(Ⅰ)若G1坐标为(13,16),求椭圆C的方程;(Ⅱ)设△BF1G1和△ABG2的面积为S1和S2,且43≤S1S2≤53,求实数m的取值范围.29.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,A,B分别是它的左、右顶点,F是它的右焦点,过点F作直线与C交于P,Q(异于A,B)两点,当PQ⊥x轴时,△APQ的面积为92.(Ⅰ)求C的标准方程;(Ⅱ)设直线AP与直线BQ交于点M,求证:点M在定直线上.30.如图,椭圆E:x2a2+y2b2=1(a>b>0)经过点A(0,−1),且离心率为√22.(1)求椭圆E的方程;(2)若经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为定值.答案和解析1.【答案】解:(1)由椭圆M :x 29+y 2b 2=1(b >0)的一个焦点为(2,0),得c =2,且b 2=a 2−c 2=9−4=5, ∴椭圆N 的焦点为(0,−√5),(0,√5). 又椭圆N 过点(√22,√3),∴椭圆N 的长轴长为(√2(√2=2√6.∴椭圆N 的半长轴长为√6,半焦距为√5,则短半轴长为1. ∴N 的方程为x 2+y 26=1;(2)联立{y =x −2x 2+y 26=1,得7x 2−4x −2=0.设A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=47,x 1x 2=−27,∴|AB|=√2⋅√(x 1+x 2)2−4x 1x 2=√2⋅√(47)2−4×(−27)=127.【解析】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查弦长公式的应用,属于中档题.(1)由已知可得椭圆N 的焦点坐标,再由椭圆定义求得椭圆N 的长半轴长,结合隐含条件求得短半轴长,则椭圆N 的方程可求;(2)联立直线方程与椭圆N 的方程,化为关于x 的一元二次方程,利用根与系数的关系及弦长公式求|AB|.2.【答案】解:(1)当点D 与椭圆E 的上顶点重合时,有D (0,b ),所以|AD |=√a 2+b 2=√5.① 又因为离心率e =√a 2−b 2a=√32,② 由①②解得a =2,b =1,所以E 的方程为x 24+y 2=1.(2)由题意,易知直线CD 的斜率不为0,所以设直线CD 的方程为x =my +1,联立方程组{x 24+y 2=1,x =my +1,得(m 2+4)y 2+2my −3=0,显然Δ>0,设C (x 1,y 1),D (x 2,y 2),则y 1+y 2=−2mm 2+4,y 1y 2=−3m 2+4. 由(1)得A (−2,0),B (2,0),所以k 1=y 2x2+2,k 2=y 1x1−2,k 1k 2=y 2(x 1−2)y 1(x 2+2)=y 2(my 1−1)y 1(my 2+3)=my 1y 2−y 2my 1y 2+3y 1=my 1y 2−(y 1+y 2)+y 1my 1y 2+3y 1=−mm 2+4+y 1−3mm 2+4+3y 1=13为定值.【解析】本题考查椭圆方程及几何意义,直线与椭圆的位置关系,考查椭圆中的定值问题,考查计算能力,属于中档题. (1)解方程√a 2+b 2=√5.①√a 2−b 2a=√32,②即得解; (2)设直线CD 的方程为x =my +1,联立方程组{x 24+y 2=1,x =my +1,得(m 2+4)y 2+2my −3=0,得到韦达定理,再利用韦达定理化简k 1k 2即得证.3.【答案】解:(1)∵椭圆一个顶点为A (2,0),离心率为√22, ∴{a =2c a =√22a 2=b 2+c 2,∴b =√2, ∴椭圆C 的方程为x 24+y 22=1;(2)联立直线y =k(x −1)与椭圆C 的方程, 消去y 整理得(1+2k 2)x 2−4k 2x +2k 2−4=0, 设M(x 1,y 1),N(x 2,y 2), 则x 1+x 2=4k 21+2k2,x 1x 2=2k 2−41+2k 2,=2√(1+k 2)(4+6k 2)1+2k 2,∵A(2,0)到直线y =k(x −1)的距离为|k|√1+k 2,∴△AMN 的面积S =12·2√(1+k2)(4+6k 2)1+2k 2·|k|√1+k2=|k|√4+6k 21+2k 2,∵△AMN 的面积为√103,∴|k|√4+6k 21+2k 2=√103, 解得,经检验Δ>0,∴k =±1.【解析】本题考查椭圆的标准方程及直线与椭圆的位置关系,三角形面积等,属于中档题.(1)根据椭圆一个顶点为A (2,0),离心率为√22,可建立方程组,从而可求椭圆C 的方程;(2)直线y =k(x −1)与椭圆C 联立,消元可得(1+2k 2)x 2−4k 2x +2k 2−4=0,从而可求|MN|,A(2,0)到直线y =k(x −1)的距离,利用△AMN 的面积为√103,可求k 的值.4.【答案】解:(1)由题意可得{2c =43a 2+1b 2=1a 2=b 2+c 2,解得a 2=6或2(舍),b 2=2,故椭圆C 的方程为x 26+y 22=1.(2)由题意知,当l 1,l 2其中一条的斜率不存在时,另外一条的斜率为0,此时直线MN 为x 轴; 当l 1,l 2的斜率都存在且不为0时, 设l 1:x =my −2(m ≠0), 设A(x 1,y 1),B(x 2,y 2),联立{x =my −2x 26+y 22=1,化简可得(m 2+3)y 2−4my −2=0且Δ>0, 所以y 1+y 2=4m m 2+3,y 1y 2=−2m 2+3, 则x 1+x 2=m(y 1+y 2)−4=−12m 2+3,∴M (−6m 2+3,2mm 2+3), 同理由{x =−1my −2x 26+y 22=1,可得N (−6m 23m 2+1,−2m 3m 2+1),则k MN =2m m 2+3+2m3m 2+1−6m 2+3+6m 23m 2+1=4m3(m 2−1),所以直线MN 的方程为y −2mm 2+3=4m3(m 2−1)(x +6m 2+3),化简得y =4m3(m 2−1)x +2mm 2−1=4m 3(m 2−1)(x +32),故直线MN 恒过定点(−32,0). 综上,直线MN 过定点(−32,0).【解析】本题考查椭圆的概念及标准方程 ,考查圆锥曲线中的定点问题,训练了直线与圆锥曲线位置关系的应用(1)由已知条件得到关于a ,b ,c 的方程组,求解方程组得到a 2,b 2的值,则椭圆方程可求;(2)当l 1,l 2其中一条的斜率不存在时,另外一条的斜率为0,此时直线MN 为x 轴;当l 1,l 2的斜率都存在且不为0时, 设l 1:x =my −2(m ≠0), 设A(x 1,y 1),B(x 2,y 2),联立直线方程与椭圆方程,求出M 坐标,用−1k 代换k ,得到点N 的坐标,进一步得到MN 所在直线方程,得到直线MN 过定点.5.【答案】解:(1)因为F 为C 1的焦点且AB ⊥x 轴,可得F(c,0),|AB|=2b 2a,设C 2的标准方程为y 2=2px(p >0),因为F为C2的焦点且CD⊥x轴,所以F(p2,0),|CD|=2p,因为|CD|=43|AB|,C1,C2的焦点重合,所以{c=p22p=43⋅2b2a,消去p,可得4c=8b23a,所以3ac=2b2,所以3ac=2a2−2c2,设C1的离心率为e,由e=ca,则2e2+3e−2=0,解得e=12(−2舍去),故C 1的离心率为12;(2)由(1)可得a=2c,b=√3c,p=2c,所以C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y,可得3x2+16cx−12c2=0,所以(3x−2c)(x+6c)=0,解得x=23c或x=−6c(舍去),从而|MF|=x+p2=23c+c=53c=5,解得c=3,所以C1和C2的标准方程分别为x236+y227=1,y2=12x.【解析】【试题解析】本题考查抛物线和椭圆的定义、方程和性质,考查直线和椭圆的位置关系,考查方程思想和运算能力,属于中档题.(1)由F为C1的焦点且AB⊥x轴,F为C2的焦点且CD⊥x轴,分别求得F的坐标和|AB|,|CD|,由已知条件可得p,c,a,b的方程,消去p,结合a,b,c和e的关系,解方程可得e的值;(2)由(1)用c表示椭圆方程和抛物线方程,联立两曲线方程,解得M的横坐标,再由抛物线的定义,解方程可得c,进而得到所求曲线方程.6.【答案】解:(1)由直线l1:y=x可知其与两坐标轴的夹角均为45°,故长轴端点到直线l1的距离为√22a,短轴端点到直线l1的距离为√22b,所以√22a=√2,√22b=√22,解得a=2,b=1,所以椭圆C 的标准方程为x 24+y 2=1.(2)设直线l :y =x +t(t ≠0),联立{y =x +t x 24+y 2=1,整理得5x 2+8tx +4t 2−4=0,则△=64t 2−16×5(t 2−1)>0,解得−√5<t <√5, 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=−8t5,x 1x 2=4t 2−45, 故y 1y 2=(x 1+t)(x 2+t)=(x 1+x 2)t +x 1x 2+t 2=t 2−45,因为OA ⊥OB ,即OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=4t 2−45+t 2−45=0. 解得t =±2√105,满足−√5<t <√5且t ≠0,所以直线l 的方程为y =x +2√105或y =x −2√105.【解析】(1)由长轴端点到直线l 1的距离为√22a ,短轴端点到直线l 1的距离为√22b ,解得a =2,b =1,即可得椭圆C 的标准方程. (2)设直线l :y =x +t(t ≠0),联立{y =x +tx 24+y 2=1,整理得5x 2+8tx +4t 2−4=0,由即OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=4t 2−45+t 2−45=0.解得t =±2√105,即可. 本题考查了椭圆方程,直线与椭圆的位置关系,属于中档题.7.【答案】解:(1)设A(x 0,y 0),B(0,b),F 1(−c,0),由3F 1A ⃗⃗⃗⃗⃗⃗⃗ +F 1B ⃗⃗⃗⃗⃗⃗⃗ =0⃗ 得{3x 0+4c =03y 0+b =0, {x 0=−4c3y 0=−b 3,即A(−43c,−b 3), 又∵A(x 0,y 0)在椭圆C :x 2a2+y 2b 2=1上,∴(−43c)a 22+(−13b)2b 2=1,得ca =√22,即椭圆C 的离心率为e =√22;(2)由(1)知,e =√22,又∵b =1,a 2=b 2+c 2,解得a 2=2,b 2=1,∴椭圆C 的方程为x 22+y 2=1,当线段MN 在x 轴上时,中点为坐标原点(0,0), 当线段MN 不在x 轴上时,设直线MN 的方程为x =my +1,M(x 1,y 1),N(x 2,y 2), 代入椭圆方程x 22+y 2=1中,得(m 2+2)y 2+2my −1=0,∵点F 2在椭圆内部, ∴△>0,y 1+y 2=−2mm 2+2,则x 1+x 2=m(y 1+y 2)+2=4m 2+2, ∴点P(x,y)的坐标满足x =2m 2+2,y =−mm 2+2, 消去m 得,x 2+2y 2−x =0(x ≠0),综上所述,点P 的轨迹方程为x 2+2y 2−x =0.【解析】本题考查直线与椭圆的位置关系的综合应用,椭圆的简单性质以及椭圆方程,考查动点的轨迹方程,是中档题.(1)设A(x 0,y 0),B(0,b),F 1(−c,0),通过3F 1A ⃗⃗⃗⃗⃗⃗⃗ +F 1B ⃗⃗⃗⃗⃗⃗⃗ =0⃗ 求出A 的坐标,转化求解离心率;(2)求出椭圆C 的方程为x 22+y 2=1,当线段MN 在x 轴上时,中点为坐标原点(0,0),当线段MN 不在x 轴上时,设直线MN 的方程为x =my +1,M(x 1,y 1),N(x 2,y 2),代入椭圆方程x 22+y 2=1中,得(m 2+2)y 2+2my −1=0,通过韦达定理,转化求解轨迹方程即可.8.【答案】解:(I)已知椭圆中2c =2,且2a2b =√2,又a 2=b 2+c 2,解得a =√2,b =1, ∴椭圆的方程为x 22+y 2=1;(Ⅱ)由题意:可设l 的方程为y =kx +m(k 存在且k ≠0) 与椭圆C 联立消去y 可得(1+2k 2)x 2+4kmx +2m 2−2=0, 由直线l 与椭圆C 相切,可设切点为(x 0,y 0), 由判别式△=0可得m 2=1+2k 2, 解得x 0=−2km ,y 0=1m ,因此,直线OP 的斜率为k OP =−12k ,直线l 的斜率为k , 即直线OP 与直线l 的斜率之积为−12.【解析】本题考查椭圆的概念及标准方程,椭圆的性质及几何意义,直线与椭圆的位置关系的应用,考查转化思想以及计算能力,是中档题.(Ⅰ)通过焦距,结合长轴长与短轴长之比为√2:1.求出a ,b ,然后求解椭圆方程. (Ⅱ)设出直线方程,与椭圆方程联立,设切点为(x 0,y 0),利用△=0,推出直线OP 的斜率为k OP =−12k ,直线l 的斜率为k ,然后求解即可.9.【答案】解:(1)依题意可设椭圆C 的方程为x 2a 2+y2b 2=1(a >b >0), 则{a 2=b 2+c 2=(2√2)2e =c a=√22,解得{a =2√2c =2 ∴b 2=a 2−c 2=8−4=4, ∴椭圆C 的方程为x 28+y 24=1;(2)设A(x 1,y 1),B(x 2,y 2), 联立方程{x 28+y 24=1y =x −1消去y并整理得:3x 2−4x −6=0, 所以{x 1+x 2=43x 1⋅x 2=−2, |AB|=√1+12|x 1−x 2|=√2√(x 1+x 2)2−4x 1x 2=√2[(43)2−4×(−2)]=4√113.即:|AB|=4√113, 又∵原点O(0,0)到直线y =x −1的距离为d =√2=√22, ∴△AOB 的面积S =12|AB|⋅d =12×4√113×√22=√223.【解析】【试题解析】本题考查椭圆的标准方程及性质,直线与椭圆的位置关系,考查韦达定理,弦长公式,属于中档题.(1)根据椭圆的离心率及性质,即可求得b 2的值,求得椭圆方程;(2)利用直线与椭圆的位置关系,以及点到直线的距离,弦长公式,三角形的面积公式,即可得.10.【答案】解:(Ⅰ)由题意可知,c =1,e =c a =√22,∵a 2=b 2+c 2,∴a =√2,b =1, ∴椭圆的方程为x 22+y 2=1.(Ⅱ)设直线l 的方程为y =k(x −1)(k ≠0),A(x 1,y 1),B(x 2,y 2), 联立{y =k(x −1)x 22+y 2=1,消去y 得,(2k 2+1)x 2−4k 2x +2k 2−2=0, 则x 1+x 2=4k 22k 2+1,∵M 为线段AB 的中点,∴x M =x 1+x 22=2k 22k 2+1,y M =k(x M −1)=−k2k 2+1,∴k OM =y M x M=−12k,∴k OM ⋅k l =−12k ×k =−12为定值.(Ⅲ)若四边形OAPB 为平行四边形,则OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ , ∴x P =x 1+x 2=4k 22k 2+1,y P =y 1+y 2=k(x 1+x 2)−2k =−2k2k 2+1,∵点P 在椭圆上,∴(4k 22k 2+1)2+2×(−2k2k 2+1)2=2,解得k 2=12,即k =±√22, ∴当四边形OAPB 为平行四边形时,直线l 的斜率为k =±√22.【解析】本题考查直线与椭圆的位置关系,涉及曲直联立、中点坐标公式、平面向量的坐标运算等知识点,考查学生的逻辑推理能力和运算能力,属于中档题. (Ⅰ)由题可知,c =1,e =c a=√22,再结合a 2=b 2+c 2,解出a 和b 的值即可得解;(Ⅱ)设直线l 的方程为y =k(x −1)(k ≠0),A(x 1,y 1),B(x 2,y 2),联立直线l 的方程和椭圆的方程,消去y 得到关于x 的一元二次方程,写出两根之和与系数的关系;由于M为线段AB 的中点,利用中点坐标公式可用k 表示点M 的坐标,利用k OM =yMx M 可求出直线OM 的斜率,进而得解;(Ⅲ)若四边形OAPB 为平行四边形,则OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ ,利用平面向量的线性坐标运算可以用k 表示点P 的坐标,再将其代入椭圆方程即可得到关于k 的方程,解之即可得解.11.【答案】(1)解:由题意设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知椭圆C 上的点到焦点距离的最大值为3,最小值为1, 可得:a +c =3,a −c =1, ∴a =2,c =1, ∴b 2=a 2−c 2=3, ∴椭圆的标准方程为x 24+y 23=1;(2)证明:设A(x 1,y 1),B(x 2,y 2) 联立{y =kx +m x 24+y 23=1,消去y 可得(3+4k 2)x 2+8mkx +4(m 2−3)=0,则{ Δ=64m 2k 2−16(3+4k 2)(m 2−3)=3+4k 2−m 2>0x 1+x 2=−8mk3+4k 2x 1x 2=4(m 2−3)3+4k 2, 又y 1y 2=(kx 1+m)(kx 2+m)=k 2x 1x 2+mk(x 1+x 2)+m 2=3(m 2−4k 2)3+4k 2,因为以AB 为直径的圆过椭圆的右顶点D(2,0),∴DA ⃗⃗⃗⃗⃗ ·DB ⃗⃗⃗⃗⃗⃗ =0,∴y 1y 2+x 1x 2−2(x 1+x 2)+4=0, ∴3(m 2−4k 2)3+4k 2+4(m 2−3)3+k 2+16mk3+4k 2+4=0,∴7m 2+16mk +4k 2=0, 解得:m 1=−2k,m 2=−2k 7,且均满足3+4k 2−m 2>0,当m 1=−2k 时,l 的方程y =k(x −2),直线过点(2,0),与已知矛盾; 当m 2=−2k7时,l 的方程为y =k(x −27),直线过定点(27,0). 所以,直线l 过定点,定点坐标为(27,0).【解析】本题考查椭圆的性质及应用,考查直线与椭圆的位置关系,考查韦达定理的运用,综合性强,属于中档题.(1)由已知椭圆C 上的点到焦点距离的最大值为3,最小值为1,可得:a +c =3,a −c =1,从而可求椭圆的标准方程;(2)直线与椭圆方程联立,利用以AB 为直径的圆过椭圆的右顶点D(2,0),结合根的判别式和根与系数的关系求解,即可求得结论.12.【答案】解:(1)设椭圆左焦点为F(−c,0),则由题意得{√(2+c)2+1=√10c a=12,解得{a =2c =1,则b 2=a 2−c 2=3, 所以椭圆方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2), 由AB ⊥OP 及k OP =12得k l =−2, 所以直线l 为2x +y =0, 由{2x +y =0x 24+y 23=1,得:19x 2−12=0⇒x 1x 2=−1219, ∴|AB |=√1+k 2|x 1−x 2|=√5√4819=4√28519, 因为点P(2,1)到直线l 的距离为d =|OP |=√5, 所以S △ABP =12×d ×|AB|=12×√5×4√28519=10√5719.【解析】本题考查椭圆的方程和性质,考查直线方程和椭圆方程联立,消去未知数y ,运用韦达定理和弦长公式,考查两点间的距离公式,考查了学生的运算能力,属于中档题.(1)运用两点的距离公式以及离心率公式,可得a ,c 的值,由a ,b ,c 的关系,可得b ,进而得到椭圆方程;(2)根据垂直直线斜率间的关系,求出直线l 的方程,联立椭圆方程,消去y ,运用韦达定理和弦长公式,及两点间的距离公式,即可得到面积.13.【答案】解:(1)由题意知e =√1−b 2a2=√22;又椭圆C 经过点H(−2,1),所以4a 2+1b 2=1; 解得a 2=6,b 2=3,所以椭圆C 的方程为x 26+y 23=1.(2)证明:设直线AB 方程为x =my −3,A(x 1,y 1),B(x 2,y 2), 由{x =my −3x 26+y 23=1联立消元得(m 2+2)y 2−6my +3=0,所以△=36m 2−12(m 2+2)>0,y 1+y 2=6mm 2+2,y 1y 2=3m 2+2, 由题意知,y 1,y 2均不为1. 设M(x M ,0),N(x N ,0),由H ,M ,A 三点共线知AM ⃗⃗⃗⃗⃗⃗ 与MH ⃗⃗⃗⃗⃗⃗⃗ 共线, 所以x M −x 1=(−y 1)(−2−x M ),化简得x M =x 1+2y 11−y 1;由H ,N ,B 三点共线,同理可得X N =x 2+2y 21−y 2;由PM ⃗⃗⃗⃗⃗⃗ =λPG⃗⃗⃗⃗⃗ ,得(x M +3,0)=λ(1,0),即λ=x M +3; 由PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,同理可得μ=x N +3; 所以1λ+1μ=1x M +3+1x N +3=1x 1+2y 11−y 1+3+1x 2+2y 21−y 2+3=1−y 1x 1−y 1+3+1−y 2x 2−y 2+3=1−y 1(m −1)y 1+1−y 2(m −1)y 2=1m−1(1−y 1y 1+1−y 2y 2)=1m−1(y 1+y 2y 1y 2−2)=1m−1(6m m 2+23m 2+2−2)=2,所以1λ+1μ为定值.【解析】本题主要考查了椭圆的概念及标准方程椭圆的性质及几何意义,直线与椭圆的位置关系 以及圆锥曲线中的定点与定值问题,属中档题 (1)由题意根据椭圆的概念得椭圆C 的方程;(2)设直线AB 方程为x =my −3,A(x 1,y 1),B(x 2,y 2),直线与椭圆联立消元得(m 2+2)y 2−6my +3=0,由题意知,y 1,y 2均不为1.设M(x M ,0),N(x N ,0),由H ,M ,A 三点共线知AM ⃗⃗⃗⃗⃗⃗ 与MH ⃗⃗⃗⃗⃗⃗⃗ 共线,所以x M −x 1=(−y 1)(−2−x M ),化简得x M =x 1+2y 11−y 1;由H ,N ,B 三点共线,同理可得X N ,由PM ⃗⃗⃗⃗⃗⃗ =λPG ⃗⃗⃗⃗⃗ ,由PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,得λ,μ表达式,从而证得1λ+1μ为定值.14.【答案】解:(1)∵椭圆C 的离心率为√22, ∴a =√2c ,b =c , 又∵∠OAB =∠ODA , ∴tan∠OAB =tan∠ODA , ∴ba =a2,∴a 2=2b , ∴2b 2=2b ,∴b =1,a =√2, 故椭圆的方程为x 22+y 2=1.(2)由题意,可设直线l:x =my +n ,P(x 1,y 1)、Q(x 2,y 2),M(x 1,−y 1)、N(−x 2,−y 2), 联立方程{x =my +n x 2+2y 2=2,得(m 2+2)y 2+2mny +n 2−2=0, ∴{y 1+y 2=−2mn m 2+2y 1⋅y 2=n 2−2m 2+2, Δ=4m 2n 2−4(m 2+2)(n 2−2)>0,即m 2+2>n 2. DM ⃗⃗⃗⃗⃗⃗⃗ =(x 1,−y 1−2),DN ⃗⃗⃗⃗⃗⃗ =(−x 2,−y 2−2), ∵D 、M 、N 三点共线,∴DM⃗⃗⃗⃗⃗⃗⃗ //DN ⃗⃗⃗⃗⃗⃗ ,∴x 1(−y 2−2)=x 2(y 1+2), ∴(my 1+n)(−y 2−2)=(my 2+n)(y 1+2), ∴2my 1y 2+(2m +n)(y 1+y 2)+4n =0. ∴2m ·n 2−2m 2+2+(2m +n)·−2mn m 2+2+4n =0,∴m =2n .∴直线l 过定点(0,−12).【解析】本题考查椭圆的概念及标准方程,考查椭圆的性质及几何意义、直线与椭圆的位置关系及圆锥曲线中的定点值问题,属于较难题. (1)根据条件可得关于a 、b 的方程,求解可得椭圆C 的方程;(2)由题意,可设直线l:x =my +n ,P(x 1,y 1)、Q(x 2,y 2),M(x 1,−y 1)、N(−x 2,−y 2),与椭圆方程联立,根据D 、M 、N 三点共线,可得m =2n ,从而可得结论.15.【答案】解:(1)依题意可设椭圆C 的方程为x 2a 2+y2b2=1(a >b >0), 则{a 2=b 2+c 2=(2√2)2e =c a =√22,解得 {a =2√2c =2, ∴b 2=a 2−c 2=8−4=4, ∴椭圆C 的方程为x 28+y 24=1 ;(2)设A(x 1,y 1),B(x 2,y 2), 联立方程{x 28+y 24=1y =x −1 ,消去y , 并整理得:3x 2−4x −6=0, 所以{x 1+x 2=43x 1·x 2=−2, |AB |=√1+12|x 1−x 2|=√2√(x 1+x 2)2−4x 1x 2 =√2[(43)2−4×(−2)]=4√113·即:|AB|=4√113, 又∵原点O (0,0)到直线y =x −1的距离为d =√2=√22, ∴△AOB 的面积S =12|AB|⋅d =12×4√113×√22=√223.【解析】【试题解析】本题考查椭圆的标准方程及性质,直线与椭圆的位置关系,考查韦达定理,弦长公式,属于中档题.(1)根据椭圆的离心率及性质,即可求得b 2的值,求得椭圆方程;(2)利用直线与椭圆的位置关系,以及点到直线的距离,弦长公式,三角形的面积公式,即可得.16.【答案】解:(1)由已知得e =c a =√22且2c =2,所以a =√2,c =1,所以b =1,所求椭圆方程为x 22+y 2=1.(2)设点A(x 1,y 1),B(x 2,y 2),D(x 3,y 4), 由AD ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ ,得{x 3=2x 1+x23,y 3=2y 1+y 23.设|OE||OD|=λ,则结合题意可知OE ⃗⃗⃗⃗⃗ =λOD ⃗⃗⃗⃗⃗⃗ ,所以E(λx 3,λy 3). 将点E(λx 3,λy 3)代入椭圆方程,得λ2(x 322+y 32)=1.即1λ2=x 322+y 32=(2x 1+x 23)22+(2y 1+y 23)2,变形,得1λ2=49,(x 122+y 12)+49(x 1x 22+y 1y 1)+19(x 222+y 22)(∗), 又因为点A ,B 均在椭圆上,且k OA ⋅k OB =−12,所以{ x 122+y 12=1,x 222+y 22=1,k OA ⋅k OB=y 1x 1⋅y 2x 2=−12,代入(∗)式解得λ=3√55. 所以|OE||OD|是定值,为3√55.【解析】本题考查椭圆的性质和方程,圆锥曲线中的定值问题,直线与椭圆的位置关系,属于中档题.(1)由题给条件求出a ,b ,进而得到方程.(2)设点A(x 1,y 1),B(x 2,y 2),D(x 3,y 4),由AD ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ ,得{x 3=2x 1+x23,y 3=2y 1+y 23. ,设|OE||OD|=λ, 则结合题意可知OE ⃗⃗⃗⃗⃗ =λOD⃗⃗⃗⃗⃗⃗ ,所以E(λx 3,λy 3),将点E(λx 3,λy 3)代入椭圆方程,得λ2(x 322+y 32)=1, 由此得1λ2=49,由条件求出λ,进而求出答案.17.【答案】解:(1)将点(0,4)代入椭圆C 的方程得16b 2=1,∴b =4,由e =ca =35,得1−16a 2=925,∴a =5, ∴椭圆C 的方程为x 225+y 216=1;(2)过点(3,0)且斜率为45的直线为y =45(x −3), 设直线与椭圆C 的交点为A(x 1,y 1),B(x 2,y 2),将直线方程y =45(x −3)代入椭圆C 方程,整理得x 2−3x −8=0, 由韦达定理得x 1+x 2=3,y 1+y 2=45(x 1−3)+45(x 2−3)=45(x 1+x 2)−245=−125.由中点坐标公式AB 中点横坐标为32,纵坐标为−65, ∴所截线段的中点坐标为(32,−65).【解析】【试题解析】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键. (1)椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),可求b ,利用离心率,求出a ,即可得到椭圆C 的方程;(2)过点(3,0)且斜率为45的直线为y =45(x −3),代入椭圆C 方程,整理,利用韦达定理,确定线段的中点坐标.18.【答案】解:(1)由条件可得A(0,−c),设M(x 1,y 1),N(x 2,y 2),则AM ⃗⃗⃗⃗⃗⃗ =(x 1,y 1+c),MF ⃗⃗⃗⃗⃗⃗ =(c −x 1,−y 1),AN ⃗⃗⃗⃗⃗⃗ =(x 2,y 2+c),NF ⃗⃗⃗⃗⃗⃗ =(c −x 2,−y 2). 由AM ⃗⃗⃗⃗⃗⃗ =α1MF ⃗⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =β1NF⃗⃗⃗⃗⃗⃗ 得, (x 1,y 1+c)=α1(c −x 1,−y 1),(x 2,y 2+c)=β1(c −x 2,−y 2), ∴x 1=α1(c −x 1),x 2=β1(c −x 2),∴α1=x 1c−x 1,β1=x2c−x 2(由已知,x 1≠c ,x 2≠c), ∴α1+β1=x 1c−x 1+x2c−x 2=c(x 1+x 2)−2x 1x 2c 2−c(x1+x 2)+x 1x 2.由方程组{y =x −c,b 2x 2+a 2y 2−a 2b 2=0.得(a 2+b 2)x 2−2a 2cx +a 2c 2−a 2b 2=0, ∴x 1+x 2=2a 2c a 2+b2,x 1x 2=a 2c 2−a 2b 2a 2+b 2.∴a 2c 2a 2+b2−2a 2c 2−2a 2b 2a 2+b 2=c 2+b 2+a 2−a 2b 2a 2+b 2=−6 化简得,2a 2=3c 2,即e =√63.(2)设B(x,y),由OB⃗⃗⃗⃗⃗⃗ =α2OM ⃗⃗⃗⃗⃗⃗⃗ +β2ON ⃗⃗⃗⃗⃗⃗ 得,x =α2x 1+β2x 2,y =α2y 1+β2y 2, 将它们代入b 2x 2+a 2y 2−a 2b 2=0并结合b 2x 12+a 2y 12−a 2b 2=0和b 2x 22+a 2y 22−a 2b 2=0化简得,(α22+β22)a 2b 2+2α2β2(b 2x 1x 2+a 2y 1y 2)=a 2b 2.又y 1y 2=(x 1−c)(x 1−c)=x 1x 2−c(x 1+x 2)+c 2=b 2c 2−a 2b 2a 2+b 2, ∴b 2x 1x 2+a 2y 1y 2=b 2(a 2c 2−a 2b 2)a 2+b 2+a 2(b 2c 2−a 2b 2)a 2+b 2=a 2b 2(3c 2−2a 2)a 2+b 2=0,∴(α22+β22)a 2b 2=a 2b 2,所以,α22+β22=1.【解析】本题考查椭圆的方程,直线与椭圆的相交问题,平面向量的坐标运算,解题中需要一定的计算能力,属于中档题.(1)由条件可得A(0,−c),设M(x 1,y 1),N(x 2,y 2),联立直线方程和椭圆方程,结合韦达定理以及向量的坐标运算可得a ,b ,c 的关系,即可求离心率.(2)设B(x,y),结合题意以及向量的坐标运算可得x =α2x 1+β2x 2,y =α2y 1+β2y 2,代入b 2x 2+a 2y 2−a 2b 2=0,结合韦达定理化简整理即可得出答案.19.【答案】解:(1)在椭圆C :x 24+y 2=1中,a =2,b =1,所以c =√a 2−b 2=√3, 故椭圆C 的焦距为2c =2√3, 离心率e =ca =√32;(2)设P(x 0,y 0)(x 0>0,y 0>0),则x 024+y 02=1,故y02=1−x024,所以|TP|2=|OP|2−|OT|2=x02+y02−1=34x02,所以|TP|=√32x0,SΔOTP=12|OT|⋅|TP|=√34x0,又O(0,0),F(√3,0),故SΔOFP=12|OF|⋅y0=√32y0,因此S四边形OFPT =SΔOFP+SΔOTP=√32⋅(x02+y0)=√32⋅√x024+x0y0+y02=√32⋅√1+x0y0,由x024+y02=1,得2√x024⋅y02≤1,即x0⋅y0≤1,所以S四边形OFPT =√32⋅√1+x0y0≤√62,当且仅当x024=y02=12,即x0=√2,y0=√22时等号成立.【解析】本题考查椭圆的几何性质以及椭圆的标准方程,关键是掌握椭圆的标准方程的形式.(1)根据题意,由椭圆的标准方程分析可得a、b的值,计算可得c的值,据此计算可得答案;(2)设P(x0,y0),结合椭圆的方程分析可得四边形OFPT面积的表达式,结合基本不等式的性质分析可得答案.20.【答案】解:(1)由题意,点P椭圆上的一动点,且|PF1|的最小值是1,得a−c=1,因为当PF1垂直长轴时,|PF1|=32,所以b2a=32,即2b2=3a,又由a2=b2+c2,解得a=2,b=√3,所以椭圆C的标准方程为x24+y23=1.(2)假设存在斜率为−1的直线l,不妨设为y=−x+m.由(1)知,椭圆E左右焦点为F1(−1,0),F2(1,0),所以以线段F1F2为直径的圆方程为x2+y2=1.由题意,圆心(0,0)到直线l的距离d=√2<1,即得|m|<√2,又|AB|=2√1−d 2=2√1−m 22=√2×√2−m 2,联立方程组{x 24+y 23=1y =−x +m ,消去y ,整理得7x 2−8mx +4m 2−12=0,由题意,△=(−8m)2−4×7×(4m 2−12)=336−48m 2=48(7−m 2)>0, 解得m 2<7,又|m|<√2,所以m 2<2. 又由韦达定理,得x 1+x 2=8m 7,x 1x 2=4m 2−127,所以|CD|=√1+k 2|x 2−x 1|=√2×√Δ7=4√6√7−m 27,若|CD||AB|=24√27, 则√2×√2−m 2×4√67×√7−m 2=24√27, 整理得m 4−9m 2+8=0, 解得m 2=1,或m 2=8.又m 2<2,所以m 2=1,即m =±1.故存在符合条件的直线l ,其方程为y =−x +1,或y =−x −1.【解析】本题主要考查了椭圆的概念及标准方程、椭圆的性质及几何意义、直线与椭圆的位置关系、圆锥曲线中的定点与定值问题,还涉及了直线与圆方程的应用,属于中等题.(1)根据题中条件得到a −c =1,2b 2=3a ,结合椭圆的性质:a 2=b 2+c 2,建立关于a ,b 的方程组即可求解;(2)由题意,设出直线l 方程y =−x +m ,根据题设条件得到|m|<√2,联立直线l 与椭圆得方程组,利用韦达定理、圆中弦长公式以及两点间距离的坐标公式,依次计算得到|AB|、|CD|关于m 的表达式,由|CD |⋅|AB |=24√27进而可求得m 的值,于是可给出相应的结论.21.【答案】解:(1)设点P 为(x,y ),点A ,B 的坐标分别为(−6,0),(6,0).因为k PA ⋅k PB =yx+6⋅yx−6=−49,所以4x 2+9y 2=144即x 236+y 216=1.因为P在椭圆C上,所以x236+y2b2=1,所以b2=16.故椭圆C的方程为x236+y216=1,c=√a2−b2=√62−16=2√5.所以离心率e=ca =2√56=√53.(2)因为,所以四边形MSNT的面积S MSNT=12|ST|⋅|MN|.由题意得|ST|=4,则S MSNT=2 |MN|.即当|MN|取到最大值时,S MSNT取到最大值.联立直线l1与椭圆C的方程,可得13x2+18mx+9m2−144=0.由,可得m2<52.设点M,N的坐标分别为(x1,y1),(x2,y2),则x1+x2=−18m13,x1x2=9m2−14413,所以|MN|=√2[(−18m13)2−4×9m2−14413]=12√2√−m2+5213.显然当m=0时,|MN|取到最大值24√2613,故S MSNT的最大值为48√2613.【解析】本题考查椭圆几何性质、标准方程以及圆锥曲线中面积最值问题,属于一般题;(1)本题考查椭圆标准方程以及几何性质,根据斜率乘积求出x、y的一个关系,再根据点在椭圆上及椭圆的性质求解即可;(2)本题考查圆锥曲线中面积以及最值问题,对四边形MSNT面积进行正确转化,进而联立直线与椭圆方程,再利用弦长公式求解即可.22.【答案】解:(1)由椭圆E 经过点P(0,1),得b =1,由短轴长等于焦距,得2b =2c ,则c =1, 所以a =√b 2+c 2=√12+12=√2, 故椭圆E 的方程为x 22+y 2=1.(2)设直线l 的方程为x =ty +1(t ≠0), A (x 1,y 1),B (x 2,y 2),C (x 0,y 0),联立直线与椭圆方程:{x =ty +1x 2+2y 2=2,得(t 2+2)y 2+2ty −1=0, 由题意,得△>0,且y 1+y 2=−2tt 2+2,y 1y 2=−1t 2+2, 则y 0=y 1+y 22=−t t 2+2,x 0=ty 0+1=2t 2+2,即C (2t 2+2,−tt 2+2), 设D (0,u ),由得:u+tt 2+2−2t 2+2·1t=−1,解得u =tt 2+2,所以y 0+u =0,所以y 0+u 2=0,故线段CD 的中点在x 轴上.【解析】本题主要考查了直线与椭圆的关系,椭圆的标准方程,考查运算能力,属于中档题.(1)根据题目条件,可得b =c =1,进而可求出a ,可求方程.(2)设直线l 的方程为x =ty +1(t ≠0),联立直线与椭圆方程,消去x 得(t 2+2)y 2+2ty −1=0,由韦达定理可得y 1+y 2=−2tt 2+2,y 1y 2=−1t 2+2,则可求C 点坐标,设D (0,u ),由建立等式解得u ,由y 0+u 2=0,可证结果.23.【答案】解:(1)由题意得a =2,e =c a=√32, 所以c =√3,b 2=a 2−c 2=1, 所以椭圆C 的方程为x 24+y 2=1.(2)(ⅰ)证明:设P(x 0,y 0),因为P 在椭圆C 上,所以x 024+y 02=1.因为直线AP 的斜率为y 0x 0+2,直线BP 的斜率为y 0x 0−2, 所以直线BP 的方程为y =y 0x 0−2(x −2). 所以点N 的坐标为N(−6,−8y 0x0−2).所以直线AN 的斜率为−8y 0x 0−2−6+2=2y 0x0−2. 所以直线AP,AN 的斜率之积为:y 0x 0+2⋅2y 0x 0−2=2y 02x 02−4=2(1−x 024)x 02−4=−12.(ⅰ)M,B,Q 三点共线.因为点P 异于A ,B 两点,可知直线AP 的斜率存在且不为零.设直线AP 斜率为k(k ≠0),则直线AP :y =k(x +2),可得M(−6,−4k). 由(ⅰ)可知直线AP,AN 的斜率之积为−12,所以直线AN 的斜率为−12k , 所以直线AN 的方程为y =−12k (x +2).联立直线AN 与椭圆方程得,{x 2+4y 2−4=0,x =−2ky −2,可得(4+4k 2)y 2+8ky =0.解得Q 点的纵坐标为−2k 1+k2,所以Q 点的坐标为Q(2k 2−21+k 2,−2k 1+k 2).所以,直线BQ 的斜率为−2k1+k 2−02k 2−21+k 2−2=k2,直线BM 的斜率为−4k−0−6−2=k2. 因为直线BQ 的斜率等于直线BM 的斜率,所以M,B,Q 三点共线.【解析】本题考查椭圆的定义及几何性质,直线与椭圆的位置关系,直线的斜率与直线的方程,属于中档题.(1)结合条件和椭圆的几何性质可求得a ,b ,c ,即可求得椭圆的方程;(2)(ⅰ)设P(x 0,y 0),求得直线AP 的斜率并求出直线BP 方程,求得点N 的坐标,再求得直线AN 的斜率,根据点P 在椭圆上,可证明直线AP,AN 的斜率之积为定值; (ⅰ)根据直线AP 的斜率存在且不为零,设直线AP 斜率为k ,则可得直线AP 方程,求出点M ,根据(ⅰ)中的直线AP,AN 的斜率之积为−12,求出直线AN 的斜率为−12k ,可得直线AN 的方程,联立直线AN 与椭圆方程,求得点Q 坐标,根据直线BQ ,BM 斜率相等,可判定结论.24.【答案】解:(1)F(−c,0),A(a,0),B(0,b),则S △ABF =√2+12=12(a +c)b , 即(a +c)b =√2+1,即(a +c)√a 2−c 2=√2+1. 又e =ca =√22,a =√2c ,代入上式中得到,(√2c +c)√2c 2−c 2=√2+1, 解得c =1,于是a =√2,b =1.。

高考椭圆大题知识点总结

高考椭圆大题知识点总结

高考椭圆大题知识点总结椭圆是高中数学中的一个重要内容,也是高考中常出现的考点。

椭圆是平面几何中的一种特殊曲线,它具有许多有趣的性质和特点。

在解题过程中,我们应该了解椭圆的定义、性质和相关公式,从而灵活运用椭圆的知识来解答高考试题。

一、椭圆的定义和基本性质椭圆是指平面上到两个定点的距离之和等于常数的点的轨迹。

这两个定点称为焦点,两焦点间的距离称为焦距。

椭圆的形状由焦距和离心率决定,离心率小于1时,椭圆比较扁,离心率等于1时,椭圆退化为圆。

椭圆的主要性质有:对称性、切点和法线、焦点和直线的性质等。

在解题时,我们需要根据具体情况运用这些性质,简化计算步骤,提高解题效率。

二、椭圆的标准方程和一般方程椭圆的标准方程可以表示为:(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆的中心坐标,a为椭圆的长半轴长度,b为椭圆的短半轴长度。

当椭圆的中心在原点时,方程可以简化为x²/a²+y²/b²=1。

而一般方程则可以表示为:Ax²+Bxy+Cy²+Dx+Ey+F=0。

在解题时,我们常常需要将椭圆的方程进行转化,使其符合标准方程的形式,以便于进行求解和分析。

三、椭圆的焦点和直线的关系椭圆的焦点是反映椭圆性质的重要元素之一。

根据焦点和椭圆的关系,我们可以推导出椭圆的两个焦点与椭圆上的点的连线的交点分别位于椭圆的法线和切线上的性质。

根据焦点和直线的关系,我们可以解决一些有关焦点和直线的题目,如:已知一个点在椭圆上,连接该点和椭圆的两个焦点,然后以该点为圆心,过两个焦点的直线为半径画圆,证明所得的圆和椭圆相切等。

四、椭圆的参数方程和极坐标方程除了直角坐标系表示椭圆外,我们还可以使用参数方程和极坐标方程来描述椭圆。

在解题时,椭圆的参数方程和极坐标方程常常能够简化计算步骤,提高解题效率。

椭圆的参数方程可以表示为:x = a*cosθ,y = b*sinθ。

椭圆常见题型与典型方法归纳

椭圆常见题型与典型方法归纳

椭圆常见题型与典型方法归纳椭圆是平面内与两个定点距离之和等于常数的点的轨迹。

这两个定点被称为椭圆的焦点,椭圆的焦距是两个焦点之间的距离。

另外,椭圆也可以被定义为平面内一个点到一个定直线距离与到一个定点距离之比等于常数的轨迹。

这个定点是椭圆的焦点,定直线是椭圆的准线,这个常数是椭圆的离心率。

需要注意的是,当两个定点之间的距离等于常数时,椭圆的轨迹是线段,而当两个定点之间的距离小于常数时,椭圆的轨迹不存在。

椭圆的标准方程有两种形式,一种是焦点在x轴上的形式,另一种是焦点在y轴上的形式。

这些方程可以用来确定椭圆的形状和位置。

需要注意的是,椭圆的焦点位置可以通过方程中分母的大小来判断。

如果分母中x的系数大于y的系数,那么焦点在y轴上,反之则在x轴上。

如果椭圆过两个定点,但焦点位置不确定,可以设椭圆方程为mx+ny=1,其中m和n都是正数。

在解题时,需要牢记椭圆的几何性质。

例如,如果一个点到椭圆的左焦点的距离是到右焦点距离的两倍,那么这个点的横坐标可以通过解方程得到。

又例如,如果一个点在椭圆上,那么它到两个焦点的距离之和等于椭圆的长轴长度。

1.椭圆的基本性质椭圆方程为x2/a2 + y2/b2 = 1 (a>b>0),其中a和b分别为长轴和短轴长。

椭圆的中心在原点(0,0)处,长轴与x轴平行。

椭圆的顶点分别为(a,0)。

(-a,0)。

(0,b)。

(0,-b),离心率为e=c/a,其中c为焦点到中心的距离,焦距为2c。

椭圆的准线方程为y=±(b/a)x,通径方程为y=kx或x=h,其中k和h为常数。

椭圆关于x轴和y轴对称,且具有中心对称性。

椭圆上任意一点到两焦点的距离之和等于长轴长,即PF1 + PF2 = 2a。

椭圆上任意一点到两焦点的距离之差等于该点到准线的距离,即PF1 - PF2 = 2b。

椭圆上点的横坐标的范围为-x ≤ x ≤ x,纵坐标的范围为-y ≤ y ≤ y。

2.典型练1) 题目描述:给定椭圆方程x2/a2 + y2/b2 = 1,已知长轴位于x轴上,长轴长为8,短轴位于y轴上,短轴长为6,焦点在x轴上,焦点坐标为(5,0)和(-5,0),求离心率e、左顶点坐标、下顶点坐标和椭圆上点的横坐标的范围、纵坐标的范围以及x+y的取值范围。

椭圆知识点以及题型总结

椭圆知识点以及题型总结

椭圆知识点以及题型总结一、椭圆的定义与基本性质椭圆是平面上到定点F1与F2的距离之和等于常数2a的点P的轨迹。

其中的定点F1和F2称为焦点,常数2a称为长轴的长度。

椭圆还有一个重要的参数e,称为离心率,定义为e=c/a,其中c是焦点与中心之间的距离。

椭圆是一个非常重要的几何图形,它有许多独特的性质,需要我们逐一来了解。

1. 椭圆的标准方程椭圆的标准方程一般可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(a>b)。

其中(h,k)是椭圆的中心坐标。

2. 椭圆的焦半径和半短轴椭圆的焦半径是指从焦点到椭圆上任意一点的线段,它的长度等于椭圆的长半轴的长度a。

而椭圆的半短轴的长度等于b。

3. 相邻两焦点和任意一点的距离之和椭圆上任意一点P到椭圆的两个焦点的距离之和等于2a。

即PF1+PF2=2a。

4. 椭圆的离心率椭圆的离心率e定义为e=c/a,其中c是焦点与中心之间的距离,a是长半轴的长度。

离心率是描述椭圆形状的一个重要参数,它的取值范围为0<e<1。

5. 椭圆的参数方程椭圆还可以用参数方程来表示,一般可以表示为x=h+a*cosθ,y=k+b*sinθ。

其中θ的取值范围一般为0≤θ≤2π。

二、常见椭圆的题型及解题方法1. 椭圆的焦半径与半短轴的关系题这类题目一般给定椭圆的长半轴的长度a和离心率e,要求求出椭圆的焦半径和半短轴的长度。

解题方法:根据离心率e=c/a,可以求出焦点与中心之间的距离c,然后根据椭圆的焦点与半短轴之间的关系,可以求出半短轴的长度b。

2. 椭圆的标准方程题这类题目一般给定椭圆的焦点、长轴的长度和中心坐标,要求写出椭圆的标准方程。

解题方法:根据给定的信息,可以用(x-h)²/a²+(y-k)²/b²=1的形式写出椭圆的标准方程。

3. 椭圆的参数方程题这类题目一般给定椭圆的中心坐标、长半轴、半短轴的长度,要求写出椭圆的参数方程。

椭圆题型完美归纳(经典)

椭圆题型完美归纳(经典)

椭圆题型概括一、知识总结1.椭圆的定义:把平面内与两个定点F1 , F2的距离之和等于常数(大于F1 F2)的点的轨迹叫做椭圆 .这两个定点叫做焦点,两焦点的距离叫做焦距(设为 2c) .2.椭圆的标准方程:x 2 y 21( a >b>0)y 2 x 21 ( a >b>0)a 2b 2 a 2 b2y yM F 2cc cO c xF 1 O F 2 x MF 1焦点在座标轴上的椭圆标准方程有两种情况,可设方程为 mx2 ny2 1(m 0, n 0) 不用考虑焦点地点,求出方程。

3.范围 . 椭圆位于直线 x=± a 和 y=± b 围成的矩形里. |x|≤a,|y|≤ b.4.椭圆的对称性椭圆是对于 y 轴、 x 轴、原点都是对称的.坐标轴是椭圆的对称轴.原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.5.极点椭圆有四个极点: A1(-a, 0)、A2(a, 0)、B1(0, -b)、B2(0, b).线段 A1A2、 B1B2分别叫做椭圆的长轴和短轴.。

长轴的长等于 2a. 短轴的长等于 2b.|B 1F 1|=|B 1F 2|= |B 2F 1|= |B 2F 2|=a .在 Rt △OB 2F 2 中, |OF 2|2= |B 2F 2|2-|OB 2|2,即 c 2=a 2-b 2.yB 2A 1ba A 2cF 2xF 1 OB 16.离心率 ec(0 e 1)a7. 椭圆x 2y 2 1 (a > > 0) 的左右焦点分别为 1, F 2 ,点 P 为椭圆上随意一点a 2b 2 bFF 1PF 2,则椭圆的焦点角形的面积为SFPF2b 2 tan .128. 椭圆x 2y 2 1 ( > > )的焦半径公式a 2b 2 a b 0| MF 1 | a ex 0 , | MF 2 | a ex 0 ( F 1( c,0) , F 2 (c,0) M ( x 0 , y 0 ) ).9. AB 是椭圆x 2y 2 1的不平行于对称轴的弦 , Ma 2b 2(x 0 , y 0 ) 为 AB 的中点,则kOMkABb 2 ,即K ABb 2 x 0 。

高三数学椭圆常考题型

高三数学椭圆常考题型

高三数学椭圆常考题型一、椭圆的基本性质椭圆是一种常见的二次曲线,具有以下基本性质:1. 椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。

2. 椭圆的焦点距离为:c = sqrt(a^2 - b^2)。

3. 椭圆的离心率e = c/a,离心率的取值范围是[0,1]。

4. 椭圆的准线方程为:x = ±a^2/c。

二、常考题型及解析1. 椭圆的定义与标准方程【例1】已知椭圆C的中心在原点,焦点在x轴上,离心率为1/2,且椭圆C上一点到两焦点的距离之和为4。

(1) 求椭圆C的标准方程;(2) 若AB是过椭圆C中心的弦,M是AB的中点,且|AB| = 4√5,求线段AB 的长。

【解析】(1) 根据题意,设椭圆C的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。

由离心率的定义,我们有e = c/a = 1/2。

再根据椭圆的定义,到两焦点的距离之和为4,所以2a = 4,即a = 2。

由离心率的定义和已知条件,我们可以得到b = sqrt(a^2 - c^2) = sqrt(4 - 1) = sqrt3。

所以椭圆C的标准方程为:x^2/4 + y^2/3 = 1。

(2) 设AB的方程为y = kx + t。

代入椭圆方程得到二次方程(3 + 4k^2)x^2 +8ktx + 4t^2 - 12 = 0。

设A(x1,y1),B(x2,y2),则有x1 + x2 = -8kt/(3 + 4k^2),x1x2 = (4t^2 - 12)/(3 + 4k^2)。

由弦长公式得|AB| = sqrt((x1 - x2)^2 + (y1 - y2)^2) = sqrt((1 + k^2)(x1 - x2)^2) = sqrt((1 + k^2)[(x1 + x2)^2 - 4x1x2])。

将已知条件代入得到k 和t 的关系,进一步求出线段AB的长为8sqrt(3-k^2)。

完整版)椭圆大题题型汇总例题+练习

完整版)椭圆大题题型汇总例题+练习

完整版)椭圆大题题型汇总例题+练习解决直线和圆锥曲线的位置关系的步骤如下:1.判断直线的斜率是否存在,如果存在,求出斜率。

2.联立直线和曲线的方程组。

3.讨论一元二次方程的情况。

4.计算一元二次方程的判别式。

5.运用韦达定理、同类坐标变换等技巧。

6.计算弦长、中点、垂直、角度、向量、面积、范围等。

在解题过程中需要掌握中点坐标公式和弦长公式,同时还需要了解两条直线垂直的判定方法和XXX定理的应用。

常见的题型包括数形结合确定直线和圆锥曲线的位置关系以及弦的垂直平分线问题。

对于后者,需要掌握垂直和平分的相关知识。

举例来说,对于题型一,可以给定一个点T和一条直线l,要求找到与曲线N相交的点A、B,并判断是否存在一点E使得三角形ABE是等边三角形。

对于题型二,可以给定一个椭圆和一些已知点,要求求出过这些点且与给定直线相切的圆的方程。

在解题过程中,需要注意排除格式错误和明显有问题的段落,同时对每段话进行小幅度的改写,使其更加通顺和易懂。

练1:Ⅰ)椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。

Ⅱ)设直线 $l:y=kx+m(k\neq0)$ 与椭圆C交于不同的两点M、N,线段MN的垂直平分线过定点G$(x_G,y_G)$。

根据对称性可知,$G$ 在$x$轴上,即$y_G=0$。

由于线段MN的垂直平分线过点$G$,所以$G$ 是线段MN的中点。

又因为MN是直线$l$的斜率为$k$的两点之间的线段,所以MN的中点的横坐标为$-\frac{m}{k}$。

因此,$x_G=-\frac{m}{k}$。

又因为$M$、$N$ 在椭圆上,所以它们满足椭圆的方程,代入直线方程可得关于$k$的二次方程。

由于线段MN不垂直于$x$轴,所以$k\neq0$。

根据二次方程的判别式,当判别式大于等于$0$时,线段MN存在,$k$的取值范围为$\left(-\infty,-\frac{a}{b}\right)\cup\left(\frac{a}{b},+\infty\right)$。

(完整版)椭圆大题题型汇总例题+练习

(完整版)椭圆大题题型汇总例题+练习

(完整版)椭圆⼤题题型汇总例题+练习椭圆⼤题题型解决直线和圆锥曲线的位置关系的解题步骤是:(1)直线的斜率不存在,直线的斜率存,(2)联⽴直线和曲线的⽅程组;(3)讨论类⼀元⼆次⽅程(4)⼀元⼆次⽅程的判别式(5)韦达定理,同类坐标变换(6)同点纵横坐标变换(7)x,y ,k(斜率)的取值范围(8)⽬标:弦长,中点,垂直,⾓度,向量,⾯积,范围等等运⽤的知识:1、中点坐标公式:1212,y 22x x y y x ++==,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。

2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两⼤坐标变换技巧之⼀,AB ====或者AB ==== 3、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-两条直线垂直,则直线所在的向量120v v =r rg4、韦达定理:若⼀元⼆次⽅程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。

常见的⼀些题型:题型⼀:数形结合确定直线和圆锥曲线的位置关系题型⼆:弦的垂直平分线问题弦的垂直平分线问题和对称问题是⼀种解题思维,⾸先弄清楚哪个是弦,哪个是对称轴,⽤到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)。

例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在⼀点E(0x ,0),使得ABE ?是等边三⾓形,若存在,求出0x ;若不存在,请说明理由。

例题2、已知椭圆1222=+y x 的左焦点为F ,O 为坐标原点。

(Ⅰ)求过点O 、F ,并且与2x =-相切的圆的⽅程;(Ⅱ)设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围。

数学-椭圆大题专题及解析

数学-椭圆大题专题及解析

椭圆 大题习题及答案解析1已知椭圆()2222:10x y C a b a b +=>>过点()2,0A,且离心率为2.(I)求椭圆C 的方程;(Ⅱ)设直线y kx =+与椭圆C 交于,M N 两点.若直线3x =上存在点P ,使得四边形PAMN 是平行四边形,求k 的值. (((由题意得 2a =(2c e a ==( 所以c = 因为 222a b c =+( 所以 1b =所以 椭圆C 的方程为 2214x y +=((((若四边形PAMN 是平行四边形,则 //PA MN ,且 PA MN =. 所以 直线PA 的方程为()2y k x =-,所以 ()3,P k,PA =(设()11,M x y ,()22,N x y (由2244,y kx x y ⎧=+⎪⎨+=⎪⎩ 得()224180k x +++=, 由0∆>,得 212k >(且12241x x k +=-+,122841x x k =+( 所以MN ==因为 PA MN =, 所以=整理得 421656330k k -+=, 解得k =±,或 k =±经检验均符合0∆>,但2k =-时不满足PAMN 是平行四边形,舍去(所以 k =k =± 2已知椭圆()2222:10x y C a b a b =>>+的左、右焦点分别为12,F F ,124F F =,过2F的直线l 与椭圆C 交于,P Q 两点,1PQF ∆的周长为(1)求椭圆C 的方程;(2)如图,点A ,1F 分别是椭圆C 的左顶点、左焦点,直线m 与椭圆C 交于不同的两点M 、N (M 、N 都在x 轴上方).且11AF M OF N ∠=∠.证明:直线m 过定点,并求出该定点的坐标.】(1)设椭圆C 的焦距为2c ,由题意,知1224F F c ==,可知2c =,由椭圆的定义知,1PQF ∆的周长为4a =,∴a =24b =∴椭圆C 的方程为22184x y += (2)由题意知,直线的斜率存在且不为0.设直线:l y kx m =+ 设()()1122,,,M x y N x y ,把直线l 代入椭圆方程,整理可得()222124280k x kmx m +++-=,()228840k m ∆=-+>,即22840k m -+>∴122412km x x k +=-+,21222812m x x k -=+,∵111212,22F M F N y y k k x x ==++, ∵M 、N 都x 轴上方.且11AF M OF N ∠=∠,∴11F M F N k k =-,∴121222y y x x =-++,即()()122122y x y x +=-+,代入1122,y kx m y kx m =+=+ 整理可得()()12122240kx x k m x x m ++++=,2121222284,1212m kmx x x x k k -=+=-++ 即222241684840km k k m km k m m ---++=,整理可得4m k =, ∴直线l ()44y kx m kx k k x =+=+=+,∴直线l 过定点()4,0-3已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,点P 、Q 、R分别是椭圆C 的上、右、左顶点,且3PQ PR ⋅=-,点S 是2PF 的中点,且1OS =. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点()1,0T -的直线与椭圆C 相交于点M 、N ,若QMN △的面积是125,求直线MN 的方程.解:(Ⅰ)由题意知(),PQ a b =-,(),PR a b =--,∴223PQ PR a b ⋅=-+=-, ∵点S 是2PF 的中点,且1OS =,∴211122OS PF a ===,∴2a =,1b =, 故所求椭圆方程为2214x y +=.(Ⅱ)设()11,M x y ,()22,N x y ,直线MN :1x ty =-,联立方程组22114x ty x y =-⎧⎪⎨+=⎪⎩,得()224230t y ty +--=, ∴12224t y y t +=+,12234y y t=-+,12y y -==24t =+,∴1211123225QMNS TQ y y =⋅⋅-=⨯=△, ∴1t =±.∴直线MN 的方程为1y x =+或1y x =--.(解法2:求出弦长12N M y =-=点Q 到直线MN 的距离d =11225QMNS MN d ===△, ∴1t =±.∴直线MN 的方程为1y x =+或1y x =--.4如图,椭圆E :22221(0)x y a b a b+=>>内切于矩形ABCD ,其中AB ,CD 与x 轴平行,直线AC ,BD 的斜率之积为12-,椭圆的焦距为2.(1)求椭圆E 的标准方程;(2)椭圆上的点P ,Q 满足直线OP ,OQ 的斜率之积为12-,其中O 为坐标原点.若M 为线段PQ 的中点,则22MO MQ +是否为定值?如果是,求出该定值;如果不是,说明理由. 【小问1详解】由题意,1c =,则()()()(),,,,,,,A a b B a b C a b D a b ----,所以22AC b bk a a==,22BDb b k a a ==--,所以B AC D k k ⋅=2212b a -=-,解得:a =1=,(椭圆的标准方程为2212x y +=.【小问2详解】(方法一)设()11,P x y ,()22,Q x y ,则1212,22x x y y M ++⎛⎫⎪⎝⎭. 设直线PQ :y kx t =+,由2212y kx tx y =+⎧⎪⎨+=⎪⎩,得:()222124220k x ktx t +++-=, 12221224122212kt x x k t x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩, 由12OP OQ k k ⋅=-,得()()2212121212212220x x y y k x x kt x x t +=++++=,代入化简得:22212t k =+.(22221212121211222222x x y y x x y y x MO M y Q ++++⎛⎫⎛⎫⎛⎫⎛⎫=++-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+2222121222x x y y ++=+, 又点P ,Q 在椭圆上,(221112x y +=,222212x y +=,即22221212142x x y y +++=,(()222221212122242222222kt t x x x x x x t t --⎛⎫+=+-=-⋅= ⎪⎝⎭, (2212142x x +=.(2222222212121234242x x y y x x MO MQ ⎛⎫++++=++= ⎪⎝⎭.即2232MO MQ +=为定值. (方法二)由P ,Q 是椭圆C 上的点,可得221122222222x y x y ⎧+=⎨+=⎩, 把12122x x y y =-代入上式,化简22122x y =,得22121y y +=,22122x x +=, ()22221222121322x x y y MO MQ ++==++. 5已知椭圆()2222:10x y C a b a b+=>>的中心是坐标原点O ,左右焦点分别为12,F F ,设P 是椭圆C 上一点,满足2PF x ⊥轴,212PF =,椭圆C的离心率为2(1)求椭圆C 的标准方程;(2)过椭圆C 左焦点1F 且不与x 轴重合的直线l 与椭圆相交于,A B 两点,求2ABF 内切圆半径的最大值.【小问1详解】以2214x y +=.【小问2详解】解:由(1)可知()1F ,222112248ABF CAB AF BF AF BF AF BF a =++=+++==,设直线l为x my =-2214x my x y ⎧=-⎪⎨+=⎪⎩,消去x 得()22410m y +--=,设()11,A x y ,()22,B x y,则1224y y m +=+,12214y y m -=+ 所以1224y y m -===+所以2121212ABF SF F y y =⋅-=,令内切圆的半径为R ,则2182ABF SR =⨯⨯,即24R m =+,令t =,则12t R t==≤=+,当且仅当3t t=,t =,即m =时等号成立,所以当m =R 取得最大值12; 6已知直线220x y 经过椭圆2222:1(0)x y C a b a b+=>>的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线,AS BS 与直线10:3l x =分别交于,M N 两点.(1)求椭圆C 的方程;(2)求线段MN 的长度的最小值;(3)当线段MN 的长度最小时,在椭圆C 上是否存在这样的点T ,使得TSB △的面积为15,若存在,确定点T 的个数,若不存在,说明理由.【小问1详解】220x y ,令0x =得:1y =,令0y =得:2x =-,所以椭圆C 的左顶点为()2,0A -,上顶点为()0,1D ,所以2,1a b ==,故椭圆方程为2214x y +=.【小问2详解】直线AS 的斜率k 显然存在,且k >0,故可设直线AS 的方程为()2y k x =+,从而1016,33k M ⎛⎫ ⎪⎝⎭,由()22214y k x x y ⎧=+⎪⎨+=⎪⎩,联立得:()222214161640k x k x k +++-=,设()11,S x y ,则212164214k x k --=+,解得:2122814k x k -=+,从而12414k y k =+,即222284,1414k k S k k ⎛⎫- ⎪++⎝⎭,又()2,0B ,由()124103y x k x ⎧=--⎪⎪⎨⎪=⎪⎩,解得:13103y kx ⎧=-⎪⎪⎨⎪=⎪⎩,所以101,33N k ⎛⎫- ⎪⎝⎭,故16133k MN k =+,又0k >,所以1618333k MN k =+≥=,当且仅当16133k k =即14k =时等号成立,故线段MN 的长度的最小值为83.【小问3详解】由第二问得:14k =,此时64,55S ⎛⎫ ⎪⎝⎭,故5SB ==, 要使椭圆C 上存在点T ,使得TSB △的面积等于15,只须T 到直线BS的距离等于24S SB =.其中直线SB :4056225y x -=--,即20x y +-=,设平行于AB 的直线为0x y t ++=4=解得:32t =-或52t =-,当32t =-时,302x y +-=,联立椭圆方程2214x y +=得:275304y y --=,由9350∆=+>得:302x y +-=与椭圆方程有两个交点;当52t =-时,502x y +-=,联立椭圆方程2214x y +=得:295504y y -+=,由25450∆=-<,此时直线与椭圆方程无交点,综上:点T 的个数为2.满足题意. 所以原题得证,即直线2l 过定点10,03⎛⎫- ⎪⎝⎭7己知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为,A B ,点31,2⎛⎫ ⎪⎝⎭该椭圆上,且该椭圆的右焦点F 与抛物线24y x =的焦点重合. (1)求椭圆C 的标准方程;(2)如图,过点F 且斜率为k 的直线l 与椭圆交于,M N 两点,记直线AM 的斜率为k ,直线BN 的斜率为2k ,直线AN 的斜率3k ,求证:_____________.在以下三个结论中选择一个填在横线处进行证明. (直线AM 与BN 的交点在定直线4x =上;(1213k k =; (1314k k =-..解(因为抛物线24y x =的焦点为(1,0).所以椭圆的右焦点用(1,0)又点31,2⎛⎫ ⎪⎝⎭在该椭圆上,所以221914a b += 又22221a b c b =+=+,所以224,3a b ==椭圆C 的标准方程为22143x y +=(2)选(设()()1122,,,M x y N x y 22(1)143y k x x y =-⎧⎪⎨+=⎪⎩ 联立得:()22223484120k x k x k +-+-=法一:直线11(2),(2)y k x y k x =+=+的交点的横坐标为()12212k k x k k +=-()2121212122212112162442233422481234234k x k k x x x x k x k k k x x x k --+-++==⋅=⋅=--+--+所以直线AM 与BN 的交点在定直线4x =上法二:要证直线AM 与BN 的交点在定直线4x =上,即()122124k k k k +=-,即证1213k k =即证12121232y y x x =+-,即证2212121292y y x x ⎛⎫⎛⎫= ⎪ ⎪+-⎝⎭⎝⎭,即证1212221292x x x x -+=+- 即证()12122580x x x x -++=因为()2212122282482585803434k k x x x x k k ⎛⎫--++=-+= ⎪++⎝⎭所以直线AM 与BN 的交点在定直线4x =上.选(设()()1122,,,M x y N x y ,22(1)143y k x x y =-⎧⎪⎨+=⎪⎩联立得:()22223484120k x k x k +-+-=所以221212228412,3434k k x x x x k k -+==++ 法一:()()()()()()1212112122121212122122222122y x x x k x x x x k x y x x x x x x -----+===++--+- 222112212222221122412846223434134121834128322343434k k k x x x k k k k k k x x x k k k ⎛⎫-----+ ⎪-++⎝⎭+===-⎛⎫---+-- ⎪+++⎝⎭法二:()()12121222y x k k x y -=+ 所以()()()()()()()()222121212121222121212122222422242y x x x x x x x k k x x x x x x x y ----++⎛⎫=== ⎪++++++⎝⎭22222222224121644134344121636943434k k k k k k k k k k--+++===-++++因为12,k k 也同号,所以1213k k =法三:要证1213k k =,即证12121232y y x x =+-,即证2212121292y y x x ⎛⎫⎛⎫= ⎪ ⎪+-⎝⎭⎝⎭即证1212221292x x x x -+=+-,即证()12122580x x x x -++= 因为()2212122282482585803434k k x x x x k k ⎛⎫--++=-+= ⎪++⎝⎭ 所以1213k k =法四:由122(2)143y k x x y =+⎧⎪⎨+=⎪⎩得()2222111341616120k x k x k +++-=得21122116812,3434k k M k k ⎛⎫- ⎪++⎝⎭ 同理22222228612,3434k k N k k ⎛⎫-- ⎪++⎝⎭ 因为,,M N F 为三点共线,所以12221222122212121234346886113434k k k k k k k k -++=----++即()()12214330k k k k +-= 因为12,k k 同号,所以1213k k = 选(设()()1122,,,M x y N x y ,22(1)143y k x x y =-⎧⎪⎨+=⎪⎩联立得:()22223484120k x k x k +-+-=所以221212228412,3434k k x x x x k k -+==++.()()21212121312121212224k x x x x y y k k x x x x x x ⎡⎤-++⎣⎦=⋅=+++++ ()2222222222222222412814128343434141241216121641634434k k k k k k k k k k k k k k k k ⎛⎫--+ ⎪--++++⎝⎭===---+++++++.所以1314k k =-8设椭圆()222210x y a b a b +=>>的离心率为A ,B ,AB 4=.过点(0,1)E ,且斜率为k 的直线l 与x 轴相交于点F ,与椭圆相交于C ,D 两点.(1)求椭圆的方程; (2)若FC DE =,求k 的值;(3)是否存在实数k ,使直线AC 平行于直线BD ?证明你的结论. 【小问1详解】由题意22224b c e a a b c =⎧⎪⎪==⎨⎪-=⎪⎩,解得2a b ⎧=⎪⎨=⎪⎩22164x y +=; 【小问2详解】由题意知,0k ≠,直线l 的方程为1y kx =+,则1(,0)F k -,联立221641x y y kx ⎧+=⎪⎨⎪=+⎩,可得()2223690k x kx ++-=,()223636230k k ∆=++>,设1122(,),(,)C x y D x y ,有12122269,2323k x x x x k k --+==++,则CD 中点横坐标为1223223x x kk+-=+, 又,(0,1),1(0)F k E -,则EF 中点横坐标为12k-,又因为FC DE =,且,,,C E F D 四点共线,取EF 中点H ,则FH HE =,所以H F HE C DE F =--,即HC DH =,所以H 是CD 的中点,即,CD EF 的中点重合,即231232k k k -=-+,解得k = 【小问3详解】不存在实数k ,使直线AC 平行于直线BD ,证明如下:由题意,(0,2),(0,2)A B -,则()()1122,2,,2AC x y BD x y =-=+,若AC BD ,则AC BD ∥,所以()()122122x y x y +=-,即()12211220x y x y x x -++=,即()()()1221121120x kx x kx x x +-+++=, 化简得()121220x x x x -++=,213x x =-,由(2)得,12112266,32323k k x x x x k k --+=-=++,解得12323kx k=+, ()12112299,32323x x x x k k --=⋅-=++解得212323x k =+,所以222332323k k k ⎛⎫= ⎪++⎝⎭,整理得22233k k +=,无解,所以不存实数k ,使直线AC 平行于直线BD .9已知12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,过2F 且不与x 轴垂直的动直线l 与椭圆交于,M N 两点,点P 是椭圆C 右准线上一点,连结,PM PN ,当点P 为右准线与x 轴交点时,有2122PF F F =.(1)求椭圆C 的离心率;(2)当点P 的坐标为(2,1)时,求直线PM 与直线PN 的斜率之和. 【详解】解(1)由已知当P 为右准线与x 轴交点时,有2122PF F F =∴222a c c c ⎛⎫-= ⎪⎝⎭∴222c a =∴212e =又(0,1)e ∈,∴2e =. (2)∵(2,1)P ,∴22a c =又222a c =,∴2221a c ⎧=⎨=⎩,∴21b =∴椭圆22:12x C y +=.设直线l :(1)y k x =-,()()1122,,,M x y N x y联立22(1)22y k x x y =-⎧⎨+=⎩,得()2222124220k x k x k +-+-= 则22121222422,1212k k x x x x k k-+==++, ∴()()121212121111112222PM PN k x k x y y k k x x x x ------++=+----=()()1212212122k x k k x k x x --+--+=+--121211112(1)2222k k k k k k x x x x ⎛⎫--=+++=+-+ ⎪----⎝⎭()()121242(1)22x x k k x x ⎛⎫+-=+- ⎪ ⎪--⎝⎭()12121242(1)24x x k k x x x x ⎛⎫+-=+- ⎪ ⎪-++⎝⎭将22121222422,1212k k x x x x k k-+==++代入得 ()12121242(1)2(1)(2)224PM PN x x k k k k k k x x x x ⎛⎫+-+=+-=+-⨯-= ⎪ ⎪-++⎝⎭.∴直线PM 与直线PN 的斜率之和为2.10已知椭圆22143x y +=,动直线l 与椭圆交于B ,C 两点(B 在第一象限). (1)若点B 的坐标为31,2⎛⎫ ⎪⎝⎭,求△OBC 面积的最大值;(2)设B (x 1,y 1),C (x 2,y 2),且3y 1+y 2=0,求当△OBC 面积最大时,直线l 的方程. 【小问1详解】 直线OB 的方程为32y x =,即3x -2y =0,设过点C 且平行于OB 的直线l '的方程为32y x b =+, 则当l '与椭圆只有一个公共点时,△OBC 的面积最大.联立221,433,2x y y x b ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并整理,得3x 2+3bx +b 2-3=0,此时Δ=9b 2-12(b 2-3),令Δ=0,解得b =±当b =C ⎛ ⎝⎭;当b =-时,C ⎭,∴ △OBC=. 【小问2详解】显然可知直线l 与y 轴不垂直,设直线l 的方程为x =my +n ,联立221,43,x y x my n ⎧+=⎪⎨⎪=+⎩消去x 并整理,得(3m 2+4)y 2+6mnx +3n 2-12=0, ∴12221226,34312,34nm y y m n y y m ⎧+=-⎪⎪+⎨-⎪=⎪+⎩∵ 3y 1+y 2=0,∴ 1222123,344,34nm y m n y m ⎧=⎪⎪+⎨-⎪=⎪+⎩ 从而()222222943434n m n m m -=++,即2223431m n m +=+, ∴21212216||6||||2||23431OBCm n m Sn y y n y m m =⋅-=⋅==++. ∵ B 在第一象限,∴ 21123034m nx my n n m =+=+>+,∴ n >0.∵ y 1>0,∴ m >0,∴2661313OBCm Sm m m==≤=++当且仅当31m m =,即m =时取等号),此时2n =,∴ 直线l的方程为x y =+,即20y -=.11椭圆2222:1(0)x y C a b a b+=>>的左右焦点为1F ,2F ,过椭圆右焦点2F 的直线l和椭圆C 相交于E 、F 两点,1EFF △的周长为8,若P 是椭圆上一个动点,且12PF PF ⋅的最大值为3. (1)求椭圆C 的方程;(2)四边形MNAB 的四个顶点均在椭圆C 上,且//MB NA ,MB x ⊥轴,若直线MN 和直线AB 交于点()4,0S ,问:四边形MNAB 的对角线交点D 是否是定点?若是,求出定点坐标;若不是,请说明理由. 【详解】(1)解:1EFF △的周长为48a =∴2a =,令222c a b =-设()00,p x y ,1(,0)F c -,2(,0)F c()()20000,,PF PF c x y c x y ⋅=---⋅--2220x c y =-+2222021b x b c a ⎛⎫=-+- ⎪⎝⎭当220x a =时,()22212max3PF PF a c b ⋅=-==∴21c =,∴23b =∴方程为22143x y += (2)解:设 :AM y kx b =+(k 一定存在) 与椭圆联知:()2223484120kxkbx b +++-=设()11,A x y ,()22,M x y ,()11,N x y -,()22,B x y -,122834kb x x k +=-+,212241234b x x k -=+ ,∵M 、N 、S 共线∴2121044y y x x +=-- 得()12122(4)80kx x b k x x b +-+-=,即()222412824803434b kb k b k b k k--⋅+-⋅-=++, 整理可得0k b +=∴:(1)AM y k x =-过点()1,0Q 下证:BN 也过()1,0Q 212111BQ NQ y y k k x x -=---()()()()()()2112211111011k x x k x x x x ----=--=-∴BN 和AM 相交于()1,0()1,0即为定点D .。

椭圆大题定值定点、取值范围、最值问题总结

椭圆大题定值定点、取值范围、最值问题总结

椭圆大题定值定点、取值范围、最值问题等总结一、直线与椭圆问题的常规解题方法:1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y kx b =+与x my n =+的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组;4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0”(提醒:需讨论k 是否存在) 121212100OA OB k k OA OB x x y y ⇔⊥⇔=⇔⋅-⋅=⇔+= ②“点在圆内、圆上、圆外问题”⇔“直角、锐角、钝角问题” ⇔ “向量的数量积大于、等于、小于0问题”12120x x y y ⇔+>; ③“等角、角平分、角互补问题”令斜率关系(120k k +=或12k k =); ④“共线问题”(如:AQ QB λ=⇔数的角度:坐标表示法;形的角度:距离转化法); (如:A O B ,,三点共线⇔直线OA 与OB 斜率相等); ⑤“点、线对称问题”⇔坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与玄长公式问题(提醒:注意两个面积公式的合理选择); 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想:1.“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3.证明定值问题的方法:(1)常把变动的元素用参数表示出来,然后证明计算结果与参数无关; (2)也可先在特殊条件下求出定值,再给出一般的证明. 4.处理定点问题的方法:(1)常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点; (2)也可先取参数的特殊值探求定点,然后给出证明,5.求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;6.转化思想:有些题思路易成,但难以实施.这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;椭圆中的定值、定点问题.一、常见基本题型:在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的. (1)直线恒过定点问题1.已知点00()P x y ,是椭圆E :2212x y +=上任意一点,直线l 的方程为0012x xy y +=,直线0l 过P 点与直线l 垂直,点(10)M -,关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标. 解:直线0l 的方程为()()00002x y y y x x -=-,即000020y x x y x y --=设(10)M -,关于直线0l 的对称点N 的坐标为()N m n ,,则0000001212022x n m y x n m y x y ⎧=-⎪+⎪⎨⎪-⋅--=⎪⎩,,解得()3200020432000020023444244824x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩所以直线PN 的斜率为()432000003200004288234n y x x x x k m x y x x -++--==---+, 从而直线PN 的方程为:()()43200000032004288234x x x x y y x x y x x ++---=---+即()32000432000023414288y x x x y x x x x --+=+++--从而直线PN 恒过定点(10)G ,.2.已知椭圆两焦点12F F ,在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点.(1)求P 点坐标;(2)求证直线AB 的斜率为定值;解:(1)设椭圆方程为22221y x a b+=,由题意可得2222a b c ===,,, 所以椭圆的方程为22142y x +=, 则12(02)(02)F F -,,,,设()()000000P x y x y >>,, 则()()10020022PF x y PF x y =--=---,,,,所以()22120021PF PF x y ⋅=--=,因为点()00P x y ,在曲线上,则2200124x y +=,所以220042y x -=,从而()22004212y y ---=,得0y =,则点P的坐标为(1.(2)由(1)知1PF //x 轴,直线PA PB ,斜率互为相反数,设PB 斜率为0)k k >(,则PB的直线方程为:(1)y k x =-,由22(1)124y k x y x ⎧-⎪⎨+=⎪⎩,,得()22222))40k x k k x k +++-=,设()B B B x y ,,则1B x ==同理可得A xA Bx x -, ()()28112A B A B k y y k x k x k-=----=+,所以直线AB的斜率A BAB A By y k x x -=-3.已知动直线(1)y k x =+与椭圆C :221553y x +=相交于A B ,两点,已知点()703M -,, 求证:MA MB ⋅为定值.解:将(1)y k x =+代入221553y x +=中得()2222136350k x k x k +++-=, 所以()()4222364313548200k k k k ∆=-+-=+>,221212226353131k k x x x x k k -+=-=++,所以()()()()1122121277773333MA MB x y x y x x y y ⋅=+⋅+=+++,, ()()()()21212771133x x k x x =+++++()()()2221212749139k x x k x x k =++++++()()()22222223576491393131k k k k k k k -=+++-++++422231654949931k k k k ---=++=+. 4.在平面直角坐标系xOy 中,已知椭圆C :2213x y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A B ,两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3)D m -,. (1)求22m k +的最小值;(2)若2OG OD OE =⋅,求证:直线l 过定点. 解:(1)由题意:设直线l :(0)y kc n n =+≠,由2213y kx n x y =+⎧⎪⎨+=⎪⎩,,消y 得:()222136330k x knx n +++-=, ()()()222222364133112310k n k n k n ∆=-+⨯-=+->,设()()1122A x y B x y ,,,,AB 的中点()00E x y ,, 则由韦达定理得:0122613t nx x k-+=+, 即00022233131313kn kn n x y kx n k n k k k--==+=⨯+=+++,, 所以中点E 的坐标为()2231313km n k k -++,,因为O E D ,,三点在同一直线上,所以O OE D k k =,即133m k -=-,解得1m k=,所以222212m k k k +=+,当且仅当1k =时取等号,即22m k +的最小值为2. (2)证明:由题意知:0n >,因为直线OD 的方程为3m y x =-,所以由22313m y xx y ⎧=-⎪⎨⎪+=⎩得交点G 的纵坐标为223G m y m =+, 又因为213E Dn y y m k ==+,,且2OG OD OE =⋅,所以222313m n m m k =⋅++, 又由(1)知:1m k =,,所以解得k n =,所以直线l 的方程为y kx k =+,即(1)y k x =+, 令1x =-得,0y =,与实数k 无关.椭圆中的取值范围问题一、常见基本题型:对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函敞的值域来解. (1)从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围.5.已知直线l 与y 轴交于点(0)P m ,,与椭圆C :2221x y +=交于相异两点A B ,,且3AP PB =, 求m 的取值范围.解:(1)当直线斜率不存在时:12m =±;(2)当直线斜率存在时:设l 与椭圆C 交点为()()1122A x y B x y ,,,, 所以2221y kx m x y =+⎧⎨+=⎩,,得()2222210k x knx m +++-= 所以()()()22222(2)4214220()kn k m k m ∆=-+-=-+>*21212222122km m x x x x k k --+==++, 1233AP PB x x =∴-=,,所以122212223x x x x x x +=-⎧⎨=-⎩,,消去2x 得()21212340x x x x ++=, 所以()22222134022km m k k --+=++, 整理得22224220k m m k +--=,214m =时,上式不成立;214m ≠时,2222241m k m -=-, 所以22222041m k m -=-,所以112m -<-或112m <, 把2222241m k m -=-代入(*)得112m -<<-或112m <<, 所以112m -<<-或112m <<,综上m 的取值范围为112m -<-或112m <.(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范围. 6.已知点(40)(10)M N ,,,,若动点P 满足6||MN MP PN ⋅=. (1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A B ,两点,若181275NA NB -⋅-,求直线l 的斜率的取值范围.解:(1)设动点()P x y ,,则(4)(30)(1)MP x y MN PN x y =-=-=--,,,,,. 由已知得3(4)x --=223412x y +=,得22143y x +=.所以点P 的轨迹C 是椭圆,C 的方程为22143y x +=.(2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为(1)y k x =-, 设A B ,两点的坐标分别为()()1122A x y B x y ,,,. 由22(1)143y k x y x =-⎧⎪⎨+=⎪⎩,,消去y 得()22224384120k x k x k +-+-=,因为N 在椭圆内,所以0∆>. 所以2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,, 因为()()()()()212121211111NA NB x x y y k x x⋅=--+=+--()()2121211k x x x x =+-++⎡⎤⎣⎦()()22222229141283413434k k k k k k k -+--++=+=++,所以()229118127534k k-+--+,解得213k . (3)利用基本不等式求参数的取值范围7.已知点Q 为椭圆E :221182y x +=上的一动点,点A 的坐标为(31),,求AP AQ ⋅的取值范围. 解:(13)AP =,,设()(31)Q x y AQ x y =--,,,, (3)3(1)36AP AQ x y x y ⋅=-+-=+-因为221182y x +=,即22(3)18x y +=,而22(3)2|||3|x y x y +⋅,所以18618xy -.而222(3)(3)6186x y x y xy xy +=++=+的取值范围是[036],, 3x y +的取值范围是[66]-,, 所以36AP AQ x y ⋅=+-取值范围是[120]-,.8.已知椭圆的一个顶点为(01)A -,,焦点在x 轴上.若右焦点到直线0x y -+的距离为3. (1)求椭圆的方程.(2)设直线(0)y kx m k =+≠与椭圆相交于不同的两点M N ,.当AM AN =时,求m的取值范围. 解:(1)依题意可设椭圆方程为2221x y a+=,则右焦点)0F,3=,解得23a =,故所求椭圆的方程为2213x y +=. (2)设()()(),,,p p M M N N P x y M x y N x y ,,,P 为弦MN 的中点,由2213y kx m x y =+⎧⎪⎨+=⎪⎩,,得()()222316310k x mkx m +++-= 因为直线与椭圆相交,所以()()22222(6)43131031mk k m m k ∆=-+⨯->⇒<+,① 所以23231M NP x x mk x k +==-+,从而231p p m y kx m k =+=+,所以21313P AP P y m k k x mk+++==-,又AM AN =,所以AP MN ⊥, 则23113m k mk k++-=-,即2231m k =+,②把②代入①得22m m <,解02m <<, 由②得22103m k -=>,解得12m >.综上求得m 的取值范围是122m <<.9.如图所示,已知圆C :22(1)8x y ++=,定点(10)A ,,M 为圆上一动点,点P 在AM 上,点N 在CM 上,且满足20AM AP NP AM =⋅=,,点N 的轨迹为曲线E . (1)求曲线E 的方程;(2)若过定点(02)F ,的直线交曲线E 于不同的两点G H ,(点G 在点F H ,之间),且满足FG FH λ=,求λ的取值范围.解:(1)因为20AM AP NP AM =⋅=,. 所以NP 为AM 的垂直平分线,所以NA NM =, 又因为22CN NM +=,所以222CN AN +=>. 所以动点N 的轨迹是以点(10)(10)C A -,,,为焦点的椭圆 且椭圆长轴长为222a =,焦距21c =. 所以2211a c b ===,,. 所以曲线E 的方程为2212x y += (2)当直线GH 斜率存在时,设直线GH 方程为2y kx =+.代入椭圆方程2212x y +=, 得()2214302k x kx +++=,由0∆>得232k >,设()()1122G x y H x y ,,,,则121222431122k x x x x k k -+==++,, 又因为FG FH λ=,所以()()112222x y x y λ-=-,,, 所以12x x λ=,所以2122122(1)x x x x x x λλ+=+=,,所以()22121221x xx x x λλ+==+,所以2222431122(1)k k k λλ-⎛⎫ ⎪+ ⎪+⎝⎭=+,整理得22(1)161312k λλ+=⎛⎫+ ⎪⎝⎭,因为232k >,所以2161643332k <<+,所以116423λλ<++<,解得133λ<<.又因为01λ<<,所以113λ<<.又当直线GH 斜率不存在,方程为11033x FG FH λ===,,, 所以113λ<,即所求λ的取值范围是)113⎡⎢⎣,. 10.已知椭圆C :22221(0)y x a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切. (1)求椭圆C 的方程;(2)若过点(20)M ,的直线与椭圆C 相交于两点A B ,,设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当25||3PA PB -<t 取值范围.解:(1)由题意知c e a =,所以22222212c a b e a a -===, 即222a b =,所以2221a b ==,. 故椭圆C 的方程为2212x y +=. (2)由题意知直线AB 的斜率存在.设AB :()2y k x =-,()()1122()x y B x A y P x y ,,,,,, 由22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,,得()2222128820k x k x k +-+-=, ()()42221644218202k k k k ∆=-+-><,,221212228821212k k x x x x k k -+=⋅=++,. 因为OA OB tOP +=,所以()()212121228()12x x k x x y y t x y x t t k +++===+,,,,()()1212214412y y k y k x x k t t t k +-==+-=⎡⎤⎣⎦+, 因为点P 在椭圆上,所以()()()2222222228(4)221212k k tk t k-+=++,所以()2221612k t k =+.因为25||3PA PB-<12x -<,所以()()22121220149k x x x x ⎡⎤++-⋅<⎣⎦,所以()()4222226482201491212k k k k k ⎡⎤-⎢⎥+-⋅<⎢⎥++⎣⎦, 所以()()224114130k k -+>,所以214k >,所以21142k <<,因为()2221612k t k=+,所以222216881212k t k k==-++,所以2t -<<2t <<,所以实数t取值范围为(()26223-,,.椭圆中的最值问题一、常见基本题型: (1)利用基本不等式求最值,11.已知椭圆两焦点12F F ,在y轴上,短轴长为,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线1F P 对称的两条直线PA PB ,分别交椭圆于A B ,两点,求PAB ∆面积的最大值.解:设椭圆方程为22221y x ab+=,由题意可得2a b c ===,故椭圆方程为22142y x += 设AB 的直线方程:y m =+.由22124y m y x ⎧=+⎪⎨+=⎪⎩,,得22440xm ++-=,由()22)1640m ∆=-->,得m -<< P 到AB 的距离为d =则1||2PAB S AB d ∆=⋅=,)(2188m -=当且仅当2(m =±∈-取等号,所以三角形P AB . (2)利用函数求最值,12.如图,DP ⊥x 轴,点M 在DP 的延长线上,且2DM DP =.当点P 在圆221x y +=上运动时. (1)求点M 的轨迹C 的方程;(2)过点(0)T t ,作圆221x y +=的切线l 交曲线C 于A B ,两点,求AOB ∆面积S 的最大值和相应的点T 的坐标.解:(1)设点M 的坐标为()x y ,,点P 的坐标为00()x y ,,则002x x y y ==,,所以002yx x y ==,,① 因为00()P x y ,在圆221x y +=上,所以22001x y +=② 将①代入②,得点M 的轨方程C 的方程2214y x +=. (2)由题意知,||1t .当1t =时,切线l 的方程为1y =,点A B ,的坐标分别为()()331122-,,,,此时3AB =;当1t =-时,同理可得3AB =;当||1t >时,设切线l 的方程为y kx m k =+∈R ,, 由2214y kx t y x =+⎧⎪⎨+=⎪⎩,,得()2224240k x ktx t +++-=③设A B ,两点的坐标分别为()()1122x y x y ,,,,则由③得: 21212222444kt t x x x x k k -+=-=++,.又由l 与圆221x y +=相切,得2||11t k =+,即221t k =+.所以()()()()()222222212122224443||4||1434t t k t AB x x y y k k t k ⎡⎤-⎢⎥=-+-=+-=⎢⎥+++⎣⎦. 因为243||43||233||||t AB t t t ==++,且当3t =±时, 2AB =,所以AB 的最大值为2,依题意,圆心O 到直线AB 的距离为圆221x y +=的半径,所以AOB ∆面积1112S AB =⨯,当且仅当3t =±时,AOB ∆面积S 的最大值为1,相应的T 的坐标为(03)-,或(03),.13.已知椭圆G :2214x y +=.过点(0)m ,作圆221x y +=的切线l 交椭圆G 于A B ,两点.将AB 表示为m的函数,并求AB 的最大值. 解:由题意知,||1m .当1m =时,切线l 的方程为1x =,点A B ,的坐标分别为((11,,,此时AB =; 当1m =-时,同理可得AB =;当||1m >时,设切线l 的方程为()y k x m =-. 由22()14y k x m x y =-⎧⎪⎨+=⎪⎩,,得()22222148440k x k mx k m +-+-=. 设A B ,两点的坐标分别为()()1122x y x y ,,,, 又由l 与圆221x y +=1=,即2221m k k =+. 所以AB ===由于当1m =±时,AB23||||AB m m==+, 当且当m =时,2AB =.所以AB 的最大值为2.【练习题】1.已知A B C ,,是椭圆m :22221(0)y x a ba b+=>>上的三点,其中点A 的坐标为0),BC 过椭圆m 的中心,且0||2||AC BC BC AC ⋅==,. (1)求椭圆m 的方程;(2)过点(0 )M t ,的直线l (斜率存在时)与椭圆m 交于两点P Q ,,设D 为椭圆m 与y 轴负半轴的交点,且||||DP DQ =,求实数t 的取值范围.2.已知圆M :222()()x m y n r -+-=及定点(10)N ,,点P 是圆M 上的动点,点Q 在NP 上,点G 在MP上,且满足20NP NQ GQ NP =⋅=,. (1)若104m n r =-==,,,求点G 的轨迹C 的方程;(2)若动圆M 和(1)中所求轨迹C 相交于不同两点A B ,,是否存在一组正实数m n r ,,,使得直线MN 垂直平分线段AB ,若存在,求出这组正实数;若不存在,说明理由.3.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:y kx m,不是左右顶点),且以AB为直径的圆过椭圆C的,两点(A B=+与椭圆C相交于A B右顶点,求证:直线l过定点,并求出该定点的坐标.4.如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点1M,,平行于OM(2)的直线l在y轴上的截距为(0),两个不同点.m m≠,l交椭圆于A B(1)求椭圆的方程;(2)求m的取值范围;(3)求证直线MA MB,与x轴始终围成一个等腰三角形.。

椭圆常考题型汇总及练习

椭圆常考题型汇总及练习

椭圆常考题型汇总及练习 第一部分:复习运用的知识(一)椭圆几何性质椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()012222>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5. 离心率(1)椭圆焦距与长轴的比ace =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆。

6.通径(过椭圆的焦点且垂直于长轴的弦),ab 22.7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.(二)运用的知识点及公式1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =2、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆大题题型及方法总结
椭圆在大题中的题型一般有以下几种:
1. 求椭圆方程:这是基础中的基础,可以直接设方程,也可以根据已知条件设方程。

2. 探究椭圆的性质:例如探究椭圆的焦点位置、焦距大小、离心率等性质。

3. 求椭圆上的点的坐标:通常会涉及到椭圆上的点与其他图形的关系,例如与直线、圆、柱形等的关系。

4. 用韦达定理求解椭圆的问题:韦达定理是椭圆考试中的一个重要知识点,通常会在第 2 问或第 3 问中使用。

5. 与三角形相关的问题:椭圆通常会与三角形联系起来,涉及到三角形的面积、周长、角度等问题。

6. 探究椭圆与其他图形的关系:例如椭圆与圆的关系、椭圆与直线的关系等。

针对以上题型,有一些常用的方法和技巧,例如:
1. 画图是一个必不可少的步骤,有助于更好地理解题意和解决问题。

2. 熟悉椭圆的定义和性质,有助于更好地解答题目。

3. 韦达定理是椭圆考试中的一个重要知识点,需要熟练掌握。

4. 注意椭圆与其他图形的关系,例如椭圆与直线的关系、椭圆与圆的关系等,可能需要使用勾股定理、余弦定理等知识。

5. 考试中需要仔细阅读题目,理解题意,抓住关键信息,有针
对性地解决问题。

相关文档
最新文档