2018届高考物理二轮复习 第十章 电磁感应 提能增分练(三)金属杆在导轨上运动的三类问题

合集下载

2017_2018学年高考物理专题48电磁感应中的“杆导轨”模型问题小题狂刷

2017_2018学年高考物理专题48电磁感应中的“杆导轨”模型问题小题狂刷

狂刷48 电磁感应中的“杆+导轨”模型问题1.倾角为α的光滑导电轨道间接有电源,轨道间距为L,轨道上放一根质量为m的金属杆ab,金属杆中的电流为I,现加一垂直金属杆ab的匀强磁场,如图所示,ab杆保持静止,则磁感应强度方向和大小可能为A.方向垂直轨道平面向上时,磁感应强度最小,大小为sin mgILαB.z正向,大小为mg ILC.x正向,大小为mg ILD.z正向,大小为tan mgILθ【答案】ACD【名师点睛】受力分析后,根据平衡条件,写出平衡方程,结合安培力公式,并根据左手定则,即可求解。

2.如图所示,一根通电的直导线放在倾斜的粗糙导轨上,置于图示方向的匀强磁场中,处于静止状态.现增大电流,导体棒仍静止,则在增大电流过程中,导体棒受到的摩擦力的大小变化情况可能是A .一直增大B .先减小后增大C .先增大后减小D .始终为零【答案】AB【名师点睛】考查左手定则及学会对物体进行受力分析,并根据受力情况来确定静摩擦力。

值得注意的是此处的静摩擦力方向是具有确定性,从而导致答案的不唯一性。

3.如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面。

有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F 。

此时A .电阻R 1消耗的热功率为Fv /3B .电阻R 2消耗的热功率为Fv /6C .整个装置因摩擦而消耗的热功率为μmgv cos θD .整个装置消耗的机械功率为(F +μmg cos θ)v 【答案】BCD【解析】设ab 长度为L ,磁感应强度为B ,电阻R 1=R 2=R 。

电路中感应电动势E =BLv ,ab 中感应电流为:232EBLvI R R R ==+,ab 所受安培力为: 2223B L v F BIL R ==①,电阻R 1消耗的热功率为:2222129I B L v P R R ⎛⎫== ⎪⎝⎭②,由①②得116P Fv =,电阻R 1和R 2阻值相等,它们消耗的电功率相等,则1216P P Fv ==,故A 错误、B 正确。

2018届高考物理二轮复习电磁感应的应用专题卷

2018届高考物理二轮复习电磁感应的应用专题卷

1.3电磁感应定律的应用一、选择题1.某学校操场上有如图所示的运动器械:两根长金属链条将一根金属棒ab悬挂在固定的金属架上。

静止时ab水平且沿东西方向。

已知当地的地磁场方向自南向北斜向下跟竖直方向成45°,现让ab随链条荡起来,最大偏角45°,则下列说法正确的是( )A.当ab棒自南向北经过最低点时,ab中感应电流的方向是自西向东B.当链条与竖直方向成45°时,回路中感应电流最大C.当ab棒自南向北经过最低点时,安培力的方向与水平向南的方向成45°斜向下D.在ab棒运动过程中,不断有磁场能转化为电场能答案 C解析当ab棒自南向北经过最低点时,由右手定则知电流方向自东向西,故A错误;当链条偏南与竖直方向成45°时,ab运动方向(沿圆轨迹的切线方向)与磁场方向平行,此时感应电流为零,最小,故B错误;当ab棒自南向北经过最低点时,由左手定则知安培力的方向与水平向南的方向成45°斜向下,故C正确;在ab棒运动过程中,不断有机械能转化为电场能,故D错误。

2.[2017·江西赣中模拟]如图所示,等离子气流(由高温、高压的等电荷量的正、负离子组成)由左方连续不断地以速度v0垂直射入P1和P2两极板间的匀强磁场中。

两平行长直导线ab和cd的相互作用情况为:0~1 s内排斥,1~3 s内吸引,3~4 s内排斥。

线圈A内有外加磁场,规定向左为线圈A内磁感应强度B的正方向,则线圈A内磁感应强度B随时间t变化的图象有可能是下图中的( )答案 C解析 等离子气流由左方连续不断地以速度v 0射入P 1和P 2两极板间的匀强磁场中,正电荷向上偏,负电荷向下偏,上极板带正电,下极板带负电,电流方向由a 到b,0~1 s 内互相排斥,则cd 的电流由d 到c,1~3 s 内互相吸引,则cd 的电流由c 到d ,根据楞次定律知C 正确,A 、B 、D 错误。

3.如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上。

近年高考物理复习 第10章 电磁感应 第3节 课时提能练30 电磁感应定律的综合应用(2021年整

近年高考物理复习 第10章 电磁感应 第3节 课时提能练30 电磁感应定律的综合应用(2021年整

(通用版)2018高考物理一轮复习第10章电磁感应第3节课时提能练30 电磁感应定律的综合应用编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((通用版)2018高考物理一轮复习第10章电磁感应第3节课时提能练30 电磁感应定律的综合应用)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(通用版)2018高考物理一轮复习第10章电磁感应第3节课时提能练30 电磁感应定律的综合应用的全部内容。

课时提能练(三十) 电磁感应定律的综合应用(限时:40分钟)A级跨越本科线1.用均匀导线做成的正方形线圈边长为l,如图10。

3。

12所示,正方形的一半放在垂直于纸面向里的匀强磁场中,当磁场以错误!的变化率增强时,不考虑磁场的变化对虚线右侧的影响,则()图10。

3­12A.线圈中感应电流方向为adbcaB.线圈中产生的电动势E=错误!·l2C.线圈中a点电势高于b点电势D.线圈中b、a两点间的电势差为错误!D[处于磁场中的线圈面积不变,错误!增大时,通过线圈的磁通量增大,由楞次定律可知,感应电流的方向为acbda方向,A项错;产生感应电动势的acb部分等效为电源,b端为等效电源的正极,电势高于a端,C项错;由法拉第电磁感应定律E=错误!=错误!·错误!,知B项错;adb部分等效为外电路,b、a两点间电势差为等效电路的端电压,U=错误!·R=错误!,D项正确.]2.(多选)(2017·武汉模拟)如图10.3。

13所示,在水平光滑绝缘桌面上建立直角坐标系xOy,第一象限内存在垂直桌面向上的磁场,磁场的磁感应强度B沿x轴正方向均匀增大且错误!=k,一边长为a、电阻为R的单匝正方形线圈ABCD在第一象限内以速度v沿x轴正方向匀速运动,运动中AB边始终与x轴平行,则下列判断正确的是()图10。

2017_2018学年高考物理精做35电磁感应中的“杆导轨”模型问题大题精做新人教版

2017_2018学年高考物理精做35电磁感应中的“杆导轨”模型问题大题精做新人教版

精做35 电磁感应中的“杆+导轨”模型问题1.(2017·江苏卷)如图所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下。

当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v 。

导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触。

求:(1)MN 刚扫过金属杆时,杆中感应电流的大小l ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P 。

【答案】(1)0Bdv I R = (2)220B d v a mR =(3)2220()B d v v P R-=(3)金属杆切割磁感线的速度0=v v v '-,则感应电动势 0()E Bd v v =-电功率2E P R =解得2220()B d v v P R-=2.(2017·北京卷)发电机和电动机具有装置上的类似性,源于它们机理上的类似性。

直流发电机和直流电动机的工作原理可以简化为如图1、图2所示的情景。

在竖直向下的磁感应强度为B 的匀强磁场中,两根光滑平行金属轨道MN 、PQ 固定在水平面内,相距为L ,电阻不计。

电阻为R 的金属导体棒ab 垂直于MN 、PQ 放在轨道上,与轨道接触良好,以速度v (v 平行于MN )向右做匀速运动。

图1轨道端点MP 间接有阻值为r 的电阻,导体棒ab 受到水平向右的外力作用。

图2轨道端点MP 间接有直流电源,导体棒ab 通过滑轮匀速提升重物,电路中的电流为I 。

(1)求在Δt 时间内,图1“发电机”产生的电能和图2“电动机”输出的机械能。

(2)从微观角度看,导体棒ab 中的自由电荷所受洛伦兹力在上述能量转化中起着重要作用。

为了方便,可认为导体棒中的自由电荷为正电荷。

2018《单元滚动检测卷》高考物理(全国通用)精练 第十章 电磁感应

2018《单元滚动检测卷》高考物理(全国通用)精练 第十章 电磁感应

单元滚动检测十 电磁感应考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间90分钟,满分100分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题,共48分)一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,第1~7题只有一个选项正确,第8~12题有多项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分)1.以下矩形线框在磁场内做的各种运动中,能够产生感应电流的是( )2.如图1所示,一个闭合三角形导线框ABC位于竖直平面内,其下方(略靠前)固定一根与线框平面平行的水平直导线,导线中通以图示方向的恒定电流.释放线框,它由实线位置下落到虚线位置未发生转动,在此过程中( )图1A.线框中感应电流方向依次为顺时针→逆时针B.线框的磁通量为零时,感应电流却不为零C.线框所受安培力的合力方向依次为向上→向下→向上D.线框所受安培力的合力为零,做自由落体运动3.如图2所示,ef、gh为两水平放置相互平行的金属导轨,ab、cd为搁在导轨上的两金属棒,与导轨接触良好且无摩擦.当一条形磁铁向下靠近导轨时,关于两金属棒的运动情况的描述正确的是( )图2A.不管下端是何极性,两棒均向外相互远离B.不管下端是何极性,两棒均相互靠近C.如果下端是N极,两棒向外运动,如果下端是S极,两极相向靠近D.如果下端是S极,两棒向外运动,如果下端是N极,两棒相向靠近4.如图3,水平桌面上固定有一半径为R的金属细圆环,环面水平,圆环每单位长度的电阻为r;空间有一匀强磁场,磁感应强度大小为B,方向竖直向下;一长度为2R、电阻可忽略的导体棒置于圆环左侧并与环相切,切点为棒的中点.棒在拉力的作用下以恒定加速a从静止开始向右运动,运动过程中棒与圆环接触良好.下列说法正确的是( )图3A.拉力的大小在运动过程中保持不变B.棒通过整个圆环所用的时间为2R aC.棒经过环心时流过棒的电流为B2aR πrD.棒经过环心时所受安培力的大小为8B2R2aRπr图45.在如图4所示的电路中,a、b为两个完全相同的灯泡,L为自感系数较大而电阻不能忽略的线圈,E为电源,S为开关.下列关于两灯泡点亮和熄灭的说法正确的是( ) A.合上开关,b先亮,a后亮;稳定后b比a更亮一些B.合上开关,a先亮,b后亮;稳定后a、b一样亮C.断开开关,a逐渐熄灭、b先变得更亮后再与a同时熄灭D.断开开关,b逐渐熄灭、a先变得更亮后再与b同时熄灭6.如图5所示,光滑导电圆环轨道竖直固定在匀强磁场中,磁场方向与轨道所在平面垂直,导体棒ab的两端可始终不离开轨道无摩擦地滑动,在ab由图示位置释放,直到滑到右侧虚线位置的过程中,关于ab棒中的感应电流情况,正确的是( )图5A.先有从a到b的电流,后有从b到a的电流B.先有从b到a的电流,后有从a到b的电流C.始终有从b到a的电流D.始终没有电流产生7.如图6所示,一导体圆环位于纸面内,O为圆心.环内两个圆心角为90°的扇形区域内分别有匀强磁场,两磁场磁感应强度的大小相等,方向相反且均与纸面垂直.导体杆OM 可绕O转动,M端通过滑动触点与圆环良好接触.在圆心和圆环间连有电阻R.杆OM以匀角速度ω逆时针转动,t=0时恰好在图示位置.规定从a到b流经电阻R的电流方向为正,圆环和导体杆的电阻忽略不计,则杆从t=0开始转动一周的过程中,电流随ωt变化的图象是( )图68.两根足够长的平行光滑导轨竖直固定放置,顶端接一电阻R,导轨所在平面与匀强磁场垂直.将一金属棒与下端固定的轻弹簧的上端拴接,金属棒和导轨接触良好,重力加速度为g,如图7所示.现将金属棒从弹簧原长位置由静止释放,则( )图7A.金属棒在最低点的加速度小于gB.回路中产生的总热量等于金属棒重力势能的减小量C.当弹簧弹力等于金属棒的重力时,金属棒下落速度最大D.金属棒在以后运动过程中的最大高度一定低于静止释放时的高度9.如图8所示,一个水平放置的“∠”形光滑导轨固定在磁感应强度为B的匀强磁场中,ab是粗细、材料与导轨完全相同的足够长的导体棒,导体棒与导轨接触良好.在外力作用下,导体棒以恒定速度v向右平动,以导体棒在图中所示位置的时刻为计时起点,则回路中感应电动势E、感应电流I、导体棒所受外力的功率P和回路中产生的焦耳热Q随时间t变化的图象中正确的是( )图810.如图9所示,水平放置的光滑平行金属导轨,左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20cm的光滑圆弧导轨相接.导轨宽度为20cm,电阻不计.导轨所在空间有竖直方向的匀强磁场,磁感应强度B=0.5T.一根垂直导轨放置的质量m=60g、电阻R=1Ω、长为L的导体棒ab,用长也为20cm的绝缘细线悬挂,导体棒恰好与导轨接触.当闭合开关S后,导体棒沿圆弧摆动,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态.当导体棒ab速度最大时,细线与竖直方向的夹角θ=53°(sin53°=0.8,g=10m/s2),则( )图9A.磁场方向一定竖直向上B.电源的电动势E=8.0VC.导体棒在摆动过程中所受安培力F=8ND.导体棒摆动过程中的最大动能为0.08J11.如图10所示,竖直光滑导轨上端接入一定值电阻R,C1和C2是半径都为a的两圆形磁场区域,其区域内的磁场方向都垂直于导轨平面向外,区域C1中磁场的磁感应强度随时间按B1=b+kt(k>0)变化,C2中磁场的磁感应强度恒为B2,一质量为m、电阻为r、长度为L的金属杆AB穿过区域C2的圆心垂直地跨放在两导轨上,且与导轨接触良好,并恰能保持静止.则( )图10A .通过金属杆的电流大小为mgB 2LB .通过金属杆的电流方向为从B 到AC .定值电阻的阻值为R =-r2πkB 2a 3mg D .整个电路的热功率P =πkamg2B 212.如图11甲所示,电阻不计且间距L =1m 的光滑平行金属导轨竖直放置,上端接一阻值R =2Ω的电阻,虚线OO ′下方有垂直于导轨平面向里的匀强磁场,现将质量m =0.1kg 、电阻不计的金属杆ab 从OO ′上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平,已知杆ab 进入磁场时的速度v 0=1m/s ,下落0.3 m 的过程中加速度a 与下落距离h 的关系图象如图乙所示,g 取10 m/s 2,则( )图11A .匀强磁场的磁感应强度为2TB .杆ab 下落0.3m 时金属杆的速度为1m/sC .杆ab 下落0.3m 的过程中R 上产生的热量为0.2JD .杆ab 下落0.3m 的过程中通过R 的电荷量为0.25C第Ⅱ卷(非选择题,共52分)二、非选择题(共52分)13.(6分)如图12所示,将一条形磁铁从螺线管拔出的过程中,穿过螺线管的磁通量变化情况是__________,螺线管中产生的感应电流的磁感线方向是________(俯视图),条形磁铁受到螺线管的作用力方向是__________,螺线管受到条形磁铁的作用力方向是____________.图1214.(6分)如图13所示,正方形线框abcd的边长为l,向右通过宽为L的匀强磁场,且l<L,则在线框进入过程中穿过线框的磁通量变化情况是________,感应电流的磁场对磁通量变化起__________作用,线框中感应电流方向是______;在线框移出磁场的过程中穿过线框的磁通量变化情况是________,感应电流的磁场对磁通量变化起________作用,线框中感应电流方向是__________.图1315.(8分)如图14甲所示,光滑导轨宽0.4m,ab为金属棒,均匀变化的磁场垂直穿过轨道平面,磁场的变化情况如图乙所示,金属棒ab的电阻为1Ω,导轨电阻不计.t=0时刻,ab棒从导轨最左端,以v=1m/s的速度向右匀速运动,求1s末回路中的感应电流及金属棒ab受到的安培力.图1416.(8分)如图15甲所示,水平面上的两光滑金属导轨平行固定放置,间距d=0.5m,电阻不计,左端通过导线与阻值R=2Ω的电阻连接,右端通过导线与阻值R L=4Ω的小灯泡L连接.在CDFE矩形区域内有竖直向上的匀强磁场,CE长l=2m,有一阻值r=2Ω的金属棒PQ放置在靠近磁场边界CD处(恰好不在磁场中).CDFE区域内磁场的磁感应强度B 随时间变化图象如图乙所示.在t=0至t=4s内,金属棒PQ保持静止,在t=4s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动.已知从t=0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化.求:图15(1)通过小灯泡的电流;(2)金属棒PQ在磁场区域中运动的速度大小.17.(12分)如图16所示,电阻不计的“∠”形足够长且平行的导轨,间距L=1m,导轨倾斜部分的倾角θ=53°,并与定值电阻R相连,整个空间存在着B=5T、方向垂直倾斜导轨平面向上的匀强磁场.金属棒ab、cd的阻值R ab=R cd=R,cd棒质量m=1kg,ab棒光滑,cd与导轨间动摩擦因数μ=0.3,设最大静摩擦力等于滑动摩擦力,g取10m/s2,sin53°=0.8,cos53°=0.6,求:图16(1)ab棒由静止释放,当滑至某一位置时,cd棒恰好开始滑动,求这一时刻ab棒中的电流;(2)若ab棒无论从多高的位置释放,cd棒都不动,分析ab棒质量应满足的条件;(3)若cd棒与导轨间的动摩擦因数μ≠0.3,ab棒无论质量多大、从多高的位置释放,cd棒始终不动,求cd棒与导轨间的动摩擦因数μ应满足的条件.18.(12分)如图17所示,倾角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接.轨道宽度均为L=1m,电阻忽略不计.匀强磁场Ⅰ仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T;匀强磁场Ⅱ仅分布在倾斜轨道平面所在区域,方面垂直于倾斜轨道平面向下,大小B2=1T.现将两质量均为m=0.2kg,电阻均为R=0.5Ω的相同导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s2,图17(1)求导体棒cd沿斜轨道下滑的最大速度的大小;(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开始运动的时间记为t=0,此时磁场Ⅱ的磁感应强度为B0=1T,试求cd棒在倾斜轨道上下滑的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.答案精析1.B 2.B 3.B 4.D 5.A 6.D7.C 8.AD 9.AC 10.BD 11.BCD 12.AD 13.减小 逆时针 竖直向下 竖直向上14.增大 阻碍 逆时针(abcda ) 减小 阻碍 顺时针(adcba )15.1.6A 1.28N ,方向向左解析 Φ的变化有两个原因,一是B 的变化,二是面积S 的变化,显然这两个因素都应当考虑在内,所以有E ==S +BlvΔΦΔt ΔBΔt 又=2T/s.ΔBΔt 在1s 末,B =2T ,S =lvt =0.4×1×1m 2=0.4m 2所以1s 末,E =S +Blv =1.6V ,ΔBΔt 此时回路中的电流I ==1.6AE R 根据楞次定律与右手定则可判断出电流方向为逆时针方向金属棒ab 受到的安培力为F =BIl =2×1.6×0.4N =1.28N ,方向向左.16.(1)0.1A (2)1m/s解析 (1)在t =0至t =4s 内,金属棒PQ 保持静止,磁场变化导致电路中产生感应电动势.电路为r 与R 并联,再与R L 串联,电路的总电阻R 总=R L +=5ΩRrR +r 此时感应电动势E ==dl =0.5×2×0.5V =0.5VΔΦΔt ΔBΔt 通过小灯泡的电流为:I ==0.1A.ER 总(2)当棒在磁场区域中运动时,由导体棒切割磁感线产生电动势,电路为R 与R L 并联,再与r 串联,此时电路的总电阻R 总′=r +=(2+)Ω=ΩRR L R +R L 4×24+2103由于灯泡中电流不变,所以灯泡的电流I L =I =0.1A ,则流过金属棒的电流为I ′=I L +I R =I L +=0.3AR L I L R 电动势E ′=I ′R 总′=Bdv解得棒PQ 在磁场区域中运动的速度大小v =1m/s.17.(1)3.34A (2)m ab ≤2.08kg (3)μ≥0.75解析 (1)ab 棒沿导轨滑下切割磁感线产生的感应电流的方向是b →a ,通过cd 棒的电流方向是c →d ,cd 棒刚要开始滑动时,其受力分析如图所示.由平衡条件得:BI cd L cos53°=F f ,由摩擦力公式得:F f =μF N ,F N =mg +BI cd L sin53°,联立以上三式,得I cd ≈1.67A,I ab =2I cd =3.34A.(2)ab 棒沿足够长的导轨下滑时,最大安培力只能等于自身重力沿导轨方向的分力,有F A =m ab g sin53°,cd 棒所受最大安培力应为F A ,要使cd 棒不能滑动,需F A cos53°1212≤μ(mg +F A sin53°),12由以上两式联立解得m ab ≤2.08kg,(3)ab 棒下滑,cd 棒始终不动,有F A ′cos53°≤μ(mg +F A ′sin53°),解得μ≥=F A ′cos53°mg +F A ′sin53°cos53°mg F A ′+sin53°当ab 棒质量无限大,在无限长导轨上最终一定匀速运动,安培力F A 趋于无穷大,cd 棒所受安培力F A ′亦趋于无穷大,有μ≥=0.75.cos53°sin53°18.(1)1m/s (2)1C (3)B =88-t2解析 (1)作出cd 棒的侧视平面图,cd 棒加速下滑,安培力逐渐增大,加速度逐渐减小,加速度减少到零时速度增大到最大v m ,此时cd 棒所受合力为零,此后cd 棒匀速下滑.匀速时对cd 棒受力分析,如图所示.沿导轨方向有F 2=mg sin θ感应电动势E =B 2Lv m感应电流I =E2R安培力F 2=B 2IL得最大速度v m ==1m/s.2mgR sin θB 2L 2(2)设cd 棒下滑距离为x 时,ab 棒产生的焦耳热Q ,此时回路中总焦耳热为2Q .根据能量守恒定律,有mgx sin θ=mv +2Q 122m 解得下滑距离x ==1m12mv 2m +2Q mg sin θ根据法拉第电磁感应定律,感应电动势平均值===,感应电流的平E ΔΦΔt B 2·ΔS Δt B 2Lx Δt 均值=I E2R通过cd 棒横截面的电荷量q =·Δt ==1C.I B 2Lx2R (3)若回路中没有感应电流,则cd 棒匀加速下滑,加速度a =g sin θ=5m/s 2初始状态回路中磁通量Φ0=B 0L ·hsin θ一段时间t 后,cd 棒下滑距离Δx =at 212此时回路中磁通量Φ=BL (-Δx )hsin θ回路中没有感应电流,则ΔΦ=Φ-Φ0=0,即Φ=Φ0由上可得磁感应强度B =B 0·h sin θh sin θ-12at 2代入数据得,磁感应强度B 随时间t 变化的关系式为B =. 88-t 2。

2018年高考物理复习卷:电磁感应

2018年高考物理复习卷:电磁感应

电磁感应复习卷一、选择题(第1~8小题为单选题, 第9~12小题为多选题)1. 如图所示, 水平放置的光滑金属长导轨MM′和NN′之间接有电阻R, 导轨左、右两区域分别存在方向相反且与导轨平面垂直的匀强磁场, 设左、右区域磁场的磁感应强度大小分别为B1和B2, 虚线为两区域的分界线。

一根阻值也为R的金属棒ab放在导轨上并与其垂直, 导轨电阻不计。

若金属棒ab在外力F的作用下从左边的磁场区域距离磁场边界x处匀速运动到右边的磁场区域距离磁场边界x处, 下列说法中正确的是A. 当金属棒通过磁场边界时, 通过电阻R的电流反向B. 当金属棒通过磁场边界时, 金属棒受到的安培力反向C. 金属棒在题设的运动过程中, 通过电阻R的电荷量等于零D.金属棒在题设的运动过程中, 回路中产生的热量等于Fx【答案】AC2. 如图所示, 等腰三角形内分布有垂直于纸面向外的匀强磁场, 它的底边在x轴上且长为2L, 高为L, 纸面内一边长为L的正方形导线框沿x轴正方向做匀速直线运动穿过匀强磁场区域, 在t=0时刻恰好位于如图所示的位置, 以顺时针方向为导线框中电流的正方向, 下面四幅图中能够正确表示导线框中的电流–位移(I–x)关系的是A. /B. /C. /D. /【答案】B3. 如图所示, 质量为m=0.5 kg、电阻为r=1 Ω的轻杆ab可以无摩擦地沿着水平固定导轨滑行, 导轨足够长, 两导轨间宽度为L=1 m, 导轨电阻不计, 电阻R1=1.5 Ω, R2=3 Ω, 整个装置处在竖直向下的匀强磁场中, 磁感应强度为B=1 T。

杆从x轴原点O以水平速度v0=6 m/s开始滑行, 直到停止下来。

下列说法不正确的是A. a点电势高于b点电势B. 在杆的整个运动过程中, 电流对电阻R1做的功为9 JC. 整个运动过程中, 杆的位移为6 mD.在杆的整个运动过程中, 通过电阻R1的电荷量为2 C【答案】B4. 如图所示, 质量m=0.5 kg、长L=1 m的通电导体棒在安培力作用下静止在倾角为37°的光滑绝缘框架上, 磁场方向垂直于框架向下(磁场范围足够大), 右侧回路电源电动势E=8 V, 内电阻r=1 Ω, 额定功率为8 W、额定电压为4 V的电动机正常工作, (g=10 m/s2)则A. 回路总电流为2 AB. 电动机的额定电流为4 AC. 流经导体棒的电流为4 AD. 磁感应强度的大小为1.5 T【答案】D5. 用一段横截面半径为R、电阻率为ρ、密度为d的均匀导体材料做成一个半径为R(R<<R)的圆环。

2018届高三物理二轮复习练习:电磁感应 提能增分练(二) Word版含解析

2018届高三物理二轮复习练习:电磁感应 提能增分练(二) Word版含解析

提能增分练(二) 电磁感应中的电路、动力学和能量问题[A 级——夺高分]1. (多选)(2017·宁夏石嘴山三中模拟)如图所示,足够长的平行光滑导轨固定在水平面上,导轨间距为L =1 m ,其右端连有定值电阻R =2 Ω,整个装置处于垂直导轨平面向里,磁感应强度B =1 T 的匀强磁场中,一质量m =2 kg 的金属棒在恒定的水平拉力F =10 N 的作用下,在导轨上由静止开始向左运动,运动中金属棒始终与导轨垂直,导轨以及金属棒的电阻不计,下列说法正确的是( )A .产生的感应电流方向在金属棒中由a 指向bB .金属棒向左先做加速运动后做减速运动直到静止C .金属棒的最大加速度为5 m/s 2D .水平拉力的最大功率为200 W解析:选ACD 金属棒向左运动时,穿过闭合回路的磁通量垂直纸面向里增大,根据楞次定律可得,感应电流的方向在金属棒中由a 指向b ,A 正确;根据左手定则可知,金属棒受到向右的安培力,因为金属棒是从静止开始运动的,所以刚开始时安培力小于拉力,金属棒做加速运动,随着速度的增大,安培力增大,故加速度减小,当安培力等于拉力时,加速度为零,开始做匀速直线运动,故金属棒先做加速度减小的加速运动后做匀速运动,B 错误;当金属棒速度为零时,安培力为零,所受合力最大,加速度最大,根据牛顿第二定律可得最大加速度为a =F m =102m/s 2=5 m/s 2,C 正确;当拉力和安培力相等时,速度最大,有:F 安=F =B 2L 2v m R,解得最大速度为:v m =20 m/s ,则水平拉力的最大功率为:P =F v m =10× 20 W =200 W ,D 正确。

2. (多选)(2017·海南文昌中学模拟)如图所示,阻值为R 的金属棒从图示位置ab 分别以v 1、v 2的速度沿光滑水平导轨(电阻不计)匀速滑到a ′b ′位置,若v 1∶v 2=1∶2,则在这两次过程中( )A .回路电流I 1∶I 2=1∶2B .产生的热量Q 1∶Q 2=1∶4C .通过任一截面的电荷量q 1∶q 2=1∶1D .外力的功率P 1∶P 2=1∶2解析:选AC 两种情况下产生的感应电动势分别为E 1=BL v 1,E 2=BL v 2,电阻都为R ,故回路电流为I 1=E 1R =BL v 1R ,I 2=E 2R =BL v 2R ,故电流之比为I 1I 2=v 1v 2=12,A 正确;两种情况下所用时间t 1t 2=Lv 1L v 2=v 2v 1=21,故产生的热量Q 1Q 2=I 21Rt 1I 22Rt 2=12,B 错误;两种情况下磁通量变化量相同,故通过任一截面的电荷量q =I -t =ΔΦΔtR Δt =ΔΦR,故通过任一截面的电荷量q 1∶q 2=1∶1,C 正确;由于金属棒做匀速运动,外力的功率等于回路中的电功率,故P 1P 2=I 21R I 22R =14,D 错误。

2018年全国卷高考物理总复习《电磁感应》习题跟踪集训(含答案)

2018年全国卷高考物理总复习《电磁感应》习题跟踪集训(含答案)

2018年全国卷高考物理总复习《电磁感应》习题跟踪集训1.如图,固定在水平桌面上的光滑金属导轨cd、eg处于方向竖直向下的匀强磁场中,金属杆ab与导轨接触良好,在两根导轨的端点d、e之间连接一电阻,其他部分电阻忽略不计,现用一水平向右的恒力F作用在金属杆ab上,使金属杆由静止开始向右沿导轨滑动,滑动中杆ab始终垂直于导轨,金属杆受到的安培力用F安表示,则下列说法正确的是()A.金属杆ab做匀加速直线运动B.金属杆ab运动过程回路中有顺时针方向的电流C.金属杆ab所受到的F安先不断增大,后保持不变D.金属杆ab克服安培力做功的功率与时间的平方成正比【答案】C2.如图所示,由均匀导线制成的半径为R的圆环,以速度v匀速进入一磁感应强度大小为B的匀强磁场.当圆环运动到图示位置(∠aOb=90°)时,a、b两点的电势差为()A.B.C.D.【答案】D3.如图所示,在匀强磁场的上方有一质量为m、半径为R的细导线做成的圆环,圆环的圆心与匀强磁场的上边界的距离为h。

将圆环由静止释放,圆环刚进入磁场的瞬间和完全进入磁场的瞬间,速度均为。

已知匀强磁场的磁感应强度为B,导体圆环的电阻为r,重力加速度为g,则下列说法不正确的是()A.圆环刚进入磁场的瞬间,速度B.圆环进入磁场的过程中,电阻产生的热量为C.圆环进入磁场的过程中,通过导体横截面的电荷量为D.圆环进入磁场的过程做的是匀速直线运动【答案】D4.如图所示,abcd为水平放置的平行“”形光滑金属导轨,导轨间距为l,电阻不计。

导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B。

金属杆放置在导轨上,与导轨的接触点为M、N,并与导轨成θ角。

金属杆以ω的角速度绕N点由图示位置匀速转动到与导轨ab垂直,转动过程金属杆与导轨始终良好接触,金属杆单位长度的电阻为r。

则在金属杆转动过程中()A.M、N两点电势相等B.金属杆中感应电流的方向是由N流向MC.电路中感应电流的大小始终为D.电路中通过的电量为【答案】A5.(多选)如图所示,在光滑绝缘的水平面上方,有两个方向相反的水平方向匀强磁场,PQ 为两个磁场的边界,磁场范围足够大,磁感应强度的大小分别为B 1=B 、B 2=2B 。

高三新高考练习题及答案解析 第十章 第3讲 电磁感应的综合应用

高三新高考练习题及答案解析   第十章 第3讲 电磁感应的综合应用

第3讲 电磁感应的综合应用一、非选择题1.(2022·重庆高三月考)如图所示,水平面上不计电阻的两光滑平行金属导轨相距为L ,导轨上静止放有质量为m 、电阻为R 的ab 金属杆(杆与导轨垂直)。

金属杆处于垂直于导轨平面的磁感应强度为B 的匀强磁场中,导轨左边接有一阻值也为R 的电阻,t =0时刻用垂直杆ab 的外力拉着杆由静止开始以加速度a 向右做匀加速运动,所有接触良好,导轨足够长,导轨内都有磁场。

求:(1)t 时刻ab 杆中电流的大小和方向;(2)t 时刻拉力F 的大小。

[答案] (1)BLat 2R ,方向由b 指向a (2)B 2L 2at 2R+ma [解析] (1)t 时刻ab 杆的速度为v =at ,杆ab 切割磁感线,回路产生电动势E =BL v ,ab 杆中电流方向由b 指向a ,杆ab 中的电流I =BL v 2R =BLat 2R。

(2)安培力F 安 =BIL ,对杆ab 由牛顿第二定律得F -F 安=ma ,解得F =B 2L 2at 2R+ma 。

2.(2021·福建卷,13)如图,光滑平行金属导轨间距为l ,与水平面夹角为θ,两导轨底端接有阻值为R 的电阻。

该装置处于磁感应强度大小为B 的匀强磁场中,磁场方向垂直导轨平面向上。

质量为m 的金属棒ab 垂直导轨放置,在恒力作用下沿导轨匀速上滑,上升高度为h 。

恒力大小为F 、方向沿导轨平面且与金属棒ab 垂直。

金属棒ab 与导轨始终接触良好,不计ab 和导轨的电阻及空气阻力。

重力加速度为g ,求此上升过程(1)金属棒运动速度大小;(2)安培力对金属棒所做的功。

[答案] (1)(F -mg sin θ)R B 2l 2 (2)mgh -Fh sin θ[解析] (1)设金属棒以速度v 沿导轨匀速上升,由法拉第电磁感应定律可知,棒中的电动势为E =Bl v ①设金属棒中的电流为I ,根据欧姆定律,有I =E R② 金属棒所受的安培力为F A =IlB ③因为金属棒沿导轨匀速上升,由牛顿运动定律得F -mg sin θ-F A =0 ④联立①②③④式得v =(F -mg sin θ)R B 2l 2。

高考物理(电磁感应现象的两类情况提高练习题)压轴题训练及详细答案

高考物理(电磁感应现象的两类情况提高练习题)压轴题训练及详细答案

高考物理(电磁感应现象的两类情况提高练习题)压轴题训练及详细答案一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“”字型(如图乙)通电后使其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“”字型线圈依次通电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进.(1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相)(2)求列车能达到的最大速度m v ;(3)列车以最大速度运行一段时间后,断开接在“” 字型线圈上的电源,使线圈与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ⨯、磁感应强度为B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“”字型线圈时,电容器中贮存的电量Q .【答案】(1) 012() BL v v R - (2) 222210122BL B L kR v B L kR +- (3) 24nB Lb R '【解析】 【详解】解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =- 由欧姆定律得:12EI R = 解得:01(2 )BL v v I R -=(2)当加速度为零时,列车的速度最大,此时列车的两条长边各自受到的安培力:B F BIL =由平衡条件得:20B f F F -= ,已知:2f F kv =解得:222210122m BL B L kR v B L v kR +-=(3)电磁铁通过字型线圈左边界时,电路情况如图1所示:感应电动势:n E tφ∆=∆,而B Lb φ∆=' 电流:12E I R =电荷量:11Q I t =∆ 解得:12nB LbQ R '= 电磁铁通过字型线圈中间时,电路情况如图2所示:B Lb φ∆=',2222E nI R tφ∆==∆ 22Q I t =∆解得:222nB LbQ R'= 电磁铁通过字型线圈右边界时,电路情况如图3所示:n E tφ∆=∆, B Lb φ∆=',32E I R =33Q I t =∆解得:32nB LbQ R '=, 总的电荷量:123Q Q Q Q =++ 解得:24nB LbQ R '=3.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】解:()1由图b 知:0.20.1T /s 2B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===V V V V感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-===V V &解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=4.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。

2018届高三物理高考总复习课后提能演练:专题10 第3讲

2018届高三物理高考总复习课后提能演练:专题10 第3讲

专题十 第3讲一、选择题:在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~9题有多项符合题目要求.1.如图所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B .电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时( )A .电容器两端的电压为零B .电阻两端的电压为BL vC .电容器所带电荷量为CBL vD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2vR【答案】C【解析】当导线MN 匀速向右运动时,导线MN 产生的感应电动势恒定,稳定后,电容器既不充电也不放电,无电流产生,故电阻两端没有电压,电容器两极板间的电压U =E =BL v ,所带电荷量Q =CU =CBL v ,故选项A 、B 错误,C 正确;MN 匀速运动时,因无电流而不受安培力,故拉力为零,选项D 错误.2.如图所示,电阻R =1 Ω、半径为r 1=0.2 m 的单匝圆形导线框P 内有一个与P 共面的圆形磁场区域Q ,P 、Q 的圆心相同,Q 的半径r 2=0.1 m .在t =0时刻,Q 内存在着垂直于圆面向里的磁场,磁感应强度B 随时间t 变化的关系是B =2-t (T).若规定逆时针方向为电流的正方向,则线框P 中感应电流I 随时间t 变化的关系图象应该是下图中的( )【答案】C【解析】圆形导线框P 中产生的感应电动势E =ΔB ·S Δt =ΔB Δt ·πr 2=-0.01π V ,由I =ER ,得I =-0.01π A ,其中负号表示电流的方向是顺时针方向的.3.如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F 作用下加速上升的一段时间内,力F 做的功与安培力做的功的代数和等于( )A .棒的机械能增加量B .棒的动能增加量C .棒的重力势能增加量D .电阻R 上放出的热量【答案】A【解析】金属棒加速上升h 高度过程中,受重力mg ,拉力F 和安培力F A 的作用,由动能定理有W F -mgh -W F A =ΔE k ,解得W F -W F A =ΔE k +mgh =ΔE ,即力F 做的功与安培力做功的代数和等于机械能的增加量.4.如图所示,B 是一个螺线管,C 是与螺线管相连接的金属线圈,在B 的正上方用绝缘丝线悬挂一个金属圆环A ,A 的环面水平且与螺线管的横截面平行.若仅在金属线圈C 所处的空间加上与C 环面垂直的变化磁场,发现在t 1至t 2时间段内金属环A 的面积有缩小的趋势,则金属线圈C 处所加磁场的磁感应强度随时间变化的B -t 图象可能是( )【答案】D【解析】由法拉第电磁感应定律得C 线圈中的感应电动势E =ΔΦΔt =S ΔBΔt ,S 为C 的面积,ΔB Δt 为穿过C 线圈磁感应强度的变化率,即B -t 图线的斜率,A 、B 项图中,ΔBΔt 为定值,感应电动势E 恒定不变,由欧姆定律知B 的电流恒定不变,穿过A 线圈的磁通量不变,无感应电流,故A 、B 两项错误;在C 图中ΔBΔt 逐渐减小,电动势E 减小,B 中感应电流I 减小,穿过A 的磁通量减小,由楞次定律知,A 线圈有扩张的趋势,C 项错误;D 图中ΔBΔt 逐渐增大,电动势E 增大,B 中感应电流I 增大,穿过A 的磁通量增大,同理可知,A 有缩小的趋势,D 项正确.5.(2015年郑州模拟)如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计,阻值为R 的导体棒垂直于导轨放置,且与导轨接触良好.导轨所在空间存在匀强磁场,匀强磁场与导轨平面垂直,t =0时,将开关S 由1掷向2,若分别用q ,i ,v 和a 表示电容器所带的电荷量、棒中的电流、棒的速度大小和加速度大小,则下图所示的图象中正确的是( )【答案】D【解析】电容器放电时导体棒在安培力作用下运动,产生感应电动势,感应电动势与电容器电压相等时,棒做匀速直线运动,说明极板上电荷量最终不等于零,A 项错误.但电流最终必为零,B 项错误.导体棒速度增大到最大后做匀速直线运动,加速度为零,C 项错误,D 项正确.6.如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料,不同粗细的导线绕制(Ⅰ为细导线).两线圈在距磁场上界面h 高处由静止开始自由下落,再进入磁场,最后落到地面.运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界.设线圈Ⅰ,Ⅱ落地时的速度大小分别为v 1,v 2,在磁场中运动时产生的热量分别为Q 1,Q 2.不计空气阻力,则 ( )A .v 1<v 2,Q 1<Q 2B .v 1=v 2,Q 1=Q 2C .v 1<v 2,Q 1>Q 2D .v 1=v 2,Q 1<Q 2【答案】D【解析】由于两线圈从同一高度下落,到达磁场边界时具有相同的速度v ,切割磁感线产生感应电流同时受到磁场的安培力F =B 2l 2v R ,又由R =ρ4l S (ρ为线圈材料的电阻率,l 为线圈的边长,S 为单匝线圈的横截面积),所以线圈所受安培力F =B 2l v S 4ρ,此时加速度a =g -Fm ,其中m =ρ0S ·4l (ρ0为线圈材料的密度),所以加速度a =g -B 2v16ρρ0是定值,线圈Ⅰ和Ⅱ同步运动,落地时两线圈速度相等v 1=v 2.由能量守恒定律可得Q =mg (h +H )-12m v 2,(H 是磁场区域的高度),Ⅰ为细导线,因质量m 较小,产生的热量较小,所以Q 1<Q 2.7.如图所示,两根足够长且光滑平行的金属导轨PP ′,QQ ′倾斜放置,匀强磁场垂直于导轨平面,导轨的上端与水平放置的两金属板M ,N 相连,板间距离足够大,板间有一带电微粒,金属棒ab 水平跨放在导轨上,下滑过程中与导轨接触良好.现同时由静止释放带电微粒和金属棒ab ,则( )A .金属棒ab 最终可能匀速下滑B .金属棒ab 一直加速下滑C .金属棒ab 下滑过程中M 板电势高于N 板电势D .带电微粒不可能先向N 板运动后向M 板运动 【答案】BC【解析】金属棒沿光滑导轨加速下滑,棒中有感应电动势而对电容器充电,充电电流通过金属棒时受安培力作用,只有金属棒速度增大时才有充电电流,因此总有mg sin θ-BIl >0,金属棒将一直加速,A 项错、B 项对;由右手定则可知,金属棒a 端电势高,则M 板电势高,C 项正确;若微粒带负电,则静电力向上与重力反向,开始时静电力为0,微粒向下加速,当静电力增大到大于重力时,微粒的加速度向上,D 项错.8.如图所示,均匀金属圆环总电阻为2R ,磁感应强度为B 的匀强磁场垂直穿过圆环.金属杆OM 长为l ,电阻为R2,M 端与环紧密接触,金属杆OM 绕过圆心的转轴O 以恒定的角速度ω转动,当电阻为R 的一段导线一端和环连接,另一端与金属杆的转轴Ο相连接时,下列结论中正确的是( )A .通过导线R 的电流的最大值为Bl 2ω3RB .通过导线R 的电流的最小值为Bl 2ω4RC .OM 中产生的感应电动势恒为Bl 2ω2D .导线中通过的电流恒为Bl 2ω2R【答案】ABC【解析】求解本题的关键是找OM 从与圆环接触点的位置,要求回路中通过的电流的大小,需要画等效电路图求其回路中的电流.当金属杆绕O 点匀速转动时,由E =12Bl 2ω,知选项C 正确.电流的大小,决定于M 与滑环的连接点,当M 与下方最低点连接时,回路中电路电阻最小,其阻值为R 小=32R ,根据I =E R +r可得,I max =Bl 2ω2×32R =Bl 2ω3R ,选项A 正确,D 错误.当M 与圆环顶端相接触时,回路电阻最大,其阻值为R 大=R 2+3R2=2R ,所以I min=Bl 2ω4R,选项B 正确. 9.如图所示,矩形单匝导线中串联着两个电阻器,一个电阻为R ,另一个电阻为2R ,其余电阻不计;在电路中央有一面积为S 的矩形区域磁场,磁感应强度与时间的关系为B =B 0+kt ,则( )A .该电路为串联电路B .该电路为并联电路C .流过电阻R 的电流为kS3RD .流过电阻R 的电流为kSR【答案】AC【解析】电源只能生成于导体上,故该电路为串联电路.该电源的电动势恒为E =ΔΦΔt =ΔB ·S Δt =kS ,则流过电阻R 的电流(即电路的总电流)I =E R +2R =kS3R. 二、非选择题10.如图所示,直角三角形导线框abc 固定在匀强磁场中,ab 是一段长为L ,电阻为R 的均匀导线,ac 和bc 的电阻可不计,ac 长度为L2.磁场的磁感应强度为B ,方向垂直纸面向里.现有一段长度为L 2,电阻为R2的均匀导体棒MN 架在导线框上,开始时紧靠ac ,然后沿ab 方向以恒定速度v 向b 端滑动,滑动中始终与ac 平行并与导线框保持良好接触,当MN 滑过的距离为L3时,导线ac 中的电流为多大?方向如何?解:MN 滑过的距离为L3时,它与bc 的接触点为P (图甲),等效电路图如图乙所示.甲 乙由几何关系可知MP 长度为L3,MP 中的感应电动势E =13BL vMP 段的电阻r =13RMacP 和MbP 两电路的并联电阻为 r 并=13×2313+23R =29R由欧姆定律,PM 中的电流I =Er +r 并ac 中的电流I ac =23I解得I ac =2BL v5R根据右手定则,MP 中的感应电流的方向由P 流向M ,所以电流I ac 的方向由a 流向c . 11.如图所示,两金属杆ab 和cd 长均为l ,电阻均为R ,质量分别为M 和m (M >m ),用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧.两金属杆都处在水平位置,整个装置处在一与回路平面相垂直的匀强磁场中,磁感应强度为B .若金属杆ab 正好匀速向下运动,求其运动的速度.解:方法一 假设磁感应强度B 的方向垂直纸面向里,ab 杆向下匀速运动的速度为v ,则ab 杆切割磁感线产生的感应电动势大小为E i =Bl v ,方向a →b ;cd 杆以速度v 向上切割磁感线运动产生的感应电动势大小为E i ′=Bl v ,方向d →c .在闭合回路中产生a →b →d →c →a 方向的感应电流I ,据闭合电路欧姆定律知 I =E i +E i ′2R =2Bl v 2R =Bl vRab 杆受磁场作用的安培力F 1方向向上,cd 杆受的安培力F 2方向向下,F 1,F 2的大小相等,有F 1=F 2=IlB =B 2l 2v R对ab 杆应有F =Mg -F 1 对cd 杆应有F =F 2+mg 解得v =(M -m )gR2B 2l 2.方法二 若把ab ,cd 和柔软导线视为一个整体,因M >m ,故整体动力为(M -m )g ,ab 向下、cd 向上运动时,穿过闭合回路的磁通量发生变化,根据电磁感应定律判断回路中产生感应电流,根据楞次定律知,I 感的磁场要阻碍原磁场的磁通量的变化,即阻碍ab 向下,cd 向上运动,即F 安为阻力.整体受到的动力与安培力满足平衡条件,即(M -m )g =2B 2l 2vR则可解得v 如上结果.方法三 整个回路视为一整体系统,因其速度大小不变,故动能不变,ab 向下,cd 向上运动过程中,因Mg >mg ,系统的重力势能减少,将转化为回路的电能,根据能量守恒定律,重力的机械功率(单位时间内系统减少的重力势能)要等于电功率(单位时间内转化的回路中的电能).所以有Mg v -mg v =E 2总R 总=(2Bl v )22R同样可解得v 为上值.12.如下图甲所示,光滑且足够长的金属导轨MN ,PQ 平行地固定在同一水平面上,两导轨间距L =0.20 m ,两导轨的左端之间所接的电阻R =0.40 Ω,导轨上静止放置一质量m =0.10 kg 的金属杆ab ,位于两导轨之间的金属杆的电阻r =0.10 Ω,导轨的电阻可忽略不计.整个装置处于磁感应强度B =0.50 T 的匀强磁场中,磁场方向竖直向下.现用一水平外力F 水平向右拉金属杆,使之由静止开始运动,在整个运动过程中金属杆始终与导轨垂直并接触良好,若理想电压表的示数U 随时间t 变化的关系如下图乙所示,求从金属杆开始运动经t =5.0 s 时:(1)通过金属杆的感应电流的大小和方向; (2)金属杆的速度大小; (3)外力F 的瞬时功率.甲 乙解:(1)由图象可知,t =5.0 s 时的U =0.40 V 此时电路中的电流(即通过金属杆的电流) I =UR=1.0 A 由右手定则判断出,此时电流的方向为由b 指向a . (2)金属杆产生的感应电动势E =I (R +r )=0.50 V 因E =BL v ,所以5.0 s 时金属杆的速度大小 v =EBL=5.0 m/s.(3)金属杆速度为v 时,电压表的示数应为U =RR +r BL v ,由图象可知,U 与t 成正比,由于R ,r ,B 及L 均为不变量,所以v 和t 成正比,即金属杆应沿水平方向向右做初速度为零的匀加速直线运动,金属杆运动的加速度a =vt=1.0 m/s 2根据牛顿第二定律,在5.0 s 末时对金属杆有 F -BIL =ma 解得F =0.2 N此时F 的瞬时功率P =F v =1.0 W.。

2018年高考物理复习真题训练 10电磁感应--含答案解析

2018年高考物理复习真题训练  10电磁感应--含答案解析

专题10 电磁感应1.(2017天津卷)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R .金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小 答案:D解析:导体棒ab 、电阻R 、导轨构成闭合回路,磁感应强度均匀减小(k tB=∆∆为一定值),则闭合回路中的磁通量减小,根据楞次定律,可知回路中产生顺时针方向的感应电流,ab 中的电流方向由a 到b ,故A 错误;根据法拉第电磁感应定律,感应电动势B SE k S t tΦ∆∆⋅===⋅∆∆,回路面积S 不变,即感应电动势为定值,根据欧姆定律REI =,所以ab 中的电流大小不变,故B 错误;安培力BIL F =,电流大小不变,磁感应强度减小,则安培力减小,故C 错误;导体棒处于静止状态,所受合力为零,对其受力分析,水平方向静摩擦力f 与安培力F 等大反向,安培力减小,则静摩擦力减小,故D 正确.2.(2017全国卷Ⅰ)扫描隧道显微镜(STM )可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM 的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是答案:A解析:本题考查电磁感应、电磁阻尼及其相关的知识点.施加磁场来快速衰减STM的微小振动,其原理是电磁阻尼,在振动时通过紫铜薄板的磁通量变化,紫铜薄板中产生感应电动势和感应电流,则其受到安培力作用,该作用阻碍紫铜薄板振动,即促使其振动衰减.方案A中,无论紫铜薄板上下振动还是左右振动,通过它的磁通量都发生变化;方案B中,当紫铜薄板上下振动时,通过它的磁通量可能不变,当紫铜薄板向右振动时,通过它的磁通量不变;方案C中,紫铜薄板上下振动、左右振动时,通过它的磁通量可能不变;方案D中,当紫铜薄板上下振动时,紫铜薄板中磁通量可能不变.综上可知,对于紫铜薄板上下及左右振动的衰减最有效的方案是A.3. (2017浙江卷)如图所示,两平行直导线cd和ef竖直放置,通以方向相反大小相等的电流,a、b两点位于两导线所在的平面内.则A.b点的磁感应强度为零B. ef导线在a点产生的磁场方向垂直纸面向里C.cd导线受到的安培力方向向右D.同时改变了导线的电流方向,cd导线受到的安培力方向不变答案:D解析:由右手螺旋定则可知.cdJ导线和ef导线在b处产生的磁场方向都垂直纸面向外.所以由矢量合成知b处的磁感应强度垂直纸面向外.故A错误:由右手螺旋定则知ef导线在左侧产生的磁感应强度垂直纸面向外,故B错误:由左手定则知.cd 导线受到的安培力方向向左.故C 错误:由题意可知,cd 导线所处的位置磁汤方向发生改变,但同时自身电流方向向也发生改变,由左手定则知cd 导线所受安培力方向不变.故D 正确4.(2017全国卷Ⅰ)如图,三根相互平行的固定长直导线L 1、L 2和L 3两两等距,均通有电流I ,L 1中电流方向与L 2中的相同,与L 3中的相反,下列说法正确的是A .L 1所受磁场作用力的方向与L 2、L 3所在平面垂直B .L 3所受磁场作用力的方向与L 1、L 2所在平面垂直C .L 1、L 2和L 3单位长度所受的磁场作用力大小之比为1:1:3D .L 1、L 2和L 3单位长度所受的磁场作用力大小之比为3:3:1 答案:BC解析:本题考查安培定则、左手定则、磁场叠加、安培力及其相关的知识点.由安培定则可判断出L 2在L 1处产生的磁场(B 21)方向垂直L 1和L 2的连线竖直向上,L 3在L 1处产生的磁场(B 31)方向垂直L 1和L 3的连线指向右下方,根据磁场叠加原理,L 3和L 2在L 1处产生的合磁场(B 合1)方向如图1所示,根据左手定则可判断出L 1所受磁场作用力的方向与L 2和L 3的连线平行,选项A 错误;同理,如图2所示,可判断出L 3所受磁场(B合3)作用力的方向(竖直向上)与L 1、L 2所在的平面垂直,选项B 正确;同理,如图3所示,设一根长直导线在另一根导线处产生的磁场的磁感应强度大小为B ,根据几何知识可知,B B =1合,B B =2合,B B 33=合,由安培力公式可知,L 1、L 2和L 3单位长度所受的磁场作用力大小与该处的磁感应强度大小成正比,所以L 1、L 2和L 3单位长度所受的磁场作用力大小之比为3:1:1,选项C 正确,D 错误.5.(2017全国卷Ⅲ)如图,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直.金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面.现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向答案:D解析:因为PQ突然向右运动,由右手定则可知,PQRS中有沿逆时针方向的感应电流,穿过T中的磁通量减小,由楞次定律可知,T中有沿顺时针方向的感应电流,D正确,ABC错误.6.(2017全国卷Ⅲ)如图,在磁感应强度大小为B0的匀强磁场中,两长直导线P和Q垂直于纸面固定放置,两者之间的距离为l.在两导线中均通有方向垂直于纸面向里的电流I时,纸面内与两导线距离均为l的a点处的磁感应强度为零.如果让P中的电流反向、其他条件不变,则a点处磁感应强度的大小为A .0B .033BC .0233B D .2B 0 答案:C解析:如图1所示,P 、Q 中电流在a 点产生的磁感应强度大小相等,设为B 1,由几何关系有103B B =,如果让P 中的电流反向、其他条件不变,如图2所示,由几何关系可知,a 点处磁感应强度的大小为22010233B B B B =+=,故选C.7.(2017北京卷)图1和图2是教材中演示自感现象的两个电路图,L 1和L 2为电感线圈.实验时,断开开关S 1瞬间,灯A 1突然闪亮,随后逐渐变暗;闭合开关S 2,灯A 2逐渐变亮,而另一个相同的灯A 3立即变亮,最终A 2与A 3的亮度相同.下列说法正确的是A .图1中,A 1与L 1的电阻值相同B .图1中,闭合S 1,电路稳定后,A 1中电流大于L 1中电流C .图2中,变阻器R 与L 2的电阻值相同D .图2中,闭合S 2瞬间,L 2中电流与变阻器R 中电流相等 答案:C解析:断开开关S 1瞬间,灯A 1突然闪亮,由于线圈L 1的自感,通过L 1的电流逐渐减小,且通过A 1,即自感电流会大于原来通过A 1的电流,说明闭合S 1,电路稳定时,通过A 1的电流小于通过L 1的电流,L 1的电阻小于A 1的电阻,AB 错误;闭合S 2,电路稳定时,A 2与A 3的亮度相同,说明两支路的电流相同,因此变阻器R 与L 2的电阻值相同,C 正确;闭合开关S 2,A 2逐渐变亮,而A 3立即变亮,说明L 2中电流与变阻器R 中电流不相等,D 错误.8.(2017全国卷Ⅱ)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m 、总电阻为0.005 Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行,如图(a )所示.已知导线框一直向右做匀速直线运动,cd 边于t =0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b )所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是A .磁感应强度的大小为0.5 TB .导线框运动速度的大小为0.5 m/sC .磁感应强度的方向垂直于纸面向外D .在t =0.4 s 至t =0.6 s 这段时间内,导线框所受的安培力大小为0.1 N 答案:BC解析:由E –t 图象可知,线框经过0.2 s 全部进入磁场,则速度0.1m/s=0.5m/s 0.2l v t ==,选项B 正确;E =0.01 V ,根据E =BLv 可知,B =0.2 T ,选项A 错误;根据楞次定律可知,磁感应强度的方向垂直于纸面向外,选项C正确;在t =0.4 s 至t =0.6 s 这段时间内,导线框中的感应电流0.01A 2A 0.005E I R ===,所受的安培力大小为F =BIL =0.04 N ,选项D 错误;故选BC.9.(2017海南卷)如图,空间中存在一匀强磁场区域,磁场方向与竖直面(纸面)垂直,磁场的上、下边界(虚线)均为水平面;纸面内磁场上方有一个正方形导线框abcd ,其上、下两边均为磁场边界平行,边长小于磁场上、下边界的间距.若线框自由下落,从ab 边进入磁场时开始,直至ab 边到达磁场下边界为止,线框下落的速度大小可能( )A .始终减小B .始终不变C .始终增加D .先减小后增加 答案:CD解析:A 、导线框开始做自由落体运动,ab 边以一定的速度进入磁场,ab 边切割磁场产生感应电流,根据左手定则可知ab 边受到向上的安培力,当安培力大于重力时,线框做减速运动,当线框完全进入磁场后,线框不产生感应电流,此时只受重力,做加速运动,故先减速后加速运动,故A 错误、D 正确;B 、当ab 边进入磁场后安培力等于重力时,线框做匀速运动,当线框完全进入磁场后,线框不产生感应电流,此时只受重力,做加速运动,故先匀速后加速运动,故A 错误;C 、当ab 边进入磁场后安培力小于重力时,线框做加速运动,当线框完全进入磁场后,线框不产生感应电流,此时只受重力,做加速增大的加速运动,故加速运动,故C 正确.10.(2017全国卷Ⅱ)某同学自制的简易电动机示意图如图所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉答案:AD解析:为了使电池与两金属支架连接后线圈能连续转动起来,将左、右转轴下侧的绝缘漆都刮掉,这样当线圈在图示位置时,线圈的上下边受安培力水平而转动,转过一周后再次受到同样的安培力而使其转动,选项A正确;若将左、右转轴上下两侧的绝缘漆都刮掉,则当线圈在图示位置时,线圈的上下边受安培力水平而转动,转过半周后再次受到相反方向的安培力而使其停止转动,选项B正确;左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉,电路不能接通,故不能转起来,选项C错误;若将左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉,这样当线圈在图示位置时,线圈的上下边受安培力水平而转动,转过半周后电路不导通,转过一周后再次受到同样的安培力而使其转动,选项D正确;故选AD.11.(2017江苏卷)如图所示,两条相距d的平行金属导轨位于同一水平面内,其右端接一阻值为R的电阻.质量为m的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ的磁感应强度大小为B、方向竖直向下.当该磁场区域以速度v0匀速地向右扫过金属杆后,金属杆的速度变为v.导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)MN刚扫过金属杆时,杆中感应电流的大小l;(2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P .答案:(1)0Bdv I R = (2)220B d v a mR = (3)2220()B d v v P R-=解析:(1)感应电动势0Bdv E =;感应电流R EI =;解得RBdv I 0= (2)安培力F =BId ; 牛顿第二定律F =ma ; 解得mRv d B a 022=(3)金属杆切割磁感线的速度v v v -='0,则感应电动势)(0v v Bd E -=电功率R E P 2= ; 解得Rv v d B P 2022)(-=12.(2017北京卷)发电机和电动机具有装置上的类似性,源于它们机理上的类似性.直流发电机和直流电动机的工作原理可以简化为如图1、图2所示的情景.在竖直向下的磁感应强度为B 的匀强磁场中,两根光滑平行金属轨道MN 、PQ 固定在水平面内,相距为L ,电阻不计.电阻为R 的金属导体棒ab 垂直于MN 、PQ 放在轨道上,与轨道接触良好,以速度v (v 平行于MN )向右做匀速运动.图1轨道端点MP 间接有阻值为r 的电阻,导体棒ab 受到水平向右的外力作用.图2轨道端点MP 间接有直流电源,导体棒ab 通过滑轮匀速提升重物,电路中的电流为I .(1)求在Δt 时间内,图1“发电机”产生的电能和图2“电动机”输出的机械能.(2)从微观角度看,导体棒ab 中的自由电荷所受洛伦兹力在上述能量转化中起着重要作用.为了方便,可认为导体棒中的自由电荷为正电荷.a .请在图3(图1的导体棒ab )、图4(图2的导体棒ab )中,分别画出自由电荷所受洛伦兹力的示意图. b .我们知道,洛伦兹力对运动电荷不做功.那么,导体棒ab 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请以图2“电动机”为例,通过计算分析说明.答案:(1)222B L v tR r∆+ BL v t ∆ (2)a .如答图3、答图4 b .见解析解析:(1)题图1中,电路中的电流rR BLvI +=1棒ab 受到的安培力L BI F 11= 在Δt 时间内,“发电机”产生的电能等于棒ab 克服安培力做的功rR tv L B t v F E +∆=∆⋅=2221电题图2中,棒ab 受到的安培力F 2=BIL在Δt 时间内,“电动机”输出的机械能等于安培力对棒ab 做的功2E F v t BILv t =⋅∆=∆机(2)a .题图3中,棒ab 向右运动,由左手定则可知其中的正电荷受到b →a 方向的洛伦兹力,在该洛伦兹力作用下,正电荷沿导体棒运动形成感应电流,有沿b →a 方向的分速度,受到向左的洛伦兹力作用;题图4中,在电源形成的电场作用下,棒ab 中的正电荷沿a →b 方向运动,受到向右的洛伦兹力作用,该洛伦兹力使导体棒向右运动,正电荷具有向右的分速度,又受到沿b →a 方向的洛伦兹力作用.如答图3、答图4.b.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图4所示,沿棒方向的洛伦兹力qvB f ='1,做负功t qvBu t u f W ∆-=∆'-=11 垂直棒方向的洛伦兹力quB f ='2, 做正功t quBv t v f W ∆=∆'=22 所以W 1=-W 2,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f '做负功,阻碍自由电荷的定向移动,宏观上表现为“反电动势”,消耗电源的电能;2f '做正功,宏观上表现为安培力做正功,使机械能增加.大量自由电荷所受洛伦兹力做功的宏观表现是将电能转化为等量的机械能;在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用.13.(2017海南卷)如图,两光滑平行金属导轨置于水平面(纸面)内,轨间距为l ,左端连有阻值为R 的电阻.一金属杆置于导轨上,金属杆右侧存在一磁感应强度大小为B 、方向竖直向下的匀强磁场区域.已知金属杆以速度v 0向右进入磁场区域,做匀变速直线运动,到达磁场区域右边界(图中虚线位置)时速度恰好为零.金属杆与导轨始终保持垂直且接触良好.除左端所连电阻外,其他电阻忽略不计.求金属杆运动到磁场区域正中间时所受安培力的大小及此时电流的功率.答案:金属杆运动到磁场区域正中间时所受安培力的大小,此时电流的功率为.解析:由题意可知,开始时导体棒产生的感应电动势为:E=Blv0,依据闭合电路欧姆定律,则电路中电流为:I=,再由安培力公式有:F=BIl=;设导体棒的质量为m,则导体棒在整个过程中的加速度为:a==设导体棒由开始到停止的位移为x,由运动学公式:0﹣解得:x==;故正中间离开始的位移为:x中=;设导体棒在中间的位置时的速度为v,由运动学公式有:v2﹣v02=2ax中解得:v=则导体棒运动到中间位置时,所受到的安培力为:F=BIl=;导体棒电流的功率为:P=I2R=;14.(2017天津卷)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器.电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C.两根固定于水平面内的光滑平行金属导轨间距为l,电阻不计.炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触.首先开关S接1,使电容器完全充电.然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动.当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨.问:(1)磁场的方向;(2)MN 刚开始运动时加速度a 的大小;(3)MN 离开导轨后电容器上剩余的电荷量Q 是多少.答案:(1)磁场的方向垂直于导轨平面向下 (2)mR BEl a = (3)mC l B EC l B Q +=222222解析:(1)垂直于导轨平面向下(2)电容器完全充电后,两极板间电压为 E ,当开关S 接 2 时,电容器放电,设刚放电时流经 MN 的电流为 I ,有REI =设 MN 受到的安培力为 F ,有F =IlB 由牛顿第二定律,有F =ma 联立得mRBEla =(3)电容器放电前所带的电荷量CE Q =1开关S 接2后,MN 开始向右加速运动,速度达到最大值v m 时,MN 上的感应电动势:m E Blv '= 最终电容器所带电荷量E C Q '=2设在此过程中MN 的平均电流为I ,MN 上受到的平均安培力:l I B F ⋅⋅= 由动量定理,有:m 0F t mv ⋅∆=- 又:12I t Q Q ⋅∆=-整理的:最终电容器所带电荷量mC l B EC l B Q +=222222.。

2018届高考物理电磁感应专题卷含答案解析(全国通用)

2018届高考物理电磁感应专题卷含答案解析(全国通用)

2018年高考物理二轮复习讲练测专题06 电磁感应一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,1~8题只有一项符合题目要求;9~12题有多项符合题目要求。

全部选对的得5分,选对但不全的得3分,有选错的得0分。

)1.一个闭合线圈中没有产生感应电流,因此可以得出. ()A. 此时该处一定没有磁场B. 此时该处一定没有磁场的变化C. 闭合线圈的面积一定没有变化D. 穿过线圈平面的磁通量一定没有变化【答案】D点睛:解答本题主要是抓住感应电流产生的条件:闭合线圈的磁通量发生变化,而磁通量的变化可以是由磁场变化引起,也可以是线圈的面积变化,或位置变化引起的.2.如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中.一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中()A. PQ中电流一直增大B. PQ中电流一直减小C. 线框消耗的电功率先增大后减小D. 线框消耗的电功率先减小后增大【答案】C【解析】A、B项,设导体棒的长度为L,磁感应强度为B,导体棒的速度v保持不变,根据法拉第电磁感应定律,感应的电动势E BLv =不变,设线框左边的电阻为r ,则左右两边线框的电阻为R 并 , 111+3R r R r =-并 流过PQ 的电流()23=33E RE I R R r R r R=+-+并 ,可以看出当PQ 从靠近ad 向bc 靠近过程中, r 从零增大到3R ,从而可以判断电流先减小后增大,故A 、B 项错误。

C ,D 项,电源的内阻为R ,PQ 从靠近ad 向bc 靠近过程中,外电路的并联等效电阻从零增大到0.75R 又减小到零,外电路的电阻等于电源内阻的时候消耗的功率最大,所以外电路的功率应该先增大后减小,故C 正确D 项错误。

专题12电磁感应-2018年高考题和高考模拟题物理分项版汇编含解析

专题12电磁感应-2018年高考题和高考模拟题物理分项版汇编含解析

2018年全真高考+名校模拟物理试题分项解析1、如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下.一边长为的正方形金属线框在导轨上向左匀速运动,线框中感应电流i随时间t变化的正确图线可能是()A.B.C.D.【来源】2018年普通高等学校招生全国统一考试物理(全国II卷)【答案】 D第一过程从①移动②的过程中左边导体棒切割产生的电流方向是顺时针,右边切割磁感线产生的电流方向也是顺时针,两根棒切割产生电动势方向相同所以,则电流为,电流恒定且方向为顺时针,再从②移动到③的过程中左右两根棒切割磁感线产生的电流大小相等,方向相反,所以回路中电流表现为零,然后从③到④的过程中,左边切割产生的电流方向逆时针,而右边切割产生的电流方向也是逆时针,所以电流的大小为,方向是逆时针点睛:根据线圈的运动利用楞次定律找到电流的方向,并计算电流的大小从而找到符合题意的图像.2、如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心.轨道的电阻忽略不计.OM是有一定电阻.可绕O转动的金属杆.M端位于PQS上,OM与轨道接触良好.空间存在半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM的电荷量相等,则等于()A.B.C.D. 2【来源】2018年全国普通高等学校招生统一考试物理(新课标I卷)【答案】 B【解析】本题考查电磁感应及其相关的知识点.过程I回路中磁通量变化△Φ1=BπR2,设OM的电阻为R,流过OM的电荷量Q1=△Φ1/R.过程II回路中磁通量变化△Φ2=(B’-B)πR2,流过OM的电荷量Q2=△Φ2/R.Q2= Q1,联立解得:B’/B=3/2,选项B正确.【点睛】此题将导体转动切割磁感线产生感应电动势和磁场变化产生感应电动势有机融合,经典中创新.11、(多选)如图所示,竖直放置的形光滑导轨宽为L,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d,磁感应强度为B、质量为m的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等、金属杆在导轨间的电阻为R,与导轨接触良好,其余电阻不计,重力加速度为g、金属杆()A. 刚进入磁场Ⅰ时加速度方向竖直向下B. 穿过磁场Ⅰ的时间大于在两磁场之间的运动时间C. 穿过两磁场产生的总热量为4mgdD. 释放时距磁场Ⅰ上边界的高度h可能小于【来源】2018年全国普通高等学校招生统一考试物理(江苏卷)【答案】 BC点睛:本题以金属杆在两个间隔磁场中运动时间相等为背景,考查电磁感应的应用,解题的突破点是金属棒进入磁场Ⅰ和Ⅱ时的速度相等,而金属棒在两磁场间运动时只受重力是匀加速运动,所以金属棒进入磁场时必做减速运动.12、(多选)如图(a),在同一平面内固定有一长直导线PQ和一导线框R,R在PQ的右侧.导线PQ中通有正弦交流电流i,i的变化如图(b)所示,规定从Q到P为电流的正方向.导线框R 中的感应电动势A. 在时为零B. 在时改变方向C. 在时最大,且沿顺时针方向D. 在时最大,且沿顺时针方向【来源】2018年全国普通高等学校招生统一考试物理(全国III卷)【答案】 AC点睛此题以交变电流图象给出解题信息,考查电磁感应及其相关知识点.解答此题常见错误主要有四方面:一是由于题目以交变电流图象给出解题信息,导致一些同学看到题后,不知如何入手;二是不能正确运用法拉第电磁感应定律分析判断;三是不能正确运用楞次定律分析判断,陷入误区.13、(多选)如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路.将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态.下列说法正确的是()A. 开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动B. 开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向C. 开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向D. 开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动【来源】2018年全国普通高等学校招生统一考试物理(新课标I卷)【答案】 AD【点睛】此题中套在一根铁芯上的两个线圈,实际上构成一个变压器.1、如图所示,PQ、MN是放置在水平面内的光滑导轨,GH是长度为L、电阻为r的导体棒,其中点与一端固定的轻弹簧连接,轻弹簧的劲度系数为k.导体棒处在方向向下、磁感应强度为B的匀强磁场中.图中E是电动势为E、内阻不计的直流电源,电容器的电容为C.闭合开关,待电路稳定后,下列选项正确的是A. 导体棒中电流为B. 轻弹簧的长度增加C. 轻弹簧的长度减少D. 电容器带电量为【来源】【全国百强校】福建省厦门市外国语学校2018届高三下学期5月适应性考试(最后压轴模拟)理综物理试题【答案】 D【点睛】电路稳定后电容器相当于断路,根据欧姆定律求导体棒中的电流,由Q=CU求电容器的带电量、2、超导体的电阻为零,现有一个本来无电流的固定的超导体圆环如图所示,虚线为其轴线,在其右侧有一个条形永磁体,当永磁体从右侧远处沿轴线匀速穿过该圆环直至左侧远处的过程中,下列I-t图所反映的电流情况合理的是哪个?假设磁体中心刚好处于圆环中心为零时刻,从右向左看逆时针电流规定为正方向( )A. AB. BC. CD. D【来源】【全国百强校】湖北省荆州中学2018届高三全真模拟考试(二)理综物理试题【答案】 A3、如图甲所示,在倾角a=370的光滑平行导轨上,有一长度恰等于导轨宽度的均匀导体棒AB,平行于斜面底边CD由静止释放.导轨宽度L=10cm,在AB以下距离AB为x1的区域内有垂直于导轨的匀强磁场,该区域面积S=0.3m2,匀强磁场的磁感应强度随时间变化的规律如图乙所示,导体棒AB在t=1s时进入磁场区域,并恰好做匀速直线运动,已知导体棒AB的电阻r等于电阻R=6Ω,导轨足够长,重力加速度g=10m/s2,则A. 异体棒AB在磁场外运动时没有感应电流产生B. 位移x1为3mC. 导体棒AB进入磁场后感应电动势为0.6VD. 在前2s内电路中产生的内能为0.15J【来源】黑龙江省齐齐哈尔市2018届高三第三次模拟考试理综物理试题【答案】 B【解析】A. 导体棒没有进入磁场区域时穿过回路的磁感应强度不断增大,闭合回路的磁通量发生变化,回路产生感应电流,故A错误;B. 导体棒没有进入磁场前, 由牛顿第二定律得:mg sinα=ma, 解得:a=6m/s2, 导体棒进入磁场前做初速度为零的匀加速直线运动, 则,故B正确;C. 导体棒进入磁场时的速度:v=at=6×1=6m/s,由图 2 所示图象可知,导体棒进入磁场后磁场的磁感应强度 B =2T ,感应电动势:,故 C 错误;4、如图所示,间距为L 的足够长的平行金属导轨固定在斜面上,导轨一端接入阻值为R 的定值电阻,t=0时,质量为m 的金属棒由静止开始沿导轨下滑,t=T 时,金属棒的速度恰好达到最大值vm ,整个装置处于垂直斜面向下、磁感应强度为B 的匀强磁场中,已知金属棒与导轨间的动摩擦因数为μ,金属棒在运动过程中始终与导轨垂直且接触良好,金属棒及导轨的电阻不计,下列说法正确的是( )A. 2Tt =时,金属棒的速度大小为2m v B. 0~T 的过程中,金属棒机械能的减少量等于R 上产生的焦耳热 C. 电阻R 在0~2T 内产生的焦耳热小于2T~T 内产生的焦耳热 D. 金属棒0~2T 内机械能的减少量大于2T~T 内机械能的减少量 【来源】普通高等学校2018届高三招生全国统一考试模拟试题(二)理科综合物理试题 【答案】 C【解析】A 项:速度达到最大值m v 前金属棒做加速度减小的加速运动,故相同时间内速度的增加量减小,所以2Tt =时,金属棒的速度大于2m v ,故A 错误; B 项:由能量守恒, 0T ~的过程中,金属棒机械能的减小等于R 上产生的焦耳热和金属棒与导轨间摩擦生热之和,故B 错误;C 项: 02T ~内金属棒的位移小于2TT ~的位移,金属棒做加速运动,其所受安培力增大,所以2TT ~内金属棒克服安培力做功更多,产生的电能更多,电阻R 上产生的焦耳热更多,故C 正确; D 项:2T T ~内的位移比02T ~内的位移大,故2TT ~内滑动摩擦力对金属棒做功多,由功能关系得f W Q E +=∆,2TT ~内金属棒机械能的减小量更多,故D 错误. 点晴:解决本题关键理解导体棒克服安培力做功等整个回路中产生的焦耳热,注意导体棒与导轨间还有摩擦产生热量,综合功能关系即可求解.5、如图,两同心圆环A 、B 置于同一水平面上,其中B 为均匀带负电绝缘环,A 为导体环、当B 绕环心转动时,导体环A 产生顺时针电流且具有扩展趋势,则B 的转动情况是()A. 顺时针加速转动B. 顺时针减速转动C. 逆时针加速转动D. 逆时针减速转动【来源】【全国百强校】北京市北京大学附中中学高三4月模拟仿真预测理科综合物理试题 【答案】 A6、两根足够长的平行光滑导轨竖直固定放置,顶端接一电阻R ,导轨所在平面与匀强磁场垂直.将一金属棒与下端固定的轻弹簧的上端拴接,金属棒和导轨接触良好,重力加速度为g ,如图所示.现将金属棒从弹簧原长位置由静止释放,则( )A. 金属棒在最低点的加速度小于gB. 回路中产生的总热量等于金属棒重力势能的减少量C. 当弹簧弹力等于金属棒的重力时,金属棒下落速度最大D. 金属棒在以后运动过程中的最大高度一定低于静止释放时的高度【来源】北京市人大附中2017-2018学年下学期高二第一次月考物理试卷【答案】 AD考点:能量守恒定律;楞次定律【名师点睛】本题运用力学的方法分析金属棒的运动情况和受力情况及功能关系,金属棒的运动情况:先向下做加速运动,后向下做减速运动,当重力、安培力与弹簧的弹力平衡时,速度最大、此题的难点是运用简谐运动的对称性分析金属棒到达最低点时的加速度与g的关系.7、如图甲所示,一对间距为l=20cm的平行光滑导轨放在水平面上,导轨的左端接R=1Ω的电阻,导轨上垂直放置一导体杆,整个装置处在磁感应强度大小为B=0.5T的匀强磁场中,磁场方向垂直导轨平面向下.杆在沿导轨方向的拉力F作用下做初速为零的匀加速运动.测得力F与时间t的关系如图乙所示.杆及两导轨的电阻均可忽略不计,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触,则杆的加速度大小和质量分别为( )A. 20m/s2 0.5kgB. 20m/s2 0.1kgC. 10m/s2 0.5kgD. 10m/s2 0.1kg【来源】【全国校级联考】百校联盟2018年高考名师猜题保温金卷物理试题(5月26日下午)【答案】 D【解析】导体杆在轨道上做初速度为零的匀加速直线运动,用v表示瞬时速度,t表示时间,则杆切割磁感线产生的感应电动势为:,闭合回路中的感应电流为,由安培力公式和牛顿第二定律得:,由以上三式得,在乙图线上取两点,,,代入联立方程得:,,选项D正确.故选D.点睛:对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下导体棒的平衡问题,根据平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解、8、如图甲所示,导体棒MN置于水平导轨上,PQ之间有阻值为R的电阻,PQNM所为的面积为S,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的磁场,规定磁场方向竖直向上为正,在0~2t0时间内磁感应强度的变化情况如图乙所示,导体棒MN始终处于静止状态.下列说法正确的是A. 在0~t0和t0~2t0内,导体棒受到导轨的摩擦力方向相同B. 在t0~2t0内,通过电阻R的电流方向为P到QC. 在0~t0内,通过电阻R的电流大小为D. 在0~2t0内,通过电阻R的电荷量为【来源】河北省石家庄2018届高三教学质量检测(二)理科综合物理试题【答案】 DC、由图乙所示图象,应用法拉第电磁感应定律可得,在内感应电动势:,感应电流为,故C错误;D、由图乙所示图象,应用法拉第电磁感应定律可得,在内通过电阻R的电荷量为;故D正确;故选D.【点睛】由楞次定律判断出导体棒的运动趋势,然后判断摩擦力方向;由楞次定律求出感应电流方向;由法拉第电磁感应定律求出感应电动势,然后由欧姆定律求出感应电流;然后由电流定义式求出电荷量.9、(多选)水平桌面上固定着两相距为L=1m的足够长的平行金属导轨,导轨右端接电阻R=1Ω,在导轨间存在无数宽度相同的有界匀强磁场区域,磁感应强度为B=1T,方向竖直向下,任意两个磁场区域之间有宽为s0=0.3的无场区,金属棒CD质量为m=0.1kg,电阻为r=1Ω.水平置于导轨上,用绝缘水平细线通过定滑轮与质量也为m的物体A相连.金属棒CD从距最左边磁场区域左边界s=0.4m处由静止释放,运动过程中CD棒始终保持与导轨垂直,在棒穿过两磁场区域的过程中,通过电阻R的电流变化情况相同,且导体棒从进入磁场开始通过每个区域的时间均相同,重力加速度为g=10m/s2,不计其他电阻、摩擦力.则下列说法正确的是(图中并未把所有磁场都画出)A. 金属棒每次进入磁场时的速度为2m/s,离开磁场时速度均为1m/sB. 每个磁场区域的宽度均为d=0.8mC. 导体棒在每个区域运动的时候电阻R上产生的电热为1.3JD. 从进入磁场开始时,电流的有效值为 A【来源】【全国百强校】河北省衡水中学2018届高三第十六次模拟考试理科综合物理试题【答案】 AB,解得,由,解得,即离开磁场I时的速度为,A正确;因为通过每个区域的时间相同,故通过磁场区域和通过无磁区域的时间相等,为,对金属棒;对物体A:,又知道,,联立解得,解得,B正确;导体棒的电阻和R相等,并且两者串联在电场中,故两者产生的热量相等,根据能量守恒定律可得经过每一个磁场区域时有,解得,C错误;导体棒经过一个磁场区和一个无磁区为一个周期,则在这个周期内,通过磁场时,有电流产生,其余时间无电流产生,根据有效值的定义可知,解得,D错误、10、(多选)一个细小金属圆环,在范围足够大的磁场中竖直下落,磁感线的分布情况如图,其中沿圆环轴线的磁场方向始终竖直向上.开始时圆环的磁通量为要,圆环磁通量随下落高度变化关系为(k为比例常数,k>0).金属圆环在下落过程中的环面始终保持水平,速度越来越大,最终稳定为某一数值,称为收尾速度.该金属环的收尾速度为v,已知金属圆环的电阻为R,忽略空气阻力,关于该情景,以下结论正确的有A. 金属圆环速度稳定后,Δt时间内,金属圆环产生的平均感应电动势大小为B. 金属圆环速度稳定后金属圆环的热功率C. 金属圆环的质量D. 金属圆环速度稳定后金属圆环的热功率【来源】【全国百强校】福建省厦门双十中学2018届高三考前热身考试(最后一卷)理综物理试题【答案】 AD11、(多选)如图所示,在同一水平面内有两根足够长的光滑水平金属导轨,间距为20cm,电阻不计,其左端连接一阻值为10 Ω的定值电阻.两导轨之间存在着磁感应强度为1 T的匀强磁场,磁场边界虚线由多个正弦曲线的半周期衔接而成,磁场方向如图所示.一接入电阻阻值为10 Ω的导体棒AB在外力作用下以10 m/s的速度匀速向右运动,交流电压表和交流电流表均为理想电表,则A. 电压表的示数是1 VB. 电流表的示数是 AC. 导体棒运动到图示虚线CD位置时,电流表示数为零D. 导体棒上消耗的热功率为0.1 W【来源】【全国百强校】福建省厦门市外国语学校2018届高三下学期5月适应性考试(最后压轴模拟)理综物理试题【答案】 AD【点睛】根据公式E=BLv求解电动势的最大值、交流电压表及交流电流表测量的是有效值,根据有效值的定义求出,根据求解导体棒上消耗的热功率、12、(多选)如图甲所示,是间距为的足够长的光滑平行金属导轨,导轨平面与水平面夹角为,在虚线下方的导轨平面内存在垂直于导轨平面向上的匀强磁场,导轨电阻不计,长为的导体棒垂直放置在导轨上,导体棒电阻;右侧连接一电路,已知灯泡的规格是“”,定值电阻,.在时,将导体棒从某一高度由静止释放,导体棒的速度—时间图象如图乙所示,其中段是直线,段是曲线.若导体棒沿导轨下滑时,导体棒达到最大速度,并且此时灯泡已正常发光,假设灯泡的电阻恒定不变,重力加速度,则下列说法正确的是()A.B. 匀强磁场的磁感应强度大小为2 TC. 导体棒的质量为D. 从导体棒静止释放至速度达到最大的过程中,通过电阻的电荷量为l C【来源】湖北省黄冈中学2018届高三5月第三次模拟考试理综物理试题【答案】 AC点睛:本题是电磁感应与力学知识的综合,一方面要理解速度图象斜率的物理意义,知道斜率等于加速度,运用牛顿第二定律求解斜面倾角的正弦值;另一方面抓住安培力既与电磁感应有联系,又与力学知识有联系,熟练推导出安培力与速度的关系,由平衡条件和动力学方程进行解答、。

高考物理二轮复习考点第十章电磁感应专题电磁感应中的能量问题

高考物理二轮复习考点第十章电磁感应专题电磁感应中的能量问题

专题10.6 电磁感应中的能量问题一.选择题1.(2020·山东德州二模)(多选)如图所示,在水平面上有两条光滑的长直平行金属导轨MN 、PQ ,电阻忽略不计,导轨间距离为L ,磁感应强度为B 的匀强磁场垂直于导轨所在平面。

质量均为m 的两根金属a 、b 放置在导轨上,a 、b 接入电路的电阻均为R 。

轻质弹簧的左端与b 杆连接,右端固定。

开始时a 杆以初速度v 0向静止的b 杆运动,当a 杆向右的速度为v 时,b 杆向右的速度达到最大值v m ,此过程中a 杆产生的焦耳热为Q ,两杆始终垂直于导轨并与导轨接触良好,则b 杆达到最大速度时( )A .b 杆受到弹簧的弹力为B 2L 2(v -v m )2RB .a 杆受到的安培力为B 2L 2(v -v m )RC .a 、b 杆与弹簧组成的系统机械能减少量为QD .弹簧具有的弹性势能为12mv 20-12mv 2-12mv 2m -2Q【参考答案】AD2.(2020·河南八校联考)(多选)如图所示,正方形金属线圈abcd 平放在粗糙水平传送带上,被电动机带动一起以速度v 匀速运动,线圈边长为L ,电阻为R ,质量为m ,有一边界长度为2L 的正方形磁场垂直于传送带,磁感应强度为B ,线圈穿过磁场区域的过程中速度不变,下列说法中正确的是( )A .线圈穿出磁场时感应电流的方向沿abcdaB .线圈进入磁场区域时受到水平向左的静摩擦力,穿出区域时受到水平向右的静摩擦力C.线圈经过磁场区域的过程中始终受到水平向右的静摩擦力D.线圈经过磁场区域的过程中,电动机多消耗的电能为2B2L3vR【参考答案】AD3.(2020河南开封一模)如右图所示,足够长的光滑导轨倾斜放置,导轨宽度为L,其下端与电阻R连接;导体棒ab电阻为r,导轨和导线电阻不计,匀强磁场竖直向上。

若导体棒ab以一定初速度v下滑,则关于ab棒下列说法中正确的为 ( )A.所受安培力方向水平向右B.可能以速度v匀速下滑C.刚下滑的瞬间ab棒产生的电动势为BLvD.减少的重力势能等于电阻R上产生的内能【参考答案】AB【考点】本题考查了电磁感应、安培力、法拉第电磁感应定律、平衡条件、能量守恒定律及其相关的知识点。

2018年高考物理二轮专题训练试题:电磁感应练习50题

2018年高考物理二轮专题训练试题:电磁感应练习50题

50题电磁感应练习(含答案)1、如图所示,两平行金属导轨间的距离L=0.40m,金属导轨所在的平面与水平面夹角θ=37º,在导轨所在平面内,分布着磁感应强度B=0.50T、方向垂直于导轨所在平面的匀强磁场。

金属导轨的一端接有电动势E=4.5V、内阻r=0.50Ω的直流电源。

现把一个质量m=0.04kg的导体棒ab放在金属导轨上,导体棒静止。

导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触的两点间的电阻R0=2.5Ω,金属导轨的其它电阻不计,g取10m/s2。

已知sin37º=0.60,cos37º=0.80,试求:(1)通过导体棒的电流;(2)导体棒受到的安培力大小、方向;(3)导体棒受到的摩擦力的大小。

答案(1)(3分)(2),平行斜面向上(3分)(3),(4分)2、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.答案分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Q f=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由mgsin θ=μmgcos θ+BIL得:I=0.5A由BLv=I(R+r)代入数据得:v=2m/s(2)进入粗糙导轨前,导体棒中的平均电动势为:==导体棒中的平均电流为:==所以,通过导体棒的电量为:q=△t==0.125C(3)由能量守恒定律得:2mgdsin θ=Q电+μmgdcos θ+mv2得回路中产生的焦耳热为:Q电=0.35J所以,电阻R上产生的焦耳热为:Q=Q电=0.2625J答:(1)导体棒到达轨道底端时的速度大小是2m/s;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q是0.35C;(3)整个运动过程中,电阻R产生的焦耳热Q是0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.如图甲所示,足够长的光滑平行金属导轨MN、PQ竖直放置,其宽度L=1 m,一匀强磁场垂直穿过导轨平面,导轨的上端M与P之间连接一阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,下滑过程中ab始终保持水平,且与导轨接触良好,其下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g取10 m/s2(忽略ab棒运动过程中对原磁场的影响)。

高考物理总复习重要考点专项强化(含详解):电磁感应中的“导轨+杆”

高考物理总复习重要考点专项强化(含详解):电磁感应中的“导轨+杆”

电磁感应中的“导轨+杆”1.电阻可忽略的光滑平行金属导轨长S=1.15m,两导轨间距L=0.75 m,导轨倾角为30°,导轨上端ab接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T的匀强磁场垂直轨道平面向上。

阻值r=0.5Ω,质量m=0.2kg的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热。

(取)求:(1)金属棒在此过程中克服安培力的功;(2)金属棒下滑速度时的加速度.(3)为求金属棒下滑的最大速度,有同学解答如下:由动能定理,……。

由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答。

2. 半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下,在内圆导轨的C点和外圆导轨的D点之间接有一阻值为R的电阻(图中未画出).直导体棒在水平外力作用下以速度ω绕O逆时针匀速转动、转动过程中始终与导轨保持良好接触,设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略,重力加速度大小为g.求:(1)通过电阻R的感应电流的方向和大小;(2)外力的功率.3.如图,光滑平行金属导轨间距为L,与水平面夹角为θ,两导轨上端用阻值为R的电阻相连,该装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面。

质量为m的金属杆ab以沿导轨平面向上的初速度v0从导轨底端开始运动,然后又返回到出发位置。

在运动过程中,ab与导轨垂直且接触良好,不计ab和导轨的电阻及空气阻力。

(1)求ab开始运动时的加速度a;(2)分析并说明ab在整个运动过程中速度、加速度的变化情况;(3)分析并比较ab上滑时间和下滑时间的长短。

4.如图,质量为M的足够长金属导轨abcd放在光滑的绝缘水平面上。

高考物理二轮复习第十章电磁感应提能增分练(三)金属杆在导轨上运动的三类问题(2021学年)

高考物理二轮复习第十章电磁感应提能增分练(三)金属杆在导轨上运动的三类问题(2021学年)

2018届高考物理二轮复习第十章电磁感应提能增分练(三)金属杆在导轨上运动的三类问题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018届高考物理二轮复习第十章电磁感应提能增分练(三)金属杆在导轨上运动的三类问题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018届高考物理二轮复习第十章电磁感应提能增分练(三)金属杆在导轨上运动的三类问题的全部内容。

提能增分练(三) 金属杆在导轨上运动的三类问题[A级错误!夺高分]1.(2017·平顶山模拟)如图所示,甲、乙、丙中除导体棒ab可动外,其余部分均固定不动。

图甲中的电容器C原来不带电,设导体棒、导轨和直流电源的电阻均可忽略,导体棒和导轨间的摩擦也不计。

图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长,若给导体棒ab一个向右的初速度v0,ab的最终运动状态是( )A.三种情况下,ab最终都是做匀速运动B.图甲、丙中ab最终将以某速度做匀速运动;图乙中ab最终静止C.图甲、丙中ab最终将以相同的速度做匀速运动D.三种情况下,ab最终均静止解析:选B图甲中,当电容器C两端电压等于ab切割磁感线产生的感应电动势时,回路电流为零,ab做匀速运动;图乙中,ab在F安作用下做减速运动直至静止;图丙中,ab先做加速运动至BLv=E时,回路中电流为零,ab再做匀速运动,故B对,A、C、D均错.2.(多选)(2017·日照第一中学检测)如图所示,足够长的金属导轨竖直放置,金属棒ab、cd均通过棒两端的环套在金属导轨上。

虚线上方有垂直纸面向里的匀强磁场,虚线下方有竖直向下的匀强磁场,两匀强磁场的磁感应强度大小均为B.ab、cd棒与导轨间动摩擦因数均为μ,两棒总电阻为R,导轨电阻不计。

高考物理(电磁感应现象的两类情况提高练习题)压轴题训练含答案

高考物理(电磁感应现象的两类情况提高练习题)压轴题训练含答案

高考物理(电磁感应现象的两类情况提高练习题)压轴题训练含答案一、电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt-【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。

高考物理电磁感应现象压轴题二轮复习及答案解析

高考物理电磁感应现象压轴题二轮复习及答案解析

高考物理电磁感应现象压轴题二轮复习及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2mgRsin B L vθ(2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t则电容器板间电压为 U E BLv ='= 此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.2.某兴趣小组设计制作了一种磁悬浮列车模型,原理如图所示,PQ 和MN 是固定在水平地面上的两根足够长的平直导轨,导轨间分布着竖直(垂直纸面)方向等间距的匀强磁场1B 和2B ,二者方向相反.矩形金属框固定在实验车底部(车厢与金属框绝缘).其中ad边宽度与磁场间隔相等,当磁场1B 和2B 同时以速度0m 10s v =沿导轨向右匀速运动时,金属框受到磁场力,并带动实验车沿导轨运动.已知金属框垂直导轨的ab 边长0.1m L =m 、总电阻0.8R =Ω,列车与线框的总质量0.4kg m =,12 2.0T B B ==T ,悬浮状态下,实验车运动时受到恒定的阻力1h N .(1)求实验车所能达到的最大速率;(2)实验车达到的最大速率后,某时刻让磁场立即停止运动,实验车运动20s 之后也停止运动,求实验车在这20s 内的通过的距离;(3)假设两磁场由静止开始向右做匀加速运动,当时间为24s t =时,发现实验车正在向右做匀加速直线运动,此时实验车的速度为m 2s v =,求由两磁场开始运动到实验车开始运动所需要的时间.【答案】(1)m 8s ;(2)120m ;(3)2s 【解析】 【分析】 【详解】(1)实验车最大速率为m v 时相对磁场的切割速率为0m v v -,则此时线框所受的磁场力大小为2204-B L v v F R=()此时线框所受的磁场力与阻力平衡,得:F f = 2m 028m/s 4fRv v B L =-= (2)磁场停止运动后,线圈中的电动势:2E BLv =线圈中的电流:EI R=实验车所受的安培力:2F BIL =根据动量定理,实验车停止运动的过程:m F t ft mv ∑∆+=整理得:224m B L vt ft mv R∑∆+=而v t x ∑∆=解得:120m x =(3)根据题意分析可得,为实现实验车最终沿水平方向做匀加速直线运动,其加速度必须与两磁场由静止开始做匀加速直线运动的加速度相同,设加速度为a ,则t 时刻金属线圈中的电动势 2)E BLat v =-( 金属框中感应电流 2)BL at v I R-=( 又因为安培力224)2B L at v F BIL R(-==所以对试验车,由牛顿第二定律得 224)B L at v f ma R(--=得 21.0m/s a =设从磁场运动到实验车起动需要时间为0t ,则0t 时刻金属线圈中的电动势002E BLat =金属框中感应电流002BLat I R=又因为安培力2200042B L at F BI L R==对实验车,由牛顿第二定律得:0F f =即2204B L at f R= 得:02s t =3.如图所示,MN 、PQ 为足够长的平行金属导轨.间距L=0.50m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R=5.0Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0T .将一根质量m=0.05kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数0.50μ=,当金属棒滑至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离 2.0m s =.已知210m/s g =, sin370.60︒=,cos370.80︒=.求:(1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒达到cd 处的速度大小;(3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 【答案】(1)22.0/a m s = (2) 2.0/v m s = (3)0.10Q J = 【解析】 【分析】根据牛顿第二定律求加速度,根据平衡条件求金属棒速度大小,由能量守恒求电阻R 上产生的热量; 【详解】(1)设金属杆的加速度大小a ,则sin cos mg mg ma θμθ-= 解得22.0m/s a =(2)设金属棒达到cd 位置时速度大小为V ,电流为I ,金属棒受力平衡,有sin cos mg BIL mg θμθ=+BLvI R=解得: 2.0m/s V =.(3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒,有21sin cos 2mgs mv mgs Q θμθ⋅=+⋅+ 解得:0.10J Q =4.为了提高自行车夜间行驶的安全性,小明同学设计了一种闪烁装置.如图所示,自行车后轮由半径的金属内圈、半径的金属外圈和绝缘幅条构成.后轮的内、外圈之间等间隔地接有4跟金属条,每根金属条的中间均串联有一电阻值为的小灯泡.在支架上装有磁铁,形成了磁感应强度、方向垂直纸面向外的扇形匀强磁场,其内半径为、外半径为、张角.后轮以角速度,相对转轴转动.若不计其它电阻,忽略磁场的边缘效应.(1)当金属条进入扇形磁场时,求感应电动势E,并指出ab上的电流方向;(2)当金属条进入扇形磁场时,画出闪烁装置的电路图;(3)从金属条进入扇形磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差随时间变化的图象;【答案】(1),电流方向由到;(2)见解析;(3)见解析【解析】【分析】【详解】(1)金属条ab在匀强磁场中转动切割,由得:感应电动势为,根据右手定则判断可知电流方向由到;(2)边切割充当电源,其余为外电路,且并联,其等效电路如图所示(3)设电路的总电阻为,根据电路图可知,两端电势差:设离开磁场区域的时刻,下一根金属条进入磁场的时刻,则:,,设轮子转一圈的时间为,则,在内,金属条有四次进出,后三次与第一次相同,由上面的分析可以画出如下图象:【点睛】本题考查了电磁感应和恒定电路的知识,设计问题从容易入手,层层递进,较好地把握了试题的难度和区分度.5.如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L,左端接有阻值R的电阻,一质量m、长度L的金属棒MN放置在导轨上,棒的电阻为r,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度为B,棒在水平向右的外力作用下,由静止开始做加速运动,保持外力的功率为P不变,经过时间t导体棒最终做匀速运动.求:(1)导体棒匀速运动时的速度是多少?(2)t时间内回路中产生的焦耳热是多少?【答案】(1);(2)【解析】【分析】(1)金属棒在功率不变的外力作用下,先做变加速运动,后做匀速运动,此时受到的安培力与F二力平衡,由法拉第定律、欧姆定律和安培力公式推导出安培力与速度的关系式,再由平衡条件求解速度;(2)t时间内,外力F做功为Pt,外力F和安培力对金属棒做功,根据动能定理列式求出金属棒克服安培力做功,即可得到焦耳热.【详解】(1)金属棒匀速运动时产生的感应电动势为 E=BLv感应电流I=金属棒所受的安培力 F安=BIL联立以上三式得:F安=外力的功率 P=Fv匀速运动时,有F=F安联立上面几式可得:v=(2)根据动能定理:W F+W安=其中 W F=Pt,Q=﹣W安可得:Q=Pt﹣答:(1)金属棒匀速运动时的速度是.(2)t时间内回路中产生的焦耳热是Pt﹣.【点睛】金属棒在运动过程中克服安培力做功,把金属棒的动能转化为焦耳热,在此过程中金属棒做加速度减小的减速运动;对棒进行受力分析、熟练应用法拉第电磁感应定律、欧姆定律、动能定理等正确解题.6.(1)如图1所示,固定于水平面上的金属框架abcd,处在竖直向下的匀强磁场中.金属棒MN沿框架以速度v向右做匀速运动.框架的ab与dc平行,bc与ab、dc垂直.MN 与bc的长度均为l,在运动过程中MN始终与bc平行,且与框架保持良好接触.磁场的磁感应强度为B.a. 请根据法拉第电磁感应定律,推导金属棒MN中的感应电动势E;b. 在上述情景中,金属棒MN相当于一个电源,这时的非静电力与棒中自由电子所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN中的感应电动势E.(2)为进一步研究导线做切割磁感线运动产生感应电动势的过程,现构建如下情景:如图2所示,在垂直于纸面向里的匀强磁场中,一内壁光滑长为l的绝缘细管MN,沿纸面以速度v向右做匀速运动.在管的N端固定一个电量为q的带正电小球(可看做质点).某时刻将小球释放,小球将会沿管运动.已知磁感应强度大小为B,小球的重力可忽略.在小球沿管从N运动到M的过程中,求小球所受各力分别对小球做的功.【答案】(1)见解析(2)洛伦兹力做功为0,管的支持力做功【解析】【分析】【详解】(1)如图1所示,在一小段时间Dt内,金属棒MN的位移这个过程中线框的面积的变化量穿过闭合电路的磁通量的变化量根据法拉第电磁感应定律解得如图2所示,棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,f即非静电力在f的作用下,电子从M移动到N的过程中,非静电力做功根据电动势定义解得(2)小球随管向右运动的同时还沿管向上运动,其速度如图3所示.小球所受洛伦兹力f 如图4所示.将f合正交分解如图5所示.合小球除受到洛伦兹力f合外,还受到管对它向右的支持力F,如图6所示.洛伦兹力f合不做功沿管方向,洛伦兹力f做正功垂直管方向,洛伦兹力是变力,做负功由于小球在水平方向做匀速运动,则 因此,管的支持力F 对小球做正功7.如图所示,在竖直平面内有间距L =0.2 m 的足够长的金属导轨CD 、EF ,在C 、E 之间连接有阻值R =0.05 Ω的电阻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提能增分练(三) 金属杆在导轨上运动的三类问题[A级——夺高分]1.(2017·平顶山模拟)如图所示,甲、乙、丙中除导体棒ab可动外,其余部分均固定不动。

图甲中的电容器C原来不带电,设导体棒、导轨和直流电源的电阻均可忽略,导体棒和导轨间的摩擦也不计。

图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长,若给导体棒ab一个向右的初速度v0,ab的最终运动状态是( )A.三种情况下,ab最终都是做匀速运动B.图甲、丙中ab最终将以某速度做匀速运动;图乙中ab最终静止C.图甲、丙中ab最终将以相同的速度做匀速运动D.三种情况下,ab最终均静止解析:选B 图甲中,当电容器C两端电压等于ab切割磁感线产生的感应电动势时,回路电流为零,ab做匀速运动;图乙中,ab在F安作用下做减速运动直至静止;图丙中,ab 先做加速运动至BLv=E时,回路中电流为零,ab再做匀速运动,故B对,A、C、D均错。

2. (多选)(2017·日照第一中学检测)如图所示,足够长的金属导轨竖直放置,金属棒ab、cd均通过棒两端的环套在金属导轨上。

虚线上方有垂直纸面向里的匀强磁场,虚线下方有竖直向下的匀强磁场,两匀强磁场的磁感应强度大小均为B。

ab、cd棒与导轨间动摩擦因数均为μ,两棒总电阻为R,导轨电阻不计。

开始两棒静止在图示位置,当cd棒无初速度释放时,对ab棒施加竖直向上的力F,使其沿导轨向上做匀加速运动。

则( )A.ab棒中的电流方向由b到aB.cd棒先做加速运动后做匀速运动C.cd棒所受摩擦力的最大值大于其重力D.力F做的功等于两棒产生的电热与增加的机械能之和解析:选AC ab棒向上运动的过程中,穿过闭合回路abcd的磁通量增大,根据楞次定律可得,ab棒中的感应电流方向为b→a,故A正确;cd棒中感应电流由c到d,其所在的区域磁场向下,所受的安培力向里,cd棒所受的滑动摩擦力向上。

ab棒做匀加速运动,速度增大,产生的感应电流增加,cd棒所受的安培力增大,对导轨的压力增大,则滑动摩擦力增大,摩擦力先小于重力,后大于重力,所以cd 棒先做加速运动后做减速运动,最后停止运动,故B 错误;因安培力增加,cd 棒受摩擦力的作用一直增加,会大于重力,故C 正确;根据动能定理可得W F -W f -W 安培-W G =12mv 2-0,力F 所做的功应等于两棒产生的电热、摩擦生热与增加的机械能之和,故D 错误。

3. (多选)(2017·哈尔滨检测)CD 、EF 是两条水平放置的阻值可忽略的平行金属导轨,导轨间距为L ,水平导轨的左侧存在方向垂直导轨平面向上的匀强磁场,磁感应强度大小为B ,磁场区域的长度为d ,如图所示。

导轨的右端接有一电阻R ,左端与一弧形光滑轨道平滑连接。

将一阻值也为R 的导体棒从弧形轨道上h 高处由静止释放,导体棒最终恰好停在磁场的右边界处。

已知导体棒与水平导轨接触良好,且动摩擦因数为μ,下列说法中正确的是( )A .电阻R 的最大电流为Bd 2ghR B .通过导体棒的电荷量为BdL 2RC .整个电路中产生的焦耳热为mghh -μd )mgh =12mv 2,导受到水平向左的安培E =BLv ,最大的q =ΔΦ2R =BLd2R,故B 正确;mgh -W B -μmgd =0-0,则克服安培力做功:W B 故C 错误;电阻与导体棒电阻相等,通过它们的电流相等,则导体棒产生的焦耳热:Q R =12Q =12W B =12(mgh -μmgd ),故D 正确。

4.(2017·大连模拟)如图所示,上下不等宽的平行导轨,EF 和GH 部分导轨间的距离为L ,PQ 和MN 部分的导轨间距为3L ,导轨平面与水平面的夹角为30°,整个装置处在垂直于导轨平面的匀强磁场中。

金属杆ab 和cd 的质量均为m ,都可在导轨上无摩擦地滑动,且与导轨接触良好,现对金属杆ab 施加一个沿导轨平面向上的作用力F ,使其沿斜面匀速向上运动,同时cd 处于静止状态,则F 的大小为( )A.23mg B .mg C.43mg D.32mg 解析:选A 设ab 杆向上做切割磁感线运动时,产生感应电流大小为I ,受到安培力大小为:F 安=BIL ,对于cd ,由平衡条件有:BI ·3L =mg sin 30°,对于ab 杆,由平衡条件有:F =mg sin 30°+BIL ,综上可得:F =23mg ,故A 正确。

5.(2017·天津第一中学模拟)如图甲所示,光滑倾斜导体轨道(足够长)与光滑水平导体轨道平滑连接。

轨道宽度均为L =1 m ,电阻忽略不计。

水平向右的匀强磁场仅分布在水平轨道平面所在区域;垂直于倾斜轨道平面向下,大小相同的匀强磁场仅分布在倾斜轨道平面所在区域。

现将两质量均为m =0.2 kg ,电阻均为R =0.5 Ω的相同导体棒ab 和cd ,垂直于轨道分别置于水平轨道上和倾斜轨道的顶端,并同时由静止释放,导体棒cd 下滑过程中的加速度a 与速度v 的关系如图乙所示。

(g =10 m/s 2)求:(1)倾斜轨道平面与水平面间的夹角θ; (2)磁场的磁感应强度B ;(3)导体棒ab 对水平轨道的最大压力F N 的大小;(4)若已知从开始运动到导体棒cd 达到最大速度的过程中,导体棒ab 上产生的焦耳热Q =0.45 J ,求该过程中通过导体棒cd 横截面的电荷量q 。

解析:(1)由a ­v 图像可知,导体棒cd 刚释放时,加速度a =5 m/s 2对导体棒cd 受力分析,由牛顿第二定律得:mg sin θ=ma 得a =g sin θ=5 m/s 2故:θ=30°。

(2)当导体棒cd 匀速下滑时,由图像知a =0,v =1 m/smg sin θ=F 安 F 安=BIL I =BLv2R联立解得:B =1 T ,I =1 A 。

(3)当电路中的电流I 最大时,导体棒ab 所受竖直向下的安培力最大,则压力最大F N =mg +F 安由牛顿第三定律:F N ′=F N 解得:F N ′=3 N 。

(4)导体棒ab 产生的焦耳热Q ab =Q =I 2Rt =0.45 J ,导体棒cd 产生的热量与导体棒ab 相同对导体棒cd ,由能量守恒定律:mgx sin θ=12mv 2+2Q解得:x =1 mq =I ·tI =E 2R E =ΔΦt则:q =ΔΦ2R =BLx2R=1 C 。

答案:(1)30° (2)1 T (3)3 N (4)1 C[B 级——冲满分]6. (多选)(2017·雅安诊断考试)如图所示,电阻不计、相距为L 的两条足够长的平行金属轨道倾斜放置,与水平面的夹角为θ,整个空间存在垂直于轨道平面的匀强磁场,磁感应强度为B ,轨道上固定有质量为m ,电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙下方轨道光滑,将两根导体棒同时释放后,观察到MN 下滑而EF 始终保持静止,当MN 下滑的距离为s 时,速度恰好达到最大值v m ,则下列叙述正确的是( )A .MN 的最大速度v m =2mgR sin θB 2L2B .此时EF 与轨道之间的静摩擦力为mg sin θC .当MN 从静止开始下滑s 的过程中,通过其横截面的电荷量为BLs2RD .当MN 从静止开始下滑s 的过程中,MN 中产生的热量为mgs sin θ-12mv 2m解析:选AC 当MN 下滑达到最大速度时满足:mg sin θ=B 2L 2v m 2R ,解得v m =2mgR sin θB 2L 2,选项A 正确;此时EF 满足mg sin θ+F 安=f 静,故此时EF 与轨道之间的静摩擦力大于mg sin θ,选项B 错误;当MN 从静止开始下滑s 的过程中,通过其横截面的电荷量为q =ΔΦR 总=BLs2R,选项C 正确;当MN 从静止开始下滑s 的过程中,两个导体棒中产生的总热量为 mgs sin θ- 12mv 2m ,则MN 中产生的热量是12mgs sin θ-12mv 2m ,选项D 错误。

7.(2017·济宁模拟)如图甲所示,MN 、PQ 是相距d =1 m 的足够长平行光滑金属导轨,导轨平面倾角为α,导轨电阻不计;长也为1 m 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,ab 的质量m =0.1 kg 、电阻R =1 Ω; MN 、PQ 的上端连接右侧电路,电路中R 2为一电阻箱;已知灯泡电阻R L =3 Ω,定值电阻R 1=7 Ω,调节电阻箱使R 2=6 Ω,重力加速度g =10 m/s 2。

现断开开关S ,在t =0时刻由静止释放ab ,在t =0.5 s 时刻闭合S ,同时加上分布于整个导轨所在区域的匀强磁场,磁场方向垂直于导轨平面斜向上;图乙所示为ab 的速度随时间变化的图像。

(1)求斜面倾角α及磁感应强度B 的大小;(2)ab 由静止下滑x =50 m(此前已达到最大速度)的过程中,求整个电路产生的电热; (3)若只改变电阻箱R 2的值,当R 2为何值时,ab 匀速下滑过程中R 2消耗的功率最大?消耗的最大功率为多少?解析:(1)S 断开时,ab 做匀加速直线运动,从题图乙得a =Δv Δt=6 m/s 2由牛顿第二定律有mg sin α=ma 解得α=37°t =0.5 s 时,S 闭合且加了磁场,分析可知,此后ab 将先做加速度减小的加速运动,当速度达到最大(v m =6 m/s) 后接着做匀速运动。

做匀速运动时,由平衡条件知mg sin α=F 安又F 安=BIdI =Bdv m R 总R 总=R ab +R 1+R L R 2R L +R 2=10 Ω联立以上四式,代入数据解得B =1 T 。

(2)由能量转化关系有mg sin α·x =12mv 2m +Q代入数据解得Q =mg sin α·x -12mv 2m =28.2 J 。

(3)改变电阻箱R 2的值后,ab 匀速下滑时有mg sin α=BdI ′所以I ′=mg sin αBd=0.6 A 通过R 2的电流为I 2=R LR L +R 2I ′ R 2的功率为P =I 22R 2联立以上三式可得P =I ′2R 2LR L +R 22R 2=I ′2R 2L⎝ ⎛⎭⎪⎫R L R 2+R 22当R LR 2=R 2时,即R 2=R L =3 Ω,功率最大,解得 P m =0.27 W 。

答案:(1)37° 1 T (2)28.2 J (3)3 Ω 0.27 WL 60°,左右导轨上端用导线连接。

相关文档
最新文档