Midas城市桥梁抗震分析及验算

合集下载

基于Midas-Civil的桥梁下部结构抗震计算分析与研究

基于Midas-Civil的桥梁下部结构抗震计算分析与研究

基于Midas/Civil的桥梁下部结构抗震计算分析与研究刘渐成(中山市规划设计院,广东中山 528400)摘要:文章以中山市石岐区广丰工业大道南六涌桥为工程背景,运用有限元软件Midas/Civil建立模型,根据抗震规范要求,运用反应谱法对桥梁下部墩柱分别进行E1、E2地震力作用下的受力分析,以指导结构设计。

关键词:Midas/Civil;桥梁下部结构;抗震计算U442 :A :1009-2374(2014)09-0005-031 工程概况本工程位于中山市石岐区岐港片区,广丰工业大道(石岐段)上,跨越现状南六涌,河涌宽约38m。

根据水利及航道部门技术要求,南六涌无通航要求,水位受水系的水闸控制,设计洪水位取2.3m。

根据现状河道走向、地形及周边环境,拟建桥梁与主河道斜交,约成30度角。

桥跨布置为3×16m预应力砼简支空心板梁桥,共两幅,每幅桥宽20m。

下部结构采用桩柱式桥墩,直径1m的柱接1.2m的钻孔灌注桩,桥台采用薄壁式台,桩基础,台前设4m 长的M7.5浆砌片石铺砌,台后用碎石与粗砂混合料回填。

拟建桥梁两侧均有水泥路到达场地,交通较方便,原始地貌单元为珠江三角洲海陆交互沉积平原,地形开阔,无池塘、坑道、土洞等不良地质。

区域内水网密布,地表水系发育,地下水对混凝土结构无腐蚀性。

2 技术指标安全等级:二级;设计基准期:100年;环境类别:Ⅰ类环境;设计速度:50;设计荷载:公路-Ⅰ级;净空:无通航净空要求;地震动峰值加速度:0.1g。

3 结构荷载取值3.1 永久作用桥梁永久荷载考虑上部板梁自重及二期恒载,二期恒载包括桥面铺装和栏杆等,以均布荷载形式加载,合计95.4KN/m。

下部桥墩自重。

混凝土容重取26kN/m3,计算时将荷载转化为质量。

3.2 地震计算参数根据《中国地震动参数区划图》(GB18306-2001)、《建筑抗震设计规范》(GB50011-2001)等相关资料,本项目区域地震基本烈度Ⅶ度(加速度取0.10g)。

Midas Civil桥梁抗震详解(终稿)

Midas Civil桥梁抗震详解(终稿)

Cs 1.0
桥梁抗震培训
JTG/T B02-01-2008
3、E1地震反应谱的确定:
c、确定设计基本地震动加速度峰值A:
在设防烈度7度区,A值为0.15g
桥梁抗震培训
JTG/T B02-01-2008
3、E1地震反应谱的确定:
d、调整设计加速度反应谱特征周期 Tg
Tg 0.45s 调整后为:
美国采用有效加速度峰值EPA,而我国
采用的是加速度峰值PGA
桥梁抗震培训 JTG/T B02-01-2008
3、设计加速度时程的确定(选用实录波)
3.1、幅值的调整
设计加速度峰值PGA的求法 以设计加速度反应谱最大值Smax除以放大系数 (约2.25)得到。
PGA S max 2.25Ci Cs Cd A Ci Cs Cd A 2.25 2.25
桥抗震培训
JTG/T B02-01-2008
a、自振特性分析:
桥梁参与组合计算的振型阶数的确定
两种方法确定结构自振特性:特征值求解和利兹向量求 解。 为了快速满足规范6.4.3,经常会用利兹向量法来计算参 与组合计算的振型。
桥梁抗震培训
JTG/T B02-01-2008
b、振型组合方法的确定
4、空间动力分析模型的建立:
----参见规范6.3
与静力分析模型的区别:不在精细地模拟,而重点是 要真实、准确地反映结构质量、结构及构件刚度、结 构阻尼及边界条件。
质量
(t ) mu (t ) p(t ) 模ku 型 (t ) cu
阻尼 边界条件
桥梁抗震培训 JTG/T B02-01-2008
桥梁抗震培训
JTG/T B02-01-2008

midasCivil在桥梁承载能力检算及荷载试验中的应用(以Civil_V2012为例)

midasCivil在桥梁承载能力检算及荷载试验中的应用(以Civil_V2012为例)

目录1桥梁承载能力检算评定 (2)1.1检算总述 (2)1.2作用及抗力效应计算 (2)2桥梁荷载试验 (7)2.1静载试验 (7)2.1.1确定试验荷载 (7)2.1.2试验荷载理论计算 (10)2.1.3试验及数据分析 (12)2.1.4试验结果评定 (15)2.2动载试验 (16)2.2.1自振特性试验 (16)2.2.2行车动力响应试验 (18)2.2.2.1移动荷载时程分析 (18)2.2.2.2动力荷载效率 (29)2.2.3试验数据分析及结构动力性能评价 (29)参考文献 (30)结合公路桥梁承载能力检测评定规程,应进行桥梁承载能力检算评定,判断荷载作用检算结果是否满足要求。

另外如果作用效应与抗力效应的比值在1.0——1.2之间时,尚需根据规范规定进行荷载试验评定承载能力。

下面将对midas Civil在桥梁承载能力检算评定及荷载试验中的应用详细叙述。

1桥梁承载能力检算评定1.1检算总述进行桥梁承载能力检测评定时需要进行(1)桥梁缺损状况检查评定(2)桥梁材质与状态参数检测评定(3)桥梁承载能力检算评定。

通过(1)、(2)及实际运营荷载状况调查,确定分项检算系数,根据得到的分项检算系数,对桥梁承载能力极限状态的抗力及正常使用极限状态的容许值进行修正,然后将计算作用效应值与修正抗力或容许值作对比,判断检算结果是否满足要求。

一般来说承载能力检算主要包括抗弯、正斜截面抗剪承载力检算、裂缝宽度检算、挠度检算、稳定性验算等。

1.2作用及抗力效应计算为得到检测桥梁在荷载作用下的计算效应值,可以通过midas Civil进行计算分析得到。

对于预应力混凝土及钢筋混凝土等配筋混凝土桥梁,为得到结构抗力效应值,可以结合PSC设计、RC设计验算得到相应抗力值。

前处理当中需要考虑自重、二期及其他恒载、预应力荷载、成桥时候的温度作用(整体升降温+梯度升降温)、移动荷载、支座沉降(根据实测得到的变位定义)等荷载作用;定义施工阶段分析,可设置包括一次成桥及服役时间长度的收缩徐变两个阶段。

midas反应谱法的抗震验算实例及概率Pusnover法—牛亚运

midas反应谱法的抗震验算实例及概率Pusnover法—牛亚运
二、后处理 • 1、选用CJJ166-2011规范进行RC设计
(1)、RC设计参数/材料
midas桥梁抗震验算
• (2)、RC截面设计配筋
midas桥梁抗震验算
• (3)、钢筋硂抗震设计构件类型
midas桥梁抗震验算
• (4)、定义三种弹塑性材料特性
midas桥梁抗震验算
概率Pushover法
• 三、时程分析法 1、优缺点:
(1)动力弹塑性分析法 (2)理论上最精确 (3)计算量大,一般用于重要结构或超高层结构反 应谱法的补充计算分析 (4)未考虑地震动时程记录的随机性,计算结果较 大依赖于地震时程曲线的选取
概率Pushover法
• 2、地震动的选取(峰值、频谱、持时全面 考虑)
(1)拟建场地实际强震记录 (2)典型的强震记录 (3)人工模拟的地震波 3、计算模型 (1)层模型(各层楼板在其自身平面内刚度无穷大) (2)杆模型(梁柱基本单元,质量集中于节点) (3)有限元模型(杆元、板元、体元、索元,复杂 结构)
概率Pushover法
• 四、pushover法(静力弹塑性分析法)
概率Pushover法
• pushover法的两个基本假设:
(1)结构的响应与某一等效单自由度体系相关,及 结构的响应仅与第一振型控制 (2)整个地震反应中,结构的形状向量保持不变 注:没有理论依据,但是对于反应主要由第一振型 控制的结构,能够较准确、简便的评估结构的抗震 性能
概率Pushover法
阶段性学习报告
midas civil桥梁反应谱法抗震验算/ 概率Pushovr分析方法学习
牛亚运
midas桥梁抗震验算
• 一、前处理 • 1、建模:
• 节点--单元--定义材料--

抗震分析设计在midas中的实现

抗震分析设计在midas中的实现
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.
中震分析设计
一、中震弹性设计 结构的抗震承载力满足弹性设计要求,最大地震影响系数α按表1取值, 在中震作用下,设计时可不考虑地震组合内力调整系数(即强柱弱梁、 强剪弱弯调整系数),但应采用作用分项系数、材料分项系数和抗震承 载力调整系数,构件的承载力计算时材料强度采用设计值。
输出时程分析结果的 时间步骤数。将以(输 出步骤数 x 时间增量) 的间隔生成结果。
阻尼:程序提供
1.振型阻尼 2.质量和刚度因子(瑞利阻尼) 3.应变能因子
弹性时称分析
定义地面加速度
函数名称:从列表中选择要
使用的地面加速度。
系数:地面加速度的整系数。 到达时间:地面加速度开始
作用于结构上的时间。 注: 在"到达时间"之前的时间, 地面加速度的数据为零,对 结构不发生作用。定义到达 时间的目的是反映几个时程 荷载作用在同一结构上,且 各荷载发生作用的时间不同 时的结构反应。
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.
弹性时称分析
定义时程荷载工况-----持续时间
分析时间:时程分析的 总的时间长度 高规3.3.5规定如下:
地震波的持续时间不宜小于 建筑结构基本自振周期的 3~4倍,也不宜少于12s, 地震波的时间间距可取0.01 s或0.02s
混凝土结构设计规范混凝土结构设计规范gb50010gb5001020022002建筑抗震设计规范建筑抗震设计规范gb50011gb5001120012001钢结构设计规范钢结构设计规范gb50017gb500170303高层建筑混凝土结构技术规程高层建筑混凝土结构技术规程jgj3jgj320022002建筑结构荷载规范建筑结构荷载规范gb50009gb5000920012001型钢混凝土组合结构技术规程型钢混凝土组合结构技术规程jgj138jgj13820012001高层民用建筑钢结构技术规程高层民用建筑钢结构技术规程jgj99jgj999898钢管混凝土结构设计与施工规程钢管混凝土结构设计与施工规程cecs28

midas反应谱法的抗震验算实例及概率Pusnover法—牛亚运只是课件

midas反应谱法的抗震验算实例及概率Pusnover法—牛亚运只是课件
3、计算模型
(1)层模型(各层楼板在其自身平面内刚度无穷大) (2)杆模型(梁柱基本单元,质量集中于节点) (3)有限元模型(杆元、板元、体元、索元,复杂 结构)
概率Pushover法
• 四、pushover法(静力弹塑性分析法)
• pushover分析是结构分析模型在一个沿结构高度为某种规 定分布形式且逐渐增加的侧向力或侧向位移作用下,采用 荷载控制或位移控制的方式,在加载过程中根据构件屈服 程度不断调整结构刚度矩阵,直至结构模型控制点达到目 标位移或结构倾覆为止,得到结构的基底剪力—顶点位移 能力谱曲线。

借助地震需求谱,近似得到结构在预期地震作用下的
抗震性能状态,由此实现对结构的抗震性能进行评估
概率Pushover法
•pushover法的两个基本假设:
(1)结构的响应与某一等效单自由度体系相关,及 结构的响应仅与第一振型控制
(2)整个地震反应中,结构的形状向量保持不变 注:没有理论依据,但是对于反应主要由第一振型 控制的结构,能够较准确、简便的评估结构的抗震 性能
结构进入塑性阶段后,结构的固 有粘滞阻尼及滞回阻尼会导致产 生耗能的作用,因此需要对需求 谱进行折减
Pushover曲线
能力谱曲线 (Sdt,sat)
顶点位移Dt
能力谱位移Sd
ห้องสมุดไป่ตู้ 概率Pushover法
(3)建立需求谱曲线
通过将典型(阻尼比为5%)加速度Sa反应谱与位移Sd反应 谱画在同一坐标系上,得到Sa和Sd之间的关系曲线,及需求 谱
概率Pushover法
(4)性能点的确定
将能力谱与需求谱画在同一坐标中,两曲线的交点称为性能 点,性能点所对应的位移即为等效单自由度体系在该地震作 用下的谱位移,将谱位移转化为原结构的顶点位移,根据该 位移在原结构Vb—un曲线的位置,即可确定结构在该地震作 用下的塑性铰分布、杆端截面曲率、总侧移及层间位移等, 检验结构的抗震能力

MIDASCivil桥梁抗震分析与设计

MIDASCivil桥梁抗震分析与设计
Total Response
动力平衡方程的解法
3、数值方法
可适用于线性和非线性领域 中心差分法 、常加速度法、线性加速度法
Newmark- 法 、Wilson- 法
不同参数对应的逐步积分法
特征值问题
当没有外荷载和阻尼时,n个自由度体系的运动方程
特征值问题 : 固有圆频率
模态向量
振型分析的原理
n个自由度体系的n个自振频率和模态向量:
表3.1.2-1 各类公路桥梁抗震措施等级
地震基
6
7
8
9
本烈度
桥梁分类
0.05 0.1 0.15 0.2 0.3 0.4
A
8
9
9
更高,专门研究
B
7
8
8
9
9 >=9
C
6
7
7
8
8
9
D
6
7
7
8
8
9
桥梁抗震设防标准
多遇地震烈度(地震影响E1):50年内超越概率为63%的地震烈度(=I-1.55) 设计地震烈度(地震影响E2) :50年内超越概率为10%的地震烈度(=I) 罕遇地震烈度:50年内超越概率为2~3%的地震烈度(=I+1)
u 2 nu n2u 0
临界阻尼?
惯性力
惯性力
mu(t) cu(t) ku(t) mug (t)
达朗贝尔原理 (D’ Alembert’s Principle)
p(t)-fS -fD = mu
牛顿第二定律
静止/匀速运动
加速度运动
动力平衡方程的解法
mu cu ku mug
1、经典解法
总则1.0.5条:铁路工程应按多遇地震、设计地震、罕遇 地震三个地震动水准进行抗震设计。

基于MIDAS桥梁墩柱抗震验算分析

基于MIDAS桥梁墩柱抗震验算分析

76桥梁结构城市道桥与防洪2020年6月第6期D O I:10.16799/ k i.csdqyfh.2020.06.024基于M ID AS桥梁墩柱抗震验算分析栾旭光(上海市政工程设计研究总院(集团)有限公司,上海市200092)摘要:以郑州市某跨河桥为工程背景,以现行规范为基础,运用有限元软件m id a s建立模型,结合反应谱法对该桥桥墩进行E1和E2地震作用下的抗震验算。

通过桥梁抗震验算可知,满足抗震设防目标,满足规范要求,其方法可为同类桥梁抗震验算提供参考。

关键词:桥墩;反应谱;抗震验算中图分类号:11442.5 *5 文献标志码:A文章编号=1009-7716(2020)06-0076-030引言随着我国城市化进程的加快,桥梁作为城市 交通基础设施中的重要枢纽,迎来了高速建设期。

地震是一种破坏严重的自然灾害,在地震时,桥墩 作为桥梁主要的承重构件,受到破坏会导致桥梁 坍塌、交通中断。

进行正确有效的抗震设计,使桥 梁在可能发生的地震作用下能继续安全可靠地运 行,是我国桥梁设计人员桥梁抗震设计的目标。

本文以郑州市某主干路跨河v形刚构景观桥 为例,运用有限元软件M IDAS Civil建立有限元模 型,结合反应谱分析方法,进行该桥梁的动力特性 及地震响应分析,并进行抗震性能验算,可为同类 桥梁抗震计算提供参考。

1基本概况1.1桥梁概况桥梁上部结构为跨经(20+30+20)m等截面连 续梁,分左、右两幅设计,左幅桥宽25.5 m,右幅桥 宽28.5 m,单箱五室直腹板截面。

中心梁高1.6 m,两幅桥悬臂长度外侧1.87 m。

每幅箱梁梁顶设置 1.5%的横坡,梁底水平。

桥墩采用V形墩,每个墩 由交角约80°的V腿构成,V腿均为等高度矩形断 面,敏垂直高度4.5 m,尺寸(B x//)均为16 mx 1m,钢筋混凝土结构。

顺桥向V墩顶部与上部箱梁相 接;V墩底部与承台相接,两V腿之间设/?=0.8 m 圆弧段相连。

midas桥梁抗震分析与设计例题

midas桥梁抗震分析与设计例题

桥梁抗震分析与设计北京迈达斯技术有限公司2007年8月前言为贯彻《中华人民共和国防震减灾法》,统一铁路工程抗震设计标准,满足铁路工程抗震设防的性能要求,中华人民共和国建设部发布了新的《铁路工程抗震设计规范》,自2006年12月1日起实施。

新规范规定了按“地震动峰值加速度”和“地震动反应谱特征周期”进行抗震设计的要求,明确了铁路构筑物应达到的抗震性能标准、设防目标及分析方法,增加了钢筋混凝土桥墩进行延性设计的要求及计算方法。

从1999年开始,中华人民共和国交通部也在积极制定新的《公路工程抗震设计规范》、《城市桥梁抗震设计规范》。

从以上规范的征求意见稿中可以看出,新规范中桥梁抗震安全设置标准采用多级设防的思想,增加了延性设计和减隔震设计的相应规定,对于结构的计算模型、计算方法、以及计算结果的使用有更加具体的规定。

随着新规范的推出,工程师急迫需要具备桥梁抗震分析与设计的能力。

Midas/Civil具备强大的桥梁抗震分析功能,包括振型分析、反应谱分析、时程分析、静力弹塑性分析以及动力弹塑性分析,可以很好地辅助工程师进行桥梁抗震设计。

目录一桥梁抗震分析与设计注意事项 (1)1. 动力分析模型刚度的模拟 (1)2. 动力分析模型质量的模拟 (1)3. 动力分析模型阻尼的模拟 (1)4. 动力分析模型边界的模拟 (2)5.特征值分析方法 (2)6.反应谱的概念 (3)7.反应谱荷载工况的定义 (4)8.反应谱分析振型组合的方法 (4)9.选取地震加速度时程曲线 (5)10.时程分析的计算方法 (5)二桥梁抗震分析与设计例题 (7)1. 概要 (7)2. 输入质量 (8)3. 输入反应谱数据 (10)4. 特征值分析 (12)5. 查看振型分析与反应谱分析结果 (13)6. 输入时程分析数据 (18)7. 查看时程分析结果 (20)8. 抗震设计 (22)一 桥梁抗震分析与设计注意事项1.动力分析模型刚度的模拟建立桥梁动力分析模型时,结构类型需要采用3D ,主梁、桥墩、支座(边界连接)都需要模拟出来。

midas-gts抗震数值分析方法

midas-gts抗震数值分析方法
时程分析数据(特征值分析结果、加速度时程函数、时程荷载组)。 C、反应位移法分析。查看时程分析结果,取各点相对底板水平位移,
进行反应位移法分析。
操作实例
汇报结束! 谢谢!
序号
1 2 3 4 5 6
组合验算工况
荷载
基本组合构件强度计算 构件裂缝宽度验算 构件变形计算
抗震荷载作用下构件强度验算 人防荷载作用下构件强度验算
构件抗浮稳定验算
永久 荷载
1.35 1.0 1.0 1.2 1.2 1.0
可变 荷载
1.4 1.0 1.0
偶然荷载
地震 荷载
人防 荷载
1.3 1.0
七-3、抗震分析
七-3、抗震分析
1、抗震设计流程
地震参数: A、地下结构应进行E2 地震作用下的弹
性内力和变形分析,此时可假定结 构与构件处于弹性工作状态。 B、结构形式不规则且具有明显薄弱部 位可能导致地震时严重破坏的地下 车站结构应按本规范有关规定进行 E3 地震作用下的弹塑性变形分析。
需进行时程分析的情况: A、地下结构纵向的断面变化较
七-3、抗震分析
3、时程法分析 2)计算方法。 A、考虑水平和竖向地震波的影响,其加速度最大值按照
1(水平X方向):0.85(水平Y方向):0.65(竖向)的比例调整。 B、计算模型的侧面人工边界距地下结构为3倍车站水平有效宽度,
底面人工边界距结构为3倍车站竖向有效高度,上表面取至实际地表。 C、模型边界采用粘弹性吸收边界。为了定义粘性边界需要计算相应 的土体x, y, z方向上的阻尼比。计算阻尼的公式如下:
2、反应位移法分析 2)各项地震作用计算: B、结构惯性力。
七-3、抗震分析
2、反应位移法分析

抗震分析设计在midas中的实现

抗震分析设计在midas中的实现

中震分析设计
二、中震不屈服设计 地震作用下的内力按中震进行计算,最大地震影响系数α按表1取值,地 震作用效应的组合均按《高规》第5.6节进行,但分项系数均取1.0,计算 可不考虑地震组合内力调整系数(即强柱弱梁、强剪弱弯调整系数),构 件的承载力计算时材料的强度取标准植。
1、在MIDAS/Gen中定义中震反应谱 内容同中震弹性设计。 2、定义设计参数时,将抗震等级定为四级,即不考虑地震 组合内力调整系数(即强柱弱梁、强剪弱弯调整系数)。 内容同中震弹性设计。
注:括号内数值分别用于设计基本地震加速度为0.15g和0.30g的地区。 括号内数值分别用于设计基本地震加速度为0.15g和0.30g的地区。 0.15g 的地区
对地震波进 行调整
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.
弹性时称分析
持续时间 一类指地震地面加速度值大于某值的时间总和。 一类指地震地面加速度值大于某值的时间总和。 一类以相对值定义相对持时,即最先与最后一个之间的时段长度。 一类以相对值定义相对持时,即最先与最后一个之间的时段长度。
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.
中震分析设计
3、定义荷载组合时将地震作用分项系数取为1.0。 主菜单》结果》荷载组合:将各项荷载组合中的地震作用分项系数取为 1.0即可。
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.

Midas 城市桥梁抗震分析及验算

Midas 城市桥梁抗震分析及验算

SRSS(平方和平方根法)适用: 平动的振型分解反应谱法 CQC (完全二次项平方根法)适 用:扭转耦联的振型分解反应谱 法。
模型特征值分析
在进行反应谱分析之前要计算模型的振型:首先c在结构类型中将模型定义为3D的,勾选将自重 转化为质量,同时还要将外荷载转化为质量(自重不必要转化)。
采用多重Ritz向量法进行特征值分析,水平向 各取40阶振型,保证振型参与质量达到90% 以上。
类型 Ⅰ
类型 Ⅱ
规范流程图参照:11抗震设 计规范81-83页
规范中延性设计理念的体现
目 录
• 一、延性设计理念
• 二、Midas 抗震分析前处理 • 三、Midas 抗震分析后处理 • 四、结论
1. 工程案例
城市主干路上的混凝土空心板结构,桥梁上部结构为2孔20米的简支梁, 下部结构为柱式墩台,墩柱一体。顶部设有盖梁,柱高30米。
Midas 城市桥梁抗震分析及验算
目 录
• 一、延性设计理念
• 二、Midas 抗震分析前处理 • 三、Midas 抗震分析后处理 • 四、结论
目 录
• 一、延性设计理念
• 二、Midas 抗震分析前处理 • 三、Midas 抗震分析后处理 • 四、结论
1. 抗震设计规范
《公路桥梁抗震细则》 2008年
2. 反应谱分析
A 类规则桥梁 , E1 பைடு நூலகம் E2 地震 均选择MM法
地震反应谱的确定
根据设计参数,选择 E1 地震 动反应谱参数。
E1地震作用下反应谱设计参数
E2地震作用下反应谱设计参数
反应谱荷载工况定义
一般情况下,城市桥梁可只考虑水平向地震作用,直线桥可分别考虑顺桥向X和横桥向Y的地震 作用,横桥向在输入的时候,地震角度填写90度。

midas抗震设计-反应谱分析

midas抗震设计-反应谱分析

北京迈达斯技术有限公司目录简要 (1)设定操作环境及定义材料和截面 (2)定义材料 (2)定义截面 (3)建立结构模型 (4)主梁及横向联系梁模型 (4)输入横向联系梁 (5)输入桥墩 (5)刚性连接 (7)建立桥墩和系梁 (9)输入边界条件 (10)输入支座的边界条件 (10)刚性连接 (11)输入横向联系梁的梁端刚域 (12)输入桥台的边界条件 (13)输入二期恒载 (14)输入质量 (15)输入反应谱数据 (17)输入反应谱函数 (17)输入反应谱荷载工况 (18)运行结构分析 (19)查看结果 (20)荷载组合 (20)查看振型形状和频率 (21)查看桥墩的支座反力 (24)简要本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。

例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。

桥台部分由于刚度很大,不另外建立模型只输入边界条件;基础部分假设完全固定,也只按边界条件来定义。

下面是桥梁的一些基本数据。

跨径:45 m + 50 m + 45 m = 140 m桥宽:11.4 m主梁形式:钢箱梁钢材:GB(S) Grade3(主梁)混凝土:GB_Civil(RC) 30(桥墩)[单位:mm]图1. 桥梁剖面图设定操作环境及定义材料和截面开新文件(新项目),以‘Response.mcb’为名保存(保存)。

文件/ 新项目t文件/ 保存( Response )将单位体系设定为kN(力), m(长度)。

工具/ 单位体系长度>m; 力>kN ↵定义材料分别输入主梁和桥墩的材料数据。

模型/ 材料和截面特性/ 材料材料号(1); 类型>S钢材规范>GB(S); 数据库>Grade3 ↵材料号(2); 类型>混凝土规范>GB-Civil(RC); 数据库>30 ↵图2. 定义材料定义截面使用用户定义来输入主梁、横向联系梁以及桥墩的截面数据。

Midas-城市桥梁抗震分析及验算资料讲解

Midas-城市桥梁抗震分析及验算资料讲解

• 四、结论
反应谱抗震验算主要桥墩强度验算,能力保护构件的验算参照规 范根据设计要求进行设置验算。 在验算分析参数设置过程中,需要注意很多方面,防止程序无法 进行验算。 验算内容和注意事项见附件。
规范流程图参照:11抗震设 计规范81-83页
延性设计理念
• 一、延性设计理念
目录
• 二、Midas 抗震分析前处理
• 三、Midas 抗震分析后处理
• 四、结论
1. 工程案例
城市主干路上的混凝土空心板结构,桥梁上部结构为2孔20米的简支梁, 下部结构为柱式墩台,墩柱一体。顶部设有盖梁,柱高30米。
Midas 抗震分析前处理
模型特征值分析
在进行反应谱分析之前要计算模型的振型:首先c在结构类型中将模型定义为3D的,勾选将自重 转化为质量,同时还要将外荷载转化为质量(自重不必要转化)。
Midas 抗震分析前处理
采用多重Ritz向量法进行特征值分析,水平向 各取40阶振型,保证振型参与质量达到90% 以上。
E1 E2(弹性) E2(弹塑性)
Midas 抗震分析后处理
②RC材料性能 参数
注意:进行抗震设计的混凝土 材料及钢筋材料特性必须选择 JTG04(RC)规范,否则程序 提示“抗震设计单元材料选择 不正确”(结构分析时可不受 此限制)。
Midas 抗震分析后处理
③RC设计截面 配筋
注意:程序默认只有竖直的单 元才进行RC验算,如果在截面 列表中未出现截面说明有水平 的单元与竖直的单元共用一种 截面。 另:进行抗震设计的盖梁截面 必须是“设计截面”中的截面, 其他构件截面必须是“数据库/ 用户”中的截面,否则程序提 示“抗震设计用数据不存在”。
运行后可在结果-振型中查看周期 与振型。 同时点击自振模态可以输出周期 与振型的数据表格。

MidasCivil桥梁抗震详解终

MidasCivil桥梁抗震详解终

案例三:某古老桥梁抗震加固方案
总结词
对于古老的桥梁,由于其结构形式和材料特性的限制,需要采取特殊的抗震加固方案。
详细描述
在某古老桥梁的抗震加固方案中,根据MIDAS Civil软件的模拟分析结果,采用了增设支撑结构和加强节点连接 等措施来提高桥梁的抗震性能。同时,考虑到古老桥梁的历史和文化价值,加固方案尽可能地保留了原有结构的 特点和风格。
的影响。
分类设防
根据桥梁的重要性和潜 在震害程度,采取不同
的设防标准和方法。
多道抗震防线
通过设置多道抗震防线, 降低地震对桥梁的破坏
程度。
综合考虑
综合考虑桥梁的结构特 点、场地条件、震害经 验等因素,进行综合抗
震设计。
04 MIDAS Civil在桥梁抗震设计中的应用
CHAPTER
建立模型
建立精细化模型
地震波
地震波是地震发生时从震源向外传播的振动波, 分为体波和面波两大类。
桥梁震害及其原因
桥梁震害
桥梁在地震中受到不同程度的破坏,包 括支座破坏、桥墩剪切破坏、桥面塌落 等。
VS
震害原因
桥梁震害主要由于设计不当、施工质量差 、材料老化等因素导致结构抗震能力不足 。
抗震设计基本原则
以预防为主
通过合理的设计和施工 措施,提高桥梁的抗震 能力,减少地震对桥梁
案例二:某复杂桥梁抗震分析
总结词
复杂桥梁的抗震分析需要借助先进的数值模拟软件,对桥梁在不同地震作用下的 响应进行分析。
详细描述
在某复杂桥梁的抗震分析中,利用MIDAS Civil软件对桥梁在不同地震作用下的 响应进行了详细分析。通过调整模型参数和边界条件,模拟了多种工况下的地震 响应,为优化桥梁抗震设计提供了依据。

Midas城市桥梁抗震分析及验算

Midas城市桥梁抗震分析及验算

④定义弯矩-曲 率曲线
首先定义弹塑性材料特性,包括钢材,约束混凝土,无 约束混凝土。
钢材-两折线模型
混凝土和约束混凝土 Mander模型
无约束混凝土与约 束混凝土的强度要 进行换算,乘上 0.85的系数。
定义弯矩曲率曲线,其中轴力是查看静 力结果得出的。先计算----后添加----最 后选中----再点击计算选择的截面。
A类规则桥梁 ,E1和E2地震 均选择MM法
地震反应谱的确定
根 据 设 计 参 数 , 选 择 E1 地 震 动反应谱参数。
E1地震作用下反应谱设计参数
E2地震作用下反应谱设计参数
反应谱荷载工况定义
一般情况下,城市桥梁可只考虑水平向地震作用,直线桥可分别考虑顺桥向X和横桥向Y的地震 作用,横桥向在输入的时候,地震角度填写90度。
• 一、延性设计理念
目录
• 二、Midas 抗震分析前处理
• 三、Midas 抗震分析后处理
• 四、结论
反应谱抗震验算主要桥墩强度验算,能力保护构件的验算参照规 范根据设计要求进行设置验算。
在验算分析参数设置过程中,需要注意很多方面,防止程序无法 进行验算。
验算内容和注意事项见附件。
《公路工程抗震规范》 2014年
2. 桥梁地震破坏
(a)地基失效引起的破坏 例如:在活动断层,或由山体滑坡、崩塌、土体液化产生的破坏。
(b)结构振动引起的破坏 例如:地震强度过大,或者强度延性不足,结构的布置或者构造不合 理。
3. 延性设计
桥梁结构体系中设置延性构件,桥梁在E2地震作用下,延性构件进入塑 性状态进行耗能,同时可以减小结构刚度,增大结构周期,达到减小地 震动响应的目的。
类型 Ⅰ
类型 Ⅱ

midas迈达斯抗震专题

midas迈达斯抗震专题
➢ 抗震设防烈度为6 度,设计基本地震加速度值为0.05g:
– 本溪(4 个市辖区),阜新(5 个市辖区),锦州(3 个市辖区),葫芦岛(3 个市辖区)昌 图,西丰,法库,彰武,铁法,阜新县,康平,新民,黑山,北宁,义县,喀喇 沁,凌海,兴城,绥中,建昌,宽甸,凤城,庄河,长海,顺城
桥梁抗震设计流程
多模态反应谱和功率谱方法规范设计流程桥梁震害日本阪神地震城市高架桥倒塌纵筋截断截面由于弯曲裂缝贯通导致抗弯强度下降桥梁震害桥墩弯曲破坏桥梁震害桥墩剪切破坏桥梁震害美国lomaprieta地震奥克兰海湾大桥过渡孔落梁低估相对位移连接锚栓剪断桥梁震害百花大桥第五联520m连续梁r66m圆曲线整体倾覆墩底破坏桥梁震害百花大桥主梁移位桥梁震害角隅损坏桥梁震害桥梁震害桥梁震害挡块破坏桥梁震害挡块破坏桥梁震害按位置划分震害形式下部墩柱上部梁段局部破坏按受力划分震害形式强度破坏弯曲剪切刚度破坏位移震害形式震害特点桥墩和墩梁连接部位震害较多
• ABS法 过于保守,结构的各振型最大地震反应并不发生在同一 时刻。和ຫໍສະໝຸດ 程的大小比较?多自由度组合方式
• 对大量多自由度的结构体系进行动力特性分析时 ,所关心 的主要是其若干低阶的特性 ,这是因为结构振动的主要贡 献通常决定于若干低阶的主模态 .此时 ,振型叠加法有较高 的计算效率和足够的计算精度 .反应谱分析采用振形叠加 法。
地震作 用
B类 规则 非规则
C类 规则 非规则
D类 规则 非规则
E1 SM/MM MM/TH SM/MM MM/TH SM/MM MM
E2 SM/MM TH SM/MM TH
—— ——
表中:TH:代表线性和非线性时程计算方法;SM:单模态反应谱和功率谱方法 MM:多模态反应谱和功率谱方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据规范要进行刚度进行调整
在E2地震作用下桥墩的强度不能满足要求,桥墩 进入了塑性阶段,所以接下来要进行弹塑性验算。
第一个表格中的数值可以在特性的材料 和截面中查询,第二个表格是第一个表 格计算得到的,第三个表格是根据弯矩 曲率中理想化屈服的弯矩曲率得到(y和 z分别是0和90度)。
调整系数是在特性---截面管理器---刚度中设置。 Civil中的调整刚度是通过边界条件的形式添加的,所以先定义一个刚度调整的边界组。注意在相应 的施工阶段要激活,否则不予考虑。
Midas 城市桥梁抗震分析及验算
• 一、延性设计理念
目录
பைடு நூலகம்
• 二、Midas 抗震分析前处理
• 三、Midas 抗震分析后处理
• 四、结论
• 一、延性设计理念
目录
• 二、Midas 抗震分析前处理
• 三、Midas 抗震分析后处理
• 四、结论
1. 抗震设计规范
《公路桥梁抗震细则》 2008年
《城市桥梁抗震设计规范》 2012年
注意:进行抗震设计的混凝土 材料及钢筋材料特性必须选择 JTG04(RC)规范,否则程序 提示“抗震设计单元材料选择 不正确”(结构分析时可不受 此限制)。
③RC设计截面 配筋
注意:程序默认只有竖直的单 元才进行RC验算,如果在截面 列表中未出现截面说明有水平 的单元与竖直的单元共用一种 截面。
另:进行抗震设计的盖梁截面 必须是“设计截面”中的截面, 其他构件截面必须是“数据库/ 用户”中的截面,否则程序提 示“抗震设计用数据不存在”。
《公路工程抗震规范》 2014年
2. 桥梁地震破坏
(a)地基失效引起的破坏 例如:在活动断层,或由山体滑坡、崩塌、土体液化产生的破坏。
(b)结构振动引起的破坏 例如:地震强度过大,或者强度延性不足,结构的布置或者构造不合 理。
3. 延性设计
桥梁结构体系中设置延性构件,桥梁在E2地震作用下,延性构件进入塑 性状态进行耗能,同时可以减小结构刚度,增大结构周期,达到减小地 震动响应的目的。
与静力模型的区别:真实、准确地反映结构质量、结构及构件刚度、结 构阻尼及边界条件。
上部结构建立质量点,与盖 梁之间建立弹性连接
(1)桥梁抗震设防分类:丙类; (2)抗震设防烈度:8度; (3)抗震设计方法分类:A类; (4)场地类别:II类;
在进行反应谱分析时,选 择合适的地震动参数值
2. 反应谱分析
SRSS(平方和平方根法)适用: 平动的振型分解反应谱法 CQC(完全二次项平方根法)适 用:扭转耦联的振型分解反应谱 法。
模型特征值分析
在进行反应谱分析之前要计算模型的振型:首先c在结构类型中将模型定义为3D的,勾选将自重 转化为质量,同时还要将外荷载转化为质量(自重不必要转化)。
采用多重Ritz向量法进行特征值分析,水平向 各取40阶振型,保证振型参与质量达到90% 以上。
A类规则桥梁 ,E1和E2地震 均选择MM法
地震反应谱的确定
根 据 设 计 参 数 , 选 择 E1 地 震 动反应谱参数。
E1地震作用下反应谱设计参数
E2地震作用下反应谱设计参数
反应谱荷载工况定义
一般情况下,城市桥梁可只考虑水平向地震作用,直线桥可分别考虑顺桥向X和横桥向Y的地震 作用,横桥向在输入的时候,地震角度填写90度。
• 三、Midas 抗震分析后处理
• 四、结论
1. 荷载工况
完成反应谱分析后,需要定义混凝土的荷载工况,一般点击自动生成。规范选择城市桥梁抗震设 计规范。
2. 后处理验算
点击设计-RC设计
①RC设计参数
这里的规范同前,也需要选 择城市桥梁抗震设计规范。
E1 E2(弹性) E2(弹塑性)
②RC材料性能 参数
类型 Ⅰ
类型 Ⅱ
规范中延性设计理念的体现
规范流程图参照:11抗震设 计规范81-83页
• 一、延性设计理念
目录
• 二、Midas 抗震分析前处理
• 三、Midas 抗震分析后处理
• 四、结论
1. 工程案例
城市主干路上的混凝土空心板结构,桥梁上部结构为2孔20米的简支梁, 下部结构为柱式墩台,墩柱一体。顶部设有盖梁,柱高30米。
运行后可在结果-振型中查看周期 与振型。 同时点击自振模态可以输出周期 与振型的数据表格。
3. 抗震分析前处理步骤
总结
模型建立
振型分析
重点:(1)支座连接 (2)桩基模拟
重点:(1)转化质量 (2)分析类型
反应谱分析
重点:(1)设计数据 (2)组合类型
• 一、延性设计理念
目录
• 二、Midas 抗震分析前处理
• 一、延性设计理念
目录
• 二、Midas 抗震分析前处理
• 三、Midas 抗震分析后处理
• 四、结论
反应谱抗震验算主要桥墩强度验算,能力保护构件的验算参照规 范根据设计要求进行设置验算。
在验算分析参数设置过程中,需要注意很多方面,防止程序无法 进行验算。
验算内容和注意事项见附件。
⑤定义抗震构 件类型
自由长度就是桥墩的高度,可以通过节点查 询功能进行查询,长度系数是根据桥墩上下 的联接方式选择的(点击后面的省略号就可 以选择相应的形式)。
⑥进行抗震设 计
然后就是查看相应的结果:E1下验算的是桥 墩强度(弹性),E2下有强度验算(弹性) 和塑性铰抗剪强度验算(弹塑性)。
E2弹塑性验算
④定义弯矩-曲 率曲线
首先定义弹塑性材料特性,包括钢材,约束混凝土,无 约束混凝土。
钢材-两折线模型
混凝土和约束混凝土 Mander模型
无约束混凝土与约 束混凝土的强度要 进行换算,乘上 0.85的系数。
定义弯矩曲率曲线,其中轴力是查看静 力结果得出的。先计算----后添加----最 后选中----再点击计算选择的截面。
相关文档
最新文档