四大常用坐标系及高程坐标系

合集下载

常用坐标系统

常用坐标系统

常用的坐标系统一、1980西安坐标系开始定义为“1980国家大地坐标系”。

1982 年,经天文大地网整体平差建立,全网共48433点。

属参心坐标系,IAG-75椭球(IAG—国际大地测量学协会),长半轴a=6378140m; 扁率α=1/298.257,原点在陕西省泾阳县。

椭球定位:1.椭球短轴平行于地球地轴(由地球质心指向1968.0JYD 方向);2.起始子午面平行于格林威治天文台平均子午面;3.椭球面与似大地水准面在我国境内密合得最佳。

二、1954年北京坐标系50年代从前苏联引入(1942年普尔科夫坐标系),未进行整体平差,属参心坐标系,克拉索夫斯基椭球体,长半轴a=6378245m; 扁率α=1/298.3。

原点在普尔科夫天文台。

主要缺点1.长半轴约大了108m ;2.椭球定位西高东低,东部高程异常达67m;3.不同区域接边处大地点坐标差达1~2m。

三、WGS-84大地坐标系美国国防部研制确定的大地坐标系,Z轴指向BIH(国际时间局)1984.0定义的协议地球极(CTP)方向,X轴指向零子午面与CTP赤道交点,Y轴与X、Z轴构成右手坐标系。

长半轴a=6378137m;扁率α=1/298.257223563。

属地心坐标系,原点在地球质心。

四、新1954年北京坐标系(新54系)属于参心大地坐标系,椭球的几何参数同“54系”。

a=6378245m;α=1/ 298.3大地原点及椭球轴向同“80系”;高程基准面为1956年黄海平均高程面;点的坐标与“54系”接近,精度同“80系”。

五、独立坐标系(地方坐标系)为了减少投影变形或满足保密需要,也可使用独立(地方)坐标系,坐标原点一般在测区或城区中部,投影面多为当地平均高程面。

高程基准1、1956年黄海高程系水准原点设在观象山,采用1950~1956年7年的验潮结果计算的黄海平均海水面,推得水准原点高程为72.289m。

2、1985国家高程基准水准原点同1956年黄海高程系,采用1952~1979年共28年的验潮结果,并顾及了海平面18.6年的周期变化及重力异常改正,计算的黄海平均海水面,推得水准原点高程为72.260m。

测绘技术中常用的坐标系分类

测绘技术中常用的坐标系分类

测绘技术中常用的坐标系分类引言:在测绘学中,坐标系是至关重要的。

它是一种数学模型,用于描述一个点在空间中的位置。

不同的坐标系可用于不同的目的,因此在测绘技术中存在着多种常用的坐标系分类。

本文将简要介绍这些分类,并探讨每种分类的特点及适用范围。

一、地理坐标系地理坐标系是最常见和广泛使用的坐标系之一。

它是一种以地球为参照物的坐标系,用于描述地球表面上的点的位置。

在地理坐标系中,经度和纬度被用作坐标值。

经度表示点位于东西方向上的位置,范围从-180°到+180°;纬度表示点位于南北方向上的位置,范围从-90°到+90°。

地理坐标系适用于地图制作、导航系统等领域,因其简单直观而备受青睐。

二、平面坐标系平面坐标系是一种将地球表面投影到平面上的坐标系。

由于地球是一个几乎球形的天体,将其完全展开在平面上是不可能的。

因此,平面坐标系使用不同的投影方法来近似地球表面。

常见的平面坐标系包括UTM坐标系、高斯-克吕格坐标系等。

这些坐标系使用不同的投影方式,以适应不同地区的地形特点。

平面坐标系广泛用于大规模测绘和地图制作,以及地理信息系统(GIS)应用等方面。

三、高程坐标系高程坐标系用于描述点在垂直方向上的位置。

高程坐标通常表达为相对于某个参考面的高度值。

测量海拔高度时,通常以平均海平面作为参考面。

常用的高程坐标系有大地水准面和椭球面高程系统。

大地水准面高程系统以地球上已测量的海拔高度为基准,通过利用地球引力的变化来确定高程。

椭球面高程系统根据参考椭球的形状和尺寸来度量高度。

高程坐标系在土地开发规划、水利工程等领域有着广泛的应用。

四、本地坐标系本地坐标系是一种相对于特定地点或特定工程项目的坐标系。

该坐标系通常以某个特定地物作为基准点,并建立相应的坐标系系统。

本地坐标系的优点在于其高精度和定制性,可以更好地满足特定工程项目的需求。

例如,在大型建筑项目中,常常会使用本地坐标系来实现精确的建筑定位、布点和测量。

四大常用坐标系及高程坐标系

四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1、北京54坐标系BJZ54北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系;新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系;由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系;因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸;它的原点不在北京而是在前苏联的普尔科沃;北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系;为此有了1980年国家大地坐标系;1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体;该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点;基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面即1985国家高程基准;西安80坐标系,属三心坐标系,长轴6378140m3、WGS-84坐标系WGS-84坐标系WorldGeodeticSystem是一种国际上采用的地心坐标系;坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局BIH定义的协议地极CTP方向,X轴指向的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系;这是一个国际协议地球参考系统ITRS,是目前国际上统一采用的大地坐标系;GPS广播星历是以WGS-84坐标系为根据的;WGS84坐标系,长轴6378137.000m由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数;对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换;当然若条件不许可,且有足够的重合点,也可以进行人工解算;4、2000国家大地坐标系英文缩写为CGCS2000;2000国家大地坐标系是全球地心坐标系在我国的具体体现,其原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系采用的地球椭球参数如下:长半轴a=6378137m,,1014m3s-2自转角速度ω=7.292l15×10-5rads-1我国常用高程系“1956年黄海高程系”,是在1956年确定的;它是根据青岛验潮站1950年到1956年的黄海验潮资料,求出该站验潮井里横按铜丝的高度为3.61米,所以就确定这个钢丝以下3.61米处为黄海平均海水面;从这个平均海水面起,于1956年推算出青岛水准原点的高程为72.289米;国家85高程基准其实也是黄海高程基准,只不过老的叫“1956年黄海高程系统”,新的叫“1985国家高程基准”,新的比旧的低0.029m我国于1956年规定以黄海青岛的多年平均海平面作为统一基面,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面;但由于计算这个基面所依据的青岛验潮站的资料系列1950年~1956年较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为:1985年国家高程基准高程=1956年黄海高程-0.029m;1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止;各高程系统之间的关系:56黄海高程基准:+85高程基准最新的黄海高程:56高程基准吴淞高程系统:56高程基准+珠江高程系统:56高程基准我国目前通用的高程基准是:85高程基准1兰勃托投影性质兰勃托Lambert投影,又名"等角正割圆锥投影”兰勃托投影采用双标准纬线相割,与采用单标准纬线相切比较,其投影变形小而均匀,兰勃托投影的变形分布规律是:a角度无变形,即投影前后对应的微分面积保持图形相似,亦称为正形投影;b等变形线和纬线一致,即同一条纬线上的变形处处相等;c两条标准纬线上没有任何变形;d在同一经线上,两标准纬线外侧为正变形长度比大于1,而两标准纬线之间为负变形长度比小于1;因此,变形比较均匀,变形绝对值也比较小;e同一纬线上等经差的线段长度相等,两条纬线间的经纬线长度处处相等;我国1:100万地形图采用了兰勃托投影,其分幅原则与国际地理学会规定的全球统一使用的国际百万分之一地图投影一致;纬度按纬差4°分带,从南到北共分成15个投影带,每个投影带单独计算坐标,每带两条标准纬线,第一标准纬线为图幅南端纬度加30′的纬线,第二标准纬线为图幅北端纬度减30′的纬线,这样处于同一投影带中的各图幅的坐标成果完全相同,不同带的图幅变形值接近相等,因此每投影带只需计算其中一幅图纬差4°,经差6°的投影成果即可;由于是纬差4°分带投影的,所以当沿着纬线方向拼接地图时,不论多少图幅,均不会产生裂隙;但是,当沿着经线方向拼接时,因拼接线分别处于上下不同的投影带,投影后的曲率不同,致使拼接时产生裂隙;。

四大常用坐标系及高程坐标系

四大常用坐标系及高程坐标系

四大常用坐标系及高程坐标系Document number:NOCG-YUNOO-BUYTT-UU986-1986UT我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.3、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。

坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)定义的协议地极(CTP)方向,X轴指向的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。

最新我国四大常用坐标系及高程坐标系精选

最新我国四大常用坐标系及高程坐标系精选

我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。

坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP 赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。

常用坐标系

常用坐标系

一、常用坐标系1、北京坐标系北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、2000国家大地坐标系的定义国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。

2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。

中国使用的测量坐标系

中国使用的测量坐标系

中国使用的测量坐标系
我国使用的测量坐标系有以下四种:
1、北京54坐标系
2、西安80坐标系:该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里。

3、2000国家大地坐标系:简称为CGCS2000,英文全称为China Geodetic Coordinate System 2000。

Z轴指向BIH1984.0定义的协议极地方向(BIH国际时间局),X轴指向BIH1984.0定义的零子午面与协议赤道的交点,Y轴按右手坐标系确定。

该坐标系的大地坐标和美国WGS84坐标系的大地坐标基本一致,可直接采用,只是平面坐标需要用系数调整。

4、1985国家高程标准:我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫"1956年黄海高程系统",为中国第一个国家高程系统。

黄海高程是1956年9月4日,国务院批准试行《中华人民共和国大地测量法式(草案)》,首次建立国家高程基准,称“1956年黄海高程系”,简称“黄海基面”。

系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。

原点设在青岛市观象山。

该原点以“1956年黄海高程系”计算的高程为72.289米。

后经复查,发现该高程系验潮资料过短,准确性较差,改用青岛验潮站1950-1979年的观测资料重新推算,并命名为“1985国家高程基准”。

国家水准点设于青岛市观象山,其高程为72.260米,作为我国高程测量的依据。

它的高程是以“1985国家高程基准”所定的平均海水面为零点测算而得,“1956年黄海高程系”已废止。

我国四大常用坐标系及高程坐标系,DOC

我国四大常用坐标系及高程坐标系,DOC

我国四大常用坐标系及高程坐标系,DOC地理信息系统(Geographic Information System,简称 GIS)是指将地理空间数据与属性数据相结合,进行数据存储、管理、分析、查询、显示和制图的一种信息系统。

在GIS 中,坐标系是非常重要的概念之一,因为它是将地理数据按照位置信息进行组织和存储的方式之一。

在中国,根据不同的地理位置和地理数据需求,通常使用四大常用坐标系及高程坐标系,下面进行详细介绍:1. 北京坐标系北京坐标系又称 1954 年国家大地坐标基准系统,是我国现行基准坐标系之一。

该坐标系是以北京为基准点,以北京观象台南大门上的测量点为坐标原点,参考椭球体是克拉索夫斯基椭球。

该坐标系适用于北京及其周边地区。

北京坐标系的坐标单位是米,通常使用三维直角坐标系表示。

3. WGS84 坐标系WGS84 坐标系是国际上通用的坐标系之一,也是 GPS(全球卫星定位系统)所采用的坐标系,其椭球体是 WGS84 椭球体,参考点是美国国家海洋和大气气象局(National Oceanic and Atmospheric Administration,简称 NOAA)的测量点,通常使用经纬度表达。

WGS84 坐标系适用于全球范围内的数据处理和空间分析,但在我国内地有时不是最合适的坐标系。

4. 国家 2000 坐标系高程坐标系高程坐标系通常用于测量一个点相对于地球的高度,其原点通常设置在海平面上。

在我国常用的高程坐标系有两种:一种是起算点设在北京天文台的北京高程系统,另一种是以珠江中心站为起点的香港高程或大地高等精度天文水准面系统。

总结四大常用坐标系和高程坐标系是 GIS 中非常重要的概念和组成部分,不同的坐标系适用于不同的数据需求和地理位置。

了解和熟悉这些坐标系有助于我们更加精准地处理和分析地理信息数据。

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。

坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP 赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。

我国四大常用坐标系及高程坐标系,DOC

我国四大常用坐标系及高程坐标系,DOC

海量资源,欢迎共阅我国四大常用坐标系及高程坐标系1、北京 54 坐标系 (BJZ54)北京 54 坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度 M54 和大地高 H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒” 政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联 1942 年坐标系进行联测,通过计算建立了我国大地坐标系,定名为 1954年北京坐标系。

因此, 1954 年北京坐标系可以认为是前苏联1942 年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京 54 坐标系,属三心坐标系,长轴6378245m,短轴 6356863,扁率 1/298.3 ;2、西安 80 坐标系1978 年 4 月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980 年国家大地坐标系。

1980 年国家大地坐标系采用地球椭球基本参数为1975 年国际大地测量与地球物理联合会第十六届大会推荐的数据,即 IAG75 地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60 公里,故称 1980 年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952- 1979 年确定的黄海平均海水面(即1985 国家高程基准)。

西安 80 坐标系,属三心坐标系,长轴6378140m3、WGS- 84 坐标系WGS-84 坐标系( WorldGeodeticSystem )是一种国际上采用的地心坐标系。

坐标原点为地球质心,其地心空间直角坐标系的Z 轴指向国际时间局(BIH)1984.0 定义的协议地极( CTP)方向, X 轴指向 BIH1984.0 的协议子午面和CTP赤道的交点, Y 轴与 Z 轴、X 轴垂直构成右手坐标系,称为 1984 年世界大地坐标系。

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系1、北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m3、WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。

坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X 轴垂直构成右手坐标系,称为1984年世界大地坐标系。

这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。

常用坐标系

常用坐标系

常用坐标系一、常用坐标系1、北京坐标系北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2、西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013、2000国家大地坐标系的定义国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。

2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,某轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、某轴构成右手正交坐标系。

四大常用坐标系及高程坐标系

四大常用坐标系及高程坐标系
四大常用坐标系及高程坐标系
我国四大常用坐标系及高程坐标系
1、北京54坐标系(BJZ54)
北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。
西安80坐标系,属三心坐标系,长轴6378140m
3、WGS-84坐标系
WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。
WGS84坐标系,长轴6378137.000m
由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。
4、2000国家大地坐标系
英文缩写为CGCS2000。2000国家大地坐标系是全球地心坐标系在我国的具体体现,其原点为包括海洋和大气的整个地球的质量中心。2000国家大地坐标系采用的地球椭球参数如下:

我国三大常用坐标系与常用高程

我国三大常用坐标系与常用高程

1 我国三大常用坐标系区别(北京54、西安80和WGS-84)1.1 北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

属三心坐标系,,长轴6378245m,短轴6356863,扁率1/298.3,属三心坐标系坐标系,北京54坐标系(0.003352)。

0.00335281.2 西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系,为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

属三心坐标系,,长轴6378140m,短轴6356755,扁率,属三心坐标系坐标系,西安80坐标系1/298.25722101 (0.0033528)。

1.3 WGS-84坐标系WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。

坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP 赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。

国外测量使用说明坐标系和高程

国外测量使用说明坐标系和高程

国外测量使用说明坐标系和高程在国外,测量使用说明通常涉及到坐标系和高程的定义和使用方法。

本文将详细介绍国外常用的坐标系和高程系统,并说明其使用方法。

一、坐标系在国外测量中,常用的几种坐标系如下:1. 地理坐标系统(Geographic Coordinate System,GCS)地理坐标系统是一种基于球体或椭球体,以经度和纬度来表示地球上点位置的坐标系统。

地理坐标系统在国际上广泛应用,例如WGS84(World Geodetic System 1984),是GPS定位系统所用的坐标系。

在地理坐标系统中,经度表示点与本初子午线之间的角度,纬度表示点与赤道之间的角度。

这种坐标系统适用于大范围的测量和地图制作,但对于小范围的工程测量来说,误差较大。

2. 地方坐标系统(Local Coordinate System)地方坐标系统是根据具体地区的需要建立的坐标系统,通常使用投影坐标转换地理坐标为平面坐标。

在国外,最常用的地方坐标系统是UTM (Universal Transverse Mercator)投影坐标。

UTM将地理坐标划分为60个纵向带和6个横向带,分别称为带号和带字母。

UTM坐标使用东北坐标系,单位为米。

使用UTM坐标可以有效解决地球曲率和区域误差对测量精度的影响,适用于小范围高精度的测量工作。

除UTM坐标外,还有其他一些地方坐标系统,如国际TM(Transverse Mercator)和州面坐标系统,根据具体情况选择合适的坐标系。

3. 工程坐标系统(Engineering Coordinate System)工程坐标系统通常是在地方坐标系统的基础上建立的,用于在工程项目中测量和定位使用。

工程坐标系统通常以一些已知基准点为原点,建立平面坐标系,适合小范围的局部工程测量。

在工程测量中,常使用工程坐标系统来确定各个测量点的坐标位置。

二、高程系统在国外,测量高程常使用以下几种高程系统:1. 大地水准面(Geoid)大地水准面是描述地球上等势面的模型,通常近似于平均海平面。

我国四大常用坐标系及高程坐标系演示教学

我国四大常用坐标系及高程坐标系演示教学

我国四大常用坐标系及高程坐标系1.北京54坐标系(BJZ54)北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。

由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。

因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。

它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;2.西安80坐标系1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。

为此有了1980年国家大地坐标系。

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。

该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。

基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.257221013.WGS-84坐标系WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。

坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。

建筑业常用坐标系

建筑业常用坐标系

建筑业常用坐标系
建筑业常用坐标系有以下几种:
1. 地理坐标系:以地球中心为基准点,采用经纬度表示地球上
任何一点的坐标。

在建筑工程中,用于确定建筑物在地球表面的位置,例如确定城市中心的绝对地理位置。

2. 平面直角坐标系:通常以建筑项目附近的固定点为坐标原点,依据建筑物建设定位标志的确定测量坐标值。

方便建设施工和测量的
需要。

3. 高程坐标系:用于测量三维空间中的高度,以平均海平面为
基准点,通过精确测量建筑物的高程,可以保证建筑物在地球上的位
置的准确性。

4. 工程坐标系:通常以工程项目为基础,建立起来的坐标系,
用于建筑物施工测量和监控。

它的原点是建筑物设计基准点,可以确
定建筑物施工的精度和位置。

以上四种坐标系在建筑工程中应用广泛,各有特点,用于特定的
测量和定位需求。

常用坐标系与高程系简介

常用坐标系与高程系简介

常用坐标系与高程系简介??2009-09-27 10:06:45|??分类:GIS技术|??标签:|字号大中小?订阅坐标系的概念1.坐标系的定义:P的位置,可以用一组基于某一时间系统时刻t的空间结构的数学描述来确定,则这个空间结构可以称为坐标系,数学描述称为P点在该坐标系中的坐标。

牛顿运动学原理要求坐标系是惯性的,惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性,基于这个特性,惯性坐标系的定义需与时间无关,通常这样的坐标系需要三个属性来描述(这应该是三维空间的本性吧),首先一个是原点(O),就是坐标系的中心点,第二个是过原点的任意直线(这里称为Z轴),第三个是过原点且与Z轴不重合的任意直线(这里称为X轴),如果X轴与Z轴垂直,会带来较优美的数学描述,我们称这样的坐标系是笛卡尔坐标系。

P点的位置可以用P到原点的距离r,OP与Z轴的夹角,OP与X轴的夹角来描述(当然也可以有其它等价描述),可以证明这个描述确定的P点是唯一的。

2.GPS领域常用坐标系模型:GPS测量中,最常用的坐标系模型是协议地球坐标系,该坐标系随同地球一起旋转,讨论随地球一起自转的目标位置,用这类坐标系方便;另外一类是协议天球坐标系,这个坐标系随同太阳系一同旋转,与地球自转无关,讨论卫星轨道运动时,用这类坐标系方便。

的,原点是地球质心(O),Z轴指向地球自转轴(天极,向北为正),X轴指向春分点,根据春分点的定义可以证明X轴与Z轴互相垂直,且X 轴在赤道面上,同时为数学描述方便,引入与XOZ成右手旋转关系的Y轴。

因为地球自转轴受其它天体影响(日、月)在空间产生进动,使得春分点变化(章动和岁差),导致用“瞬时天极”定义的坐标系不断旋转,而旋转的坐标系表现出非惯性的特性,不能直接应用牛顿定律。

我们可以用某一历元时刻的天极和春分点(协议天极和协议春分点)定义一个三轴指向不变的天球坐标系,称为固定极天球坐标系。

(O),Z轴为地球自转轴,X轴指向地球上赤道的某一固定“刚性”点,所谓“刚性”是指其自转速度与地球一致,同时也为数学描述方便,引入与XOZ成右手旋转关系的Y轴。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我国四大常用坐标系及高程坐标系
1、北京54坐标系BJZ54
北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系;
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系;由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系;因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸;它的原点不在北京而是在前苏联的普尔科沃;
北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/;
2、西安80坐标系
1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系;为此有了1980年国家大地坐标系;1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体;该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点;基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面即1985国家高程基准;
西安80坐标系,属三心坐标系,长轴6378140m
3、WGS-84坐标系
WGS-84坐标系WorldGeodeticSystem是一种国际上采用的地心坐标系;坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局BIH定义的协议地极CTP方向,X 轴指向的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系;这是一个国际协议地球参考系统ITRS,是目前国际上统一采用的大地坐标系;GPS广播星历是以WGS-84坐标系为根据的;
WGS84坐标系,长轴6378137.000m
由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数;对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS 软件自动完成坐标的转换;当然若条件不许可,且有足够的重合点,也可以进行人工解算;
4、2000国家大地坐标系
英文缩写为CGCS2000;2000国家大地坐标系是全球地心坐标系在我国的具体体现,其原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系采用的地球椭球参数如下:
长半轴a=6378137m,,
地心引力常数1014m3s-2
自转角速度ω=7.292l15×10-5rads-1
我国常用高程系
“1956年黄海高程系”,是在1956年确定的;它是根据青岛验潮站1950年到1956年的黄海验潮资料,求出该站验潮井里横按铜丝的高度为3.61米,所以就确定这个钢丝以下3.61米处为黄海平均海水面;从这个平均海水面起,于1956年推算出青岛水准原点的高程为72.289米;
国家85高程基准其实也是黄海高程基准,只不过老的叫“1956年黄海高程系统”,
新的叫“1985国家高程基准”,新的比旧的低0.029m
我国于1956年规定以黄海青岛的多年平均海平面作为统一基面,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面;但由于计算这个基面所依据的青岛验潮站的资料系列1950年~1956年较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为:1985年国家高程基准高程=1956年黄海高程-0.029m;1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止;
各高程系统之间的关系:
56黄海高程基准:+
85高程基准最新的黄海高程:56高程基准
吴淞高程系统:56高程基准+
珠江高程系统:56高程基准
我国目前通用的高程基准是:85高程基准
兰勃托投影
1兰勃托投影性质
兰勃托Lambert投影,又名"等角正割圆锥投影”上,然后沿一母线展开,即为兰勃托投影平面;投影后纬线为同心圆弧,经线为同心圆半径;
兰勃托投影采用双标准纬线相割,与采用单标准纬线相切比较,其投影变形小而均匀,兰勃托投影的变形分布规律是:
a角度无变形,即投影前后对应的微分面积保持图形相似,亦称为正形投影;
b等变形线和纬线一致,即同一条纬线上的变形处处相等;
c两条标准纬线上没有任何变形;
d在同一经线上,两标准纬线外侧为正变形长度比大于1,而两标准纬线之间为负变形长度比小于1;因此,变形比较均匀,变形绝对值也比较小;
e同一纬线上等经差的线段长度相等,两条纬线间的经纬线长度处处相等;
我国1:100万地形图采用了兰勃托投影,其分幅原则与国际地理学会规定的全球统一使用的国际百万分之一地图投影一致;纬度按纬差4°分带,从南到北共分成15个投影带,每个投影带单独计算坐标,每带两条标准纬线,第一标准纬线为图幅南端纬度加30′的纬线,第二标准纬线为图幅北端纬度减30′的纬线,这样处于同一投影带中的各图幅的坐标成果完全相同,不同带的图幅变形值接近相等,因此每投影带只需计算其中一幅图纬差4°,经差6°的投影成果即可;由于是纬差4°分带投影的,所以当沿着纬线方向拼接地图时,不论多少图幅,均不会产生裂隙;但是,当沿着经线方向拼接时,因拼接线分别处于上下不同的投影带,投影后的曲率不同,致使拼接时产生裂隙;。

相关文档
最新文档