绝对值不等式6个基本公式证明

合集下载

绝对值不等式的证明及应用

绝对值不等式的证明及应用

绝对值不等式的证明及应用一、绝对值有关性质回顾:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②ab a b =,aa b b= (0)b ≠ ③22a a =④0a ≥ ⑤a a a -≤≤⑥x a a x a ≤⇔-≤≤ x a x a a ≥⇔≥≤-或 二、绝对值不等式:定理:绝对值三角不等式:a b a b a b-≤±≤+.(代数形式)a b a b a b -≤±≤+(向量形式)几何解释:三角形两边之和大于第三边,两边之差小于第三边.(0b a b ab +≤+≥取等号) 证明:方法一:()22+a b a b +≤, 2222+22a ab b a ab b +≤++, 22ab ab ≤,而22ab ab ≤显然成立,∴(0a b a b ab +≤+≥取等号)||||||a b a b +=====+||||||a b a b +===<==+方法二:(选修4-5证法) 当ab ≥0时, ||,ab ab =||,ab ab =-当ab <0时综上,a b a b +≤+ 0ab ≥当时,取等号, 方法三:(原人教版教材证法) ∵a a a -≤≤ ① b b b -≤≤ ②①+②:()a b a b a b -+≤+≤+, 逆用性质x a ≤得:a b a b +≤+推论1:123123.......n a a a a a a a +++≤++ ,当123,,,......n a a a a 都非正或都非负时。

a b a b -≤+.证明:方法一:当0a b -<时显然成立,当0a b -≥时,两边平方,()22a b a b-≤+, 222222a ab b a ab b -+≤++, 22ab ab -≤,而22ab ab -≤显然成立,∴a b a b -≤+,(当0ab <时取等号). 方法二:直接利用定理1a ab b a b b a b b =+-≤++-=++.当()()0a b b +-≥时,取等号.即()00a b b ab +≤⇒≤,取等号. 合在一起得:a b a b a b -≤+≤+.(当0ab ≤时左边取等号,当0ab ≥时右边取等号)(当0ab ≥时左边取等号, 当0ab ≤时左边取等号)证明:只需利用已有结论把a b a b a b -≤+≤+中的b 用b -代替即得到定理3.b ac b c -≤-+-证明:a b a c c b a c c b a c b c-=-+-≤-+-=-+-,(当()()0a c c b --≥时,取等号)几何解释:设A ,B ,C 为数轴上的3个点,分别表示数a ,b ,c ,则线段.CB AC AB +≤当且仅当C 在A ,B 之间时,等号成立。

第一节 绝对值不等式

第一节  绝对值不等式

故原不等式的解集为 {x|x< 1 ∪ } {x| 1 ≤x< 4 ∪ } ∅
={x|x< 4 . }
突 破 点 一 突 破 点 二 课时达标检测
绝对值不等式


2. 解 不 等 式 x+|2x+3|≥2.
3 3 x<- , x≥- , 2 2 为 解:原 不 等 式 可 化 或 -x-3≥2 3x+3≥2 . 1 解得 x≤-5 或 x≥-3. 所以原不等式的
绝对值不等式


选修 4-5 不等式选讲
第一节 绝对不等 式
本节主要包2 括 个知识点: 1.绝 对 值 不 等 式 的 解 法 ; 2.绝 对 值 三 角 不 等 . 式









课时达标检测
绝对值不等式


突破点(一)
基础联通
绝对值不等式的解法
抓 主 干 知 识“ 的 源” 与“ 流”








课时达标检测
绝对值不等式


考点贯通
抓 高 考 命 题“ 的 形” 与“ 神”
绝对值不等式的解法
[典例]
解下列不等式:
( 1 )x |+ 2 1- | 2x | -1 | > 0 . x (2) x+ | 3- | |2 x- 1 | < 2+1 .
[解]
2
( 1 法一: ) 原不等式可化为|2x+1 | > x 2- | 1, | 两边平方
突 破 点 一 突 破 点 二 课时达标检测
绝对值不等式

绝对值不等式公式

绝对值不等式公式

绝对值不等式公式绝对值不等式公式是以一元函数形式表示的绝对值的不等式,比如:|x|<a,它描述的是变量x的值范围在-a到a之间,其中a是一个正实数。

本文将主要介绍绝对值不等式公式的性质、表达式、特点及应用。

首先,让我们来看一下绝对值不等式公式的定义和性质:对于任意正实数a和变量x,绝对值不等式公式有如下形式:|x|<a它的性质是,如果一个变量x的值满足这个不等式,则它取值范围为-a到a之间,即:-a<x<a我们也可以将上述不等式的定义和属性表示为等价的函数形式,即:f(x)=|x|<a同时,我们也可以用一个单调函数来表示绝对值不等式公式:g(x)=x+|x|绝对值不等式公式有两个非常明显的特点:一是它表示的范围是一个确定的正实数a;二是它描述的变量x是一个周期函数,边界点为-a和a之间。

绝对值不等式公式应用十分广泛,在数学中,它可以用来描述一个变量的取值范围,例如,我们可以用它来解决有关刻度尺的问题,如果我们想要测量一个物体的长度,我们可以用它来计算长度的精确值。

此外,它还可以用来解决一些复杂的数学问题,例如求解偏微分方程,求解线性规划等。

绝对值不等式公式定义了变量x的有效取值范围,它可以帮助我们解决许多实际问题,并且这种表达式也被广泛应用于工程领域。

举个例子,在机器学习中,绝对值不等式公式可以用来描述模型衰减率的大小。

当模型学习率减小到一定水平时,绝对值不等式公式可以表达模型学习率减小的趋势。

同样,绝对值不等式公式也可以用来描述图像质量,体现图像质量随时间变化的趋势。

总之,绝对值不等式公式具有显著的作用,它可以用来表达变量x的取值范围,可以应用于数学建模和工程设计,也可以应用于机器学习和图像处理等。

尽管它的表达式很简单,但它对我们的生活和工作有很大的帮助。

绝对值不等式性质及公式

绝对值不等式性质及公式
综合③,④我们得到有关绝对值(absolutevalue)的重要不等式
|a|-|b|小于等于|a+b|小于等于|a|+|b|
2.|a|<|b|可逆a&amp;sup2;<b&amp;sup2;
另外
|a|-|b|小于等于|a+b|小于等于|a|+|b|,当且仅当ab小于等于0时左边等
号成立,ab&ge;0时右边等号成立。
|a|-|b|小于等于|a-b|小于等于|a|+|b|,当且仅当ab&ge;0时左边等号成
立,ab小于等于0时右边等号成立。
几何意义
1.当a,b同号时它们位于原点的同一边,此时a与﹙b的距离等于它
们到原点的距离之和。2.当a,b异号时它们பைடு நூலகம்别位于原点的两边,此时a
与﹙b的距离小于它们到原点的距离之和。
(|a+b|表示a-b与原点的距离,也表示a与b之间的距离)
绝对值重要不等式
我们知道
|a|={a,(a>0),a,(a=0),﹙a,(a<0),}
因此,有
﹙|a|小于等于a小于等于|a|
﹙|b|小于等于b小于等于|b|
同样地
①,②相加得
﹙﹙|a|+|b|)小于等于a+b小于等于|a|+|b|
即|a+b|小于等于|a|+|b|
显而易见,a,b同号或有一个为0时,③式等号成立。
由③可得
|a|=|(a+b)-b|小于等于|a+b|+|-b|,
即|a|-|b|小于等于|a+b|
绝对值不等式性质及公式
绝对值不等式
简介
在不等式应用中,经常涉及重量、面积、体积等,也涉及某些数学对

绝对值不等式

绝对值不等式

绝对值不等式1、平均值不等式定理1:如果a,b∈R,那么a²+b²≥= 当且仅当当时,等号成立定理2:(基本不等式)如果a,b>0,那么2ba+≥,当且仅当当时,等号成立,即两个正数的算术平方根不小于(即大于或等于)它们的几何平均数。

定理3:如果a,b,c大于0,那么3cba++≥,当且仅当当时,等号成立,2、绝对值三角不等式:定理1:如果a,b是实数,则|a+b|≤ ,当且仅当当时,等号成立定理2:如果a,b,c是实数,那么 ,当且仅当当时,等号成立3.绝对值不等式的解法(2)|ax+b|≤c、|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔②|ax+b|≥c⇔(3)|x-a|+|x-b|≥c、|x-a|+|x-b|≤c(c>0)型不等式的解法:三种解法:思考感悟:1.|a-b|与|a|-|b|及|a|+|b|分别具有什么关系?【提示】||a|-|b||≤|a-b|≤|a|+|b|.2.|x-a|±|x-b|表示的几何意义是什么?【提示】|x-a|±|x-b|表示数轴上的点x到点a、b的距离之和(差).学情自测:1.(教材改编题)设ab>0,下面四个不等式中,正确的是()C①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|.A.①和②B.①和③C.①和④D.②和④∵ab>0,即a,b同号,则|a+b|=|a|+|b|,∴①④正确,②③错误.2.(2012·韶关质检)不等式|x-2|>x-2的解集是()AA.(-∞,2) B.(-∞,+∞) C.(2,+∞) D.(-∞,2)∪(2,+∞)【解析】|x-2|>x-2同解于x-2<0,∴x<2.3.(2011·陕西高考)若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是________.【解析】因为|x+1|+|x-2|≥|x+1-x+2|=3,∴|x+1|+|x-2|的最小值为3,因此要使原不等式存在实数解,只需|a|≥3,∴a≥3或a≤-3.【答案】(-∞,-3]∪[3,+∞)4、(2012广州调研)不等式:|2||1|++x x ≥1的实数解为 |2||1|++x x ≥1⇔|x+1|≥|x+2|且x+2≠0,∴x ≤-23且x ≠-2 绝对值不等式性质的应用 :例题1:(2011·江西高考)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为.【思路点拨】思路一: 将|x -2y +1|变形,设法用x -1与y -2表示,利用绝对值不等式的性质求最值; 思路二: 由|x -1|≤1,|y -2|≤1分别求x 、y 的范围,然后运用不等式的性质和绝对值的意义求解.【尝试解答】法一 |x -2y +1|=|(x -1)-2(y -2)-2|≤|x -1|+2|y -2|+2≤1+2+2=5,当且仅当x =0,y =3时,|x -2y +1|取最大值5.法二 ∵|x -1|≤1,∴-1≤x -1≤1,∴0≤x ≤2.又∵|y -2|≤1,∴-1≤y -2≤1,∴1≤y ≤3,从而-6≤-2y ≤-2. 由同向不等式的可加性可得-6≤x -2y ≤0,∴-5≤x -2y +1≤1,∴|x -2y +1|的最大值为5.规律与方法:1.(1)法一的关键是把|x -2y +1|变形为|(x -1)-2(y -2)-2|,进而利用绝对值不等式性质;(2)法二把求|x -2y +1|的最大值问题,转化为求x -2y +1的取值范围问题.2.(1)利用绝对值不等式性质定理求最值时,要指明取到等号的条件.(2)注意绝对值不等式性质在不等式证明中的放缩应用.变式训练:若f (x )=x 2-x +c (c 为常数),|x -a |<1,求证:|f (x )-f (a )|<2(1+|a |).【证明】 |f (x )-f (a )|=|(x 2-x +c )-(a 2-a +c )|=|x 2-x -a 2+a |=|(x -a )(x +a -1)|=|x -a ||x +a -1|=|x -a ||(x -a )+(2a -1)|,∵|x -a |<1.∴|x -a ||(x -a )+(2a -1)|<|(x -a )+(2a -1)|≤|x -a |+|2a -1|<1+|2a |+1=2(1+|a |). ∴不等式|f (x )-f (a )|<2(1+|a |)成立含绝对值不等式的解法 :例题2:(1)(2011·江苏高考)解不等式:x +|2x -1|<3.(2)不等式|x +3|-|x -2|≥3的解集为________.【思路点拨】 (1)将不等式x +|2x -1|<3化成|2x -1|<3-x 的形式,然后用公式求解.(2)去|x +3|与|x -2|的绝对值,按零点分区间讨论.【尝试解答】1) 由x+|2x-1|<3,得|2x-1|<3-x,∴原不等式化为:⎩⎨⎧-<-≥-x x x 312012或⎩⎨⎧-<-<-x x x 321012, 解得:21≤x<34或-2<x<21,∴原不等式的解集是:{x|-2<x<34} 2) ①当x ≥2时,原不等式化为:x+3-(x-2)≥3,此时恒成立,∴x ≥2,②当x ≤-3时,原不等式化为-x-3-(2-x)≥3,无解,③当-3<x<2时,原不等式化为x+3-(2-x)≥3,解得:x ≥1,因此1≤x<2综合①②③可知,原不等式的解集为:{x|x ≥1}1.第(1)问利用绝对值定义,将其转化为与之等价的不等式组是求解的关键;也可利用|f (x )|<g (x )⇔-g (x )<f (x )<g (x )进行转化;第(2)问易错点:(1)分区间去绝对值时忽视零点的值;(2)误求不等式的解集为交集.2.含有两个或两个以上绝对值号的不等式,常用零点分段法脱去绝对值号,将其转化为与之等价的不含绝对值符号的不等式(组).但一定注意,最终的不等式的解集是各类情形的并集.其操作程序是:找零点、分区间、分段讨论.变式训练:(2011·山东高考)求不等式|x -5|+|x +3|≥10的解集.【解】法一:当x ≥5时,原不等式为x -5+x +3≥10,∴x ≥6.不等式的解集为{x |x ≥6}. 当-3<x <5时,原不等式化为-x +5+x +3≥10,8≥10,此时原不等式无解;当x ≤-3时,原不等式化为-x +5-x -3≥10,x ≤-4.∴原不等式的解集为{x |x ≤-4}. 综上所述,原不等式的解集为(-∞,-4]∪[6,+∞).法二 由绝对值的几何意义,|x -5|+|x +3|≥10表示数轴上的点到两点-3,5的距离之和大于等于10的所有的点集.易知点-4和6到两点-3,5的距离之和都等于10,结合数轴知原不等式的解集为{x |x ≥6或x ≤-4}.利用平均值不等式求最值 :1)若x>0,求函数f(x)=x+24x的最小值; 2)已知x>0,y>0,且x+y=1,求x 4+y 9的最小值 【思路点拨】:1)将f(x)变形为2x +2x +24x,然后用定理3求解 2)注意x+y=1的应用,运用a+b ≥2ab 求最小值【尝试解答】1)∵x>0,∴f(x)= x+24x =2x +2x +24x ≥332422x x x ∙∙=3,当且仅当2x =24x ,即x=2时取等号,∴x=2时,f(x)min =32)∵x>0,y>0,x+y=1,∴x 4+y 9= (x+y)( x 4+y 9)=13+x y 4+y x 9≥13+2yx x y 94∙=25 当且仅当x y 4=yx 9时等号成立 由⎪⎩⎪⎨⎧==+y x x y y x 941且x>0,y>0,得⎪⎩⎪⎨⎧==5352y x ∴当x=52,y=53时取等号,所以x 4+y 9的最小值为25.1.利用平均值不等式求最值,应明确基本不等式成立的条件,“一正、二定、三相等”缺一不可.2.利用不等式求最值时,常利用添项、拆项、配系数,并注意“1”的代换,创造使用均值不等式的条件.变式训练:若0<x <1,则函数f (x )=x 2(1-x )的最大值是________.【解】∵0<x<1,∴0<1-x<1,f(x)=x ²(1-x)=4•2x •2x •(1-x)≤4•[3)1(22x x x -++]³=274 当且仅当2x =1-x,即x=32时,等号成立,因此f(x)的最大值f(x)max = 274绝对值不等式的综合问题 :例题4:(2012·佛山质检)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】 (1)由|x -a |≤3求不等式的解集,与已知比较,求参数a 的值;(2)利用绝对值不等式的性质或函数的单调性,求y =f (x )+f (x +5)的最小值,得参数不等式求解.1)由f(x)≤3,得|x-a|≤3,解得a-3≤x ≤a+3,又已知不等式f(x)≤3的解集为{x|-1≤x ≤5} 所以5313=+-=-⎩⎨⎧a a 解得a=2.2)法一:由1)知a=2,此时f(x)=|x-2|,设g(x)=f(x)+f(x+5)=|x-2|+|x+3|,于是g(x)=⎪⎩⎪⎨⎧>+≤≤--<-2,1223,53,12-x x x x x 利用g (x )的单调性,易知g (x )的最小值为5.因此g (x )=f (x )+f (x +5)≥m 对x ∈R 恒成立, 知实数m 的取值范围是(-∞,5].法二 当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立)得,g (x )的最小值为5. 因此,若g (x )=f (x )+f (x +5)≥m 恒成立, 应有实数m 的取值范围是(-∞,5]., 规律方法4:1.第(2)问求解的关键是转化为求f (x )+f (x +5)的最小值,法1是运用分类讨论思想,利用函数的单调性;法2是利用绝对值不等式的性质(应注意等号成立的条件).2.将绝对值不等式与函数以及不等式恒成立交汇、渗透,这是命题的新动向,解题时强化函数、数形结合与转化化归思想方法的灵活应用.变式训练:已知函数f (x )=|x -3|-2,g (x )=-|x +1|+4.(1)若函数f (x )的值不大于1,求x 的取值范围;(2)若不等式f (x )-g (x )≥m +1的解集为R ,求m 的取值范围.【解】 (1)依题意,f (x )≤1,即|x -3|≤3.∴-3≤x -3≤3,∴0≤x ≤6,因此实数x 的取值范围是[0,6].(2)f (x )-g (x )=|x -3|+|x +1|-6≥|(x -3)-(x +1)|-6=-2,∴f (x )-g (x )的最小值为-2, 要使f (x )-g (x )≥m +1的解集为R. 应有m +1≤-2,∴m ≤-3,故实数m 的取值范围是(-∞,-3].命题透视:从近两年新课标命题看,含绝对值不等式的解法是选考内容4-5考查的热点,难度为中等,2011年高考命题的突出特点是以函数为载体考查绝对值不等式的解法与证明,预计2013年高考将延续这一命题方向.规范解答之二十二 绝对值不等式中逆向问题的正向求解策略例题:(10分)(2011·新课标卷)设函数f (x )=|x -a |+3x ,其中a >0.(1)当a =1时,求不等式f (x )≥3x +2的解集.(2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.规范解答:1) 当a=1时,f(x)≥3x+2,可化为|x-1|≥2,由此可得x ≥3或x ≤-1,故不等式f(x)≥3x+2的解集为{x|x ≥3或x ≤-1}因为a>0,所以不等式组的解集为{x|x ≤-2a },由题设可得-2a =-1,故a=2 【解题程序】 第一步:代入a ,求绝对值不等式|x -1|≥2的解集;第二步:化|x -a |+3x ≤0为不含绝对值的不等式组,并求解集;第三步:与题设比较,得含a 的方程,求出a 值;第四步:检验,查易错点,规范结论.阅卷心悟:易错提示:(1)不知逆向问题求解方法是思维受阻的主要原因.(2)未注意条件a >0,造成两解.防范措施:(1)逆向问题可正向求解,以本题为例,求出不等式的解集后.与已知不等式的解集作比较,便可建立关于a 的方程;(2)本题不等式f (x )≤0解集的端点-1是方程f (x )=0的解,利用这一点可得一种巧妙解法. 自主体验:1.(2011·广东高考)不等式|x +1|-|x -3|≥0的解集是________.【解析】 由|x +1|-|x -3|≥0,得|x +1|≥|x -3|,平方得(x +1)2≥(x -3)2,解之得x ≥1, ∴不等式的解集为{x |x ≥1}.2.(2011·辽宁高考)已知函数f (x )=|x -2|-|x -5|.(1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.1)证明:f(x)=|x-2|-|x-5|=⎪⎩⎪⎨⎧≥<<-≤5352722,3-x x x x ,当2<x<5时,-3<2x-7<3,所以-3≤f(x)≤3 2)由1)可知:当x ≤2时,f(x)≥x ²-8x+15的解集为空集;当2<x<5时,f(x)≥x ²-8x+15的解集为{x|5-3≤x<5}当X ≥5时,f(x)≥x ²-8x+15的解集为{x|5≤x ≤6}综上所述:不等式f(x)≥x ²-8x+15的解集为{x|5-3≤x ≤6}。

高中绝对值不等式

高中绝对值不等式

绝对值不等式绝对值不等式||||||a b a b +≤+,||||||a b a b -≤+ 基本的绝对值不等式:||a|-|b||≤|a ±b|≤|a|+|b| =======================y=|x-3|+|x+2|≥|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5 所以函数的最小值是5,没有最大值=======================|y|=||x-3|-|x+2||≤|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5 由|y|≤5得-5≤y ≤5即函数的最小值是-5,最大值是5=======================也可以从几何意义上理解,|x-3|+|x+2|表示x 到3,-2这两点的距离之和,显然当-2≤x ≤3时,距离之和最小,最小值是5;而|x-3|-|x+2|表示x 到3,-2这两点的距离之差,当x ≤-2时,取最小值-5,当x ≥3时,取最大值5[变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x[思路]利用|f(x)|<g(x) ⇔-g(x)<f(x)<g(x)和|f(x)|>g(x) ⇔f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。

解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x )解得x >12或无解,所以原不等式的解集是{x |x >12} (2)原不等式等价于-3x <2x -2x -6<3x 即222226360(3)(2)032(1)(6)016263560x x x x x x x x x x x x x x x x x ⎧⎧-->-+->+-><->⎧⎧⎪⎪⇒⇒⇒⎨⎨⎨⎨+-<-<<--<--<⎪⎪⎩⎩⎩⎩或2<x <6所以原不等式的解集是{x |2<x <6}1.解不等式(1)|x-x 2-2|>x 2-3x-4;(2)234x x -≤1解:(1)分析一 可按解不等式的方法来解.原不等式等价于:x-x 2-2>x 2-3x-4 ①或x-x 2-2<-(x 2-3x-4) ②解①得:1-2<x<1+2解②得:x>-3故原不等式解集为{x |x>-3}分析二 ∵|x-x 2-2|=|x 2-x+2|而x 2-x+2=(x-14)2+74>0 所以|x-x 2-2|中的绝对值符号可直接去掉.故原不等式等价于x 2-x+2>x 2-3x-4解得:x>-3∴ 原不等式解集为{x>-3}(2)分析 不等式可转化为-1≤234x x -≤1求解,但过程较繁,由于不等式234x x -≤1两边均为正,所以可平方后求解. 原不等式等价于2234x x -≤1⇒9x 2≤(x 2-4)2 (x ≠±2) ⇒x 4-17x 2+16≥0⇒x 2≤1或x 2≥16⇒-1≤x ≤1或x ≥4或x ≤-4注意:在解绝对值不等式时,若|f(x)|中的f(x)的值的范围可确定(包括恒正或恒非负,恒负或恒非正),就可直接去掉绝对值符号,从而简化解题过程. 第2变 含两个绝对值的不等式[变题2]解不等式(1)|x -1|<|x +a |;(2)|x-2|+|x+3|>5.[思路](1)题由于两边均为非负数,因此可以利用|f(x)|〈|g(x)|⇒f 2(x)〈g 2(x)两边平方去掉绝对值符号。

绝对值不等式课件

绝对值不等式课件
时,a,b 同向(相当于 ab≥0),|a+b|=|a|+|b|;a,b 异向(相当于 ab<0)
时,|a+b|<|a|+|b|,这些都利用了三角形的性质定理,如三角形的两边之
和大于第三边等.
这样处理,可以形象地描绘绝对值三角不等式,更易于记忆和理解
定理.绝对值三角不等式体现了“放缩法”的一种形式,但放缩的“尺度”
∴ymax=4,ymin=-4.
4, < -1,
方法二:把此函数看作分段函数.∵y=|x-3|-|x+1|= 2-2,-1 ≤ ≤ 3,
-4, > 3,
∴-4≤y≤4.∴ymax=4,ymin=-4.
迁移与应用
如果关于 x 的不等式|x-3|+|x-4|<a 的解集为或两个以上绝对值的代数式,通常利用分段讨论的
方法转化为分段函数,进而利用分段函数的性质解决相应问题.利用含
绝对值不等式的性质定理进行“放缩”,有时也能产生比较好的效果,但
这需要准确地处理“数”的差或和,以达到所需要的结果.
三、绝对值不等式的其他应用
活动与探究
例 3 已知函数 f(x)=x2-x+13,|x-a|<1,求
要仔细把握,如下面的式子:|a|-|b|≤||a|-|b||≤|a+b|≤|a|+|b|,我们常用的
形式是|a|-|b|≤|a+b|≤|a|+|b|,实质上|a+b|是不小于||a|-|b||的,|a|-|b|不
一定是正数,当然这需要对绝对值不等式有更深的理解,从而使放缩的
“尺度”更为准确.
一、利用绝对值三角不等式证明不等式
迁移与应用
已知 f(x)=x2-2x+7,且|x-m|<3,求证:

绝对值不等式公式大全

绝对值不等式公式大全

绝对值不等式公式大全1.,a,≥0:绝对值永远大于等于0。

这是绝对值函数的基本性质,因为绝对值是表示距离的概念,距离不能为负数。

2.,a,>b或,a,≥b:绝对值大于或大于等于一些数的条件。

当a>b时,a,>b成立;当a≥b时,a,≥b成立。

3.,a,<b或,a,≤b:绝对值小于或小于等于一些数的条件。

当-a<b<a时,a,<b成立;当-a≤b≤a时,a,≤b成立。

4.,a,>0:非零数的绝对值大于0。

任何非零实数a的绝对值都大于0,即,a,>0。

5.,a,^2=a^2:绝对值平方等于平方。

对于任意实数a,a,^2与a^2是等价的表达式。

6.,a,^n=a^n:绝对值的n次方等于数的n次方。

对于任意实数a和正整数n,a,^n与a^n是等价的表达式。

7.,a·b,=,a,·,b,:绝对值的乘积等于数的绝对值的乘积。

对于任意实数a和b,a·b,=,a,·,b。

8.,a+b,≤,a,+,b,:绝对值的和小于等于各数绝对值的和。

对于任意实数a和b,a+b,≤,a,+,b。

9.,a-b,≥,a,-,b,:绝对值差大于等于各数绝对值差的绝对值。

对于任意实数a和b,a-b,≥,a,-,b。

10.,a,-,b,≤,a-b,:各数绝对值差的绝对值小于等于绝对值差。

对于任意实数a和b,a,-,b,≤,a-b。

11.,a,+,b,=,a-b,当且仅当a·b≥0:绝对值和等于绝对值差的条件。

对于任意实数a和b,a,+,b,=,a-b,当且仅当a·b≥0。

12.,a,-,b,≥,a+b,-,b-a,:绝对值差的绝对值大于等于绝对值和的绝对值差。

对于任意实数a和b,a,-,b,≥,a+b,-,b-a。

这些绝对值不等式公式可以用来推导、证明或比较方程的解集,帮助我们更好地理解数学问题。

在解决绝对值不等式时,我们可以运用以上公式进行分析和求解,并根据具体问题的特点选择适用的公式。

绝对值不等式考点与题型归纳

绝对值不等式考点与题型归纳

绝对值不等式考点与题型归纳一、基础知识1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.2.绝对值不等式的解法(1)|x|<a与|x|>a型不等式的解法(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.考点一绝对值不等式的解法[典例] (2016·全国卷Ⅰ)已知函数f (x )=|x +1|-|2x -3|.(1)画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.[解] (1)由题意得f (x )=⎩⎨⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3;当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或1<x <3或x >5.[题组训练]1.解不等式|x +1|+|x -1|≤2. 解:当x <-1时,原不等式可化为-x -1+1-x ≤2, 解得x ≥-1,又因为x <-1,故无解; 当-1≤x ≤1时,原不等式可化为x +1+1-x =2≤2,恒成立; 当x >1时,原不等式可化为x +1+x -1≤2, 解得x ≤1,又因为x >1,故无解;综上,不等式|x +1|+|x -1|≤2的解集为[-1,1]. 2.(2019·沈阳质检)已知函数f (x )=|x -a |+3x ,其中a ∈R . (1)当a =1时,求不等式f (x )≥3x +|2x +1|的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解:(1)当a =1时,f (x )=|x -1|+3x .法一:由f (x )≥3x +|2x +1|,得|x -1|-|2x +1|≥0, 当x >1时,x -1-(2x +1)≥0,得x ≤-2,无解; 当-12≤x ≤1时,1-x -(2x +1)≥0,得-12≤x ≤0;当x <-12时,1-x -(-2x -1)≥0,得-2≤x <-12.∴不等式的解集为{x |-2≤x ≤0}.法二:由f (x )≥3x +|2x +1|,得|x -1|≥|2x +1|, 两边平方,化简整理得x 2+2x ≤0, 解得-2≤x ≤0,∴不等式的解集为{x |-2≤x ≤0}.(2)由|x -a |+3x ≤0,可得⎩⎪⎨⎪⎧ x ≥a ,4x -a ≤0或⎩⎪⎨⎪⎧x <a ,2x +a ≤0,即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2.当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-a 2. 由-a2=-1,得a =2.当a =0时,不等式的解集为{x |x ≤0},不合题意.当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤a 4. 由a4=-1,得a =-4. 综上,a =2或a =-4.考点二 绝对值不等式性质的应用[典例] (2019·湖北五校联考)已知函数f (x )=|2x -1|,x ∈R . (1)解不等式f (x )<|x |+1;(2)若对x ,y ∈R ,有|x -y -1|≤13,|2y +1|≤16,求证:f (x )<1.[解] (1)∵f (x )<|x |+1,∴|2x -1|<|x |+1,即⎩⎪⎨⎪⎧ x ≥12,2x -1<x +1或⎩⎪⎨⎪⎧0<x <12,1-2x <x +1或⎩⎪⎨⎪⎧x ≤0,1-2x <-x +1,得12≤x <2或0<x <12或无解. 故不等式f (x )<|x |+1的解集为{x |0<x <2}.(2)证明:f (x )=|2x -1|=|2(x -y -1)+(2y +1)|≤|2(x -y -1)|+|2y +1|=2|x -y -1|+|2y +1|≤2×13+16=56<1.故不等式f (x )<1得证.[解题技法] 绝对值不等式性质的应用利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.[题组训练]1.求函数f (x )=|x +2 019|-|x -2 018|的最大值.解:因为f (x )=|x +2 019|-|x -2 018|≤|x +2 019-x +2 018|=4 037, 所以函数f (x )=|x +2 019|-|x -2 018|的最大值为4 037. 2.若x ∈[-1,1],|y |≤16,|z |≤19,求证:|x +2y -3z |≤53.证明:因为x ∈[-1,1],|y |≤16,|z |≤19,所以|x +2y -3z |≤|x |+2|y |+3|z |≤1+2×16+3×19=53,所以|x +2y -3z |≤53成立.考点三 绝对值不等式的综合应用[典例] (2018·合肥质检)已知函数f (x )=|2x -1|. (1)解关于x 的不等式f (x )-f (x +1)≤1;(2)若关于x 的不等式f (x )<m -f (x +1)的解集不是空集,求m 的取值范围. [解] (1)f (x )-f (x +1)≤1⇔|2x -1|-|2x +1|≤1,则⎩⎪⎨⎪⎧ x ≥12,2x -1-2x -1≤1或⎩⎪⎨⎪⎧ -12<x <12,1-2x -2x -1≤1或⎩⎪⎨⎪⎧x ≤-12,1-2x +2x +1≤1, 解得x ≥12或-14≤x <12,即x ≥-14,所以原不等式的解集为⎣⎡⎭⎫-14,+∞. (2)由条件知,不等式|2x -1|+|2x +1|<m 有解, 则m >(|2x -1|+|2x +1|)min 即可.由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +(2x +1)|=2,当且仅当(1-2x )(2x +1)≥0,即x ∈⎣⎡⎦⎤-12,12时等号成立,故m >2.所以m 的取值范围是(2,+∞). [解题技法] 两招解不等式问题中的含参问题 (1)转化①把存在性问题转化为求最值问题;②不等式的解集为R 是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .(2)求最值求含绝对值的函数最值时,常用的方法有三种: ①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||; ③利用零点分区间法. [题组训练]1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x <-1,2,-1≤x ≤2,-2x +6,x >2.当x <-1时,由2x +4≥0,解得-2≤x <-1, 当-1≤x ≤2时,显然满足题意, 当x >2时,由-2x +6≥0,解得2<x ≤3, 故f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4. 由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).2.(2018·广东珠海二中期中)已知函数f (x )=|x +m |+|2x -1|(m ∈R ),若关于x 的不等式f (x )≤|2x +1|的解集为A ,且⎣⎡⎦⎤34,2⊆A ,求实数m 的取值范围.解:∵⎣⎡⎦⎤34,2⊆A ,∴当x ∈⎣⎡⎦⎤34,2时,不等式f (x )≤|2x +1|恒成立, 即|x +m |+|2x -1|≤|2x +1|在x ∈⎣⎡⎦⎤34,2上恒成立, ∴|x +m |+2x -1≤2x +1,即|x +m |≤2在x ∈⎣⎡⎦⎤34,2上恒成立, ∴-2≤x +m ≤2,∴-x -2≤m ≤-x +2在x ∈⎣⎡⎦⎤34,2上恒成立, ∴(-x -2)max ≤m ≤(-x +2)min ,∴-114≤m ≤0,故实数m 的取值范围是⎣⎡⎦⎤-114,0. [课时跟踪检测]1.求不等式|2x -1|+|2x +1|≤6的解集.解:原不等式可化为⎩⎪⎨⎪⎧ x <-12,1-2x -2x -1≤6或⎩⎪⎨⎪⎧-12≤x ≤12,1-2x +2x +1≤6或⎩⎪⎨⎪⎧x >12,2x -1+2x +1≤6. 解得-32≤x ≤32,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-32≤x ≤32. 2.已知函数f (x )=|x -4|+|x -a |(a ∈R )的最小值为a . (1)求实数a 的值; (2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a , 从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2;当2<x ≤4时,显然不等式成立; 当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤112. 3.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解:(1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >12.(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,则|ax -1|<1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <2a , 所以2a ≥1,故0<a ≤2.综上,a 的取值范围为(0,2]. 4.设函数f (x )=|3x -1|+ax +3. (1)若a =1,解不等式f (x )≤4;(2)若f (x )有最小值,求实数a 的取值范围. 解:(1)当a =1时,f (x )=|3x -1|+x +3≤4,即|3x -1|≤1-x ,x -1≤3x -1≤1-x ,解得0≤x ≤12,所以f (x )≤4的解集为⎣⎡⎦⎤0,12. (2)因为f (x )=⎩⎨⎧(3+a )x +2,x ≥13,(a -3)x +4,x <13,所以f (x )有最小值的充要条件为⎩⎪⎨⎪⎧a +3≥0,a -3≤0,解得-3≤a ≤3,即实数a 的取值范围是[-3,3].5.(2019·贵阳适应性考试)已知函数f (x )=|x -2|-|x +1|. (1)解不等式f (x )>-x ;(2)若关于x 的不等式f (x )≤a 2-2a 的解集为R ,求实数a 的取值范围. 解:(1)原不等式等价于f (x )+x >0,不等式f (x )+x >0可化为|x -2|+x >|x +1|, 当x <-1时,-(x -2)+x >-(x +1),解得x >-3,即-3<x <-1; 当-1≤x ≤2时,-(x -2)+x >x +1,解得x <1,即-1≤x <1; 当x >2时,x -2+x >x +1,解得x >3,即x >3,综上所述,不等式f (x )+x >0的解集为{x |-3<x <1或x >3}. (2)由不等式f (x )≤a 2-2a 可得|x -2|-|x +1|≤a 2-2a ,∵|x -2|-|x +1|≤|x -2-x -1|=3,当且仅当x ∈(-∞,-1]时等号成立, ∴a 2-2a ≥3,即a 2-2a -3≥0,解得a ≤-1或a ≥3. ∴实数a 的取值范围为(-∞,-1]∪[3,+∞). 6.已知函数f (x )=|x -a |+|x +1|.(1)若a =2,求不等式f (x )>x +2的解集;(2)如果关于x 的不等式f (x )<2的解集不是空集,求实数a 的取值范围. 解:(1)当a =2时,f (x )=⎩⎪⎨⎪⎧-2x +1,x <-1,3,-1≤x <2,2x -1,x ≥2,不等式f (x )>x +2等价于⎩⎪⎨⎪⎧ x <-1,-2x +1>x +2或⎩⎪⎨⎪⎧ -1≤x <2,3>x +2或⎩⎪⎨⎪⎧x ≥2,2x -1>x +2,解得x <1或x >3,故原不等式的解集为{x |x <1或x >3}.(2)∵f (x )=|x -a |+|x +1|≥|(x -a )-(x +1)|=|a +1|,当(x -a )(x +1)≤0时取等号. ∴若关于x 的不等式f (x )<2的解集不是空集,只需|a +1|<2, 解得-3<a <1,即实数a 的取值范围是(-3,1). 7.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3, 即⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x ≥3-a 2. 又⎝⎛⎭⎫⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x min =⎪⎪⎪⎪12-a 2, 所以⎪⎪⎪⎪12-a 2≥3-a 2,解得a ≥2.所以a 的取值范围是[2,+∞).8.(2018·福州质检)设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝⎛⎭⎫1,32⊆M ,求实数a 的取值范围.解:(1)因为f (x )≤3-f (x -1),所以|x -1|≤3-|x -2|⇔|x -1|+|x -2|≤3⇔⎩⎪⎨⎪⎧x <1,3-2x ≤3或⎩⎨⎧1≤x ≤2,1≤3或⎩⎪⎨⎪⎧x >2,2x -3≤3, 解得0≤x <1或1≤x ≤2或2<x ≤3,所以0≤x ≤3,故不等式f (x )≤3-f (x -1)的解集为[0,3].(2)因为⎝⎛⎭⎫1,32⊆M , 所以当x ∈⎝⎛⎭⎫1,32时,f (x )≤f (x +1)-|x -a |恒成立, 而f (x )≤f (x +1)-|x -a |⇔|x -1|-|x |+|x -a |≤0⇔|x -a |≤|x |-|x -1|,因为x ∈⎝⎛⎭⎫1,32,所以|x -a |≤1,即x -1≤a ≤x +1, 由题意,知x -1≤a ≤x +1对于任意的x ∈⎝⎛⎭⎫1,32恒成立, 所以12≤a ≤2,故实数a 的取值范围为⎣⎡⎦⎤12,2.。

绝对值不等式的证明

绝对值不等式的证明

(1)从向量的角度看:
r a,
r b
不共线时,
rr r r ab a b
rr
a, b 共线时, rr r r ab a b
r b r a
由于定理1与三角形之间的这种联系,我们称其中 的不等式为绝对值不等式.
ቤተ መጻሕፍቲ ባይዱ

;企鹅中文网
孟加拉招潮蟹有一个非常美丽的蟹壳,黑底上面有艳蓝色曲纹和斑点,雄蟹的大螯桔黄色。头胸是甲梯形。前宽后窄,额窄,眼眶宽,眼柄细长。雄体的一螯总是较另一螯大得多(称交配螯),大螯特大甚至比身体还大,重量几乎为整体之半,小螯极小,用 以取食(称取食螯)。雌体的二螯均相当小,而对称,指节匙形,均为取食螯。如果雄体失去大螯,则原处长出一个小螯,而原来的小螯则长成大螯,以代替失去的大螯。雄的颜色较雌体鲜明。 [1] 栖息于森林、灌木丛、小城镇和郊区的花园、农场的小片林区、城市边缘的林带、灌木丛、岸边草丛。夏时多生活中、高山区的潮湿密林及灌木丛中,尤其喜居于有较多的倒木、朽木成堆和林下灌木丛生的背光阴暗密林、山溪及沿河两岸的林缘地带。整个繁 殖季节多分布于从海拔700-4000余米高的中、高山地带,冬时则迁至低山区和平原地带,在沿河两岸砾石堆处、城镇、乡村及农田亦常遇到。 孟加拉招潮蟹广泛分布于印度洋 - 东印度,缅甸,泰国,西马来西亚,印度尼西亚(苏门答腊)的潮间带,栖息于滩涂湿地,是暖水性群集性的蟹类。 [2] 一般独自或成双或以家庭集小群进行活动。见人临近隐匿起来,尽管飞行高度很低,但也不易观察到。它们在灌木丛中迅速移动,常从低枝逐渐跃向高枝,尾巴翘的很高。歌声嘹亮,尤其是雄鸟,这是一种善于鸣啭的鸣禽。也是一种领地意识非常强烈的小鸟 。雄鸟主要负责驱逐入侵者。一旦发现敌情,它会蹲下扇动自己的翅膀并拍击背部,不停地晃动尾羽进行恐吓。雌鸟是最后一道防线,负责推阻试图入巢的侵入者。 性极活泼而又怯懦,很善于隐蔽,见有人来随即隐匿于倒木、灌木草丛或乱石堆中,又常从另外一侧迁逃。飞行时,一般约离地面1m高度呈直线的近地面飞翔,飞行不远即行栖止,飞行迅速而敏捷,在林区也常见它由一株树的低处侧枝分级逐渐跳跃至树顶。 栖止时常高翘其尾。 鹪鹩在非繁殖季节的冬季也常鸣唱,歌声宏亮清脆,唯不甚婉转,鸣叫时常做昂首翘尾之姿,每鸣叫一段后,再更换一地重唱,雌鸟鸣唱声调似雄鸟,但音色低而曲短。

高中数学绝对值不等式

高中数学绝对值不等式
1 所以, f ( x1 ) f ( x2 ) . 2
变式 3 二次函数 f ( x) ax 2 bx c(a, b, c R) ,
, f (0) 1 , f (1) 1 已知 f (1) 1
5 求证:当 x 1时, f ( x ) 4 f (1) f (1) 2 f (0)
可利用不等式的几何意义或分区间讨论去掉绝对值; 2. 含绝对值的不等式 f ( x) g ( x) h( x) , 主要是通过讨论 f ( x) 和 g ( x) 的符号去掉绝对值.
1. 定理 1: a b a b ,当且仅当 ab 0 时,等号成立. 推论 1: a b a b ,当且仅当 ab 0 时,等号成立.
证明 不妨设 x1 x2 ,
2 f ( x1 ) f ( x2 ) f ( x1 ) f ( x2 ) f ( x1 ) f (0) f (1) f ( x2 ) f ( x1 ) f ( x2 ) f ( x1 ) f (0) f (1) f ( x2 ) x1 x2 x1 0 1 x2 x2 x1 x1 1 x2 1
与函数 y ax 的图像有交点.故不等式 f ( x) ax 的解集非空时,a 的取值范围为
1 , 2 , . 2
7. 若不等式 3x b 4 的解集中的整数有且仅有 1,2,3, 则 b 的取值范围
.
答案 ( 5, 7)

b4 b4 , 3x b 4 x 3 3
含绝对值的不等式
知识要点
x x 0 1. x 的定义: x 0 x 0 . x x 0
2.
x 的几何意义: x 表示数轴上的点 x 与原点之间的距离; x a 表示数轴上的点 x 与点 a 之间的距离.

绝对值不等式公式有哪些该如何解

绝对值不等式公式有哪些该如何解

绝对值不等式公式有哪些该如何解
绝对值不等式是数学中一个重要的知识点,同时也是考试中时常出现的考点。

下面是由编辑为大家整理的“绝对值不等式公式有哪些该如何解”,仅供参考,欢迎大家阅读本文。

绝对值不等式公式
||a|−|b||≤|a±b|≤|a|+|b|;
|ab|=|a||b|,|a/b|=|a|/|b|(b≠0);
|a|<|b| 可推出|b|>|a|;
3、∥a|−Ib∥≤la+b|≤la|+lb|当且仅当ab≤0时左边等号成立,ab≥0时右边等号成立;
4、|a−b|≤|a|+|−b|=|a|+|−1|∗|b|=|a|+|b|
怎样解绝对值不等式
解绝对值不等式的基本方法是去掉绝对值符号
1、平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了;
2、讨论,即x≥0时,|x|=x;x<0时,|x|=-x,绝对值符号也没有了,令绝对值中的式子等于0,分出x的段,然后根据每段讨论得出的x值,取交集,综上所述即可。

绝对值不等式证明

绝对值不等式证明

证明 : f ( x) 1 x
a 2 b2 1 a 2 1 b2
2
2 2
f (a) f (b) 1 a 1 b


(a b)(a b) 1 a 2 1 b2
a b
ab
ab
a b .
(放缩法)
例2.关于x的方程x ax b 0两根
2
为、,若 a b 1, 求证 : 1且 1.
证法1 : 、 是方程x ax b 0两根, + = a, b a b 1
2
+ 1.又 1 ,
( 1)( 1) 0, 1
例1.已知 x

3
y

6
z

9
求证:x 2 y 3 z
例2.设 x y x y 2, 求证 : x y 2. 证明: x y x y 2
2 2
x y x y 4 x y x y 2
2
a,a 0
(1) a
(2) x a(a 0) a x a
(3) x a(a 0) x a或x a (4) a a (5) a a a
0,a 0 a,a 0
新课
• 定理
a b a b a b
(1)定理特征: 三角形不等式
x a 2a 1
2( a 1)
练习题:已知f ( x) x 2 x 7
2
且 x m 3, 求证: f ( x) f (m) 6 m +15.

绝对值不等式推导

绝对值不等式推导

绝对值不等式推导
绝对值不等式是数学中常见的一种不等式,它的形式为|a|≤b,其中a和b为实数,|a|表示a的绝对值。

在解决数学问题时,经常需要使用绝对值不等式,因此掌握绝对值不等式的推导方法很重要。

首先,需要了解绝对值的定义。

对于任意实数a,它的绝对值表示为|a|,定义如下:
如果a≥0,则|a|=a;
如果a<0,则|a|=-a。

根据这个定义,可以推导出绝对值不等式的一般形式:
对于任意实数a和b,有|a|≤b的充分必要条件是-a≤b且a≤b。

证明过程如下:
如果|a|≤b,则有两种情况:
1、如果a≥0,则|a|=a,因此-a≤a≤b,即-a≤b且a≤b;
2、如果a<0,则|a|=-a,因此-a=-(-a)≤b,即-a≤b且a≤0≤b。

综上所述,对于任意实数a和b,有|a|≤b的充分必要条件是-a ≤b且a≤b。

绝对值不等式可以用来解决很多数学问题,例如求解一元二次不等式、证明不等式等等。

在使用绝对值不等式时,需要注意以下几点: 1、在不等式两边同时加上或减去同一个数时,需要保证该数的正负性与绝对值不等式所在的方程式一致。

2、在不等式两边同时乘以或除以同一个正数时,不等号方向不
变;如果同乘或同除一个负数,不等号方向需要反转。

3、在使用绝对值不等式时,需要注意绝对值的取值范围,避免出现错误结果。

绝对值不等式是数学中常用的一种工具,掌握它的推导方法对于解决数学问题非常有帮助。

高中数学绝对值不等式公式大全

高中数学绝对值不等式公式大全

高中数学绝对值不等式公式大全1、绝对值不等式:(1)一般表示式:|x|≠|y|(2)相等情况:|x|=|y|(3)不相等情况:|x|≠|y|2、绝对值不等式的特殊形式:(1)x≠0:|x|=a,a>0(2)x=m:|x|≠m(3)|x|<b:x<b(4)|x|≤b:x≤b(5)|x|>a:x>a(6)|x|≥a:x≥a3、绝对值不等式的解法:(1)把绝对值当作不计符号类型的线性方程,即把等号左边的绝对值画成两个相反数的图形,等号右边的绝对值也可以画成两个相反数的图形。

即可确定有解的条件,然后求出所有的可行解。

(2)将绝对值拆分成幂函数求解。

绝对值不等式=ax2 + bx + c≠d可以拆分成(x-x1)2+4dFalse=b2-4ac, b2-4ac>0时有解,反之无解。

(3)利用中值定理来求解。

设绝对值不等式|x-a|=|x-b|,按照中值定理,即可得到可解解 x = (a+b)/ 2。

(4)通过几何方式来求解。

即直线 y=|x-a| 的图形和y=|x-b|的图形有相等的两个交点,将这些交点的 x 坐标求出即可。

4、绝对值不等式的特殊问题:(1)当x=a时:绝对值不等式|x-a|≠|x-b|可解成x=(a+b)/2(2)当x=a或x=b时:绝对值不等式|x-a|=|x-b|可解成x=a或x=b(3)当x=0时:绝对值不等式|x|=|y|可解成x=y(4)当x≥b时:绝对值不等式|x-a|<|x-b|可解成x≥b(5)当x≤a时:绝对值不等式|x-a|>|x-b|可解成x≤a(6)当x=a或x=b时:绝对值不等式|x-a|>|x-b|可解成x<a或x>b(此处的a和b指的是参数值)5、绝对值不等式的应用:绝对值不等式在数学中有着广泛的应用,它们看起来结构简单,而求解又显得很有技巧。

其在涉及数理计算机科学,物理电学、金融学等方面具有重要价值。

绝对值不等式

绝对值不等式

4.(2009广东) | x 1 | 1的解集为
.
|x2|
【答案】 {x | x 3 且x 2} 2
【解析】由| x 1| 1得到| x 1|| x 2 | (x 2). | x2|
两边平方得(x 1)2 (x 2)2,整理得到x 3 且x 2. 2
所以 | x 1| 1的解集为{x | x 3 ,且x 2}.
12.f(x)=|3-x|+|x-2|的最小值为
.
【 答 案 】 1 【 解 析 】 |3 x | |x 2 | |( 3 x ) ( x 2 )| 1 , f( x ) m in 1 .
13.不等式|x+3|-|x-2|≥3的解集为
.
【答案】{x| x1} 【解析】 当x2时,原不等式化为x3(x2)3.解得x2; 当3x2时,原不等式化为x3(2x)3,解得1x2; 当x3时,原不等式化为x3(2x)3,无解. 综上,x的取值范围为x1.
(2)解不等式|x-4|-|x-2|>1.
【例2】 解不等式|x-1|>|x|.
((第(--111)3,,作01节))出∪即 绝函(0对数,1x 值)y=2 不f(x等 )的式2 图x 象; D1 . x 2 ,解 B. 得 x 1 2 ,所 以 |x 1 | |x|的 解 集 为 { x|x 1 2 } .
【例2】 解不等式|x-1|>|x|.
值是 ( )
A.1
B.-1
C.0
D.2
【 答 案 】 D 【 解 析 】 |xa||1x| |xa 1x| |a 1|, |a 1|1 , a0 或 a2. a0. a2.
8.(2011广东)不等式|x+1|-|x-3|≥0的解集是

绝对值不等式的证明

绝对值不等式的证明

[重点难点]1.实数绝对值的定义:|a|=这是去掉绝对值符号的依据,是解含绝对值符号的不等式的基础。

2.最简单的含绝对值符号的不等式的解。

若a>0时,则|x| -a<X<A< SPAN>;|x|>a x<-a或x>a。

注:这里利用实数绝对值的几何意义是很容易理解上式的,即|x|可看作是数轴上的动点P(x)到原点的距离。

3.常用的同解变形|f(x)| -g(x)<F(X)<G(X)< SPAN>;|f(x)|>g(x) f(x)<-g(x)或f(x)>g(x);|f(x)|<|g(x)| f2(x)<G2(x)。

4.三角形不等式:||a|-|b||≤|a±b|≤|a|+|b|。

例题选讲:例1.解不等式 |x2+4x-1|<4.............①解:①-4<X2+4x-1<4-5<X<-3< SPAN>或-1<X<1< SPAN>。

即原不等式的解集是(-5,-3)∪(-1,1)。

例2.解不等式|x2-3|>2x...........①解:①x2-3<-2x或x2-3>2x x2+2x-3<0或x2-2x-3>0 -3<X<1< SPAN>或x<-1或x>3 x<1或x>3。

即原不等式的解集(-∞,1)∪(3,+∞)。

例3.解不等式| |≤1...........①解:①(2) |2x+3|2≤|x-1|2(2x+3)2-(x-1)2≤0 (2x+3-x+1)(2x+3+x-1)≤0(x+4)(3x+2)≤0, -4≤x≤- 。

(3) x≠1。

∴原不等式的解集为[-4,- ]。

例4.解不等式|x+1|+|x-2|<5...........①分析:为了去掉绝对值符号,首先找到两式的零点-1和2,它们把(-∞,+∞)分成了三个区间;(-∞,-1),[-1,2],(2,+∞)。

绝对值不等式

绝对值不等式
用f(1)、f(-1)、f(0)来表示a、b、c,是 、 、 二次函数中常见的一种技巧.
13.二次函数 f ( x ) = ax 2 + bx + c,当 x ≤ 1时,有 f ( x ) ≤ 1, 求证: 求证:当 x ≤ 2时,有 f ( x ) ≤ 7. 14.设 a ∈ R ,函数 f ( x ) = ax 2 + x − a ( −1 ≤ x ≤ 1) 5 (1)若 a ≤ 1, 求证: ( x ) ≤ ; 求证: f 4 17 ( 2)求 a的值,使函数 f ( x )有最大值 的值, . 8
一类与函数结合的题型
11.设 f ( x ) = x 2 − x + b, x − a < 1, 求证: ( x ) − f ( a ) < 2( a + 1). 求证: f 12.设 f ( x ) = ax 2 + bx + c ( a ≠ 0),当 x ≤ 1时, 总有 f ( x ) ≤ 1, 求证:对值三角不等式求最值
17.两个施工队分别被安排在公路沿线的两个地点施工,这两 两个施工队分别被安排在公路沿线的两个地点施工, 两个施工队分别被安排在公路沿线的两个地点施工 个地点分别位于公路路碑的第10km和第 和第20km处. 现要在 个地点分别位于公路路碑的第 和第 处 公路沿线建两个施工队的共同临时生活区, 公路沿线建两个施工队的共同临时生活区,每个施工队每 天在生活区和施工地点之间往返一次, 天在生活区和施工地点之间往返一次,要使两个施工队每 天往返的路程之和最小,生活区应该建于何处? 天往返的路程之和最小,生活区应该建于何处?
与其它证明方法综合证明
6.求证: 求证: ≤ + . 1+ a + b 1+ a 1+ b a+b 7.已知 a < 1, b < 1, 求证: 求证: < 1. 1 + ab a b 8.设m 等于 a , b 和1中最大的一个,当 x > m 时,求证: + 2 < 2. 中最大的一个, 求证: x x a b c d 9.设a , b, c , d都是不等于0的实数,求证: + + + > 4. 的实数,求证: b c d a 10.a , b为不相等的实数 , f ( x ) = 1 + x 2 , 求证 : f (a ) − f (b ) < a − b ; a + b < f (a ) + f (b) . a+b a b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值不等式6个基本公式证明
我们来证明绝对值的非负性质:
1. 对于任意实数x,有|x| ≥ 0.
证明:根据绝对值的定义,如果x ≥ 0,则有|x| = x ≥ 0;若x < 0,则有|x| = -x ≥ 0。

无论x的值如何,都有|x| ≥ 0,即绝对值非负。

接下来,我们证明绝对值的不等性质:
2. 对于任意实数x和y,若x ≤ y,则有|x| ≤ |y|.
证明:根据绝对值的定义,如果x ≤ y,则y - x ≥ 0。

而|x| = x 或 -x,|y| = y 或 -y。

分以下两种情况进行讨论:
a. 若x ≥ 0,则|x| = x,|y| = y。

此时有x ≤ y,即y - x ≥ 0。

由于绝对值的非负性质,可以得到|x| = x ≤ y = |y|。

b. 若x < 0,则|x| = -x,|y| = y 或 -y。

此时有y - x ≥ 0,即y ≥ x。

对于|x| = -x和|y| = y有以下子情况:
i. 若y ≥ 0,则|y| = y。

由于 x < 0,所以-x > 0,即 -x > x。

所以,|x| = -x ≤ -x ≤ y = |y|。

ii. 若y < 0,则|y| = -y。

又因为y ≥ x > 0,所以-y ≥ -x > 0。

由绝对值的非负性质,可以得到|x| = -x ≤ -y = |y|。

3. 对于任意实数x和y,有|x + y| ≤ |x| + |y|.
证明:根据绝对值的定义,有以下两种情况进行讨论:
a. 若x + y ≥ 0,则|x + y| = x + y,并且|x| = x,|y| = y。

由于x + y ≥ 0,所以x + y ≤ |x| + |y|。

即|x + y| ≤ |x| + |y|。

b. 若x + y < 0,则|x + y| = -(x + y),而|x| = -x,|y| = -y。

此时有:
i. 若x ≥ 0且y ≥ 0,则|x + y| = -(x + y) ≤ -x -y = |x| + |y|。

ii. 若x < 0且y < 0,则|x + y| = -(x + y) ≤ -x - y = |x| + |y|。

iii. 若x < 0且y ≥ 0,则|x + y| = -(x + y) ≤ -x + y = |x| + |y|。

iv. 若x ≥ 0且y < 0,则|x + y| = -(x + y) ≤ x - y = |x| + |y|。

4. 对于任意实数x和y,若|x - y| = 0,则x = y。

证明:根据绝对值的定义,有以下两种情况进行讨论:
a. 若x - y ≥ 0,则|x - y| = x - y。

若|x - y| = 0,则 x - y = 0。

解方程得 x = y。

b. 若x - y < 0,则|x - y| = -(x - y) = y - x。

若|x - y| = 0,则y - x = 0。

解方程得 y = x。

5. 对于任意实数x和y,有|x - y| = |y - x|。

证明:根据绝对值的定义,有以下两种情况进行讨论:
a. 若x - y ≥ 0,则|x - y| = x - y。

而y - x = -(x - y) ≤ 0。

由于绝对值的非负性质,即有|x - y| = x - y = |y - x|。

b. 若x - y < 0,则|x - y| = -(x - y) = y - x。

此时有|y - x| = y - x = -(x - y) = |x - y|。

6. 对于任意实数x和y,有|x · y| = |x| · |y|。

证明:根据绝对值的定义,有以下两种情况进行讨论:
a. 若x · y ≥ 0,则|x · y| = x · y,并且|x| = x,|y| = y。

由于x · y ≥ 0,所以x · y = |x| · |y|。

b. 若x · y < 0,则|x · y| = -(x · y)。

而|x| = -x,|y| = -y。

此时有:
i. 若x ≥ 0且y ≥ 0,则|x · y| = -(x · y) = -xy = (-x)(-y) = |x| · |y|。

ii. 若x < 0且y < 0,则|x · y| = -(x · y) = xy = (-x)(-y) = |x| · |y|。

iii. 若x < 0且y ≥ 0,则|x · y| = -(x · y) = -xy = |x| · |y|。

iv. 若x ≥ 0且y < 0,则|x · y| = -(x · y) = -xy = |x| · |y|。

以上是绝对值不等式的六个基本公式的证明,它们是绝对值不等式的基础,可以应用于更复杂的不等式证明。

相关文档
最新文档