实验五 单相交直交变频电路的性能研究
单相交流调压电路性能的研究
单相交流调压电路性能的研究一、实验原理:交流调压就是将一种形式的交流电变成另一种形式的交流电。
在进行交流-交流变流时,可以改变相关的电压(电流)、频率和相数。
交流调压电路中,把两个晶闸管反并联后串联在交流电路中,通过对晶闸管的控制就可以控制交流输出。
在每半个周波内通过对晶闸管开通相位的控制,可以方便地调节输出电压的有效值。
1.1单相交流调压原理图图1 单相交流调压原理图1.2电路工作情况在电源电压u1的正负半周,分别对VT1、VT2施加电压,当VT1承受正向压降且在脉冲1到来时VT1导通,输出电压波形u0和电源电压波形一致;在u1电压过零时,负载中存储的能量开始释放,直至能量全部放完,之后当VT2承受正向压降且在脉冲2到来时VT2导通,输出电压波形u0和电源电压波形一致;从复上一阶段过程。
二、实验电路搭接:2.1器件查的找以下器件均是在 MATLAB R2011a 环境下查找的,其他版本类似。
有些常用的器件比如示波器、脉冲信号等可以在Simulink库下的 Sinks、Sources中查找;其他一些器件可以搜索查找2.2连接说明在连接晶闸时,晶闸管 a、k 是电气连接端口,g 是脉冲输入端,m 是测量输出端参数设置。
2.3参数设置1. 双击交流电源把电压设置为 100V,频率设为 50Hz;2. 双击脉冲把周期设为 0.02s,占空比设为 10%,延迟角设为 30 度,由于属性里的单位为秒,故把其转换为秒即,30×0.02/360;3. 双击负载把电阻设为 10Ω,电感设为 0.01H;4. 双击示波器把Number of axes设为6,同时把History选项卡下的Limit data pointsto last 前面的对勾去掉;5. 晶闸管参数保持默认即可。
三、仿真波形及分析:3.1 α>ψ时的仿真波形及分析在 MATLAB 命令窗口中输入以下代码:fprintf('计算电流电压相位角');图2 α>ψ时的仿真波形及分析fprintf('\n');L=0.01;R=10;f=50;a1=atan((2*pi*f*L)/R);a=a1*180/pi;fprintf('电流电压相位角为');a即可得出ψ为 17.4o,由于α为 30o,大于ψ,所以在脉冲 1 到来时,VT1 立即到通,在电源电压u1过零时,VT1 两端所施加的电压为零,VT2 两端施加正压,此时由于阻感负载作用,电流不能立即降为零,而是慢慢放电,由于电感较小其存储的能量在脉冲2到来之前便放完,电压、电流均变为零,所以图中出现,电压和电流均有断续现象。
单相交流电路研究实验报告
单相交流电路研究实验报告一、实验目的:1.了解单相交流电路的基本结构和工作原理;2.掌握使用交流电表对单相电路进行电气参数测量的方法和技巧;3.研究电阻、电感和电容对单相交流电路的影响。
二、实验设备与器材:1.交流电源;2.电阻箱;3.电感器;4.电容器;5.交流电表;6.示波器;7.实验电路板等。
三、实验原理:根据欧姆定律,在交流电路中,电压与电流之间的关系可由以下公式表示:U(t)=I(t)*Z(t)其中,U(t)表示电压,I(t)表示电流,Z(t)表示电路的阻抗。
四、实验步骤:1.搭建单相交流电路,并确保电路连接正确;2.使用交流电表测量电路中的电压和电流,记录测量数值;3.分别改变电阻值、电感值和电容值,记录测量数值;4.将测得的电压和电流波形在示波器上进行观察和记录。
五、实验结果与分析:1.测量得到的电路中电压和电流的数值如下表所示:元件,电压(V),电流(A)-------------,---------,---------电阻,10,1电感,15,0.9电容,8,1.2(在此插入示波器图像)通过实验数据和波形图的观察分析,可以得出以下结论:1.电阻对电流波形没有影响,电压和电流保持相位一致;2.电感对电流波形产生相位差,电流滞后于电压;3.电容对电压波形产生相位差,电压滞后于电流。
六、实验总结:通过本次实验,我们深入了解了单相交流电路的基本结构和工作原理,掌握了使用交流电表对单相电路进行电气参数测量的方法和技巧。
同时,通过对电阻、电感和电容对单相交流电路的影响进行研究,对交流电路的特性有了更深入的理解。
在今后的学习和实践中,我们将进一步探索和研究单相交流电路的更多特性和应用,不断提升自己的实验能力和理论水平。
[1]《电路分析基础》,张朝晖,高等教育出版社;[2]《电路分析与设计》,罗杰斯、马库斯,电子工业出版社。
单相交直交变频电路实验报告
单相交直交变频电路实验报告嘿,大家好!今天咱们聊聊单相交直交变频电路实验,听起来是不是有点拗口?但别担心,咱们慢慢来,轻松一点就好。
你得知道,变频电路可不是随随便便的东西,它能让电机在不同的频率下转动,简直就像是给电机加了个调音器,想让它快点、慢点,全凭你的一念之差,真的是神奇极了!在实验室里,咱们一边玩电,一边学东西,真是一举两得的好事。
咱们这次实验用的就是单相交直交变频电路,听上去挺高大上的吧?其实它的工作原理也不复杂。
想象一下,你在调节音量一样,电压的大小直接影响着电机的转速。
这电路里有个“变频器”,它的作用就像是电机的心脏,负责调整频率,搞得电机心甘情愿地按照你的意愿来转。
你知道,这可不是随便玩玩就能搞定的,得小心翼翼地连接线缆,像是绣花一样,每根线都要放在正确的位置,真是一点马虎不得啊!在开始之前,我们得准备一些设备。
电源、变频器、负载电机,还有各种测量工具,真是忙得不可开交。
像是厨房里做菜,材料得齐全,不然就只能干着急。
然后就是连接线缆了,仿佛在搭建一座小房子,每根线都要接得稳稳的,千万不能出错。
要是搞错了,那可是得不偿失,得重新来过,心里想想就觉得无奈啊。
实验开始时,咱们先给变频器通电,心里那个紧张啊,生怕一不小心就把什么搞坏了。
不过,这个变频器的显示屏还挺友好的,数字一闪一闪的,像是在跟我打招呼。
我们先试着调整频率,看看电机转动的样子。
哎呀,转得可欢了,仿佛在说:“快来啊,快来玩我!”我心里一阵得意,感觉自己仿佛是一位电机大师。
调高频率,电机转得飞快,调低频率,哎,像是进入了慢动作,真的是有趣得不得了。
实验中也有些小插曲。
比如有一次,我把频率调得太高了,电机居然发出咕噜咕噜的声音,像是快喘不过气来。
我心里一惊,赶紧把频率降下来,生怕电机受不了,简直是虚惊一场,哈哈。
这样的实验真是让人又紧张又刺激,心跳加速,仿佛在体验一场冒险。
等到一切都准备妥当,我开始记录数据。
测量电流、电压、频率,这些数字就像是我的小伙伴,帮我分析电路的表现。
单相交流电路的研究实验报告
单相交流电路的研究实验报告单相交流电路的研究实验报告引言:单相交流电路是电力系统中最基本的电路之一,广泛应用于家庭、工业和商业领域。
为了深入了解单相交流电路的特性和性能,我们进行了一系列的实验研究。
本实验报告将介绍实验的目的、实验装置、实验步骤以及实验结果和分析。
一、实验目的本实验旨在通过实际操作和测量,研究单相交流电路的特性和性能,包括电压、电流、功率等参数的测量和分析。
二、实验装置1. 电源:使用交流电源提供电压源。
2. 变压器:将高电压转换为适用于实验的低电压。
3. 电阻箱:用于调节电路中的电阻值。
4. 电流表和电压表:用于测量电流和电压。
5. 示波器:用于观察电路中的电压和电流波形。
三、实验步骤1. 搭建单相交流电路:根据实验要求,将电源、变压器、电阻箱、电流表和电压表按照电路图连接起来。
2. 测量电压和电流:打开电源,调节变压器和电阻箱的参数,分别测量电路中的电压和电流值。
3. 记录数据:将测量到的电压和电流值记录下来,并绘制电压和电流的波形图。
4. 计算功率:根据测量到的电压和电流值,计算电路中的功率值。
5. 分析结果:根据实验数据和计算结果,分析单相交流电路的特性和性能。
四、实验结果与分析通过实验测量和计算,我们得到了一系列的实验结果。
首先,我们观察到电压和电流的波形图呈正弦波形,符合单相交流电路的特点。
其次,我们发现电路中的电压和电流存在一定的相位差,这是由于电路中的电感和电容等元件引起的。
此外,我们计算得到的功率值表明,单相交流电路在不同负载下的功率变化较大,这与负载的阻抗有关。
根据实验结果,我们可以得出以下结论:单相交流电路的特性和性能受到电阻、电感和电容等元件的影响。
电路中的电压和电流呈正弦波形,且存在一定的相位差。
在不同负载下,电路的功率表现出不同的特点。
五、实验总结通过本次实验,我们深入了解了单相交流电路的特性和性能。
通过实际操作和测量,我们得到了电压、电流和功率等参数的实验结果,并对其进行了分析。
单相交直交变频电路设计
附件1:学号:0121011350327基础强化训练题目单相交直交变频电路性能研究学院自动化学院专业班级姓名指导教师2012年7月10日1 总体原理图 (4)1.1方框图 (4)1.2电路原理图 (4)1.2.1 主回路电路原理图 (4)1.2.2 整流电路 (4)1.2.3 滤波电路 (5)1.2.4 逆变电路 (6)2 电路组成 (8)2.1控制电路 (8)2.2驱动电路 (9)2.3主电路 (10)3 仿真结果 (11)3.1仿真环境 (11)3.2仿真模型使用模块提取的路径及其单数设置 (11)3.3具体仿真结果 (14)3.3.1仿真电路图 (14)3.3.2整流滤波输出电压计算与仿真 (15)3.3.3逆变输出电压计算与仿真 (16)4 小结心得 (18)5 参考文献 (19)基础强化训练任务书学生姓名:专业班级:指导教师:工作单位:题目: 单相交直交变频电路性能研究初始条件:输入为单相交流电源,有效值220V。
要求完成的主要任务:(1)掌握单相交直交变频电路的原理;(2)设计出系统结构图,并采用matlab对单相交流调压电路进行仿真;(3)采用protel设计出单相交直交变频电路主电路、驱动电路、控制电路时间安排:2012年7月9日至2012年7月13日,历时一周,具体进度安排见下表参考文献:[1]王兆安,刘进军.《电力电子技术》第5版.北京:机械工业出版社,2011指导教师签名:年月日系主任(或责任教师)签名:年月日1 总体原理图1.1 方框图图1 总体方框图1.2 电路原理图1.2.1 主回路电路原理图图2 主回路原理图如图所示,交直流变换电路为不可控整流电路,输入的交流电通过变压器和桥式整流电路转化为直流电,滤波电路用电感和电容滤波,逆变部分采用四只IGBT 管组成单项桥式逆变电路,采用双极性调制方式,输出经LC 低通滤波器滤波,滤除高次谐波,得到频率可调的交流电输出。
1.2.2 整流电路整流电路的功能是把交流电源转换成直流电源。
单相交流电路实验报告
单相交流电路实验报告单相交流电路实验报告摘要:本实验主要通过搭建单相交流电路,观察和分析电路中电流、电压和功率的变化规律,以及不同元件对电路的影响。
实验结果表明,交流电路中的电流和电压呈正弦变化,且相位差为90度。
不同电阻和电感的接入会对电路的电流和功率产生不同的影响。
1. 引言单相交流电路是电工学中的基础知识之一,了解交流电路的特性对于电路设计和故障排除都具有重要意义。
本实验通过搭建单相交流电路,以观察和分析电路中的电流、电压和功率的变化规律。
2. 实验目的- 了解单相交流电路的基本原理和特性;- 掌握测量交流电路中电流和电压的方法;- 分析不同元件对电路中电流和功率的影响。
3. 实验装置- 交流电源;- 电阻箱;- 电感;- 电压表;- 电流表;- 示波器。
4. 实验步骤4.1 搭建基本的单相交流电路,包括电源、电阻和电感。
4.2 调节交流电源的电压,使其保持在合适的范围内。
4.3 使用电压表和电流表分别测量电路中的电压和电流。
4.4 使用示波器观察电路中电压和电流的波形,并记录相关数据。
4.5 更换不同电阻和电感,观察电路中电流和功率的变化。
5. 实验结果与分析在实验过程中,我们观察到电路中的电流和电压均呈正弦变化的波形。
根据实验数据,我们可以计算出电流和电压的频率、幅值和相位差。
实验结果表明,电流和电压之间的相位差约为90度,符合理论的预期。
此外,我们还发现不同电阻和电感的接入会对电路中的电流和功率产生不同的影响。
当电阻增加时,电路中的电流减小,功率也相应减小。
而当电感增加时,电路中的电流增加,功率也相应增加。
这与电阻和电感对电流的阻碍和促进作用相吻合。
6. 结论通过本次实验,我们深入了解了单相交流电路的特性和变化规律。
我们通过测量和分析电流、电压和功率的变化,得出了电流和电压之间相位差为90度的结论,并且验证了电阻和电感对电路中电流和功率的影响。
7. 实验总结本实验通过搭建单相交流电路,观察和分析电路中的电流、电压和功率的变化规律,加深了对交流电路的理解。
单相交直交变频电路的性能研究.
单相交直交变频电路的性能研究一、交直交变频器发展概况变频器是运动控制系统中的功率变换器。
当今的运动控制系统是包含多种学科的技术领域,总的发展趋势是:驱动的交流化,功率变换器的高频化,控制的数字化、智能化和网络化。
因此,变频器作为系统的重要功率变换部件,提供可控的高性能变压变频的交流电源而得到迅猛发展。
交—直—交变频器的中间直流环节采用大电感作储能元件,无功功率将由大电感来缓冲,它的一个突出优点是当电动机处于制动 (发电)状态时,只需改变网侧可控整流器的输出电压极性即可使回馈到直流侧的再生电能方便地回馈到交流电网,构成的调速系统具有四象限运行能力,可用于频繁加减速等对动态性能有要求的单机应用场合,在大容量风机、泵类节能调速中也有应用。
近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。
交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。
变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。
深入了解交流传动与控制技术的走向,具有十分积极的意义。
二、实验目的和要求熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM逆变电路中元器件的作用、工作原理,对单相交直交变频电路在电阻负载、阻感负载时的工作情况及其波形作全面,并研究工作频率对电路工作波形的影响。
三、实验原理及波形如下图所示,总体设计方案由整流电路、滤波、逆变电路等组成。
市电经整流电路变直流电,直流电经滤波电路进行平滑滤波,再输入逆变电路,变为频率和电压均可调的交流电。
单相交直交变频电路由两部分组成,交流电源转化为直流是整流环节,选用了不可控的整流二极管电路,直流电源侧则选用电容和电感来滤波,能够获得比较平直的直流电压。
单相交-直-交变频电路实验
实验课程名称电力电子技术面向专业电气工程及其自动化总学时数16实验项目名称单相交-直-交变频电路实验实验学时2一、实验目的、要求1.熟悉单相交-直-交变频电路的组成,掌握SPWM控制的工作原理(包括8038芯片及IR2110芯片的功能、参数的调节及SPWM控制的实现)。
2.掌握对各单元输出点电压波形的测定与分析。
3.掌握对单相交-直-交变频电路在电阻负载及电阻、电感负载时的电压与电流波形的分析。
4.分析、研究工作频率对电路工作波形的影响。
二、实验原理二极管整流器——IGBT逆变器构成的交-直-交变频电路(图7-1的上部分为主电路),它由二极管整流器、滤波电容、及4只IGBT(V1~V4)组成逆变电路,与IGBT并联的为续流二极管。
直流输出主要通过大容量电容来稳压,所以它属于“电压型”。
图7-1为单相交-直-交变频电路原理图。
图7-1 单相IGBT-SPWM(电压型)交-直-交变频原理图逆变器是将直流电变换成交流电的装置。
图7-1中的直流电是50HZ的交流电经过二极管桥式整流后,变换成电压为Ud的直流电源。
由于是采用并联电容器来作为储能环节的,所以它是电压型的。
虽然供给的是直流电,但在由四个IGBT开关管组成的电路中,以V1与V4为一组,V2与V3为另一组,使之交替通、断,便能在负载上形成交流电。
如在V1与V4导通时,设流过负载的电流为正(如图中的i+),则V2与V3导通时,流过负载的电流便为负(如图中的i-),若使两组开关管依次轮流通、断,则在负载上流过的将是正、反向交替的交流电流,从而实现了将直流电变换成交流电的要求。
当然,在主电路中,将IGBT换成MOSFET 也是可以的,但MOSFET的带载能力不及IGBT,因此在通用变频器中现在多采用IGBT。
三、使用仪器、材料1. SPWM控制单相交直流变频电路单元。
2.双踪示波器。
3.万用表。
四、实验步骤(一)接上电源,调节三角波发生器和正弦波发生器的频率与幅值,用示波器与万用表测定它们的波形与相关数据。
单相交直交变频电路
电力电子技术之吉白夕凡创作课程设计(论文)单相交-直-交变频实验装置院(系)名称电子与信息工程学院专业班级学号学生姓名指导教师起止时间: 2014.12.15—2014.12.26课程设计(论文)任务及评语院(系):电子与信息工程学院教研室:电子信息工程摘要随着科学技术的进步, 电力电子技术取得了迅速的的发展, 改变着我国工业的整体面貌, 在现代化建设中发挥着越来越重要的作用.其中, 单相交-直-交变频技术也获得了越来越多的重视.其在工业生产、生活娱乐和仪器应用等方面有着广泛的应用, 其中目前应用最广泛的属于电网互联, 将分布式发电技术发出的电酿成负载可以使用的交流电或与年夜电网电压、频率相匹配的工频交流电.可见, 研究交—直—交变频系统的基本工作原理和作用特性意义十分重年夜.本次设计研究的单相交-直-交变频实验装置可分为主电路和控制电路两部份.其中, 主电路包括整流电路、逆变电路和滤波电路三部份.整流电路采纳不成控的二极管单相桥式整流电路;逆变电路采纳IGBT组成的单相全桥逆变电路;滤波电路采纳电容滤波, 输出合适频率的正弦交流电.而控制电路由控制电路、驱动电路和呵护电路组成.其中, 控制电路以ICL8038为核心, 生成两路PWM控制信号;驱动电路采纳三菱公司生产的M57862L集成驱动器;用双D触发器CD4013构成呵护电路.根据以上电路组合设计, 经过Multisim软件进行电路仿真, 可以基本满足本次设计任务的要求, 且电路比力可靠.关键词:整流;逆变;IGBT;PWM控制目录第1章第1章绪论 (1)电力电子技术发展概况 (1)本文研究内容 (1)第2章单相交-直-交变频电路设计 (3)单相交-直-交变频电路总体设计方案 (3)方案论证与选择 (3)整体方案框图 (3)具体电路设计 (4)整流电路设计 (4)逆变电路设计 (6)控制电路设计 (7)驱动电路与呵护电路设计 (10)元器件型号选择 (11)第3章课程设计总结 (13)参考文献 (15)附录 (16)第1章绪论1.1交直交变频器发展概况变频器是运动控制系统中的功率变换器.现今的运动控制系统是包括多种学科的技术领域, 总的发展趋势是:驱动的交流化, 功率变换器的高频化, 控制的数字化、智能化和网络化.因此, 变频器作为系统的重要功率变换部件, 提供可控的高性能变压变频的交流电源而获得迅猛发展.交—直—交变频器的中间直流环节采纳年夜电感作储能元件, 无功功率将由年夜电感来缓冲, 它的一个突出优点是当电念头处于制动(发电)状态时, 只需改变网侧可控整流器的输出电压极性即可使回馈到直流侧的再生电能方便地回馈到交流电网, 构成的调速系统具有四象限运行能力, 可用于频繁加减速等对静态性能有要求的单机应用场所, 在年夜容量风机、泵类节能调速中也有应用.近年来, 随着电力电子技术、计算机技术、自动控制技术的迅速发展, 交流传动与控制技术成为目前发展最为迅速的技术之一, 电气传动技术面临着一场历史革命, 即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势.交流变频调速技术是现今节电、改善工艺流程以提高产物质量和改善环境、推动技术进步的一种主要手段.变频调速以其优异的调速和起制动性能, 高效率、高功率因数和节电效果, 广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式.深入了解交流传动与控制技术的走向, 具有十分积极的意义.1.2本文研究内容本文设计研究的是100W单相交-直-交变频实验装置.该装置主要由整流电路、逆变电路以及驱动电路等组成.任务要求:设计一单相交-直-交变频实验装置用于电力电子技术课程的教学实验, 根据参数要求完成整流电路设计、逆变电路设计、通过计算选择器件的具体型号、完成驱动电路设计或选择, 使学生可以通过该装置测试、观察及验证单相交-直-交变频的实现方法.技术要求:1、交流电源:单相220V.2、为了IGBT的平安, 中间直流电压最年夜为50V.3、输出交流电压约45V.4、输出最年夜电流2A.5、输出频率50Hz.6、最年夜功率:100W.第2章单相交-直-交变频电路设计2.1单相交-直-交变频电路总体设计方案2.1.1方案论证与选择1.逆变电路方案论证与选择方案一:采纳电压型逆变电路电压型逆变电路具有直流侧电压基本无脉动, 直流回路出现低阻抗的优点, 且交流侧输出电压波形与负载阻抗角无关, 比力容易获得合适的交流电压.方案二:采纳电流型逆变电路电流型逆变电路需在直流侧串连年夜电感, 且交流侧输出电压波形和相位随负载阻抗角的分歧而分歧, 对本次设计, 可行性差.综上比力, 本次设计采纳电压型逆变电路2.整流电路方案论证与选择方案一:采纳二极管单相桥式整流电路二极管单相桥式整流电路输出电压高, 纹波电压较小, 管子所接受的最年夜反向电压较低, 同时因电源变压器在正、负半周内都有电流供给负载, 电源变压器获得了充沛的利用, 效率较高.方案二:采纳晶闸管单相桥式整流电路晶闸管单相桥式整流电路适用于功率较年夜的场所.与二极管相比, 晶闸管推销价格昂贵, 易受干扰而发生误导通, 且需要设计相应的触发电路, 可行性欠好.本次设计输出功率为100W, 从经济、可把持性两方面考虑, 选择方案一.2.1.2整体方案框图如图2.1所示, 总体设计方案由整流电路、滤波、逆变电路等组成.市电经整流电路酿成直流电, 直流电经滤波电路进行平滑滤波, 再输入逆变电路, 酿成频率和电压均可调的交流电.2.2 具体电路设计2.2.1 整流电路设计直流电路的原理图如图2.2所示.在变压器二次侧电压的正半周, 其极性为上正下负, 此时二极管D1、D4正向导通, D2、D3反偏截止, 电流从变压器副边线圈的上端流出, 只能经过二极管D1流向RL, 再由二极管D4流回变压器.于是在负载电阻RL 上获得一个极性为上正下负的半波电压.在导通时二极管的正向压降很小, 可以忽略不计, 因此, 可认为这半波电压和的变压器二次侧电压正半波是相同的.在变压器二次侧电压的负半周, 其极性为上负下正, 此时二极管D2、D3正220 Vrms 50 Hz 0°向导通, D1、D4反偏截止, 电流从变压器副边线圈的下端流出, 只能经过二极管D2流向RL, 再由二极管D3流回变压器.同理, 在负载上获得一个半波电压, 极性依旧是上正下负, 与前面获得的相同, 如图2.3所示.流电路输出波形一所获得的半波电压经过电容滤波电路的滤波, 即可获得较为平缓的直流电压, 如图2.4所示.2.2.2逆变电路设计在本次设计中, 主要采纳单相桥式逆变电路作为设计的主电路.其主电路结构图如图2.5所示:如上图所示, 单相全桥逆变电路主要有四个桥臂, 可以看成由两个半桥电路组合而成.其中桥臂1,4为一对, 桥臂2, 3为一对.每个桥臂由一个可控器件IGBT 以及一个反并联的二极管组成.在直流侧接有足够年夜的电容, 负载接在桥臂之间.它的具体工作过程如下:设最初t1时刻时, 给IGBT Q1、Q4触发信号, 使其导通. 则电流通过桥臂1, 负载, 桥臂4构成一个导通回路.当t2 时刻时, 给Q2,Q3触发信号, 给Q1,Q4关断信号.但由于负载电感较年夜, 通过它的电流不能突变, 所以二极管D2,D3导通进行续流.当电流逐渐减小为0, 桥臂1,4关断, 桥臂2,3导通, 构成一个回路, 从而实现换流.当Q1、Q4或Q2、Q3为通态时, 负载电流和电压同方向, 直流侧向负载提供能量;而当D6、D8或D5、D7为通态时, 负载电流和电压反向, 负载电感中贮存的能量向直流侧反馈, 即负载电感将其吸收的无功能量向直流侧反馈.反馈回的能量暂时贮存在直流侧电容器中, 直流侧电容器起着缓冲这种无功能量的作用.单相桥式逆变电路工作波形如图2.6所示.分析其工作过程:设在t1时刻前Q1和Q4导通, 输出电压Uo为Ud, t1时刻Q3和Q4栅极信号反向, Q4截止, 而因负载电感中电流不能突变, Q3不立刻导通, D7导通实现续流.因为Q1和D6同时导通, 所以输出电压为0.到t2时刻Q1和Q2栅极信号反向, Q1截止, 而Q2不能立刻导通, D5续流, 和D7构成电流通道, 输出电压-Ud.到负载电流过零并开始反向时, D5和D7截止, Q2和Q3开始同时导通, 仍然为-Ud.在t3时刻Q3和Q4栅极信号再次反相, Q3截止, 而Q4不能立刻导通, D8导通续流, Uo再次为0.以后的过程与前面类似.2.2.3控制电路设计1.PWM控制原理PWM(Pulse Width Modulation)控制——脉冲宽度调制技术, 通过对一系列脉冲的宽度进行调制, 来等效地获得所需要波形(含形状和幅值).PWM控制的方法可分为三类,即计算法、调制法和跟踪控制法.其中,调制法是较为经常使用的也是基本的一类方法,而调制法中最基本的是利用三角载波与正弦信号波进行比力的调制方法,分为单极性调制和双极性调制.本次设计采纳的单相桥式逆变电路既可以采纳单极性调制,也可以采纳双极性调制.在本次设计中,采纳了双极性PWM调制技术.以下是双极性PWM调制的原理.双极性PWM 控制原理示意图如图2.7所示.采纳双极性PWM调制技术时, 以希望获得的交流正弦输出波形作为信号波, 采纳三角波作为载波, 将信号波与载波进行比力,在信号波与载波的交点时刻控制各开关的通断.在信号波的一个周期内,载波有正有负, 调制出来的输出波形也是有正有负, 其输出波形有±Ud两种电平.用Ur暗示信号波,, Uc暗示载波.当Ur>Uc 时, 给Q1、Q4施加开通驱动信号, 给Q2 、Q3 施加关断驱动信号, 此时如果负载电流io>0 则Q1 、Q4 开通, 如果io < 0, 则D6 、D8开通,但输出电压均为Uo=Ud .反之, 则Q2、Q3或D5、D7开通, Uo= -Ud .图2.8中, Uof是输出电压Uo的基波分量.2.控制电路设计控制电路的工作流程是:信号发生(包括发生信号波和载波) 、信号调制、发生IGBT的驱动信号.附录图2给出了控制电路的原理图.在本实验中, 控制电路采纳两片集成函数信号发生器ICL8038为核心, 其中一片发生正弦调制波Ur, 另一片用以发生三角载波Uc, 将此两路信号经比力电路LM311异程序制后, 发生一系列等幅, 不等宽的矩形波Um, 即SPWM波.Um 经反相器后, 生成两路相位相差180度的±PWM波, 再经触发器CD4528延时后, 获得两路相位相差180度并带一定死区范围的两路SPWM1和SPWM2波, 作为主电路中两对开关管IGBT的控制信号.控制电路还设置了过流呵护接口端STOP, 当有过流信号时, STOP呈低电平, 经与门输出低电平, 封锁了两路SPWM信号, 使IGBT关断, 起到呵护作用.ICL8038 到300Hz.其内部结构如图2.8所示.图2.8 ICL8038内部结构图原理:是由两片集成函数信号发生器ICL8038为核心组成, 其中一片8038发生正弦调制波Ur, 另一片用以发生三角载波Uc, 将此两路信号经比力电路LM311异程序制后, 发生一系列等幅, 不等宽的矩形波Um, 即SPWM波.Um经反相器后, 生成两路相位相差180度的±PWM波, 再经触发器MC4528延时后, 获得两路相位相差180度并带一定死区范围的两路SPWM1和SPWM2波.2.2.4驱动电路与呵护电路设计电力电子器件的驱动电路是电力电子主电路与控制电路之间的接口, 是电力电子装置的重要环节, 对整个装置的性能有很年夜影响.采纳性能良好的驱动电路, 可使电力电子器件工作在较理想的开关状态, 缩小开关时间, 减小开关损耗, 对装置的运行效率、可靠性和平安性都有重要的意义.另外, 对电力电子器件或整个装置的一些呵护办法也往往就近设在驱动电路中, 或者通过驱动电路来实现, 这使得驱动电路的设计尤为重要.本次设计采纳了三菱公司生产的专用于驱动IGBT的驱动器M57962L.它的内部集成了退饱和、检测和呵护单位, 当发生过电流时能快速响应, 但慢速关断IGBT, 并向外部电路给出故障信号.其内部结构方框图如图2.9所示, 它由光电耦合器、接口电路、检测电路、按时复位电路以及门极关断电路组成.M57962L具有以下几个特点:1.采纳快速型光电耦合器实现电气隔离, 具有较高的输入、输出隔离度.2.采纳双电源供电方式, 确保IGBT可靠通段.3.内部集成了短路和过流呵护电路.M57962L的过流呵护电路通过检测IGBT的饱和压降来判断是否过流, 一旦过流, M57962L将对IGBT实施软关断, 并对外部电路输出故障信号.图2.9 M57962L的内部结构图采纳M57962L 设计的驱动电路如图2.10所示.2.3 元器件型号选择根据任务要求, 可知直流侧输出电压d U 最年夜为50V , 交流侧输出电压0U 约为45V , 输出最年夜电流为2A, 最年夜功率为100W.1.整流电路器件选择当直流侧输出电压最年夜时, 由于20.9d U U = (2-1)计算得变压器二次侧电压2U ≈55.6V .所以变压器匝数比(2-2) 计算得K ≈4, 本设计取K=5.二极管所接受最年夜电压max 22V U = (2-3)一般电网的摆荡范围为±10%, 所以二极管两端电压为max V ×2×≈86.5V , 可额定电压、额定电流分别为100V 、3A 的1N5408二极管.2.IGBT 型号的选择12K=U UIGBT 两端所接受的最年夜电压为max d U 50≈负载最年夜电流为2A, 选择IGBT 时电压电流应留有2至3倍的裕量, 所以可选IGBT 的额定电压、额定电流分别为0U =3×70.7=212.1V , 0I =3×2=6A ;可选择额定电压、额定电流分别为400V 、5A 的型号为2N6975的IGBT.第3章课程设计总结课程设计是年夜学必修的一门课, 是我们专业知识获得实践的需要环节, 这是我们步入社会, 从事职业前必不成少的过程.单相交-直-交变频电路由主电路和控制电路两部份组成.在整流电路中, 采纳不成控的二极管整流电路, 直流输出侧用电容进行滤波, 可获得较为平直的直流电压.此部份电路结构简单, 选材广泛, 且能满足设计要求, 比力适合实验室中使用.控制电路以两片ICL8038为核心搭建, 其中一片8038发生正弦调制波Ur, 另一片用以发生三角载波Uc, 再经过相应电路处置, 最终发生两路相位相差180度并带一定死区范围的两路SPWM1和SPWM2波.驱动电路以IGBT专用驱动器M57962L为核心搭建, 并利用其自带的过流检测功能设计呵护电路.经Multisim 软件进行仿真, 此次设计能基本满足设计要求.在设计进行的过程中, 由于知识限制, 自己也遇到了许多问题, 但获得了指导老师们的细心辅导与耐心帮手.老师们的辅导与答疑, 使自己得以顺利地完成此次设计.固然, 由于水平有限, 此次设计难免会有缺乏之处, 恳请各位老师批评指正.自己签字:参考文献[1] 王兆安,刘进军主编.电力电子技术.北京:机械工业出书社,2009,5[2] 李宏.MOSFET、IGBT驱动集成电路及应用.北京:科学出书社,2012[3] 康华光主编.电子技术基础模拟部份.北京:高等教育出书社,2006,1[4] 冷增祥,徐以荣编著.电力电子技术基础.南京:西北年夜学出书社,2012[5] 曾方主编.电力电子技术.西安:西安电子科技年夜学出书社,2014,1[6] 郝万新主编.电力电子技术.化学工业出书社, 2002附 录图1主电路图2控制电路T15:1C12200µFD11N5408D21N5408D31N5408D41N5408R11kΩL11HV9220 Vrms 50 Hz 0°Q12N6975Q22N6975Q32N6975Q42N6975D51N4007D61N4007D81N4007D71N4007C210µF图3驱动电路图4呵护电路图5整体仿真波形创作时间:二零二一年六月三十日。
单相交-直-交变频电路的设计及性能研究
摘要随着电力电子技术、计算机技术以及自动控制技术的快速发展,单相交-直-交变频系统也得到了迅速发展,它显著的变频能力,广泛的应用范围,完善的保护效力,和易于实现的变频功能,获到了广大使用者的认可,在运行的安全可靠、安装使用以及维修维护等方面,也给使用者带来了极大的益处。
课题研究的单相交-直-交变频电路设计主要分为主电路和控制电路两部分,其中主电路还分为整流电路、滤波电路和单相桥式PWM逆变电路,而逆变部分则需要用到控制电路,控制电路分为控制电路、驱动电路和保护电路。
课题的整流部分选用不可控的桥式整流电路;滤波部分则选用LC低通滤波,获得高频率的交流正弦波输出;逆变部分选用四个IGBT管组成的单相桥式逆变电路。
控制电路主要以单片集成函数发生器ICL8038为核心设计的,生成两路PWM信号用来分别控制两对IGBT管;驱动电路则是选用了具备电气隔离的集成驱动芯片M57962L;保护电路选用双D触发器CD4013。
用MATLAB软件仿真出设计的电路,其中对纯电阻负载以及电阻电感负载分别进行数据和波形的分析,并采取相关措施使最后输出的波形接近正弦波。
关键词:整流滤波逆变IGBT PWM MATLABAbstractWith the rapid development of power electronics technology, computer technology, automatic control technology, single-phase orthogonal frequency system has been developing rapidly, its remarkable frequency capability, a wide range of applications, perfect protection, as well as easy to implement the conversion function, has been recognized by the majority of users in the safe and reliable operation, installation, repair and maintenance, etc., but also to bring users great convenience.Research of single phase AC- DC - AC inverter circuit design divided into the main circuit and control circuit, which can be divided into the main circuit rectifier circuit, filter circuit and single-phase bridge PWM inverter circuit, and inverter control part of the need to use circuit, the control circuit is divided into a control circuit, drive circuit and protection circuit. Subject rectifier bridge rectifier using uncontrollable; filtering section using LC low-pass filter to obtain a high-frequency sine wave AC output; inverter part of the single-phase bridge inverter circuit composed of four IGBT tube. Monolithic integrated control circuit ICL8038 function generator core designed to generate two PWM signals to control the two pairs of IGBT; drive circuit is the use of integrated driver chip M57962L with electrical isolation; protection circuit uses dual D flip-flop ing MATLAB software simulation of the design of the circuit, in which the purely resistive load and inductive load resistor respectively for data analysis and waveforms, and take measures to make the final output of nearly sinusoidal waveform.Keyword:Rectifier filter inverter IGBT PWM MATLAB目录第1章绪论 (1)1.1电力电子技术概况 (1)1.1.1 电子电力技术基本概念 (1)1.1.2 电力电子技术的基本应用 (1)1.2 课题的设计内容 (2)第2章单相交-直-交变频电路的总体设计 (3)2.1总体框图 (3)2.2 总电路设计 (4)2.2.1 主电路原理图 (4)2.2.2 整流电路 (4)2.2.3 滤波电路 (6)2.2.4 逆变电路 (6)第3章逆变部分的电路组成 (9)3.1 主电路 (9)3.2 驱动电路 (10)3.3 控制电路 (13)第4章MATLAB的仿真与分析 (16)4.1 MATLAB简介与使用 (16)4.1.1 MATLAB简介 (16)4.1.2 MATLAB(Simulink)简介 (16)4.1.3 MATLAB(Simulink)的基本使用 (17)4.2 MATLAB的仿真 (18)4.2.1 仿真电路图 (18)4.2.2 仿真模型使用模块及参数设置 (18)4.3 仿真的分析 (22)4.3.1 整流与滤波输出电压计算与仿真 (22)4.3.2 逆变输出电压与仿真 (24)4.3.3负载对波形的影响 (26)第5章总结与展望 (30)致谢 (31)参考文献 (32)第1章绪论1.1电力电子技术概况1.1.1 电子电力技术基本概念电力电子技术是一门新兴的应用于电力领域的电子技术,即使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。
电力电子技术实验指导书(12课时)
电力电子技术实验指导书兰勇青岛大学自动化工程学院电气工程系实验室2012.9实验一三相半波可控整流电路的研究实验一.实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作。
二.实验线路及原理三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。
不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。
实验线路见图1-1。
图1-1 三相半波可控整流实验电路三.实验内容1.研究三相半波可控整流电路供电给电阻性负载时的工作。
2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。
四.实验设备及仪表1.MCL系列教学实验台主控制屏。
2.MCL—51组件3.MCL—52组件4.MCL—53组件5.MCL—54组件6.双踪示波器。
7.万用电表。
五.注意事项1.整流电路与三相电源连接时,一定要注意相序。
2.整流电路的负载电阻不宜过小,应使Id不超过0.8A,同时负载电阻不宜过大,保证Id超过0.1A,避免晶闸管时断时续。
3.正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。
六.实验方法1.研究三相半波可控整流电路供电给电阻性负载时的工作接上电阻性负载,合上主电源:(a)改变控制电压Uct,观察在不同触发移相角α时,可控整流电路的输出电压Ud=f(t)与输出电流波形id=f(t),并记录相应的Ud、Id、Uct值。
(b)记录不同α时的Ud=f(t)及id =f(t)的波形图。
2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作接入MCL—54的电抗器L=700mH,,可把原负载电阻Rd调小,监视电流,不宜超过0.8A观察不同移相角α时的输出Ud=f(t)、id=f(t),并记录相应的Ud、Id值,记录不同α时的Ud=f(t)、id=f(t),Uvt=f(t)波形图。
七.实验报告1.画出三相半波可控整流电路的主电路原理图。
实验五 单相交直交变频电路的性能研究
单相交直交变频电路的性能研究一.实验目的熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM 逆变电路中元器件的作用,工作原理,对单相交直交变频电路在电阻负载、电阻电感负载时的工作情况及其波形作全面分析,并研究工作频率对电路工作波形的影响。
二.实验内容1.测量SPWM 波形产生过程中的各点波形。
2.观察变频电路输出在不同的负载下的波形。
三.实验设备及仪器1.电力电子及电气传动主控制屏。
2.NMCL-16组件。
3.电阻、电感元件(NMEL-03、700mH 电感)。
4.双踪示波器。
5.万用表。
四.实验原理单相交直交变频电路的主电路如图2—8所示。
本实验中主电路中间直流电压u d 由交流电整流而得,而逆变部分别采用单相桥式PWM 逆变电路。
逆变电路中功率器件采用600V8A 的IGBT 单管(含反向二极管,型号为ITH08C06),IGBT 的驱动电路采用美国国际整流器公司生产的大规模MOSFET 和IGBT 专用驱动集成电路1R2110,控制电路如图2—9所示,以单片集成函数发生器ICL8038为核心组成,生成两路PWM 信号,分别用于控制VT 1、VT 4和VT 2、VT 3两对IGBT 。
ICL8038仅需很小的外部元件就可以正常工作,用于发生正弦波、三角波、方波等,频率范围0.001到500kHz 。
五.实验方法图2—8 单相交直交变频电路1.SPWM 波形的观察(1)观察正弦波发生电路输出的正弦信号Ur 波形(“2”端与“地”端),改变正弦波频率调节电位器,测试其频率可调范围。
(2)观察三角形载波Uc 的波形(“1”端与“地”端),测出其频率,并观察Uc 和U 2的对应关系:(3)观察经过三角波和正弦波比较后得到的SPWM 波形(“3”端与“地”端),并比较“3”端和“4”端的相位关系。
(4)观察对VT 1、VT 2进行控制的SPWM 信号(“5”端与“地”端)和对VT 3、VT 4进行控制的SPWM 信号(“6”端与“地”端),仔细观察“5”端信号和“6”端防号之间的互锁延迟时间。
交直交变流电路实验报告
交直交变流电路实验报告实验目的:通过搭建交直交变流电路并进行相关实验,掌握交直交变流电路的基本构成和特性。
实验器材:1.万用表2.电流表3.电压表4.电源5.电阻6.电感7.电容8.开关实验原理:交直交变流电路是由二次侧(接通前)-直流侧-交流侧组成的电路。
在实验中,我们将交流电源接到二次侧,通过整流和滤波,得到直流信号,然后再通过逆变器将直流信号转换成交流信号。
通过调整逆变器的工作状态,可以实现交流电的频率和幅值调节。
实验步骤:1.将电源连接到二次侧,并接通开关。
2.使用万用表测量二次侧的电压值,并记录下来。
3.将电阻、电感和电容依次接入直流侧,并记录下相应的电阻值、电感值和电容值。
4.打开逆变器,并使用电压表和电流表分别测量出交流输出的电压值和电流值。
5.调节逆变器的工作状态,观察输出电压和电流的变化情况,并记录下来。
6.关闭逆变器和电源,完成实验。
实验结果:通过实验,我们得到了二次侧的电压值为10V,直流侧电阻、电感和电容的值分别为5Ω、10mH和100μF。
在逆变器工作时,我们调节了不同的工作状态,记录下了对应的输出电压和电流值如下表所示:逆变器工作状态,输出电压(V),输出电流(A)-----------------,--------------,--------------状态1,8,1状态2,6,0.8状态3,4,0.5状态4,2,0.3实验分析:从实验结果可以看出,逆变器不同的工作状态会对输出电压和电流造成影响。
当逆变器处于状态1时,输出电压和电流较高;当逆变器处于状态4时,输出电压和电流较低。
这说明逆变器的工作状态可以通过调节来控制输出电压和电流的大小。
结论:通过本次实验,我们成功搭建了交直交变流电路,并掌握了相应的实验操作和记录方法。
通过调节逆变器的工作状态,我们实现了对输出电压和电流的控制。
这对于实际电路中的应用具有重要意义。
思考与改进:在实验过程中,我们发现逆变器的工作状态对输出电压和电流具有较大影响,因此在实际应用中,应该仔细选择逆变器的工作状态,以保证输出电压和电流符合需求。
电力电子技术实验报告-北京科技大学
电力电子技术实验报告实验一锯齿波同步移相触发电路实验一.实验目的1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
2.掌握锯齿波同步触发电路的调试方法。
二.实验内容1.认识锯齿波同步触发电路。
2.锯齿波同步触发电路各点波形观察,分析。
三.实验线路及原理锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”有关教材。
四.实验设备及仪器1.MEL—002组件2.NMCL—31A组件3.NMCL—05E组件4.NMEL—03组件5.双踪示波器6.万用表五.实验方法1.将NMCL-05E面板上左上角的同步电压输入与MEL—002的U、V端相接,触发电路选择锯齿波。
2.合上主电路电源开关,用示波器观察各观察孔的波形,并记录各点波型,示波器的地线接于“7”端。
观察“1”~“6”孔的波形,了解锯齿波脉冲发生器的原理,记录各点波形。
3.调节脉冲移相范围(1)将NMCL—31A的“G”(给定)接到NMCL-05E的U g孔,并将输出电压U g调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压U b(调锯齿波触发电路中RP),使=180O (即Uct=0时,=180O),继续调节RP,观察角的变化,直到=30O,。
(2)在Uct=0时,使=180O,调节NMCL—31A的给定电位器RP1,增加U ct,观察脉冲的移动情况,增大Uct直到=30O,以满足移相范围=30O~180O的要求,记录=30O时U max(Uct)值。
4.调节U ct,使=60O,观察输出脉冲电压U G1K1,U G6K6的波形,并标出其幅值与宽度。
用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,并标出其幅值与宽度,记录U G1K1和U G3K3的相位关系。
六.实验报告1.整理,描绘实验中记录的各点波形。
单相交流电路实验报告
单相交流电路实验报告单相交流电路实验报告概述:本实验旨在通过搭建单相交流电路,深入了解交流电的特性和基本原理。
通过实验,我们将探究交流电的波形特点、电压与电流的相位关系以及电路中的功率计算等内容。
实验材料:1. 电源:交流电源2. 电阻:用于限制电流流动的元件3. 电感:用于储存电能的元件4. 电容:用于储存电荷的元件5. 万用表:用于测量电压和电流的工具6. 示波器:用于观察电压和电流波形的仪器实验步骤:1. 搭建基本的单相交流电路:将电源、电阻、电感和电容按照电路图连接起来。
2. 测量电流和电压:使用万用表分别测量电路中的电流和电压值,并记录下来。
3. 观察波形:将示波器接入电路中,观察电压和电流的波形特点,并记录下来。
4. 计算功率:根据测得的电压和电流值,计算电路中的功率,并进行分析。
实验结果与分析:通过实验,我们得到了电流和电压的波形图,并进行了分析。
我们发现,交流电的电压和电流都是周期性变化的,呈现出正弦波形。
电压和电流的周期相同,且具有相同的频率。
在电路中,电流和电压之间存在相位差。
通过观察波形图,我们可以看到电流波形相对于电压波形存在一定的滞后。
这是因为电感和电容在电路中的作用,导致电路中的电流与电压之间存在相位差。
根据测得的电流和电压值,我们可以计算出电路中的功率。
功率的计算公式为P = U * I * cosθ,其中U为电压值,I为电流值,θ为电压和电流之间的相位差。
通过计算,我们可以得到电路中的实际功率值。
实验中,我们还观察到电路中的无功功率和视在功率。
无功功率指的是电路中由于电感和电容的存在而产生的无效功率,它不会对电路中的有用功率产生影响。
视在功率则是电路中的总功率,它包含了有用功率和无功功率。
通过实验,我们深入了解了交流电路的特性和基本原理。
我们了解到交流电的波形特点、电压与电流的相位关系以及功率的计算方法。
这些知识对于我们理解电路中的能量传输和电器设备的工作原理具有重要意义。
单相交流电路研究报告
单相交流电路研究报告本报告旨在研究单相交流电路的特性和性能。
单相交流电路是一种电力系统中常见的电路形式,其基本组成包括电源、负载和连接这两者的导线。
在本报告中,我们将探讨单相交流电路的工作原理、电流和电压的关系、功率计算等方面。
首先,让我们来了解一下单相交流电路的工作原理。
单相交流电路通过交流电源提供电流,而这个电流是不断变化的。
交流电源的电压和电流以正弦波的形式波动,其频率一般为50Hz或60Hz。
在单相交流电路中,电压和电流的波动是不同相位的。
这意味着电压强度和电流强度不会同时达到峰值。
电压和电流的关系可以用正弦函数来描述,其幅值和相位差决定了电路的特性。
其次,让我们来研究电流和电压的关系。
在单相交流电路中,电流和电压是相互关联的。
根据欧姆定律,电压和电流之间的关系可以用以下公式表示:V = I * R,其中V表示电压,I表示电流,R表示电阻。
由于交流电路中电压和电流都是随时间变化的,所以在计算电阻时需要考虑频率和相位差。
最后,让我们来探讨功率计算在单相交流电路中的应用。
功率是衡量电路性能的重要指标。
在单相交流电路中,功率可以分为有功功率和无功功率。
有功功率代表了电路中实际消耗的功率,可以用以下公式计算:P = V * I * cos(θ),其中P表示有功功率,V表示电压,I表示电流,θ表示电压和电流之间的相位差。
无功功率则表示电路中产生的电磁场能量,无法直接转化为有用的功率。
有功功率和无功功率的综合即为视在功率,可以用以下公式计算:S = V * I。
综上所述,本报告深入研究了单相交流电路的特性和性能,包括工作原理、电流和电压的关系、功率计算等方面。
通过对单相交流电路的研究,我们可以更好地理解其工作原理和应用,为电力系统的设计和分析提供指导意义。
单向交流电路研究实验报告
单向交流电路研究实验报告实验目的本实验旨在深入理解单向交流电路的基本原理,掌握其工作机制,提高实验操作技巧和处理实验数据的能力。
通过实验,我们期望能更好地理解单向交流电路的特性和性能,为今后的学习和工作打下坚实的基础。
电路原理单向交流电路是一种仅允许电流在一个方向上流动的电路。
二极管是实现单向交流电路的一种常用元件,其特性曲线表现出明显的非线性。
当交流电的正半周到来时,二极管导通,电流可以顺利通过;而当负半周到来时,二极管截止,电流无法通过。
因此,单向交流电路可以在不使用开关的情况下,实现交流电的整流。
实验设备实验所需设备包括电源、电阻、电容、二极管、电表等。
其中,电源用于提供交流电;电阻用于限制电流,保持电路稳定;电容可以改善电路的波形;二极管用于实现单向导通;电表用于测量电流和电压。
实验步骤(1)连接电路:根据电路原理图,将电源、电阻、电容、二极管和电表等设备正确连接。
(2)开启电源:开启电源后,观察并记录电表的读数,以及二极管的反应。
(3)改变输入电压:逐渐改变输入电压,观察并记录各个电压下的电流读数以及二极管的反应。
(4)换用不同型号的二极管:更换不同型号的二极管,重复上述实验步骤。
(5)整理数据:整理实验数据,分析二极管的导通电压和电流的关系。
数据记录与分析在实验过程中,我们需要记录各个电压下的电流读数以及二极管的反应。
通过分析这些数据,我们可以得出二极管的导通电压和电流的关系。
一般来说,二极管的导通电压约为0.7V,当电压超过这个值时,电流会迅速增加。
此外,我们还需比较不同型号二极管的导通电压和电流的关系,以便在实际应用中选择合适的二极管。
结论与讨论通过本次实验,我们深入了解了单向交流电路的工作原理及性能特点。
实验结果表明,二极管的导通电压约为0.7V,当电压超过这个值时,电流会迅速增加。
此外,我们还发现不同型号的二极管具有不同的导通电压和电流关系。
在实际应用中,我们可以根据实际需求选择合适的二极管以实现最佳的性能表现。
单相交流电路研究实验报告
单相交流电路研究实验报告一、实验目的本次实验的目的是利用实验测试单相交流电路的基本参数,例如电压、电流、有功功率、无功功率、视在功率、功率因数等等。
此外,还需要学习并理解单相电路的工作原理、电路模型以及其它相关知识。
二、实验器材1. 万用表2. 电阻器3. 桥式整流电路板4. 模拟电表5. 计算机6. 示波器三、实验原理1. 单相交流电路单相交流电路是指由单个电源供电的电路,电压随时间的变化呈现正弦波形,频率为50Hz。
单相交流电路由交流电源、负载、开关、保险丝、插头插座等组成。
其基本电路如下所示:2. 电路参数单相交流电路的电路参数包括下列几个方面:(1). 电压单相交流电路中的电压是指正弦波形电压,即交流电压。
(2). 电流单相交流电路中的电流是指通过负载的电流。
(3). 有功功率在单相交流电路中,有功功率是指电路中产生有用功率的功率。
(4). 无功功率在单相交流电路中,无功功率是指电路中产生反馈(no-feedback)功率的功率。
(5). 视在功率在单相交流电路中,视在功率是指电路中的总功率,它等于有功功率加上无功功率。
(6). 功率因数功率因数是指有功功率与视在功率之比。
(7). 电阻电阻是指电路中任何两点间的电位差与通过该点的电流关系的比值。
单位为欧姆(Ω)。
四、实验过程1. 连接电路将电源线连接到电路板,并通过桥式整流电路板来正弦变换为直流电压,然后将其连接到测试电路上。
在这个过程中,需要使用多用途表来测量电路的电压、电流、电阻等数据。
2. 调试电路对电路进行调试,使其达到合适的工作状态,以便进行测试。
3. 测量电路参数测量电路的电压、电流、有功功率、无功功率、视在功率以及功率因数。
四、实验结果经过测试,我们得到了单相交流电路的基本参数,结果如下:1. 电压:220V2. 电流:0.5A3. 有功功率:50W4. 无功功率:10W5. 视在功率:54W6. 功率因数:0.937. 电阻:440Ω五、实验结论通过实验,我们了解了单相交流电路的基本工作原理,学习了电路模型和其它相关知识,更加深入地理解了电路的基本参数,例如电压、电流、有功功率、无功功率、视在功率以及功率因数等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相交直交变频电路的性能研究
一.实验目的
熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM 逆变电路中元器件的作用,工作原理,对单相交直交变频电路在电阻负载、电阻电感负载时的工作情况及其波形作全面分析,并研究工作频率对电路工作波形的影响。
二.实验内容
1.测量SPWM 波形产生过程中的各点波形。
2.观察变频电路输出在不同的负载下的波形。
三.实验设备及仪器
1.电力电子及电气传动主控制屏。
2.NMCL-16组件。
3.电阻、电感元件(NMEL-03、700mH 电感)。
4.双踪示波器。
5.万用表。
四.实验原理
单相交直交变频电路的主电路如图2—8所示。
本实验中主电路中间直流电压u d 由交流电整流而得,而逆变部分别采用单相桥式PWM 逆变电路。
逆变电路中功率器件采用600V8A 的IGBT 单管(含反向二极管,型号为ITH08C06),IGBT 的驱动电路采用美国国际整流器公司生产的大规模MOSFET 和
IGBT 专用驱动集成电路1R2110,控制电路如图2—9所示,以单片集成函数发生器ICL8038为核心组成,生成两路PWM 信号,分别用于控制VT 1、VT 4和VT 2、VT 3两对IGBT 。
ICL8038仅需很小的外部元件就可以正常工作,用于发生正弦波、三角波、方波等,频率范围0.001到500kHz 。
五.实验方法
图2—8 单相交直交变频电路
1.SPWM 波形的观察
(1)观察正弦波发生电路输出的正弦信号Ur 波形(“2”端与“地”端),改变正弦波频率调节电位器,测试其频率可调范围。
(2)观察三角形载波Uc 的波形(“1”端与“地”端),测出其频率,并观察Uc 和U 2的对应关系:
(3)观察经过三角
波和正弦波比较后得到的SPWM 波形(“3”端与“地”端),并比较“3”端和“4”端的相位关系。
(4)观察对VT 1、VT 2进行控制的SPWM 信号(“5”端与“地”端)和对VT 3、VT 4进行控制的SPWM 信号(“6”端与“地”端),仔细观察“5”端信号和“6”端防号之间的互锁延迟时间。
2.驱动信号观察
在主电路不接通电源情况下,S 3扭子开关打向“OFF”,分别将“SPWM 波形发生”的G 1、E 1、G 2、E 2、G 3、E 3、G 4和“单相交直交变频电路”的对应端相连。
经检查接线正确后,S3扭子开关打向“ON”,对比VTI 和VT2的驱动信号,VT3和VT4的驱动信号,仔细观察同一相上、下两管驱动信号的波形,幅值以及互锁延迟时间。
3.S 3扭子开关打向“OFF”,分别将“主电源2”的输出端“1”和“单相交直交变频电路”的“1”端相连, “主电源2”的输出端“2”和“单相交直交变频电路”的“2”端相连,将“单相交直交变频电路”的“4”、“5”端分别串联MEL-03电阻箱 (将一组900Ω/0.41A 并联,然后顺时针旋转调至阻值最大约450Ω) 和直流安培表(将量程切换到2A 挡)。
将经检查无误后,S 3扭子开关打向“ON”,合上主电源(调节负载电阻阻值使输出负载电压波形达到最佳值,电阻负载阻值在90Ω~360Ω时波形最好)。
4.当负载为电阻时,观察负载电压的波形,记录其波形、幅值、频率。
在正弦波Ur 的频率可调范围内,改变Ur 的频率多组,记录相应的负载电压、波形、幅值和频率。
5.当负载为电阻电感时,观察负载电压和负载电流的波形。
六.注意事项
1.“输出端”不允许开路,同时最大电流不允许超过“1A”。
2.注意电源要使用“主电源2”的“15V”电压其他同“直流斩波”电路相同。
七.实验报告
图2--9 SPWM 波形发生
1.绘制完整的实验电路原理图。
2.电阻负载时,列出数据和波形,并进行讨论分析。
3.电阻电感负载时,列出数据和波形,并进行讨论及分析。
4.分析说明实验电路中的PWM控制是采用同步调制还是异步调制。
5.为使输出波形尽可能的接近正弦波,可以采取什么措施。
6.分析正弦波与三角波之间不同的载波比情况下的负载波形,理解改变载波比对输出功率管和输出波形的影响。