江苏数学高考真题含复习资料

合集下载

(word完整版)江苏省高考数学试卷及,文档

(word完整版)江苏省高考数学试卷及,文档

绝密★启用前2021 年一般高等学校招生全国一致考试〔江苏卷〕数学 I本卷须知考生在答题前请认真阅读本本卷须知及各题答题要求1. 本试卷共 4 页,包括非选择题〔第 1 题 ~ 第 20 题,共 20 题〕 .本卷总分值为160 分,考试时间为120 分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请务必然自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定地址。

3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与自己可否切合。

4.作答试题,必定用0.5 毫米黑色墨水的签字笔在答题卡上的指定地址作答,在其他地址作答一律无效。

5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14 小题,每题 5 分,共计70 分,请把答案填写在答题卡相应地址上1.会集A1,2 ,B a, a23,假设AI B={1}那么实数 a 的值为 ________2.复数 z=〔 1+i 〕〔 1+2i〕 ,其中 i 是虚数单位,那么z 的模是 __________3.某工厂生产甲、乙、丙、丁四种不相同型号的产品,产量分别为200,400,300,100 件,为检验产品的质量,现用分层抽样的方法从以上全部的产品中抽取60 件进行检验,那么应从丙种型号的产品中抽取件4.右图是一个算法流程图,假设输入1,那么输出的 y 的值是x 的值为165.假设tan -=1,那么tan= 466.如图,在圆柱O1O2内有一个球 O,该球与圆柱的上、下面及母线均相切。

记圆柱O1O2的体积为 V ,1球 O 的体积为 V2,那么V1的值是V27.记函数f (x) 6 x x2的定义域为 D. 在区间 [-4,5] 上随机取一个数x,那么 x D 的概率是8.在平面直角坐标系xoy k , 双曲线x221 的右准线与学科&网它的两条渐近线分别交于点P,Q,其焦点y3是 F1 , F2 ,那么四边形 F1 P F2 Q 的面积是9.等比数列an的各项均为实数,其前n 项的和为 Sn,S37,S663,44那么 a8 =10.某公司一年购置某种货物600 吨,每次购置x 吨,运费为 6 万元 /次,一年的总储藏花销为4x 万元,要使一年的总运费与总储藏之和最小,那么x 的值是11.函数fx = x3x12x+e -x,其中 e 是自然数对数的底数,假设ef a-1 +f2a20,那么实数 a 的取值范围是。

苏教版数学高考试题与参考答案(2024年)

苏教版数学高考试题与参考答案(2024年)

2024年苏教版数学高考复习试题(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、设函数(f(x)=x3−3x2+2),则该函数的极值点是:A.(x=0)B.(x=1)C.(x=2)D.(x=3)2、下列四个选项中,(a2−b2)的因式分解结果为:A.((a+b)(a−b))B.((a+b)2)C.((a−b)2)D.(a2+b2)3、在等差数列{an}中,若首项a1=3,公差d=-2,那么数列{an}的第10项an=()A. -13B. -15C. -17D. -194、已知函数(f(x)=x2−4x+3),若(f(x))的图像关于直线(x=a)对称,则(a)的值为:A. 2C. 3D. 05、在下列各数中,哪个数的平方根是整数?A、(√49)B、(√81)C、(√100)D、(√121)6、在等差数列{an}中,首项a1=3,公差d=2,前n项和Sn=24n-9n²,则数列的项数n是:A. 1B. 3C. 4D. 57、已知函数(f(x)=√2x+1−√x−1)的定义域为([1,+∞)),则函数的值域为:A.([0,+∞))B.([−1,+∞))C.([0,2))D.([0,1])8、在函数y=√4x2+4中,若自变量x的取值范围为[−2,2],则函数的值域为()A.[4,8]B.[2,4]D.[0,2]二、多选题(本大题有3小题,每小题6分,共18分)1、以下函数中,哪些函数的图像是奇函数?A、f(x) = x^3B、f(x) = x^2C、f(x) = |x|D、f(x) = x + 12、在下列各题中,正确表示集合M中元素的有:A. M = {x | x^2 - 4x + 4 = 0}B. M = {x | x ∈ N,x > 3}C. M = {x | x ∈ Q,x^2 < 2}D. M = {x | x ∈ R,x^2 + 1 = 0}3、下列各数中,属于有理数的是()A、根号2(√2)B、πC、0.1010010001…D、1/3E、-0.5三、填空题(本大题有3小题,每小题5分,共15分)1、在等差数列{an}中,若a1=3,d=2,那么第10项an的值是______ 。

江苏省南京市(新版)2024高考数学苏教版真题(巩固卷)完整试卷

江苏省南京市(新版)2024高考数学苏教版真题(巩固卷)完整试卷

江苏省南京市(新版)2024高考数学苏教版真题(巩固卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知复数,则()A.B.C.D.第(2)题已知符号函数是上的增函数,,则A.B.C.D.第(3)题复数的共轭复数对应点的坐标为,则的虚部为()A.B.C.D.第(4)题已知正方体以某直线为旋转轴旋转角后与自身重合,则不可能为()A.B.C.D.第(5)题若变量,满足约束条件,则的最大值为A.B.C.D.第(6)题五行是华夏民族创造的哲学思想.多用于哲学、中医学和占卜方面.五行学说是华夏文明重要组成部分.古代先民认为,天下万物皆由五类元素组成,分别是金、木、水、火、土,彼此之间存在相生相克的关系.五行是指木、火、土、金、水五种物质的运动变化.所以,在中国,“五行”有悠久的历史渊源.下图是五行图,现有种颜色可供选择给五“行”涂色,要求五行相生不能用同一种颜色(例如木生火,木与火不能同色,水生木,水与木不能同色),五行相克可以用同一种颜色(例如火与水相克可以用同一种颜色),则不同的涂色方法种数有()A.B.C.D.第(7)题倾斜角为的直线过抛物线的焦点F,与该抛物线交于点,且以为直径的圆与直线相切,则()A.4B.C.D.第(8)题函数在上为单调递增函数,则的值可以为()A.B.C.D.1二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列说法正确的是()A.用简单随机抽样的方法从含有50个个体的总体中抽取一个容量为5的样本,则个体m被抽到的概率是0.1B.已知一组数据1,2,3,3,4,5的众数等于中位数C.数据27,12,14,30,15,17,19,23的第70百分位数是21D.若一个样本容量为8的样本的平均数为5,方差为2.现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差为变小第(2)题关于函数,下列判断正确的是()A.是的极小值点B.函数有且只有1个零点C.存在正实数k,使得恒成立D.对任意两个正实数,且,若,则第(3)题某人决定就近打车前往目的地前方开来三辆车,且车况分别为“好”“中”“差”他决定按如下两种方案打车.方案一:不乘第一辆车,若第二辆车好于第一辆车就乘此车,否则直接乘坐第三辆车:方案二:直接乘坐第一辆车.若三辆车开过来的先后次序等可能记方案一和方案二坐到车况为“好”的车的概率分别为,,则下列判断不正确的是()A.B.C.,D.,三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若数列的前n项和,,2,3,…,则满足的n的最大值为___________.第(2)题为了解某校今年准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,其中第2小组的频数为12,则报考飞行员的总人数是________.第(3)题若对任意,存在实数,使得关于x的不等式成立,则实数的最小值为____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在孟德尔遗传理论中,称遗传性状依赖的特定携带者为遗传因子,遗传因子总是成对出现,例如,豌豆携带这样一对遗传因子:使之开红花,使之开白花,两个因子的相互组合可以构成三种不同的遗传性状:为开红花,和一样不加区分为开粉色花,为开白色花,生物在繁衍后代的过程中,后代的每一对遗传因子都包含一个父本的遗传因子和一个母本的遗传因子,而因为生殖细胞是由分裂过程产生的,每一个上一代的遗传因子以的概率传给下一代,而且各代的遗传过程都是相互独立的,可以把第代的遗传设想为第次试验的结果,每一次试验就如同抛一枚均匀的硬币,比如对具有性状的父本来说,如果抛出正面就选择因子,如果抛出反面就选择因子,概率都是,对母本也一样,父本、母本各自随机选择得到的遗传因子再配对形成子代的遗传性状,假设三种遗传性状,(或),在父本和母本中以同样的比例出现,则在随机杂交试验中,遗传因子被选中的概率是,遗传因子被选中的概率是,称、分别为父本和母本中遗传因子和的频率,实际上是父本和母本中两个遗传因子的个数之比,基于以上常识回答以下问题:(1)如果植物的上代父本、母本的遗传性状都是,后代遗传性状为,(或),的概率分别是多少?(2)对某一植物,经过实验观察发现遗传性状具有重大缺陷,可人工剔除,从而使得父本和母本中仅有遗传性状为,(或)的个体,在进行第一代杂交实验时,假设遗传因子被选中的概率为,被选中的概率为,其中、为定值且,求杂交所得子代的三种遗传性状,(或),所占的比例,,;(3)继续对(2)中的植物进行杂交实验,每次杂交前都需要剔除的个体.假设得到的第代总体中3种遗传性状,(或),所占的比例分别为:,,,设第代遗传因子和的频率分别为和,已知有以下公式,,(ⅰ)证明是等差数列;(ⅱ)求,,的通项公式,如果这种剔除某种遗传性状的随机杂交实验长期进行下去,会有什么现象发生?第(2)题已知正项数列的前项和为,满足.(1)求数列的通项公式;(2)已知对于,不等式恒成立,求实数的最小值;第(3)题近年来我国电子商务行业迎来蓬勃发展的新机遇,特别在疫情期间,电子商务更被群众广泛认可,2020年双11期间,某平台的销售业绩高达3568亿人民币.与此同时,相关管理部门也推出了针对电商的商品和服务评价体系,现从评价系统中随机选出200次成功的交易,并对其评价结果进行统计,对商品的好评率为,对服务的好评率为,其中对商品和服务都作出好评的交易为80次.(1)是否可以在犯错误概率不超过0.1%的前提下,认为商品和服务的好评率有关?(2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828(,其中n=a+b+c+d)第(4)题如图,三棱锥中,,为等边三角形,为上的一个动点.(1)证明:平面平面;(2)当时,求二面角的余弦值.第(5)题已知.(1)若,解不等式;(2)若不等式无解,求实数a的取值范围.。

江苏新高考一卷数学试题及答案

江苏新高考一卷数学试题及答案

江苏新高考一卷数学试题及答案一、选择题(每题5分,共40分)1. 下列哪个数是无理数?A. 2.5B. √2C. 0.33333...D. 1答案:B2. 已知函数f(x) = x^2 - 4x + 4,求f(2)的值。

A. 0B. 4C. 8D. -4答案:A3. 以下哪个选项是等差数列?A. 2, 4, 6, 8B. 1, 1, 1, 1C. 3, 7, 11, 15D. 5, 7, 9, 11答案:A4. 已知三角形ABC,AB = 5,AC = 7,BC = 6,求三角形ABC的面积。

A. 10B. 12C. 14D. 16答案:B5. 以下哪个表达式是正确的?A. sin^2(x) + cos^2(x) = 1B. tan(x) = sin(x) / cos(x)C. sin(2x) = 2sin(x)cos(x)D. cos(2x) = 1 - 2sin^2(x)答案:C6. 已知圆的半径为5,求圆的周长。

A. 10πB. 15πC. 20πD. 25π答案:C7. 以下哪个是二次方程的解?A. x = 2B. x = -2C. x = 3D. x = -3答案:B8. 已知向量a = (3, 4),向量b = (-1, 2),求向量a与向量b的点积。

A. 10B. 11C. 12D. 13答案:B二、填空题(每题4分,共24分)9. 已知函数g(x) = 3x - 2,求g(1)的值。

答案:110. 一个正六边形的内角和是多少?答案:720°11. 已知等比数列的首项为2,公比为3,求第三项的值。

答案:1812. 一个圆的直径是14,求这个圆的面积。

答案:153.94(保留两位小数)13. 已知向量c = (1, -1),向量d = (2, 3),求向量c与向量d的叉积。

答案:-1三、解答题(每题16分,共40分)14. 解不等式:|x - 3| < 2。

解:首先,我们可以将不等式分为两部分来考虑:x - 3 < 2 以及 -(x - 3) < 2解得:x < 5 以及 x > 1因此,不等式的解集为 {x | 1 < x < 5}。

江苏省盐城市(新版)2024高考数学统编版真题(综合卷)完整试卷

江苏省盐城市(新版)2024高考数学统编版真题(综合卷)完整试卷

江苏省盐城市(新版)2024高考数学统编版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题过抛物线的焦点F的直线与抛物线在第一象限,第四象限分别交于A,B两点,若,则直线AB的倾斜角为()A.B.C.D.第(2)题已知双曲线的两条渐近线均和圆相切,且双曲线的右焦点为圆的圆心,则该双曲线的方程为A.B.C.D.第(3)题已知,,则()A.B.2C.6D.9第(4)题已知等比数列的各项均为正数,的前项和为,若,,则的值为()A.B.C.D.第(5)题设全集,集合,,则()A.B.C.D.第(6)题石拱桥是世界桥梁史上出现较早、形式优美、结构坚固的一种桥型.如图,这是一座石拱桥,桥洞弧线可近似看成是顶点在坐标原点,焦点在y轴负半轴上的抛物线C的一部分,当水距离拱顶4米时,水面的宽度是8米,则抛物线C的焦点到准线的距离是()A.1米B.2米C.4米D.8米第(7)题已知双曲线的左、右焦点分别为,,点M,N在双曲线C上,.若为等边三角形,且,则双曲线C的渐近线方程为()A.B.C.D.第(8)题执行如图所示的程序框图,则输出()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,则()A.B.C.D.第(2)题已知抛物线的焦点为F,点在C上,若(O为坐标原点),则()A.B.C.D.第(3)题如图,玻璃制成的长方体容器内部灌进一多半水后封闭,仅让底面棱BC位于水平地面上,将容器以BC为轴进行旋转,水面形成四边形EFGH,忽略容器壁厚,则()A.始终与水面EFGH平行B.四边形EFGH面积不变C.有水部分组成的几何体不可能是三棱柱D.AE+BF为定值三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知的内角A,B,C所对边的长分别为a,b,c,已知的面积S满足,则角A的值为______.第(2)题已知数列的通项公式为的通项公式为.记数列的前项和为,则______,的最小值为______.第(3)题已知,下列四种说法①在上单调递增;②在上单调递减;③的值域为;④的根有且只有一个.其中正确说法的序号为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题某农场更新技术培育了一批新型的“盆栽果树”,这种“盆栽果树”将一改陆地栽植果树只在秋季结果的特性,能够一年四季都有花、四季都结果.现为了了解果树的结果情况,从该批果树中随机抽取了容量为120的样本,测量这些果树的高度(单位:厘米),经统计将所有数据分组后得到如图所示的频率分布直方图.(1)求;(2)已知所抽取的样本来自两个实验基地,规定高度不低于40厘米的果树为“优品盆栽”,(i)请将图中列联表补充完整,并判断是否有的把握认为“优品盆栽”与两个实验基地有关?优品非优品合计基地60基地20合计(ii)用样本数据来估计这批果树的生长情况,若从该农场培育的这批“盆栽果树”中随机抽取4棵,求其中“优品盆栽”的棵树的分布列和数学期望.附:.第(2)题已知实数、、满足,求的最小值.第(3)题如图,在正四棱台中,,,是的中点.(1)求证:直线平面;(2)求直线与平面所成角的正弦值第(4)题记为等差数列的前n项和.已知,.(Ⅰ)求的通项公式;(Ⅱ)设.求数列的前n项和.第(5)题请在①,②,③三个条件中选择一个,补充在下面的问题中,所对的边分别是,已知_____.(1)求角;(2)若,点在边上,为的平分线,求边长的值.。

江苏数学高考试卷真题答案

江苏数学高考试卷真题答案

江苏数学高考试卷真题答案一、选择题(每题5分,共40分)1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。

A. 6B. 4C. 2D. 02. 若\( \sin \alpha = \frac{3}{5} \),且\( \alpha \)为锐角,求\( \cos \alpha \)的值。

A. \( \frac{4}{5} \)B. \( \frac{3}{4} \)C.\( \frac{1}{2} \) D. \( \frac{2}{3} \)3. 已知等差数列\( \{a_n\} \)的首项为1,公差为2,求第10项的值。

A. 19B. 21C. 23D. 254. 已知\( \triangle ABC \)的三边长分别为3, 4, 5,求\( \cos A \)的值。

A. \( \frac{3}{5} \)B. \( \frac{4}{5} \)C.\( \frac{1}{2} \) D. \( \frac{3}{4} \)5. 已知圆的方程为\( (x-2)^2 + (y-3)^2 = 9 \),求圆心到直线\( x + y - 5 = 0 \)的距离。

A. 1B. 2C. 3D. 46. 已知函数\( g(x) = \ln(x) \),求\( g(1) \)的值。

A. 0B. 1C. 2D. 37. 若\( \log_{10}100 = 2 \),求\( \log_{10}1000 \)的值。

A. 3B. 4C. 5D. 68. 已知\( \frac{1}{x} + \frac{1}{y} = 5 \),且\( xy = 6 \),求\( x + y \)的值。

A. 3B. 4C. 5D. 6二、填空题(每题4分,共24分)9. 已知\( a^2 + b^2 = 13 \),\( a + b = 5 \),求\( ab \)的值。

10. 若函数\( h(x) = x^3 - 3x^2 + 2 \),求\( h(2) \)的值。

(江苏专用)高考数学总复习 专题1.1 集合试题(含解析)-人教版高三全册数学试题

(江苏专用)高考数学总复习 专题1.1 集合试题(含解析)-人教版高三全册数学试题

专题1.1 集合【三年高考】1.【2017高考某某1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】集合的运算、元素的互异性【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误. (3)防X 空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.2.【2016高考某某1】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B . 【答案】{}1,2- 【解析】 试题分析:{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-【考点】集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难度不大.一要注意培养良好的答题习惯,避免出现粗心而出错,二是明确某某高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.2.【2015高考某某1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个. 【考点定位】集合运算3.【2014某某1】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂=. 【答案】{1,3}- 【解析】由题意得{1,3}AB =-.4.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=。

江苏省南京市(新版)2024高考数学苏教版真题(综合卷)完整试卷

江苏省南京市(新版)2024高考数学苏教版真题(综合卷)完整试卷

江苏省南京市(新版)2024高考数学苏教版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知复数z满足:,则的虚部等于()A.1B.C.D.第(2)题在数列的极限一节,课本中给出了计算由抛物线、轴以及直线所围成的曲边区域面积的一种方法:把区间平均分成份,在每一个小区间上作一个小矩形,使得每个矩形的左上端点都在抛物线上(如图),则当时,这些小矩形面积之和的极限就是.已知.利用此方法计算出的由曲线、轴以及直线所围成的曲边区域的面积为()A.B.C.D.第(3)题已知向量,,若与方向相反,则()A.54B.48C.D.第(4)题《九章算术·商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为,由该长方体斜解所得到的堑堵、阳马和鳖臑的体积分别为,,,则下列等式错误的是()A.B.C.D.第(5)题已知斜率为的直线与椭圆交于,两点,为坐标原点,以,为邻边作平行四边形,点恰好在上.若线段的中点在直线上,则直线的方程为()A.B.C.D.第(6)题已知实数,任取一点,则该点满足的概率是()A.B.C.D.第(7)题若数列满足,,且对任意的都有,则()A.B.C.D.第(8)题若实数,满足约束条件,则的最大值为()A.3B.7C.8D.10二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题给出下列说法,其中正确的是()A.若数据的方差为0,则此组数据的众数唯一B.已知一组数据3,4,7,9,10,11,11,13,则该组数据的第40百分位数为8C.一组样本数据的频率分布直方图是单峰的且形状是对称的,则该组数据的平均数和中位数应该大体上差不多D.经验回归直线恒过样本点的中心,且在回归直线上的样本点越多,拟合效果越好第(2)题积性函数指对于所有互质的整数和有的数论函数.则以下数论函数是积性函数的有()A.高斯函数表示不大于实数的最大整数B.最大公约数函数表示正整数与的最大公约数(是常数)C.幂次函数表示正整数质因数分解后含的幂次数(是常数)D.欧拉函数表示小于正整数的正整数中满足与互质的数的数目第(3)题如图,在正方体中,点M是棱上的动点(不含端点),则()A.过点M有且仅有一条直线与AB,都垂直B.有且仅有一个点M到AB,的距离相等C.过点M有且仅有一条直线与,都相交D.有且仅有一个点M满足平面平面三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知,关于的方程恰有三个不等实根,且函数的最小值是,则_______.第(2)题化简:__________.第(3)题已知向量满足,,的夹角为,则__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在四棱台中,底面为平行四边形,,侧棱底面为棱上的点..(1)求证:;(2)若为的中点,为棱上的点,且,求平面与平面所成角的余弦值.第(2)题在圆上任取一点,过点作轴的垂线段为垂足,线段上一点满足.记动点的轨迹为曲线(1)求曲线的方程;(2)设为原点,曲线与轴正半轴交于点,直线与曲线交于点,与轴交于点,直线与曲线交于点,与轴交于点,若,求证:直线经过定点.第(3)题已知数列的前项和,,且.数列满足,.(1)求数列,的通项公式;(2)将数列中的项按从小到大的顺序依次插入数列中,在任意的,之间插入项,从而构成一个新数列,求数列的前100项的和.第(4)题已知函数,.(1)若,直线l是的一条切线,求切线l的倾斜角的取值范围;(2)求证:对于恒成立.(参考数据:,,,,)第(5)题已知函数的一个极值点为.(1)求函数的极小值;(2)若函数,当时,,求实数的取值范围.。

2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)一、选择题1. 若函数f(x) = 2x^3 3x^2 + x + 1,则f'(1)的值为多少?A. 6B. 7C. 8D. 9答案:B解析:我们需要求出函数f(x)的导数f'(x)。

根据导数的定义,f'(x) = 6x^2 6x + 1。

将x = 1代入f'(x)中,得到f'(1) = 61^2 6 1 + 1 = 1。

因此,f'(1)的值为1,选项B正确。

2. 若直线y = kx + b与圆(x 2)^2 + (y 3)^2 = 25相切,则k的值是多少?A. 1/2B. 1C. 2D. 3答案:A解析:由于直线与圆相切,它们在切点处具有相同的斜率。

直线的斜率为k,圆的斜率可以通过求导得到。

对圆的方程求导,得到2(x 2) + 2(y 3)y' = 0。

在切点处,x和y的值满足圆的方程,因此可以解出y' = 1/2。

由于直线和圆在切点处斜率相同,所以k = 1/2。

因此,选项A正确。

3. 若等差数列{an}的前n项和为Sn,且a1 = 2,d = 3,则S10的值为多少?A. 155B. 165C. 175D. 185答案:C解析:等差数列的前n项和公式为Sn = n/2 (a1 + an)。

由于an = a1 + (n 1)d,代入a1 = 2和d = 3,得到an = 2 + 3(n 1)= 3n 1。

将an代入Sn的公式中,得到Sn = n/2 (2 + 3n 1) =n/2 (3n + 1)。

将n = 10代入,得到S10 = 10/2 (3 10 + 1) = 175。

因此,选项C正确。

4. 若函数f(x) = log2(x) + log2(x + 1),则f(1)的值为多少?A. 1B. 2C. 3D. 4答案:C解析:将x = 1代入函数f(x)中,得到f(1) = log2(1) +log2(1 + 1) = log2(1) + log2(2) = 0 + 1 = 1。

高考江苏数学试题及答案(word解析版)

高考江苏数学试题及答案(word解析版)

普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的体积公式:V sh =圆柱,其中s 为圆柱的表面积,h 为高.圆柱的侧面积公式:=S cl 圆柱,其中c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】已知集合{2134}A =--,,,,{123}B =-,,,则A B =_______.【答案】{13}-,【解析】由题意得{1,3}A B =-.(2)【2014年江苏,2,5分】已知复数2(52i)z =+(i 为虚数单位),则z 的实部为_______. 【答案】21【解析】由题意22(52i)25252i (2i)2120i z =+=+⨯⨯+=+,其实部为21. (3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n 的值是_______. 【答案】5【解析】本题实质上就是求不等式220n >的最小整数解.220n >整数解为5n ≥,因此输出的5n =. (4)【2014年江苏,4,5分】从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______. 【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==.(5)【2014年江苏,5,5分】已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为3π的交点,则ϕ的值是_______. 【答案】6π【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是________. 【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12VV 的值是_______. 【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.(9)【2014年江苏,9,5分】在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为________.【答案】255【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)3512d +⨯--==+,所求弦长为2292552245l r d =-=-=. (10)【2014年江苏,10,5分】已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是________.【答案】20⎛⎫- ⎪⎝⎭, 【解析】据题意222()10(1)(1)(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得20m -<<. (11)【2014年江苏,11,5分】在平面直角坐标系xOy 中,若曲线2b y ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是________. 【答案】3-【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得11a b =-⎧⎨=-⎩,所以2a b +=-.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的值是________.【答案】22【解析】由题意,14AP AD DP AD AB =+=+,3344BP BC CP BC CD AD AB =+=+=-, 所以13()()44AP BP AD AB AD AB ⋅=+⋅-2213216AD AD AB AB =-⋅-,即1322564216AD AB =-⋅-⨯,解得22AD AB ⋅=.(13)【2014年江苏,13,5分】已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是________.【答案】()102,【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大, 7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线 y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数 21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈. (14)【2014年江苏,14,5分】若ABC ∆的内角满足sin 2sin 2sin A B C +=,则cos C 的最小值是_______.【答案】62-【解析】由已知sin 22sin A B C =及正弦定理可得22a b c =,2222222()2cos 22a b a b a b cC ab ab++-+-==223222262262a b ab ab ab +---=,当且仅当2232a b =,即23a b =所以cos C 62- 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()2απ∈π,,5sin α=. (1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.解:(1)∵()5sin 2ααπ∈π,,,∴225cos 1sin αα=--=, ()210sin sin cos cos sin sin )444αααααπππ+=+=+=.(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,, ∴()()3314334cos 2cos cos2sin sin 2666525ααα5π5π5π+-=+=+⨯-=.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,, 的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC . 解:(1)∵D E ,为PC AC ,中点∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF .(2)∵D E ,为PC AC ,中点,∴132DE PA ==∵E F ,为AC AB ,中点,∴142EF BC ==,∴222DE EF DF +=,∴90DEF ∠=°,∴DE ⊥EF ,∵//DE PA PA AC ⊥,,∴DE AC ⊥, ∵AC EF E =,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF = (2)若1FC AB ⊥,求椭圆离心率e 的值. 解:(1)∵()4133C ,,∴22161999a b+=,∵22222BF b c a =+=,∴22(2)2a ==,∴21b =,∴椭圆方程为2212x y +=.(2)设焦点12(0)(0)()F c F c C x y -,,,,,,∵A C ,关于x 轴对称,∴()A x y -,,∵2B F A ,,三点共线,∴b yb c x +=--,即0bx cy bc --=①∵1FC AB ⊥,∴1yb xc c⋅=-+-,即20xc by c -+=②①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩ ∴()2222222a c bc C b c b c --, C 在椭圆上,∴()()222222222221a c bc b c b c a b--+=,化简得225c a =,∴5c a = 5. (18)【2014年江苏,18,16分】如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?. 解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0),直线BC 的斜率43BC k tan BCO =∠=--.又因为AB ⊥BC ,所以直线AB 的斜率34AB k =.设点B 的坐标为(a ,b ),则k BC =041703b a -=--, k AB =60304b a -=-,解得a =80,b=120.所以BC 22(17080)(0120)150-+-=.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60).由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=,由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤.故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠, 从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO =45,又因为AB ⊥BC ,所以BF =AFcos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m .(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =368053MD r MF OF OM d ===--所以68035dr -=.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤,故当d =10时,68035dr -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.(19)【2014年江苏,19,16分】已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明 你的结论.解:(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数.(2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤,∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1xx xm ---+-≤对(0)x ∈+∞,恒成立.令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立. ∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立,∴13m -≤. (3)'()e e x xf x -=-,当1x >时'()0f x >∴()f x 在(1)+∞,上单调增,令3()(3)h x a x x =-+,'()3(1)h x ax x =--,∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减,∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2ef a =+<,即()11e 2e a >+. ∵e-1e 111ln ln ln e (e 1)ln 1e a a a a a a ---=-=--+,设()(e 1)ln 1m a a a =--+,则e 1e 1'()1a m a a a---=-=,()11e 2e a >+.当()11e e 12ea +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减,因此()m a 至多有两个零点,而(1)(e)0m m ==,∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2ea +<<时,()0m a <,e 11e a a -->;当e a =时,()0m a =,e 11e a a --=. (20)【2014年江苏,20,16分】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立. 解:(1)当2n ≥时,111222n n n n n n a S S ---=-=-=,当1n =时,112a S ==,∴1n =时,11S a =,当2n ≥时,1n n S a +=,∴{}n a 是“H 数列”.(2)1(1)(1)22n n n n n S na d n d --=+=+,对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+-, 取2n =得1(1)d m d +=-,12m d=+,∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-.(3)设{}n a 的公差为d ,令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=-,1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+,则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列. {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+. 当1n =时1m =;当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N .因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N ,即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立, 即{}n c 为“H 数列”,因此命题得证.数学Ⅱ【选做】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、 D是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .解:因为B ,C 是圆O 上的两点,所以OB =OC .故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D .因此∠OCB =∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,若A α=B α,求x y ,的值.解:222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=,. (21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为21222x t y t ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24y x =交于A B ,两点,求线段AB 的长. 解:直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+=,∴交点(12)A ,,(96)B -,,故||82AB =. (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知0x >,0y >,证明:()()22119x y x y xy ++++≥. 解:因为x >0, y >0, 所以1+x +y 2≥2330xy >,1+x 2+y ≥2330x y >,所以(1+x +y 2)( 1+x 2+y )≥223333xy x y ⋅=9xy . 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,, 中的最大数,求X 的概率分布和数学期望()E X .解:(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况,∴取出的2个球颜色相同的概率1053618P ==.(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X ===;3131453639C C C C 13(3)C 63P X +===; 11(2)1(3)(4)14P X P X P X ==-=-==.∴X 的概率分布列为:注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷只有解答题,供理工方向考生使用.本试,21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=.(23)【2014年江苏,23,10分】已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()1444n n nf f -πππ+=成立.解:(1)由已知,得102sin cos sin ()()x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭, 于是21223cos sin sin 2cos 2sin ()()x x x x xf x f x x x x x x ''⎛⎫⎛⎫'==-=--+⎪ ⎪⎝⎭⎝⎭,所以12234216(),()22f f πππππ=-=-+, 故122()()1222f f πππ+=-.(2)由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得122()()sin sin()f x xf x x x π+=-=+, 2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.(i )当n =1时,由上可知等式成立.(ii )假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+n ∈*N ).。

江苏省苏州市(新版)2024高考数学苏教版考试(综合卷)完整试卷

江苏省苏州市(新版)2024高考数学苏教版考试(综合卷)完整试卷

江苏省苏州市(新版)2024高考数学苏教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知,则().A.B.C.2D.1第(2)题已知等差数列中,,,则等于()A.15B.30C.31D.64第(3)题已知为虚数单位,复数满足,则()A.B.C.D.第(4)题已知向量,,,若,则()A.B.C.D.第(5)题有一笔资金,如果存银行,那么收益预计为2万.该笔资金也可以做房产投资或商业投资,投资和市场密切相关,根据调研,发现市场的向上、平稳、下跌的概率分别为0.2、0.7、0.1.据此判断房产投资的收益和商业投资的收益的分布分别为,,则从数学的角度来看,该笔资金如何处理较好()A.存银行B.房产投资C.商业投资D.房产投资和商业投资均可第(6)题已知全集为U,集合M,N满足,则下列运算结果一定为U的是()A.B.C.D.第(7)题已知等差数列中,,前5项的和满足,则公差取值范围为()A.B.C.D.第(8)题在锐角中,角A,B,C所对的边分别为a,b,c.已知,则的取值范围是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题关于直线与圆,下列说法正确的是()A.若直线l与圆C相切,则为定值B.若,则直线l被圆C截得的弦长为定值C.若,则直线l与圆C相离D.是直线l与圆C有公共点的充分不必要条件第(2)题已知函数,则下列结论正确的是()A.是周期函数B.是奇函数C.的图象关于直线对称D.在处取得最大值第(3)题已知a,b,c满足c<a<b,且ac<0,那么下列各式中一定成立的是()A.ac(a-c)>0B.c(b-a)<0C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知数列的前项和为(),且满足,若对恒成立,则首项的取值范围是__________.第(2)题已知函数,函数有三个零点,则实数的取值范围为__________.第(3)题已知实数,函数在上单调递增,则实数的取值范围是_________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题今年5月11日,国新办举行新闻发布会,介绍第七次全国人口普查主要数据结果,会上通报,全国人口共141178万人,与2010年的133972万人相比,增加了7206万人,增长5.38%,年平均增长率为0.53%.如图是我国历次人口普查全国人口(单位:亿人)及年均增长率.(1)由图中数据,计算从2000年到2010年十年间全国人口的年平均增长率(精确到0.01%);并根据历次人口普查数据指出全国人口数量的变化趋势;(2)假设从2020年起,每十年的年平均增长率是一个等差数列,公差为,试根据图中数据计算从2040年到2050年这十年间全国人口的增加量.(精确到万人)第(2)题已知椭圆的标准方程为,椭圆上的点到其两焦点的距离之和为.(1)求椭圆的标准方程;(2)若椭圆的上顶点,、为椭圆上不同于点的两点,且满足直线、的斜率之积为,证明:直线恒过定点,并求定点的坐标.第(3)题坐位体前屈是中小学体质健康测试项目,主要测试学生躯干、腰、髋等部位关节韧带和肌肉的伸展性、弹性及身体柔韧性,在对某高中1500名高三年级学生的坐位体前屈成绩的调查中,采用按学生性别比例分配的分层随机抽样抽取100人,已知这1500名高三年级学生中男生有900人,且抽取的样本中男生的平均数和方差分别为13.2cm和13.36,女生的平均数和方差分别为15.2cm 和17.56.(1)求抽取的总样本的平均数;(2)试估计高三年级全体学生的坐位体前屈成绩的方差.参考公式:总体分为2层,分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:,,,,,.记总样本的平均数为,样本方差为,第(4)题已知函数,.(1)求函数y=f(x)图象的对称轴方程;(2)求函数h(x)=f(x)+g(x)的最小正周期和值域.第(5)题等差数列的首项,且满足,数列满足.(1)求数列的通项公式;(2)设数列的前项和是,求.。

江苏省南京市(新版)2024高考数学统编版真题(提分卷)完整试卷

江苏省南京市(新版)2024高考数学统编版真题(提分卷)完整试卷

江苏省南京市(新版)2024高考数学统编版真题(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知(为虚数单位),则()A.B.C.D.第(2)题在的展开式中,项的系数为( )A.B.C.30D.50第(3)题设集合,则()A.B.C.D.第(4)题已知函数,则函数在上的所有零点之和为A.B.C.D.第(5)题已知全集为,则有()A.B.C.D.第(6)题若实数,满足约束条件,则的最大值为()A.-1B.-3C.3D.5第(7)题等比数列的历史由来已久,我国古代数学文献《孙子算经》、《九章算术》、《算法统宗》中都有相关问题的记载.现在我们不仅可以通过代数计算来研究等比数列,还可以构造出等比数列的图象,从图形的角度更为直观的认识它.以前n项和为,且,的等比数列为例,先画出直线OQ:,并确定x轴上一点,过点作y轴的平行线,交直线OQ于点,则.再过点作平行于x轴,长度等于的线段,……,不断重复上述步骤,可以得到点列,和.下列说法错误的是()A.B.C.点的坐标为D.第(8)题已知等差数列的前项和为,若,,且,则数列的前2024项和为()A.2023B.2024C.4046D.4048二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知点在线段上,是的角平分线,为上一点,且满足,设,下列说法正确的是()A.点的轨迹是双曲线B.是三角形的内心C.D.在上的投影向量为第(2)题如图,在矩形中,,,为中点,现分别沿、将、翻折,使点、重合,记为点,翻折后得到三棱锥,则()A.B.三棱锥的体积为C.直线与平面所成角的大小为D.三棱锥外接球的半径为第(3)题下列有关回归分析的结论中,正确的有()A.在样本数据中,根据最小二乘法求得线性回归方程为,去除一个样本点后,得到的新线性回归方程一定会发生改变B.具有相关关系的两个变量的相关系数为那么越大,之间的线性相关程度越强C.若散点图中的散点均落在一条斜率非的直线上,则决定系数D.在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合精度越高三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知直线:,:.若,则___________,此时与之间的距离为___________.第(2)题已知曲线的焦距为8,则___________.第(3)题已知函数,则函数的最大值与最小值的差是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知,.(1)求在处的切线方程;(2)求证:对于和,且,都有;(3)请将(2)中的命题推广到一般形式,井用数学归纳法证明你所推广的命题.第(2)题已知分别为双曲线的左,右焦点,点在上,且双曲线的渐近线与圆相切.(1)求双曲线的方程;(2)若过点且斜率为的直线交双曲线的右支于两点,为轴上一点,满足,试问是否为定值?若是,求出该定值;若不是,请说明理由.第(3)题已知函数.(1)若不等式有解,求实数的取值范围;(2)若有两个不同的零点,证明:.第(4)题已知.(1)若,求函数的单调区间和极值;(2)若对都有成立,求实数a的取值范围.第(5)题已知函数有两个零点.(1)求实数的取值范围;(2)设、是的两个零点,求证:.。

高考数学试卷(含答案解析)

高考数学试卷(含答案解析)

江苏省高考数学试卷一.填空题1.(5分)已知集合A={1, 2}, B={a, a2+3}.若A∩B={1}, 则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为, 则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.8.(5分)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=.10.(5分)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f (a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n ∈R), 则m+n=.13.(5分)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f (x)=, 其中集合D={x|x=, n∈N*}, 则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD上, 且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx, sinx), =(3, ﹣), x∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为, 两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.18.(16分)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中, l 的一端置于点E 处, 另一端置于侧棱GG 1上, 求l 没入水中部分的长度.19.(16分)对于给定的正整数k, 若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立, 则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”, 又是“P (3)数列”, 证明:{a n }是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0, b∈R)有极值, 且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a的取值范围.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd≤8.【必做题】25.如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)(2020•江苏)已知集合A={1, 2}, B={a, a2+3}.若A∩B={1}, 则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1, 2}, B={a, a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法, 是基础题, 解题时要认真审题, 注意交集定义及性质的合理运用.2.(5分)(2020•江苏)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z 的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式, 考查了推理能力与计算能力, 属于基础题.3.(5分)(2020•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为, 再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件, 而抽取60辆进行检验, 抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致, 按照一定的比例, 即样本容量和总体容量的比值, 在各层中进行抽取.4.(5分)(2020•江苏)如图是一个算法流程图:若输入x的值为, 则输出y 的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=, 不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图, 模拟程序是解决此类问题的常用方法, 注意解题方法的积累, 属于基础题.5.(5分)(2020•江苏)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式, 属于基础题6.(5分)(2020•江苏)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.【分析】设出球的半径, 求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R, 则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法, 考查空间想象能力以及计算能力.7.(5分)(2020•江苏)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.【分析】求出函数的定义域, 结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0, 得﹣2≤x≤3,则D=[﹣2, 3],则在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算, 结合函数的定义域求出D, 以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2020•江苏)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程, 得到P, Q坐标, 求出焦点坐标, 然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=, 双曲线渐近线方程为:y=x, 所以P(, ), Q(, ﹣), F1(﹣2, 0).F2(2, 0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用, 考查计算能力.9.(5分)(2020•江苏)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=32.【分析】设等比数列{a n}的公比为q≠1, S3=, S6=, 可得=,=, 联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=, S6=, ∴=, =,解得a1=, q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式, 考查了推理能力与计算能力, 属于中档题.10.(5分)(2020•江苏)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x, 利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用, 考查了推理能力与计算能力, 属于基础题.11.(5分)(2020•江苏)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1, ] .【分析】求出f(x)的导数, 由基本不等式和二次函数的性质, 可得f(x)在R上递增;再由奇偶性的定义, 可得f(x)为奇函数, 原不等式即为2a2≤1﹣a, 运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1, ].【点评】本题考查函数的单调性和奇偶性的判断和应用, 注意运用导数和定义法, 考查转化思想的运用和二次不等式的解法, 考查运算能力, 属于中档题.12.(5分)(2020•江苏)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n∈R), 则m+n=3.【分析】如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.可得cosα=, sinα=.C.可得cos(α+45°)=.sin (α+45°)=.B.利用=m+n(m, n∈R), 即可得出.【解答】解:如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.∴cosα=, sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m, n∈R),∴=m﹣n, =0+n,解得n=, m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式, 考查了推理能力与计算能力, 属于中档题.13.(5分)(2020•江苏)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是[﹣5, 1] .【分析】根据题意, 设P(x0, y0), 由数量积的坐标计算公式化简变形可得2x0+y0+5≤0, 分析可得其表示表示直线2x+y+5≤0以及直线下方的区域, 联立直线与圆的方程可得交点的横坐标, 结合图形分析可得答案.【解答】解:根据题意, 设P(x0, y0), 则有x02+y02=50,=(﹣12﹣x0, ﹣y0)•(﹣x0, 6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0, 表示直线2x+y+5≤0以及直线下方的区域,联立, 解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5, 1],故答案为:[﹣5, 1].【点评】本题考查数量积的运算以及直线与圆的位置关系, 关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2020•江苏)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f(x)=, 其中集合D={x|x=, n∈N*}, 则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f (x)=, 其中集合D={x|x=, n∈N*}, 分析f(x)的图象与y=lgx 图象交点的个数, 进而可得答案.【解答】解:∵在区间[0, 1)上, f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1, 2)上, f(x)=, 此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2, 3)上, f(x)的图象与y=lgx有且只有一个交点;区间[3, 4)上, f(x)的图象与y=lgx有且只有一个交点;区间[4, 5)上, f(x)的图象与y=lgx有且只有一个交点;区间[5, 6)上, f(x)的图象与y=lgx有且只有一个交点;区间[6, 7)上, f(x)的图象与y=lgx有且只有一个交点;区间[7, 8)上, f(x)的图象与y=lgx有且只有一个交点;区间[8, 9)上, f(x)的图象与y=lgx有且只有一个交点;在区间[9, +∞)上, f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断, 函数的图象和性质, 转化思想, 难度中档.二.解答题15.(14分)(2020•江苏)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD上, 且EF ⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G, 连结FG、EG使得FG∥BC, 则EG∥AC, 利用线面垂直的性质定理可知FG⊥AD, 结合线面垂直的判定定理可知AD⊥平面EFG, 从而可得结论.【解答】证明:(1)因为AB⊥AD, EF⊥AD, 且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC, AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G, 连结FG、EG使得FG∥BC, 则EG∥AC,因为BC⊥BD, 所以FG∥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD, 所以FG⊥AD,又因为AD⊥EF, 且EF∩FG=F,所以AD⊥平面EFG, 所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定, 考查空间想象能力, 考查转化思想, 涉及线面平行判定定理, 线面垂直的性质及判定定理, 注意解题方法的积累, 属于中档题.16.(14分)(2020•江苏)已知向量=(cosx, sinx), =(3, ﹣), x∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣, 问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx, sinx), =(3, ﹣), ∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0, π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0, π],∴x+∈[, ],∴﹣1≤cos(x+)≤,当x=0时, f(x)有最大值, 最大值3,当x=时, f(x)有最小值, 最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质, 属于基础题17.(14分)(2020•江苏)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为, 两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c, 由椭圆的准线方程x=±, 则2×=8, 即可求得a和c的值, 则b2=a2﹣c2=3, 即可求得椭圆方程;(2)设P点坐标, 分别求得直线PF2的斜率及直线PF1的斜率, 则即可求得l2及l1的斜率及方程, 联立求得Q点坐标, 由Q在椭圆方程, 求得y02=x02﹣1, 联立即可求得P点坐标;方法二:设P(m, n), 当m≠1时, =, =, 求得直线l1及l1的方程, 联立求得Q点坐标, 根据对称性可得=±n2, 联立椭圆方程, 即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==, 则a=2c, ①椭圆的准线方程x=±, 由2×=8, ②由①②解得:a=2, c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x0, y0), 则直线PF2的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x﹣1),直线PF1的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x+1),联立, 解得:, 则Q(﹣x0, ),由P, Q在椭圆上, P, Q的横坐标互为相反数, 纵坐标应相等, 则y0=, ∴y02=x02﹣1,则, 解得:, 则,又P在第一象限, 所以P的坐标为:P(, ).方法二:设P(m, n), 由P在第一象限, 则m>0, n>0,当m=1时, 不存在, 解得:Q与F1重合, 不满足题意,当m≠1时, =, =,由l1⊥PF1, l2⊥PF2, 则=﹣, =﹣,直线l1的方程y=﹣(x+1), ①直线l2的方程y=﹣(x﹣1), ②联立解得:x=﹣m, 则Q(﹣m, ),由Q在椭圆方程, 由对称性可得:=±n2,即m2﹣n2=1, 或m2+n2=1,由P(m, n), 在椭圆方程, , 解得:, 或,无解,又P在第一象限, 所以P的坐标为:P(, ).【点评】本题考查椭圆的标准方程, 直线与椭圆的位置关系, 考查直线的斜率公式, 考查数形结合思想, 考查计算能力, 属于中档题.18.(16分)(2020•江苏)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l 没入水中部分的长度;(2)将l放在容器Ⅱ中, l的一端置于点E处, 另一端置于侧棱GG1上, 求l 没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N, 过N作NP∥MC, 交AC于点P, 推导出CC1⊥平面ABCD, CC1⊥AC, NP⊥AC, 求出MC=30cm, 推导出△ANP∽△AMC, 由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N, 过点N作NP⊥EG, 交EG于点P, 过点E作EQ⊥E1G1, 交E1G1于点Q, 推导出EE1G1G为等腰梯形, 求出E1Q=24cm, E1E=40cm, 由正弦定理求出sin∠GEM=, 由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N,在平面ACM中, 过N作NP∥MC, 交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱, ∴CC1⊥平面ABCD,又∵AC⊂平面ABCD, ∴CC1⊥AC, ∴NP⊥AC,∴NP=12cm, 且AM2=AC2+MC2, 解得MC=30cm,∵NP∥MC, ∴△ANP∽△AMC,∴=, , 得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N,在平面E1EGG1中, 过点N作NP⊥EG, 交EG于点P,过点E作EQ⊥E1G1, 交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台, ∴EE1=GG1, EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形, 画出平面E1EGG1的平面图,∵E1G1=62cm, EG=14cm, EQ=32cm, NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=, sin∠EGM=sin∠EE1G1=, cos,根据正弦定理得:=, ∴sin, cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=, ∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l 没入水中部分的长度的求法, 考查空间中线线、线面、面面间的位置关系等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.19.(16分)(2020•江苏)对于给定的正整数k, 若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立, 则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”, 又是“P (3)数列”, 证明:{a n }是等差数列.【分析】(1)由题意可知根据等差数列的性质, a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n , 根据“P (k )数列”的定义, 可得数列{a n }是“P (3)数列”;(2)由“P (k )数列”的定义, 则a n ﹣2+a n ﹣1+a n +1+a n +2=4a n , a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n , 变形整理即可求得2a n =a n ﹣1+a n +1, 即可证明数列{a n }是等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1, 公差为d, 则a n =a 1+(n ﹣1)d,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(2)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n, ①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n, ②+a n﹣2+a n+a n+1=4a n﹣1, ③由①可知:a n﹣3a n﹣1+a n+a n+2+a n+3=4a n+1, ④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【点评】本题考查等差数列的性质, 考查数列的新定义的性质, 考查数列的运算, 考查转化思想, 属于中档题.20.(16分)(2020•江苏)已知函数f(x)=x3+ax2+bx+1(a>0, b∈R)有极值, 且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b, 进而再求导可知g′(x)=6x+2a, 通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣, 从而f(﹣)=0, 整理可知b=+(a>0), 结合f(x)=x3+ax2+bx+1(a>0, b∈R)有极值可知f′(x)=0有两个不等的实根, 进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27), 结合a>3可知h(a)>0, 从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣, 利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2, 进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣, 因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b, g′(x)=6x+2a,令g′(x)=0, 解得x=﹣.由于当x>﹣时g′(x)>0, g(x)=f′(x)单调递增;当x<﹣时g′(x)<0, g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0, 即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0, b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0, 即a2﹣+>0, 解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3, 所以h(a)>0, 即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1, x2是y=f(x)的两个极值点, 则x1+x2=, x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x), f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3, 所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0, 解得a≤6,所以a的取值范围是(3, 6].【点评】本题考查利用导数研究函数的单调性、极值, 考查运算求解能力, 考查转化思想, 注意解题方法的积累, 属于难题.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2020•江苏)如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP ⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB, 即可证明.【解答】证明:(1)∵直线PC切半圆O于点C, ∴∠ACP=∠ABC.∵AB为半圆O的直径, ∴∠ACB=90°.∵AP⊥PC, ∴∠APC=90°.∴∠PAC=90°﹣∠ACP, ∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理, 考查了推理能力与计算能力, 属于中档题.[选修4-2:矩阵与变换]22.(2020•江苏)已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律, 代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x, y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0, y0),则=, 即x0=2y, y0=x,∴x=y0, y=,∴, 即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换, 属于中档题.[选修4-4:坐标系与参数方程]23.(2020•江苏)在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程, 代入距离公式化简得出距离d关于参数s 的函数, 从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时, d取得最小值=.【点评】本题考查了参数方程的应用, 属于基础题.[选修4-5:不等式选讲]24.(2020•江苏)已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd ≤8.【分析】a2+b2=4, c2+d2=16, 令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.代入ac+bd化简, 利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2), 即可得出.【解答】证明:∵a2+b2=4, c2+d2=16,令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64, 当且仅当时取等号.∴﹣8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质, 考查了推理能力与计算能力, 属于中档题.【必做题】26.(2020•江苏)已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球, 则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P(), 由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为, …, , P(x=)=, k=n, n+1, n+2, …, n+m, 从而E(X)=()=, 由此能证明E (X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为, …, ,P(x=)=, k=n, n+1, n+2, …, n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率的求法, 考查离散型随机变量的分布列、数学期望等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.25.(2020•江苏)如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内, 过A作Ax⊥AD, 由AA1⊥平面ABCD, 可得AA1⊥Ax, AA1⊥AD, 以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A, B, C, D, A1, C1的坐标, 进一步求出, , , 的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量, 再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值, 进一步得到正弦值.【解答】解:在平面ABCD内, 过A作Ax⊥AD,∵AA1⊥平面ABCD, AD、Ax⊂平面ABCD,∴AA1⊥Ax, AA1⊥AD,以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2, AA1=, ∠BAD=120°,∴A(0, 0, 0), B(), C(, 1, 0),D(0, 2, 0),A1(0, 0, ), C1().=(), =(), , .(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由, 得, 取x=, 得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为, 则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角, 训练了利用空间向量求空间角, 是中档题.。

2022新高考数学(江苏专用)总复习训练-函数的单调性与最值-含解析

2022新高考数学(江苏专用)总复习训练-函数的单调性与最值-含解析

[A 级 基础练]1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3xC .f (x )=-1x +1 D .f (x )=-|x |解析:选C.当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.函数f (x )=-x +1x 在⎣⎡⎦⎤-2,-13上的最大值是( ) A.32 B .-83C .-2D .2解析:选A.函数f (x )=-x +1x 的导数为f ′(x )=-1-1x 2,则f ′(x )<0,可得f (x )在⎣⎡⎦⎤-2,-13上单调递减,即f (-2)为最大值,且为2-12=32.3.(2020·无锡模拟)若函数y =2-xx +1,x ∈(m ,n ]的最小值为0,则m 的取值范围是( )A .(1,2)B .(-1,2)C .[1,2)D .[-1,2)解析:选D.因为函数y =2-x x +1=3-(x +1)x +1=3x +1-1在区间(-1,+∞)上是减函数,且f (2)=0,所以n =2.根据题意,x ∈(m ,n ]时,y min =0.所以m 的取值范围是[-1,2).4.已知函数f (x )是R 上的增函数,对实数a ,b ,若a +b >0,则有( )A .f (a )+f (b )>f (-a )+f (-b )B .f (a )+f (b )<f (-a )+f (-b )C .f (a )-f (b )>f (-a )-f (-b )D .f (a )-f (b )<f (-a )-f (-b )解析:选A.因为a +b >0,所以a >-b ,b >-a .所以f (a )>f (-b ),f (b )>f (-a ),结合选项,可知选A.5.(多选)已知f (x )是定义在[0,+∞)上的函数,根据下列条件,可以断定f (x )是增函数的是( )A .对任意x ≥0,都有f (x +1)>f (x )B .对任意x 1,x 2∈[0,+∞),且x 1≥x 2,都有f (x 1)≥f (x 2)C .对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0D .对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0解析:选CD.根据题意,依次分析选项:对于选项A ,对任意x ≥0,都有f (x +1)>f (x ),不满足函数单调性的定义,不符合题意;对于选项B ,当f (x )为常数函数时,对任意x 1,x 2∈[0,+∞),都有f (x 1)=f (x 2),不是增函数,不符合题意;对于选项C ,对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0,符合题意;对于选项D ,对任意x 1,x 2∈[0,+∞),设x 1>x 2,若f (x 1)-f (x 2)x 1-x 2>0,必有f (x 1)-f (x 2)>0,则函数在[0,+∞)上为增函数,符合题意.6.函数f (x )=|x -2|x 的单调递减区间是________.解析:由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象(图略)可知函数的单调递减区间是[1,2].答案:[1,2]7.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是________.解析:当a =0时,f (x )=2x -3在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是⎣⎡⎦⎤-14,0. 答案:⎣⎡⎦⎤-14,0 8.已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),则实数a 的取值范围为________.解析:因为f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),所以⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23.答案:⎝⎛⎭⎫0,23 9.求下列函数的值域. (1)f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x ,x >1;(2)y =x -x . 解:(1)当x <1时,x 2-x +1=⎝⎛⎭⎫x -122+34≥34;当x >1时,0<1x<1.因此函数f (x )的值域是(0,+∞).(2)y =x -x =⎝⎛⎭⎫x -122-14≥-14,所以函数y 的值域为⎣⎡⎭⎫-14,+∞. 10.已知函数f (x )=x +2x.(1)写出函数f (x )的定义域和值域;(2)证明:函数f (x )在(0,+∞)上为单调递减函数,并求f (x )在x ∈[2,8]上的最大值和最小值.解:(1)函数f (x )的定义域为{x |x ≠0}.又f (x )=1+2x,所以值域为{y |y ≠1}.(2)由题意可设0<x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫1+2x 1-⎝⎛⎭⎫1+2x 2=2x 1-2x 2=2(x 2-x 1)x 1x 2.又0<x 1<x 2,所以x 1x 2>0,x 2-x 1>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以函数f (x )在(0,+∞)上为单调递减函数.在x ∈[2,8]上,f (x )的最大值为f (2)=2,最小值为f (8)=54.[B 级 综合练]11.已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( )A .sgn[g (x )]=sgn xB .sgn[g (x )]=-sgn xC .sgn[g (x )]=sgn[f (x )]D .sgn[g (x )]=-sgn[f (x )]解析:选B.因为f (x )是R 上的增函数,且a >1,所以当x >0时,f (x )<f (ax ),即g (x )<0;当x =0时,f (x )=f (ax ),即g (x )=0;当x <0时,f (x )>f (ax ),即g (x )>0.由符号函数sgn x =⎩⎨⎧1,x >0,0,x =0,-1,x <0知,sgn [g (x )]=⎩⎨⎧-1,x >0,0,x =0,1,x <0=-sgn x . 12.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0,若f (0)是f (x )的最小值,则实数a 的取值范围为________.解析:因为当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,所以a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2,所以实数a 的取值范围是0≤a ≤2.答案:[0,2]13.已知函数f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求实数a 的取值范围. 解:(1)证明:设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)上单调递增. (2)设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1.综上所述,实数a 的取值范围为(0,1].14.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈()0,+∞,且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间()0,+∞上是单调递减函数.(3)因为f (x )在(0,+∞)上是单调递减函数,所以f (x )在[2,9]上的最小值为f (9),由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.所以f (x )在[2,9]上的最小值为-2.[C 级 创新练]15.(多选)对于实数x ,符号[x ]表示不超过x 的最大整数,例如[π]=3,[-1.08]=-2,定义函数f (x )=x -[x ],则下列命题中正确的是( )A .f (-3.9)=f (4.1)B .函数f (x )的最大值为1C .函数f (x )的最小值为0D .方程f (x )-12=0有无数个根解析:选ACD.根据符号[x ]的意义,讨论当自变量x 取不同范围时函数f (x )=x -[x ]的解析式:当-1≤x <0时,[x ]=-1,则f (x )=x -[x ]=x +1;当0≤x <1时,[x ]=0,则f (x )=x -[x ]=x ;当1≤x <2时,[x ]=1,则f (x )=x -[x ]=x -1;当2≤x <3时,[x ]=2,则f (x )=x -[x ]=x -2.画函数f (x )=x -[x ]的图象如图所示:根据定义可知,f (-3.9)=-3.9-(-4)=0.1,f (4.1)=4.1-4=0.1,即f (-3.9)=f (4.1),所以A 正确;从图象可知,函数f (x )=x -[x ]最高点处取不到,所以B 错误;函数图象最低点处函数值为0,所以C 正确;从图象可知y =f (x )与y =12的图象有无数个交点,即f (x )=12有无数个根,所以D 正确.故选ACD.16.已知a ≥3,函数F (x )=min{2|x -1|,x 2-2ax +4a -2},其中min{p ,q }=⎩⎪⎨⎪⎧p ,p ≤q ,q ,p >q .(1)求使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围; (2)求F (x )的最小值m (a ).解:(1)由于a ≥3,故当x ≤1时,x 2-2ax +4a -2-2|x -1|=x 2+2(a -1)(2-x )>0, 当x >1时,x 2-2ax +4a -2-2|x -1|=(x -2)(x -2a ). 由(x -2)(x -2a )≤0得2≤x ≤2a .所以使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围为[2,2a ].(2)设函数f (x )=2|x -1|,g (x )=x 2-2ax +4a -2,则f (x )min =f (1)=0,g (x )min =g (a )=-a 2+4a -2,所以由F (x )的定义知m (a )=min{f (1),g (a )},即m (a )=⎩⎪⎨⎪⎧0,3≤a ≤2+2,-a 2+4a -2,a >2+ 2.。

2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)

2022年江苏省高考数学试卷(新高考I)(含答案)一、选择题(每小题5分,共60分)1. 若函数f(x) = x² 4x + 3的图像开口向上,则f(x)的对称轴为( )A. x = 2B. x = 2C. x = 1D. x = 12. 已知等差数列{an}的前n项和为Sn,若S4 = 20,则a3的值为( )A. 5B. 6C. 7D. 83. 若点A(2, 3)关于直线y = x的对称点为B,则点B的坐标为( )A. (2, 3)B. (3, 2)C. (3, 2)D. (2, 3)4. 已知函数f(x) = log₂(x 1),则f(2)的值为( )A. 0B. 1C. 2D. 35. 若三角形ABC的边长分别为a, b, c,且满足a² + b² = c²,则三角形ABC是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 钝角三角形6. 已知复数z = 2 + 3i,则|z|的值为( )A. 1B. 2C. 3D. 47. 若函数f(x) = ax² + bx + c在x = 1时取得最小值,则a的值为( )A. 正数B. 负数C. 零D. 无法确定8. 已知集合A = {x | x > 2},B = {x | x < 5},则A∩B表示( )A. x > 2 且 x < 5B. x > 2 或 x < 5C. x ≤ 2 且x ≥ 5D. x ≤ 2 或x ≥ 59. 若直线y = mx + b与x轴的交点为(1, 0),则m的值为( )A. 1B. 1C. 0D. 无法确定10. 已知等比数列{an}的首项为1,公比为2,则a5的值为( )A. 16B. 8C. 4D. 2二、填空题(每空5分,共20分)1. 若函数f(x) = x³ 3x² + 2x 1的图像在x = 1时取得极值,则f(1)的值为______。

江苏省数学高考复习资料

江苏省数学高考复习资料

江苏省数学高考复习资料江苏省数学高考复习资料江苏省数学高考是每年高中生们备战的重要考试之一。

为了取得好成绩,在复习阶段,选择合适的资料是非常重要的。

本文将介绍一些常用的江苏省数学高考复习资料,帮助同学们更好地备考。

一、教材复习教材是学生们学习数学的基础,也是高考复习的重要参考资料。

江苏省数学高考参考教材主要有《高中数学》和《高中数学考试专题复习与训练》。

同学们可以根据教材的章节顺序进行复习,重点掌握每个知识点的定义、性质和解题方法。

二、习题集习题集是巩固知识、提高解题能力的重要工具。

江苏省数学高考习题集有很多种,比如《江苏省高考数学试题解析与讲评》、《江苏省高考数学历年真题分类解析》等。

同学们可以选择适合自己的习题集,按照章节顺序进行练习,同时可以参考习题集中的解析,找出解题思路和方法。

三、模拟试卷模拟试卷是检验自己复习效果的重要方式。

江苏省数学高考模拟试卷可以选择《江苏省高考数学模拟试卷》等。

同学们可以在规定时间内完成试卷,然后对照答案进行自我评估。

通过模拟试卷的练习,可以提高解题速度和应对高考压力的能力。

四、名师讲义名师讲义是一些经验丰富的老师根据多年的教学经验总结出的复习资料。

江苏省数学高考名师讲义可以选择《江苏省高考数学名师讲义》等。

这些讲义通常包含了高考的重点知识点、经典题型和解题技巧,对于同学们理解和掌握数学知识非常有帮助。

五、网络资源在互联网时代,网络资源也成为了同学们备考的重要利器。

江苏省数学高考的网络资源有很多,比如一些知名教育网站上提供的高考数学复习资料、视频讲解等。

同学们可以根据自己的需求选择合适的网络资源进行学习和复习。

六、题目解析在复习过程中,同学们遇到难题时可以参考一些题目解析。

江苏省数学高考的题目解析可以选择《江苏省高考数学试题解析与讲评》等。

通过阅读题目解析,可以了解题目的解题思路和解题方法,提高解题能力。

七、辅导书籍除了教材和习题集外,一些辅导书籍也可以作为复习的参考资料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2017年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上1.已知集合{}=1,2A ,{}=+2,3B a a ,若A B I ={1}则实数a 的值为________2.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.4.右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 .5.若tan 1-=46πα⎛⎫ ⎪⎝⎭,则tan α= .6.如图,在圆柱O1 O2内有一个球O,该球与圆柱的上、下底面及母线均相切。

记圆柱O1 O2的体积为V1 ,球O的体积为V2,则12VV的值是7.记函数2()6f x x x=+-的定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是8.在平面直角坐标系xoy中,双曲线2213xy-=的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1 , F2 ,则四边形F1 P F2 Q的面积是9.等比数列{}n a的各项均为实数,其前n项的和为S n,已知36763,44S S==,则8a=10.某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费之和最小,则x的值是11.已知函数()3xx12x+e-e-f x=x,其中e是自然数对数的底数,若()()2a-1+2a≤f f0,则实数a的取值范围是。

12.如图,在同一个平面内,向量OAu u r,OBu u r,OCu u r,的模分别为1,1,2OAu u r与OCu u r的夹角为α,且tanα=7,OBu u r与OCu u r的夹角为45°。

若OCu u r=m OAu u r+n OBu u r(m,n∈R),则m+n=13.在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若PA u u r ·PB u u r≤20,则点P 的横坐标的取值范围是14.设f(x)是定义在R 且周期为1的函数,在区间)0,1⎡⎣上,()2,,x x Df x x x D ⎧∈=⎨∉⎩其中集合D=1,n x x n N n +⎧⎫-=∈⎨⎬⎩⎭,则方程f(x)-lgx=0的解的个数是 . 15.(本小题满分14分)如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC.16. (本小题满分14分) 已知向量a =(cos x ,sin x ),,.(1)若a ∥b ,求x 的值; (2)记,求的最大值和最小值以及对应的x 的值17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆10:>>2222x y +=(a b )a bE 的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.(1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.18. (本小题满分16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为107cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14cm 和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计) (1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度.19.(本小题满分16分)对于给定的正整数k ,若数列l a n l 满足a a a a a a a --+-++-++++++=1111......2n k n k n n n k n k n k =2ka n 对任意正整数n(n> k) 总成立,则称数列l a n l 是“P(k)数列”.学科@网(1)证明:等差数列l a n l 是“P(3)数列”;(1) 若数列l a n l 既是“P(2)数列”,又是“P(3)数列”,证明:l a n l 是等差数列. 20.(本小题满分16分) 已知函数()fx =x x +++>∈321(a 0,b R)a bx 有极值,且导函数()fx ,的极值点是()f x 的零点。

(极值点是指函数取极值时对应的自变量的值)(1) 求b 关于a 的函数关系式,并写出定义域; (2) 证明:b ²>3a; (3) 若()f x ,()fx ,这两个函数的所有极值之和不小于7-2,求a 的取值范围。

2017年普通高等学校招生全国统一考试(江苏卷)数学II (附加题)注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共2页,均为非选择题(第21题 ~ 第23题)。

本卷满分为40分,考试时间为30分钟。

考试结束后,请将本试卷和答题卡一并交回。

2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题........,并在相应的答题区域内作答............。

若多做,则按作答的前两小题评分。

解答时应写出文字说明、证明过程或演算步骤。

A.【选修4-1:几何证明选讲】(本小题满分10分)如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足。

求证:(1)∠P AC =∠CAB ; (2)AC 2 =AP ·AB 。

B.[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵A= ,B=.(1) 求AB;若曲线C 1;22y =182x + 在矩阵AB 对应的变换作用下得到另一曲线C 2 ,求C 2的方程.C.[选修4-4:坐标系与参数方程](本小题满分10分)在平面坐标系中xOy 中,已知直线l 的参考方程为x 82tty ⎧=-+⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为2x 2s ,22s y ⎧=⎪⎨⎪=⎩(s 为参数)。

设p 为曲线C 上的动点,求点P 到直线l 的距离的最小值学@科@网 D.[选修4-5:不等式选讲](本小题满分10分) 已知a,b,c,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明ac+bd ≤8.2x 2s ,22sy ⎧=⎪⎨⎪=⎩ 22.(本小题满分10分)如图,在平行六面体ABCD-A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 13 ,∠BAD =120º. (1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B-A 1D-A 的正弦值。

23. (本小题满分10)N,n≥2),这些球除颜色外全部相同。

现将口袋中的球随已知一个口袋有m个白球,n个黑球(m,n∈2机的逐个取出,并放入如图所示的编号为1,2,3,……,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2,3,……,m+n).(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(x)是x的数学期望,证明2017年高考江苏卷数学试题(标准答案)一 、填空题: 本题考查基础知识、 基本运算和基本思想方法. 每小题5 分, 共计70 分.1. 12.103.184.2-5.756.327.598. 239. 3210.3011. 1[1,]2- 12.313.[52,1]-14. 8二 、 解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系, 考查空间想象能力 和推理论证能力.满分14 分.证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥. 又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD I 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC AB B =I ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.16.本小题主要考查向量共线、数量积的概念及运算, 考查同角三角函数关系、诱导公式、两角 和(差)的三角函数、三角函数的图像与性质, 考查运算求解能力.学科.网满分14 分.解:(1)因为co ()s ,sin x x =a ,(3,3)=-b ,a ∥b , 所以3cos 3sin x x -=.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠. 于是3tan 3x =-. 又,所以5π6x =.(2)π(cos ,sin )(3,3)3cos 3sin 23cos(())6f x x x x x x =⋅=⋅-=-=+a b . 因为,所以ππ7π[,]666x +∈, 从而π31cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,取到最大值3; 当π6x +=π,即5π6x =时,取到最小值23-17.本小题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何性质等基础知 识, 考查分析问题能力和运算求解能力.满分14 分. 解:(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是223b a c =-=因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --, 从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --.因为点Q在椭圆上,由对称性,得21xyy-=±,即22001x y-=或22001x y+=.又P在椭圆E上,故2200143x y+=.由220022001143x yx y⎧-=⎪⎨+=⎪⎩,解得004737,77x y==;220022001143x yx y⎧+=⎪⎨+=⎪⎩,无解.因此点P的坐标为4737(,)77.18.本小题主要考查正棱柱、正棱台的概念,考查正弦定理、余弦定理等基础知识,考查空间想象能力和运用数学模型及数学知识分析和解决实际问题的能力.满分16 分.解:(1)由正棱柱的定义,1CC⊥平面ABCD,所以平面11A ACC⊥平面ABCD,1CC AC⊥.记玻璃棒的另一端落在1CC上点M处.因为107,40AC AM==,所以2240(107)30MC=-=,从而3sin4MAC=∠,记AM与水面的焦点为1P,过1P作P1Q1⊥AC, Q1为垂足,则P1Q1⊥平面ABCD,故P1Q1=12,从而AP1= 1116sinPMACQ=∠.答:玻璃棒l没入水中部分的长度为16cm.( 如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm)(2)如图,O,O1是正棱台的两底面中心.由正棱台的定义,OO1⊥平面EFGH,所以平面E1EGG1⊥平面EFGH,O1O⊥EG.同理,平面E1EGG1⊥平面E1F1G1H1,O1O⊥E1G1.记玻璃棒的另一端落在GG 1上点N 处.学科&网 过G 作GK ⊥E 1G ,K 为垂足, 则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而140GG ===. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-.在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠. 记EN 与水面的交点为P 2,过 P 2作P 2Q 2⊥EG ,Q 2为垂足,则 P 2Q 2⊥平面 EFGH ,故P 2Q 2=12,从而 EP 2=2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm.(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm)19.本小题主要考查等差数列的定义、通项公式等基础知识, 考查代数推理、转化与化归及综 合运用数学知识探究与解决问题的能力.满分16 分.证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-, 从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“()3P 数列”.(2)数列{}n a 既是“()P 2数列”,又是“()3P 数列”,因此, 当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a L 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以122a a d'=-, 所以数列{}n a 是等差数列.20.本小题主要考查利用导数研究初等函数的单调性、极值及零点问题, 考查综合运用数学思 想方法分析与解决问题以及逻辑推理能力.满分16 分.解:(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3ax =-时,()f x '有极小值23a b -.因为()f x '的极值点是()f x 的零点.所以33()1032793a a a ab f -=-+-+=,又0a >,故2239a b a=+. 因为()f x 有极值,故()=0f x '有实根,从而231(27a )039a b a-=-≤,即3a ≥. 3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;3a >时,()=0f x '有两个相异的实根1=3a x --,2=3a x -. 列表如下故()f x 的极值点是12,x x . 从而3a >,因此2239a b a=+,定义域为(3,)+∞.(2)由(129. 设23()=9t g t t+,则22223227()=99t g t t t -'-=.当)t ∈+∞时,()0g t '>,从而()g t 在)+∞上单调递增.因为3a >,所以>(g g因此2>3b a .(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++ 346420279a ab ab -=-+=记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a -=-+,所以213()=9h a a a -+,3a >. 因为223()=09h a a a '--<,于是()h a 在(3,)+∞上单调递减. 因为7(6)=2h -,于是()(6)h a h ≥,故6a ≤.因此a 的取值范围为(36],.21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题........,并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-1:几何证明选讲]本小题主要考查圆与相似三角形等基础知识, 考查推理论证能力.满分10 分.证明:(1)因为PC 切半圆O 于点C , 所以PCA CBA =∠∠, 因为AB 为半圆O 的直径, 所以90ACB =︒∠,因为AP ⊥PC ,所以90APC =︒∠, 所以PAC CAB ∠=∠.(2)由(1)知APC ACB △∽△,故AP ACAC AB=, 所以2·AC AP AB =. B. [选修4-2:矩阵与变换]本小题主要考查矩阵的乘法、线性变换等基础知识, 考查运算求解能力.满分10 分. 解:(1)因为A =0110⎡⎤⎢⎥⎣⎦, B =1002⎡⎤⎢⎥⎣⎦, 所以AB =0110⎡⎤⎢⎥⎣⎦1002⎡⎤⎢⎥⎣⎦=0210⎡⎤⎢⎥⎣⎦. (2)设00(,)Q x y 为曲线1C 上的任意一点, 它在矩阵AB 对应的变换作用下变为(,)P x y ,则000210x x y y ⎡⎤⎡⎤=⎡⎢⎥⎢⎥⎣⎦⎣⎤⎥⎣⎦⎦⎢,即002y x x y =⎧⎨=⎩,所以002x yx y =⎧⎪⎨=⎪⎩. 因为00(,)Q x y 在曲线1C 上,所以2200188x y +=,从而22188x y +=,即228x y +=.因此曲线1C 在矩阵AB 对应的变换作用下得到曲线2C :228x y +=. C. [选修4-5:坐标系与参数方程]本小题主要考查曲线的参数方程及互化等基础知识, 考查运算求解能力.满分10 分. 解:直线l 的普通方程为280x y -+=.因为点P 在曲线C 上,设2(2,)P s ,从而点P 到直线l 的的距离22d ==,当s =min 5d =.因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离取到最小值5. D. [选修4-5:不等式选讲]本小题主要考查不等式的证明, 考查推理论证能力.满分10分. 证明:由柯西不等式可得:22222()()()ac bd a b c d +≤++, 因为22224,16,a b c d +=+= 所以2()64ac bd +≤, 因此8ac bd +≤.22. 【必做题】本小题主要考查空间向量、异面直线所成角和二面角等基础知识, 考查运用空间向量解决问题的能力.满分10 分.解:在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E . 因为AA 1⊥平面ABCD , 所以AA 1⊥AE ,AA 1⊥AD .如图,以1{,,}AE AD AA u u u r u u u r u u u r为正交基底,建立空间直角坐标系A -xyz .因为AB =AD =2,AA 1,120BAD ∠=︒.则11(0,0,0),1,0),(0,2,0),A B D E A C -.(1) 111,A B AC =-=u u u r u u u u r ,则111111(3,1,3)(3,1,3)1cos,7||||A B ACA B ACA B AC⋅--⋅===-u u u r u u u u ru u u r u u u u ru u u r u u u u r.因此异面直线A1B与AC1所成角的余弦值为17.(2)平面A1DA的一个法向量为3,0,0)AE=u u u r.设(,,)x y z=m为平面BA1D的一个法向量,又1(3,1,3),(3,3,0)A B BD=--=-u u u r u u u r,则10,0,A BBD⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u rmm即330,330.x y zx y-=+=⎪⎩不妨取x=3,则3,2y z==,所以3,2)=m为平面BA1D的一个法向量,从而(3,0,0)3,2)3cos,4||||34AEAEAE⋅===⨯u u u ru u u ru u u rmmm,设二面角B-A1D-A的大小为θ,则3|cos|4θ=.因为[0,]θ∈π,所以27sin1cos4θθ=-=.因此二面角B-A1D-A的正弦值为74.23.【必做题】本小题主要考查古典概率、随机变量及其分布、数学期望等基础知识, 考查组合数及其性质, 考查运算求解能力和推理论证能力.满分10分.解:(1) 编号为2的抽屉内放的是黑球的概率p 为: 11C C n m n n m n n p m n-+-+==+. (2) 随机变量 X 的概率分布为:随机变量 X 的期望为:11C 111(1)!()C C (1)!()!n m nm nk n nk n k nm nm n k E X k k n k n -++-==++-=⋅=⋅--∑∑. 所以1(2)!1(2)!()C (1)!()!(1)C (2)!()!m nm nn n k n k nm nm nk k E X n k n n n k n ++==++--<=-----∑∑ 222121(1C C C )(1)C n n n n n m n nm nn ----+-+=++++-L 12221121(C C C C )(1)C n n n n n n n m n nm nn ------+-+=++++-L 12221(C C C )(1)C n n n n n m n nm nn ---+-+=+++-L 12221(C C )(1)C n n m n m n nm nn --+-+-+==+-L 11C (1)C ()(1)n m n nm n n n m n n -+-+==-+- ()()(1)nE X m n n <+-.。

相关文档
最新文档