【典型题】数学高考一模试卷(含答案)
2024北京高三一模数学题目(含答案)利用导数研究函数的性质
一、单选2024北京高三一模数学题目(含答案)利用导数研究函数的性质题1.(2024北京朝阳高三一模)已知n 个大于2的实数12,,,n x x x ⋅⋅⋅,对任意()1,2,,i x i n =⋅⋅⋅,存在2i y ≥满足i i y x <,且i i y xi i x y =,则使得12115n n x x x x -++⋅⋅⋅+≤成立的最大正整数n 为()A .14B .16C .21D .232.(2024北京海淀高三一模)函数()f x 是定义在(4,4)-上的偶函数,其图象如图所示,(3)0f =.设()f x '是()f x 的导函数,则关于x 的不等式(1)()0f x f x '+⋅≥的解集是()A .[0,2]B .[3,0][3,4)-C .(5,0][2,4)-D .(4,0][2,3)- 3.(2024北京海淀高三一模)已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为()A .1,1B .1,2C .2,1D .2,24.(2024北京房山高三一模)若函数(]()ln ln(1),,0()1,0,exx x x x ∞∞⎧-∈-⎪=⎨∈+⎪⎩,则函数()()g x f x x c =++零点的个数为()A .1B .2C .1或2D .1或35.(2024北京延庆高三一模)已知函数()321x f x x =--,则不等式()0f x <的解集是()A .()0,1B .()0,∞+C .(),0∞-D .()(),01,∞∞-⋃+二、填空题6.(2024北京顺义·二模)已知函数()()213f x kx b x =-++,给出下列四个结论:①当0k =时,对任意b ∈R ,()f x 有1个极值点;②当18k >时,存在b ∈R ,使得()f x 存在极值点;③当0b =时,对任意k ∈R ,()f x 有一个零点;④当103b <<时,存在k ∈R ,使得()f x 有3个零点.其中所有正确结论的序号是.7.(2024北京海淀高三一模)已知函数()f x =①函数()f x 是奇函数;②R k ∀∈,且0k ≠,关于x 的方程0()f x kx -=恰有两个不相等的实数根;③已知P 是曲线()y f x =上任意一点,1,02A ⎛⎫- ⎪⎝⎭,则12AP ≥;④设()11,M x y 为曲线()y f x =上一点,()22,N x y 为曲线()y f x =-上一点.若121x x +=,则1MN ≥.其中所有正确结论的序号是.8.(2024北京石景山高三一模)黎曼函数在高等数学中有着广泛应用,其一种定义为:[]0,1x ∈时,()()*1,,N ,0,0,10,1p p x p q q q q R x x ⎧⎛⎫=∈⎪ ⎪=⎨⎝⎭⎪=⎩为既约真分数和内的无理数.若数列*1,n n a R n n -⎛⎫=∈ ⎪⎝⎭N ,给出下列四个结论:①1n a n =;②21n n a a ++<;③1112n i i i a a +=<∑;④11ln 2ni i n a =+≥∑.其中所有正确结论的序号是.9.(2024北京石景山高三一模)设函数()323,13,1x ax x f x x a x ⎧+≤=⎨+>⎩,①若()f x 有两个零点,则实数a 的一个取值可以是;②若()f x 是R 上的增函数,则实数a 的取值范围是.10.(2024北京延庆高三一模)已知函数()221ln 1.x ax x f x a x x x⎧+<⎪=⎨≥⎪⎩,,,给出下列四个结论:①存在实数a ,使得函数()f x 的最小值为0;②存在实数0a <,使得函数()f x 的最小值为1-;③存在实数a ,使得函数()f x 恰有2个零点;④存在实数a ,使得函数()f x 恰有4个零点.其中所有正确结论的序号是.三、解答题11.(2024北京东城高三一模)已知函数()()ln 1f x x x =-.(1)求曲线()y f x =在2x =处的切线方程;(2)设()()g x f x '=,求函数()g x 的最小值;(3)若()2f x x a>-,求实数a 的值.12.(2024北京朝阳高三一模)已知函数()()()1e R xf x ax a =-∈.(1)讨论()f x 的单调性;(2)若关于x 的不等式()()1f x a x >-无整数解,求a 的取值范围.13.(2024北京顺义·二模)设函数()e cos xf x a x =+,a ∈R .曲线()y f x =在点()()0,0f 处的切线方程为2y x =+.(1)求a 的值;(2)求证:方程()2f x =仅有一个实根;(3)对任意()0,x ∈+∞,有()sin 2f x k x >+,求正数k 的取值范围.14.(2024北京房山高三一模)已知函数1()e axf x x=+.(1)当0a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)设2()()g x f x x '=⋅,求函数()g x 的极大值;(3)若e a <-,求函数()f x 的零点个数.15.(2024北京西城高三一模)已知函数()()1ln e xf x x ax x a=++.(1)当1a =时,求曲线()y f x =在点()()1,1f 处切线的斜率;(2)当1a =-时,讨论()f x 的单调性;(3)若集合(){}1xf x ≥-∣有且只有一个元素,求a 的值.16.(2024北京海淀高三一模)已知函数12()e a x f x x -=.(1)求()f x 的单调区间;(2)若函数2()()e ,(0,)g x f x a x -=+∈+∞存在最大值,求a 的取值范围.17.(2024北京门头沟高三一模)已知函数()()21ln 12f x ax x x a x =-+-.(1)当1a =时,求曲线()y f x =在点())1,1f 处的切线方程;(2)当a<0时,求()f x 的极值;(3)当112a ≤≤时,判断()f x 零点个数,并说明理由.18.(2024北京石景山高三一模)已知函数()()e 0axf x x a =>.(1)求曲线()y f x =在点()()0,0f 处的切线方程;(2)求()f x 在区间[]1,1-上的最大值与最小值;(3)当1a =时,求证:()ln 1f x x x ≥++.19.(2024北京丰台高三一模)已知函数()()e ln 1xf x x x =++-,曲线():C y f x =在点()()00,x f x 处的切线为():l yg x =,记()()()h x f x g x =-.(1)当00x =时,求切线l 的方程;(2)在(1)的条件下,求函数()h x 的零点并证明()0xh x ≥;(3)当00x ≠时,直接写出函数()h x 的零点个数.(结论不要求证明)20.(2024北京延庆高三一模)已知函数()()ln 22f x x a x =-++-.(1)若曲线()y f x =的一条切线方程为1y x =-,求a 的值;(2)若函数()f x 在区间()1,2上为增函数,求a 的取值范围;(3)若21,e x ∀∈+∞⎛⎫⎪⎝⎭,()f x 无零点,求a 的取值范围.参考答案1.D【分析】构造函数()()ln 2xf x x x=≥,结合函数单调性可得e 4ix <≤,则有()1211e 154n n x x x x n -++⋅≥⋅-⋅≥+,即可得解.【详解】由i i y xi i x y =,且2i y ≥,2i x >,故ln ln i i i i y x x y =,即ln ln i ii ix y x y =,令()()ln 2xf x x x=≥,()21ln x f x x -'=,故当()2,e x ∈时,()0f x ¢>,当()e,+x ∈∞时,()0f x '<,即()f x 在()2,e 上单调递增,在()e,+∞上单调递减,由ln ln i ii ix y x y =,即()()i i f x f y =,故e i x >,2e i y ≤<,又()()ln 2ln 42424f f ===,故4i x ≤,即e 4i x <≤,若12115n n x x x x -++⋅⋅⋅+≤,则有()1211e154n n x x x x n -++⋅≥⋅-⋅≥+,即601en ≤+,由e 2.72≈,故60122.06123.07e +≈+=.故最大正整数n 为23.故选:D.【点睛】关键点点睛:本题关键点在于借助函数()ln xf x x=的性质,结合其单调性得到2e i y ≤<,从而得到e 4i x <≤,则有()1211e154n n x x x x n -++⋅≥⋅-⋅≥+,即可得解.2.D【分析】借助函数图象与导数的关系计算即可得.【详解】由(3)0f =,且()f x 为偶函数,故(3)0f -=,由导数性质结合图象可得当()4,0x ∈-时,()0f x '<,当()0,4x ∈时,()0f x '>,当0x =时,即()00f '=,则由(1)()0f x f x '+⋅≥,有41444x x -<+<⎧⎨-<<⎩,解得43x -<<,亦可得()()100f x f x ⎧+>>'⎪⎨⎪⎩,或()()100f x f x ⎧+<<'⎪⎨⎪⎩,或()10f x +=,或()0f x '=,由()()100f x f x ⎧+>>'⎪⎨⎪⎩可得41304x x -<+<-⎧⎨<<⎩或31404x x <+<⎧⎨<<⎩,即23x <<,由()()100f x f x ⎧+<<'⎪⎨⎪⎩可得31340x x -<+<⎧⎨-<<⎩,即40x -<<,由()10f x +=,可得13x +=±,即2x =或4x =-(舍去,不在定义域内),由()0f x '=,可得0x =,综上所述,关于x 的不等式(1)()0f x f x '+⋅≥的解集为(4,0][2,3)- .故选:D.3.B【分析】借助分段函数性质计算可得m ,借助导数的几何意义及零点的存在性定理可得n .【详解】令()0f x =,即0x ≤时,30x =,解得0x =,0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x -=-,有()3200023x x x -=-,整理可得301x =-,即01x =-,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x -=-++,有()()000l 2g elg 11x x x -+=-+,整理可得()()()000221lg 10lg e x x x ++-++=,令()()()()()2l 0g 2l 1e 1g g x x x x x =++-++>,则()()2lg 1g x x '=-+,令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增,当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减,由()()992lg e 99220099lg e 0g =+⨯+-=>,()02020g =-=>,故()g x 在()0,99x ∈上没有零点,又()()9992lg e 999210003999lg e 10000g =+⨯+-⨯=-<,故()g x 在()99,999上必有唯一零点,即当00x >时,亦可有一条切线符合要求,故2n =.故选:B.4.A【分析】令()()0g x f x x c =++=,则()f x x c +=-,则函数()g x 零点的个数即为函数(),y f x x y c =+=-图象交点的个数,构造函数()()h x f x x =+,利用导数求出函数()h x 的单调区间,作出其大致图象,结合图象即可得解.【详解】(]()(]()[)ln ln(1),,0ln(1),,0(),0,11,0,1e ,1,x x x x x f x x x x x x∞∞∞∞⎧⎪-∈-⎧-∈-⎪⎪==∈⎨⎨∈+⎪⎪⎩⎪∈+⎩,令()()0g x f x x c =++=,则()f x x c +=-,则函数()g x 零点的个数即为函数(),y f x x y c =+=-图象交点的个数,令()()(]()[)ln(1),,02,0,11,1,x x x h x f x x x x x x x∞∞⎧⎪-+∈-⎪=+=∈⎨⎪⎪+∈+⎩,当(],0x ∈-∞时,()()ln 1h x x x =-+,则()11011x h x x x =+=-'≥-,所以函数()h x 在(],0-∞上单调递增,且()00h =,当()0,1x ∈时,()()20,2h x x =∈,当[)1,x ∞∈+时,()1h x x x =+,则()2221110x h x x x-=='-+≥,所以函数()h x 在[)1,+∞上单调递增,且()12h =,又当x →-∞时()h x ∞→-,当x →时,()h x ∞→+,作出函数()h x的大致图象如图所示,由图可知函数(),y f x x y c =+=-的图象有且仅有一个交点,所以函数()()g x f x x c =++零点的个数为1个.故选:A.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.5.A【分析】利用导数及导函数的单调性判断极小值点在001x <<,再由函数的单调性及(0)(1)0f f ==可得不等式的解集.【详解】因为()32ln 3x f x '=-单调递增,且(0)ln 320f '=-<,(1)3ln 320f '=->,所以存在唯一0(0,1)x ∈,使得0()0f x '=,所以当0x x <时,()0f x '<,当0x x >时,()0f x '>,所以函数()f x 在()0,x -∞上单调递减,在()0,x +∞上单调递增,又(0)(1)0f f ==,且001x <<,所以由()0f x <可得01x <<,故选:A 6.①④【分析】对①:借助导数研究函数的单调性即可得极值点个数;对②:借助导函数的导函数研究导函数可得导函数无零点,故函数不存在极值点;对③:举出反例即可得;对④:将零点个数转化为直线y kx b =+与曲线213y x =+的交点个数,从而可通过研究过()0,b 的曲线213y x =+的切线,结合零点的存在性定理得到直线y kx b =+与曲线213y x =+的关系.【详解】对①:当0k =时,()213f x b x =,()()2232x f x x -'=+,则(),0x ∈-∞时,()0f x ¢>,当()0,x ∈+∞时,()0f x '<,故()f x 在(),0∞-上单调递增,在()0,∞+上单调递减,故对任意b ∈R ,()f x 有1个极大值点0x =,故①正确;对②:当18k >时,()()2232f x k x x +-'=-,若()f x 存在极值点,则()f x '有变号零点,则()2232xk x -=+必须有解,令()()2232xx g x -=+,则()()()()()()()()2222224332222611238386333x x x x x x g x x x x x +'+=--+++-=++-+=,故当()(),11,x ∈-∞-⋃+∞时,()0g x '>,当()1,1x ∈-时,()0g x '<,故()g x 在(),1-∞-、()1,+∞上单调递增,在()1,1-上单调递减,又0x ≥时,()0g x ≤,()()()28211131g =+-⨯--=,即()18g x ≤恒成立,故当18k >时,()2232x k x -=+无解,故②错误;对③:当0b =时,()213f x kx x =-+,当0k =时,()2103f x x =>+,此时函数()f x 无零点,故③错误;对④:当103b <<时,若存在k ∈R ,使得()f x 有3个零点,则直线y kx b =+与曲线213y x =+有三个不同交点,由直线y kx b =+过点()0,b ,曲线213y x =+过点10,3⎛⎫⎪⎝⎭,又103b <<,213y x =+是偶函数,且在()0,∞+上单调递减,故当0k <时,直线y kx b =+与曲线213y x =+在第二象限必有一交点,同理,当0k >时,直线y kx b =+与曲线213y x =+在第一象限必有一交点,过点()0,b 作曲线213y x =+0201,3x x ⎛⎫ ⎪+⎝⎭,则切线方程为()()00020222133x y x x x x --+-=+,即()()00020222133x b x x x --+⨯-=+,则()()22020313x b x +=+,由103b <<,则()()0220231133x x +<+,即()()2220011540x x +-++>,即()()()22220000141130x x x x +-+-=->,即203x ≥,故当103b <<时,存在()0,x ∈-∞+∞ ,使曲线213y x =+有过点()0,b 的切线,且切点为021,3x x ⎛⎫ ⎪+⎝⎭,当0x >时,切线斜率为()22230x x +<-,则当()02022,03x k x ⎛⎫- ⎪∈ ⎪+⎝⎭时,有()00f x <,又()1030b f =->,则存在()100,x x ∈,使()10f x =,此时函数y kx b =+单调递减,而2103y x =>+恒成立,故存在()20,x x ∈+∞,使()20f x =,即当0x >时,存在()02022,03x k x ⎛⎫- ⎪∈ ⎪+⎝⎭,使得()f x 有3个零点,同理可得,当0x <()02020,23x k x ⎛⎫- ∈ ⎪+⎝⎭,使得()f x 有3个零点,故④正确.故答案为:①④.【点睛】关键点点睛:第④个结论关键点在于将零点个数转化为直线y kx b =+与曲线213y x =+的交点个数,从而可通过研究过()0,b 的曲线213y x=+的切线,结合零点的存在性定理去得到直线y kx b =+与曲线213y x =+的关系.7.②③④【分析】对①:计算定义域即可得;对②:对0k >与0k <分类讨论,结合二次函数求根公式计算即可得;对③:借助两点间的距离公式与导数求取最值计算即可得;对④:结合函数性质与③中所得结论即可得.【详解】对①:令30x x -≥,即有()()110x x x +-≥,即[][]1,01,x ∞∈-⋃+,故函数()f x 不是奇函数,故①错误;对②:0()f x kx kx -==kx =,当0x =00-=,故0是该方程的一个根;当0x ≠,0k >kx =,故0x >,结合定义域可得[]1,x ∞∈+,有322x x k x -=,即()2210x x k x --=,令2210x k x --=,440k ∆=+>,有22k x =或22k x =(负值舍去),则20122k x +=,故2210x k x --=必有一个大于1的正根,即0()f x kx -=必有一个大于1的正根;当0x ≠,0k <kx =,故0x <,结合定义域有[)1,0∈-x ,有322x x k x -=,即()2210x x k x --=,令2210x k x --=,440k ∆=+>,有22k k x =或22k k x =(正值舍去),令244k t +=>,即24k t =-,则2221171174242412222k t x ⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭==>=-,即1x =-,故2210x k x --=在定义域内亦必有一根,综上所述,R k ∀∈,且0k ≠,关于x 的方程0()f x kx -=恰有两个不相等的实数根,故②正确;对③:令(),P x y,则有y =222321124AP x x x⎛⎫=++=++⎪⎝⎭,令()3214g x x x =++,[][]1,01,x ∞∈-⋃+,()()23232g x x x x x =='++,当()21,1,3x ∞⎛⎫∈--⋃+ ⎪⎝⎭时,()0g x '>,当2,03x ⎛⎫∈- ⎪⎝⎭时,()0g x '<,故()g x 在21,3⎛⎫-- ⎪⎝⎭、()1,∞+上单调递增,在2,03⎛⎫- ⎪⎝⎭上单调递减,又()1111144g -=-++=,()110044g =+=,故()14g x ≥恒成立,即214AP ≥,故12AP ≥,故③正确;对④:当12x x =时,由[][]1,01,x ∞∈-⋃+,121x x +=,故1212x x ==-,此时,124y y =-==,则12MN =≥,当12x x ≠时,由()y f x =与()y f x =-关于x 轴对称,不妨设12x x <,则有1210x x -≤<≤或121012x x -≤≤<≤≤,当121012x x -≤≤<≤≤时,由2121x x x -≥≥,有121MN x x =≥-≥,故成立;当1210x x -≤<≤时,即有211x x =-,由③知,点M 与点N 在圆2211:24A x y ⎛⎫++= ⎪⎝⎭上或圆外,设点()1,M x m '与点()2,N x n '在圆上且位于x 轴两侧,则1M N ''=,故1MN M N ''≥=;综上所述,1MN ≥恒成立,故④正确.故答案为:②③④.【点睛】关键点点睛:结论④中的关键点在于借助结论③,结合函数的对称性,从而得到当1x 、2x 都小于零时,MN 的情况.8.②③④【分析】根据黎曼函数的定义和性质逐项分析.【详解】对于①,N ,1n n +∈∴= 时,()11001a R ==≠,故①错误;对于②,111n a n +=+,212n a n +=+,+12n n a a +∴>,故②正确;对于③,11223341111111123341ni i n n i a a a a a a a a a a n n ++==++++=⨯+⨯++⋅+∑ 11111111123341212n n n =-+-++--<++ ,故③正确;对于④,123111123ni n i a a a a a n==++++=+++∑ ,()2n ≥,构造函数()e 1xg x x =--,()0x >,则()e 10xg x ='->,()g x 单调递增,()(0)0g x g ∴>=,即当0x >时e 1x x >+,11132111e 1,e 1,,e 123n n>+>+>+ ,11123345111111eln 2342232nn n n n n +++++⎛⎫>⨯⨯⨯⨯=∴+++> ⎪⎝⎭,当1n =时,110ni i a a ===∑,11ln 02+=,11ln 2ni i n a =+⎛⎫∴≥ ⎪⎝⎭∑,故④正确.故选:②③④.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.9.1-(13a <-内的值都可以)01a ≤≤或2a ≥【分析】①分析函数的性质,确定零点所在的区间,通过解方程的方法,即可求解;②根据分段函数的形式,确定两段函数都是单调递增,并根据分界点处函数值的关系不等式,即可求解.【详解】①函数()23f x x a =+在()1,+∞上单调递增,()2130f a =+>,所以函数()f x 在区间()1,+∞上无零点,则函数()33f x x ax =+在(],1-∞上有2个零点,即330x ax +=,()230x x a +=,则0x =,或x =或x =,a<0,1>,解得:13a <-,所以a 的一个值是1-;②函数()23f x x a =+在()1,+∞上单调递增,则在(],1-∞上,()33f x x ax =+也单调递增,且321331a a +≤⨯+,若函数在()33f x x ax =+在区间(],1-∞单调递增,则()2330f x x a '=+≥,即2≥-a x 在区间(],1-∞上恒成立,即()2maxa x≥-,即0a ≥,不等式321331a a +≤⨯+,解得:2a ≥或1a ≤,综上可知,01a ≤≤或2a ≥.故答案为:1-(13a <-内的值都可以);01a ≤≤或2a ≥10.①③【分析】取特殊值判断①,当0a <时,分别分析分段函数两部分的最值判断②,根据分段函数每部分的零点确定函数的零点可判断③④.【详解】当0a =时,()210 1.x x f x x ⎧<=⎨≥⎩,,,,显然函数的最小值为0,故①正确;当0a <时,ln ()(1)a xf x x x =≥,()21ln ()a x f x x-'=,当1e x <<时,()0f x '<,当e x <时,()0f x '>,所以()f x 在[)1,e 上单调递减,在[)e,+∞上单调递增,所以e x =时,()f x 有最小值(e)eaf =,由1e a =-可得a e =-,此时,1x <时,2()2e f x x x =-,()f x 在(,1)-∞上单调递减,所以()(1)12e f x f >=-,与最小值为1-矛盾,若1x <时,2()2f x x ax =+的对称轴方程为0x a =->,当1x a =-<时,即1a >-时,2min ()()f x f a a =-=-,若21a -=-,则1a =-与1a >-矛盾,当1x a =-≥时,()f x 在(,1)-∞上单调递减,无最小值,综上,当0a <时,函数()f x 的最小值不为1-,故②错误;由②知,1a <-时,1x <时,()f x 单调递减且(0)0f =,当1x ≥时,()0f x ≤且(1)0f =,所以函数恰有2个零点,故③正确;当0a >时,ln ()0(1)a xf x x x=≥≥且仅有(1)0f =,即ln ()(1)a x f x x x =≥有且只有1个零点,当0a <时,ln ()0(1)a xf x x x=≤≥且仅有(1)0f =,即ln ()(1)a x f x x x =≥有且只有1个零点,综上0a ≠时,ln ()(1)a xf x x x=≥有且只有1个零点,而2()2(2)f x x ax x x a =+=+在1x <上至多有2个零点,所以0a ≠时,函数没有4个零点,当0a =时,函数有无数个零点,故④错误.故答案为:①③【点睛】关键点点睛:本题的关键是对a 分类讨论,利用导数研究[)1,+∞上的函数性质,结合二次函数性质研究另一段函数.11.(1)24y x =-(2)2(3)2a =【分析】(1)求导,再根据导数的几何意义即可得解;(2)利用导数求出函数()g x 的单调区间,进而可求出最小值;(3)分1a ≤和1a >两种情况讨论,在1a >时,再分x a >和1x a <<两种情况讨论,分离参数,构造函数并求出其最值,即可得解.【详解】(1)()()()ln 111xf x x x x '=-+>-,则()()22,20f f '==,所以曲线()y f x =在2x =处的切线方程为()22y x =-,即24y x =-;(2)()()()()ln 111xg x f x x x x '==-+>-,()()()22112111x x x g x x x x ---'=+=---,当12x <<时,()0g x '<,当2x >时,()0g x '>,所以函数()g x 在()1,2上单调递减,在()2,+∞上单调递增,所以()()min 22g x g ==;(3)函数()f x 的定义域为()1,+∞,当1a ≤时,0x a ->,则()2f x x a>-,即()()2f x x a >-,即()22a f x x -<-,由(2)得()2f x '≥,令()()2h x f x x =-,则()()()201h x f x x ''=-≥>,所以()h x 在()1,+∞上单调递增,又当1x →时,()h x →-∞,因为1a ≤,所以22a -≥-,此时()22a f x x -<-不恒成立,故1a ≤不符题意;当1a >时,若x a >,则0x a ->,则()2f x x a>-,即()()2f x x a >-,即()22a f x x -<-,由上可知函数()()2h x f x x =-在(),a +∞上单调递增,所以()()()()ln 12h x h a a a a x a >=-->,所以()2ln 12a a a a -≤--,解得2a ≥①,若1x a <<,则()2f x x a>-,即()()2f x x a <-,即()22a f x x ->-,由上可知函数()()2h x f x x =-在()1,a 上单调递增,所以()()()()ln 1211h x h a a a a a <=--<<,所以()2ln 12a a a a -≥--,解得2a ≤②,由①②可得2a =,综上所述,2a =.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.12.(1)答案见解析(2)1a ≥【分析】(1)首先求函数的导数,再分0,0,0a a a ><=三种情况讨论()f x 的单调性;(2)不等式转化为11e x x a x -⎛⎫-< ⎪⎝⎭,设函数()1e x x h x x -=-,利用导数求函数的取值范围,再结合不等式,讨论a 的取值,即可求解.【详解】(1)()()1e xf x a ax '=--,当()0f x '=,得1ax a-=,当0a >时,1,a x a -⎛⎫∈-∞ ⎪⎝⎭时,()0f x ¢>,()f x 单调递增,1,-⎛⎫∈+∞ ⎪⎝⎭a x a 时,()0f x '<,()f x 单调递减,当0a <时,1,a x a -⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减,1,-⎛⎫∈+∞ ⎪⎝⎭a x a 时,()0f x ¢>,()f x 单调递增,当0a =时,()e xf x =,函数()f x 在R 上单调递增,综上可知,0a >时,函数()f x 的单调递增区间是1,a a -⎛⎫-∞ ⎝⎭,单调递减区间是1,a a -⎛⎫+∞⎪⎝⎭,0a <时,函数()f x 的单调递减区间是1,a a -⎛⎫-∞ ⎪⎝⎭,单调递增区间是1,a a -⎛⎫+∞⎪⎝⎭,0a =时,函数()f x 的增区间是(),-∞+∞,无减区间.(2)不等式()()1e 1xax a x ->-,即11e x x a x -⎛⎫-< ⎪⎝⎭,设()1e x x h x x -=-,()2e 21e ex x xx x h x -+-'=-=,设()e 2xt x x =+-,()e 10x t x '=+>,所以()t x 单调递增,且()01t =-,()1e 20t =->,所以存在()00,1x ∈,使()00t x =,即()00h x '=,当()0,x x ∈-∞时,()0h x '<,()h x 单调递减,当()0,x x ∈+∞时,()0h x '>,()h x 单调递增,所以()()00000e 1e x x x x h x h x -+≥=,因为e 1xx ≥+,所以()()()00002000000011e 110e e e x x x x x x x x x x h x h x +-+-++≥=≥=>,当0x ≤时,()()01h x h ≥=,当1x ≥时,()()11h x h ≥=,不等式()()1e 1xax a x ->-无整数解,即11e x x a x -⎛⎫-< ⎪⎝⎭无整数解,若0a ≤时,不等式恒成立,有无穷多个整数解,不符合题意,若1a ≥时,即11a≤,因为函数()h x 在(],0-∞上单调递减,在[)1,+∞上单调递增,所以Z x ∈时,()()(){}1min 0,11h x h h a ≥=≥,所以()1h x a<无整数解,符合题意,当01a <<时,因为()()1011h h a==<,显然0,1是()1a h x ⋅<的两个整数解,不符合题意,综上可知,1a ≥.【点睛】关键点点睛:本题第二问的关键1是不等式的变形11e x x a x -⎛⎫-< ⎪⎝⎭,第二个关键是确定函数()1ex x h x x -=-的单调性,以及确定()()011h h ==.13.(1)1a =;(2)证明见解析;(3)01k <≤.【分析】(1)根据切点在曲线和切线上可得;(2)分0x >,0x =,0x <,利用导数讨论单调性,通过单调性讨论即可得证;(3)令()e cos sin 2xF x x k x =+--,分01k <≤,1k >两种情况,利用导数讨论最值即可得解.【详解】(1)解:因为()e cos x f x a x =+,所以()00e 1f a a =+=+,又点()()0,0f 在切线2y x =+上,所以()02f =,所以12a +=,即1a =.(2)证明:欲证方程()2f x =仅有一个实根,只需证明e cos 20x x +-=仅有一个零点,令()e cos 2x g x x =+-,则()e sin xg x x '=-,令()()e sin xh x g x x =-'=,则()e cos x h x x '=-,讨论:(1)当0x >时,()0e cos e cos 1cos 0x h x x x x =->-=-≥',所以()h x 在()0,∞+上单调递增,所以()()01h x h >=,即()e sin 10xg x x =>'->,所以()g x 在()0,∞+上单调递增,()()00g x g >=,即此时无零点;(2)当0x =时,()00g =,即此时有一个零点;(3)当0x <时,()0e cos 2e cos 21cos 0x g x x x x =+-<+-=-+≤所以,当0x <时,()0g x <,即此时无零点综上可得,()e cos 2xg x x =+-仅有一个零点,得证.(3)当()0,x ∞∈+时,e cos sin 2x x k x +>+,即e cos sin 20x x k x +-->恒成立,令()e cos sin 2xF x x k x =+--,则()e sin cos xF x x k x =-'-,由(Ⅱ)可知,()0,x ∞∈+时e sin 1x x ->,所以()e sin cos 1cos xF x x k x k x '=-->-,讨论:(1)当01k <≤时,因为1cos 1x -≤≤,所以cos k k x k -≤≤,即11cos 1k k x k -≤-≤+,所以()1cos 10F x k x k >≥'--≥,即当01k <≤时,()0F x '>,所以()e cos sin 2xF x x k x =+--在()0,x ∞∈+时单调递增,所以()()00F x F >=恒成立,即满足条件e cos sin 20x x k x +-->,(2)当1k >时,由()e sin cos xF x x k x =-'-可知()010F k ='-<,又()ππe 0F k '=+>,所以存在()00,πx ∈,使得()00F x '=,所以,当()00,x x ∈时,()0F x '<,()F x 单调递减,当()0,x x ∞∈+时,()0F x '>,()F x 单调递增,所以()()000F x F <=,即不能保证e cos sin 20x x k x +-->恒成立,综上可知,正数k 的取值范围是01k <≤.【点睛】思路点睛:根据不等式恒成立求参数范围常用方法:(1)参变分离,将问题转化为函数最值问题;(2)根据参数分类讨论,利用导数求函数最值即可求解.14.(1)3y x =-+(2)答案见解析(3)1【分析】(1)求导,再根据导数的几何意义即可得解;(2)求导,分0a =,0a >和a<0三种情况讨论,再结合极大值的定义即可得解;(3)令1()e 0ax f x x =+=,则1e ax x =-,再分x 的正负讨论,当0x <时,分离参数可得()ln x a x-=-,则函数()f x 零点的个数即为函数()ln ,x y a y x -==-图象交点的个数,构造函数()()()ln 0x h x x x-=-<,利用导数求出其单调区间和极值,作出函数的大致图象,结合图象即可得解.【详解】(1)当0a =时,1()1f x x=+,()21f x x '=-,则()()11,12f f =-'=,所以曲线()y f x =在点(1,(1))f 处的切线方程为()21y x -=--,即3y x =-+;(2)21()e ax f x a x'=-,则()22()()e 10ax g x f x x ax x =⋅=-≠',则()()()222e e 2e 0ax ax axg x ax a x ax ax x =+=+≠',当0a =时,()1g x =-,此时函数()g x 无极值;当0a >时,令()0g x '<,则0x >或2x a <-,令()0g x '<,则20x a -<<,所以函数()g x 在(2,,0,a ∞∞⎛⎫--+ ⎪⎝⎭上单调递增,在2,0a ⎛⎫- ⎪⎝⎭上单调递减,所以()g x 的极大值为2241eg a a ⎛⎫-=- ⎪⎝⎭;当a<0时,令()0g x '<,则0x <或2x a>-,令()0g x '<,则20x a <<-,所以函数()g x 在()2,0,,a ∞∞⎛⎫--+ ⎪⎝⎭上单调递增,在20,a ⎛⎫- ⎪⎝⎭上单调递减,而函数()g x 的定义域为()(),00,∞∞-⋃+,所以此时函数()g x 无极值.综上所述,当0a ≤时,函数()g x 无极大值;当0a >时,()g x 的极大值为241ea -;(3)令1()e 0axf x x =+=,则1e ax x =-,当0x >时,1e ,00axx>-<,所以0x >时,函数()f x 无零点;当0x <时,由1e axx =-,得1ln ax x ⎛⎫=- ⎪⎝⎭,所以()ln x a x-=-,则0x <时,函数()f x 零点的个数即为函数()ln ,x y a y x-==-图象交点的个数,令()()()ln 0x h x x x -=-<,则()()2ln 1x h x x --'=,当e x <-时,()0h x '>,当e 0x -<<时,()0h x '<,所以函数()h x 在(),e ∞--上单调递增,在()e,0-上单调递减,所以()()max 1e eh x h =-=,又当x →-∞时,()0h x >且()0h x →,当0x →时,()h x ∞→-,如图,作出函数()h x 的大致图象,又e a <-,由图可知,所以函数()()ln ,x y a h x x-==-的图象只有1个交点,即当0x <时,函数()f x 只有1个零点;综上所述,若e a <-,函数()f x 有1个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.15.(1)2e 2+(2)单调递增区间为(),1-∞-;单调递减区间为()1,0-(3)1a e=-【分析】(1)根据条件,利用导数的几何意义,即可求出结果;(2)对函数求导得到()()11e x f x x x ⎛⎫=+- ⎪⎝⎭',由函数()f x 定义域知1e 0x x -<,再利用导数与函数单调性间的关系,即可求出结果;(3)对函数求导得到()()1e 1x f x x x a ⎛⎫=++ ⎪⎝⎭',再分0a >和a<0两种情况讨论,利用导数与函数单调性间的关系,求出函数的单调区间,结合条件,即可求出结果.【详解】(1)当1a =时,()ln e xf x x x x =++,所以()()111e x f x x x=+++',得到()12e 2f '=+,所以曲线()y f x =在点()(1,)1f 处切线的斜率为2e 2+.(2)当1a =-时,()()ln e xf x x x x =+--,易知()f x 的定义域为(),0∞-,又()()()1111e 1e x x f x x x x x ⎛⎫=+-+=+- ⎪⎝⎭',因为(),0x ∈-∞,所以1e 0xx-<,所以(),1x ∈-∞-时,()0f x ¢>,()1,0x ∈-时,()0f x '<所以()f x 的单调递增区间为(),1-∞-;单调递减区间为()1,0-.(3)因为()()1ln e xf x x ax x a =++,所以()()1e 1x f x x x a ⎛⎫=++ ⎪⎝⎭',易知0a ≠,当0a >时,()f x 的定义域为()0,∞+,所以()0f x ¢>恒成立,故()f x 在)∞+上单调递增,又12111e 0af a a a⎛⎫=+> ⎪⎝⎭,所以0a >不合题意,当0a <时,()f x 的定义域为(),0∞-,此时1e0xx a+<,所以(),1x ∈-∞-时,()0f x ¢>,()1,0x ∈-时,()0f x '<,故()f x 的单调递增区间为(),1-∞-,单调递减区间为()1,0-,所以()()max 1()11ln ef x f a a =-=-+--.设()()11ln (0)e g x x x x=-+--<,则()2211e 1e e x g x x x x +=+=',当1,e x ∞⎛⎫∈-- ⎪⎝⎭时,()0g x '<,1,0e x ⎛⎫∈- ⎪⎝⎭时,()0g x '>,所以()g x 的单调递减区间为1,e ⎛⎫-∞- ⎪⎝⎭;单调递增区间为1,0e ⎛⎫- ⎪⎝⎭.所以min 1()1e g x g ⎛⎫=-=- ⎪⎝⎭,所以集合(){}1xf x ≥-∣有且只有一个元素时1a e=-.【点睛】方法点睛:对于求不等式成立时的参数范围问题,一般有三个方法:一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件;二是讨论分析法,根据参数取值情况分类讨论;三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.16.(1)()f x 的增区间为(),2∞-,减区间为(2,)+∞(2)1a ≥-【分析】(1)对函数求导,得到121(1))e 2(a x f x x -=-',再求出()0f x '>和()0f x '<对应的x 取值,即可求出结果;(2)令2()()e h x f x a -=+,对()h x 求导,利用导数与函数单调性间的关系,求出()h x 的单调区间,进而得出()h x 在(0,)+∞上取值范围,从而将问题转化成1222e e e a a a ---+≥成立,构造函数12()e e x m x x --=+,再利用()m x 的单调性,即可求出结果.【详解】(1)易知定义域为R ,因为12()ea x f x x -=,所以11122211(1)()e2e e 2a x a x a x x x x f ----=-'=,由()0f x '=,得到2x =,当2x <时,()0f x '>,当2x >时,()0f x '<,所以,函数()f x (),2∞,单调递减区间为()2,∞+.(2)令2()()e h x f x a -=+,则()()h x f x ''=,由(1)知,函数()f x 的单调递增区间为(),2∞-,单调递减区间为()2,∞+,所以()h x 在2x =时取得最大值12(2)2e e a h a --=+,所以当2x >时,1222()e e e (0)a x h x x a a h ---=+>=,当02x <<时,()(0)h x h >,即当,()0x ∈+∞时,(]()(0),(2)h x h h ∈,所以函数122()ee a x g x x a --=+在(0,)+∞存在最大值的充要条件是1222e e e a a a ---+≥,即122122e e e e +e 02a a a a a -----++=≥,令12()e e x m x x --=+,则12()e e 0x m x --'=+>恒成立,所以12()e e x m x x --=+是增函数,又因为22(1)e e 0m ---=-=,所以12()e e 0a m a a --=+≥的充要条件是1a ≥-,所以a 的取值范围为[)1,-+∞.【点睛】关键点点晴:本题的关键在于第(2)问,构造函数122()e e a x h x x a --=+,利用函数单调性得到,()0x ∈+∞时,(]()(0),(2)h x h h ∈,从而将问题转化成1222e e e a a a ---+≥,构造函数12()e e x m x x --=+,再利用()m x 的单调性来解决问题.17.(1)12y =-(2)()12f x a =-极大值,无极小值(3)当12a =时()f x 有一个零点,当112a <≤时()f x 无零点【分析】(1)求出函数的导函数,即可求出切线的斜率,从而求出切线方程;(2)求出函数的定义域与导函数,即可求出函数的单调区间,从而求出极值;(3)依题意可得()1ln 102a x x a -+-=,令()()1ln 12F x a x x a =-+-,则判断()f x 的零点个数,即判断()F x 的零点个数,利用导数说明()F x 的单调性,求出()()max ln 221F x a a a =-+,再令()ln 12xH x x x =-+,[]1,2x ∈,利用导数说明()H x 的单调性,即可求出()max H x ,从而得解.【详解】(1)当1a =时()21ln 2f x x x x =-,则()112f =-,()ln 1f x x x '=+-,所以()10f '=,所以曲线()y f x =在点()()1,1f 处的切线方程为12y =-.(2)函数()f x 的定义域为(0,∞+,且()()ln 1ln 1f x a x a x a a x x '=+-+-=-+,令()()ln 1g x f x a x x '==-+,则()1a a xg x x x-'=-=,因为a<0,所以()0g x '<恒成立,所以()g x 在()0,∞+上单调递减,即()f x '在()0,∞+上单调递减,又()10f '=,所以当01x <<时()0f x ¢>,当1x >时()0f x '<,则()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以()f x 在1x =处取得极大值()12f x a =-极大值,无极小值.(3)令()0f x =,即()21ln 102ax x x a x -+-=,因为0x >,所以()1ln 102a x x a -+-=,令()()1ln 12F x a x x a =-+-,所以判断()f x 的零点个数,即判断()F x 的零点个数,又()1222a a x F x x x -'=-=,112a ≤≤,所以当02x a <<时()0F x '>,当2x a >时()0F x '<,所以()F x 在()0,2a 上单调递增,在()2,a +∞上单调递减,所以()()()max 2ln 221F x F a a a a ==-+,令()ln 12xH x x x =-+,[]1,2x ∈,则()11ln 22H x x '=-,因为[]1,2x ∈,所以()()111ln 2ln 210222H x '≤-=-<,所以()H x 在[]1,2上单调递减,所以()()10H x H ≤=,所以()20F a ≤,当且仅当12a =时等号成立,所以当12a =时()F x 有一个零点,即()f x 有一个零点,当112a <≤时()F x 无零点,即()f x 无零点,综上可得当12a =时()f x 有一个零点,当112a <≤时()f x 无零点.【点睛】关键点点睛:第三问的关键是首先将问题转化为()1ln 102a x x a -+-=,利用导数求出()()max ln 221F x a a a =-+,再构造函数()ln 12xH x x x =-+,[]1,2x ∈.18.(1)y x =(2)见解析(3)证明见解析【分析】(1)根据导数的几何意义,求切线方程;(2)首先求函数的导数,再讨论01a <≤和1a >两种情况求函数的单调性,求函数的最值;(3)首先根据不等式构造函数()e ln 1xg x x x x =---,再利用导数求函数的最小值,即可证明.【详解】(1)()()1e axf x ax '=+,()01f '=,()00f =,所以曲线()y f x =在点()()0,0f 处的切线方程为y x =;(2)()()1e axf x ax '=+,0a >当01a <≤时,()0f x '≥在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以函数()f x 的最小值为()1e axf --=-,最大值为()1e a f =,当1a >时,()0f x '=,得()11,0x a=-∈-,()f x '在区间11,a ⎡⎫--⎪⎢⎣⎭小于0,函数()f x 单调递减,()f x '在区间1,1a ⎡⎤-⎢⎥⎣⎦大于0,函数()f x 单调递增,所以函数()f x 的最小值为11e f a a ⎛⎫-=- ⎪⎝⎭,()1e ax f --=-,()1e a f =,显然()()11f f >-,所以函数()f x 的最大值为()1e a f =,综上可知,当01a <≤时,函数()f x 的最小值为()1e ax f --=-,最大值为()1e af =,当1a >时,函数()f x 的最小值为11e f a a ⎛⎫-=- ⎪⎝⎭,最大值为()1e af =;(3)当1a =时,()e xf x x =,即证明不等式e ln 1x x x x ≥++,设()e ln 1xg x x x x =---,0x >,()()11e ⎛⎫'=+- ⎪⎝⎭x g x x x ,设()1e xh x x =-,0x >,()21e 0xh x x'=+>,所以()h x 在()0,∞+单调递增,并且1202h ⎛⎫=< ⎪⎝⎭,()1e 10h =->,所以函数()h x 在1,12⎛⎫⎪⎝⎭上存在唯一零点0x ,使()0001e 0x h x x =-=,即()00g x '=,则在区间()00,x ,()0x '<,()g x 单调递减,在区间()0,x +∞,()0g x '>,()g x 单调递增,所以()g x 的最小值为()00000e ln 1xg x x x x =---,由()0001e 0xh x x =-=,得001x x e =,且00ln x x =-,所以()00g x =,所以()e ln 10xg x x x x =---≥,即()ln 1f x x x ≥++.19.(1)1y x =+(2)函数()h x 有唯一零点0x =,证明过程见解析(3)2【分析】(1)只需分别求出()()0,0f f '即可得解;(2)首先有()()e ln 121xh x x x =++--,()()1e 211x x x h x x +--'=+,令()()()1e 21,1x m x x x x =+-->-,我们可以通过构造导数来说明()0m x >,即()0h x '>,这表明了()h x 单调递增,注意到()00h =,由此即可进一步得证;(3)首先我们可以连续求导说明函数()f x '在(]1,0-上递减,在[)0,∞+上递增.其次()()()()()000h x f x f x x x f x =---',故()()()0h x f x f x ''-'=.进一步有()()000h x h x '==,然后分000,10x x >-<<两种情况分类讨论即可求解.【详解】(1)当00x =时,()()001f x f ==,而()1e 11x f x x =+-+',所以()01f '=,从而切线方程为10y x -=-,也就是1y x =+.(2)由题意()()()()()()e ln 11e ln 121x xh x f x h x x x x x x =-=++--+=++--,所以()()1e 211e 211x xx x h x x x +--=+-='++,令()()1e 21x m x x x =+--,则()()2e 2xm x x =+-',当10x -<<时,122x <+<,0e 1x <<,所以()2e 2e 212x xx +<<⨯=,即()0m x '<,所以当10x -<<时,()m x 单调递减,()()00m x m >=,当0x >时,22x +>,e 1x >,所以()2e 2e 212x xx +>>⨯=,即()0m x '>,所以当0x >时,()m x 单调递增,()()00m x m >=,综上,()0m x ≥恒成立,也就是()0h x '≥恒成立,所以()h x 在()1,∞-+又因为()00h =,故函数()h x 有唯一零点0x =,且当10x -<<时,()0h x <,当0x >时,()0h x >;因此当10x -<<时,()0xh x >,当0x >时,()0xh x >,故()0xh x ≥;(3)对n 个实数12,,...,n a a a ,定义()12max ,,...,n a a a 和()12min ,,...,n a a a 分别为12,,...,n a a a 中最大的一个和最小的一个.现在,()()e ln 1x f x x x =++-,故()1e 11xf x x =+-+',令()()f x x ϕ'=,再对()x ϕ求导一次得到()()21e 1xx x ϕ=-+'.当10x -<<时,()()()02211e e 110101xx x ϕ=-<-='-=++,()x ϕ单调递减;当0x >时,()()()02211e e 110101xx x ϕ=->-='-=++,()x ϕ单调递增.。
2024年山东省菏泽市高三一模考试数学试题及答案
2024 年高三一模考试数学试题一、选择题: 本题共 8 小题, 每小题 5 分, 共 40 分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知样本数据为xx1、xx2、xx3、xx4、xx5、xx6、xx7, 去掉一个最大值和一个最小值后的数据与原来的数据相比, 下列数字特征一定不变的是A. 极差B. 平均数C. 中位数D. 方差2.已知复数zz满足zz(1+i)=i2024, 其中i为虚数单位, 则zz的虚部为A. −12B. 12C. −12iD. √223.已知集合AA={xx∣xx=3nn,nn∈ZZ},BB={xx∣0≤xx≤6}, 则AA∩BB=A. {1,2}B. {3,6}C. {0,1,2}D. {0,3,6}4.pp:mm=2,qq:(mmxx+yy)5的展开式中xx2yy3项的系数等于 40 , 则pp是qq的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5.已知向量aa=(sin θθ,cos θθ),bb=(√2,1), 若aa⋅bb=|bb|, 则tan θθ=A. √22B. √2C. √3D. √326.已知ff(xx)=xxℎ(xx), 其中ℎ(xx)是奇函数且在R上为增函数, 则A. ff�log213�>ff�2−32�>ff�2−23�B. ff�2−32�>ff�2−23�>ff�log213�C. ff�log213�>ff�2−23�>ff�2−32�D. ff�2−23�>ff�2−32�>ff�log213�7.已知圆C1:xx2+(yy−3)2=8与圆C2:(xx−aa)2+yy2=8相交于A、 B两点, 直线AB交xx轴于点P, 则SS△CC1PPCC2的最小值为A. 32B. 92C. 272D. √2328.若数列{aa nn}的通项公式为aa nn=(−1)nn−1nn, 记在数列{aa nn}的前nn+2(nn∈NN∗)项中任取两数都是正数的概率为PP nn, 则A. PP1=23B. PP9<PP10C. PP10<PP11D. PP11<PP12二、选择题: 本题共 3 小题, 每小题 6 分, 共 18 分. 在每小题给出的选项中, 有多项符合题目要求. 全部选对的得 6 分, 部分选对的得部分分, 有选错的得 0 分.9.已知函数ff(xx)=Asin (ωωxx+φφ)(AA>0,ωω>0,0<φφ<ππ)的部分图像如图所示, 令gg(xx)=ff(xx)−2sin2�ππ2+xx�+1, 则下列说法正确的有A. ff(xx)的最小正周期为ππB. gg(xx)的对称轴方程为xx=kkππ+ππ3(kk∈z)C. gg(xx)在�0,ππ2�上的值域为�−1,12�D. gg(xx)的单调递增区间为�kkππ+ππ3,kkππ+5ππ6�(kk∈z)10.如图, 在棱长为 2 的正方体AABBAAAA−AA1BB1AA1AA1中, PP为侧面AAAAAA1AA1上一点, QQ为BB1AA1的中点, 则下列说法正确的有A. 若点PP为AAAA的中点, 则过PP、QQ、AA1三点的截面为四边形B. 若点PP为AA1AA的中点, 则PPQQ与平面BBAAAA1BB1所成角的正弦值为√105C. 不存在点PP, 使PPQQ⊥AA1AAD. PPQQ与平面AAAAAA1AA1所成角的正切值最小为√5511.如图, 过点AA(aa,0)(aa>0)的直线AABB交抛物线yy2=2ppxx(pp>0)于AA,BB两点, 连接AAAA、BBAA,并延长, =−aa于MM,NN两点, 则下列结论中一定成立的有A. BBMM//AANNB. 以AABB为直径的圆与直线xx=−aa相切C. SS△AAAAAA=SS△MMAAMMD. SS△MMCCMM2=4SS△AAMMCC⋅SS△AACCMM三、填空题: 本题共 3 小题, 每小题 5 分, 共 15 分.12.如图, 在正四棱台AABBAAAA−AA1BB1AA1AA1中, AA1BB1=√2,AABB=2√2,该棱台体积V=14√33, 则该棱台外接球的表面积为____________13.已知斜率为√3的直线过双曲线AA:xx2aa2−yy2bb2=1(aa>0,bb>0)的右焦点FF且交双曲线右支于AA、BB两点, AA在第一象限, 若|AAFF|=|AAFF|, 则AA的离心率为_________14.关于xx的不等式xxee aaxx+bbxx−ln xx≥1(aa>0)恒成立, 则bb aa的最小值为_______四、解答题: 本题共 5 小题, 共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.(13 分) 已知数列{aa nn}的前nn项和为SS nn, 且SS nn=2aa nn−2(nn∈NN∗).(1) 求数列{aa nn}的通项公式;(2) 若bb nn=log2aa2nn−1,cc nn=1bb nn bb nn+1, 求证: cc1+cc2+cc3+⋯+cc nn<12.16.(15 分) 某商场举行 “庆元宵, 猜谜语” 的促销活动, 抽奖规则如下: 在一个不透明的盒子中装有若干个标号为1,2,3的空心小球, 球内装有难度不同的谜语. 每次随机抽取 2 个小球, 答对一个小球中的谜语才能回答另一个小球中的谜语, 答错则终止游戏. 已知标号为1,2,3的小球个数比为1:2:1, 且取到异号球的概率为57.(1) 求盒中 2 号球的个数;(2)若甲抽到 1 号球和 3 号球,甲答对球中谜语的概率和对应奖金如表所示, 请帮甲决策猜谜语的顺序 ()球号 1 号球 3 号球答对概率0.8 0.5奖金100 50017.(15 分) 如图, 已知AABBAAAA为等腰梯形, 点EE为以BBAA为直径的半圆弧上一点, 平面AABBAAAA⊥平面BBAAEE,MM为AAEE的中点, BBEE=AABB=AAAA=AAAA=2,BBAA=4.(1) 求证: AAMM/ /平面AABBEE;(2) 求平面AABBEE与平面AAAAEE所成角的余弦值.18.(17 分) 如图, 已知椭圆AA:xx2aa2+yy2bb2=1(aa>bb>0)与yy轴的一个交点为AA(0,√2), 离心率为√22,FF1,FF2为左、右焦点, MM,NN为粗圆上的两动点, 且∠MMAAFF1=∠NNAAFF1.(1) 求粗圆AA的方程;(2) 设AAMM,AANN的斜率分别为kk1,kk2, 求kk1kk2的值;(3) 求△AAMMNN面积的最大值.19.(17 分) 帕德近似是法国数学家亨利. 帕德发明的用有理多项式近似特定函数的方法. 给定两个正整数mm,nn, 函数ff(xx)在xx=0处的[mm,nn]阶帕德近似定义为:RR(xx)=aa0+aa1xx+⋯+aa mm xx mm1+bb1xx+⋯+bb nn xx nn, 且满足: ff(0)=RR(0),ff′(0)=RR′(0),ff′′(0)=RR′′(0),⋯, ff(mm+nn)(0)= RR(mm+nn)(0).(注: ff′′(xx)=[ff′(xx)]′,ff′′′(xx)=[ff′′(xx)]′,ff(4)(xx)=[ff′′′(xx)]′,ff(5)(xx)=�ff(4)(xx)�′,⋯;ff(nn)(xx)为ff(nn−1)(xx)的导数)已知ff(xx)=ln (xx+1)在xx=0处的[1,1]阶帕德近似为RR(xx)=aaxx1+bbxx.(1) 求实数aa,bb的值;(2) 比较ff(xx)与RR(xx)的大小;(3) 若ℎ(xx)=ff(xx)RR(xx)−�12−mm�ff(xx)在(0,+∞)上存在极值, 求mm的取值范围.2024.03高三数学一模试题参考答案一、单选题 1—8.CADA BCBC二、多选题 9—11. ACD AB ACD三、填空题 12.16π 1313+ 14.-1 四、解答题15题解析:(1)由S n =2a n −2 ①当n =1时,S 1=2a 1−2=a 1解得a 1=2 当n ≥2时,S n−1=2a n−1−2 ②①−②得a n =2a n−1 ∴a n =a 12n−1=2n经验证a 1符合上式,所以a n =2n ---------------------------------------6分 (2)证明:由(1)知a 2n−1=22n−1∴b n =log 2a 2n−1=2n −1,b n+1=2n +1------8分则c n =1b n b n+1=12(12n−1−12n+1)---------------------10分 c 1+c 2+c 3+⋯+c n =12(11−13+13−15+⋯+12n −1−12n +1)=12(1−12n +1)<12------------------------------------13分16. (1)由题意可设1,2,3号球的个数分别为n ,2n ,n ,则取到异号球的概率 P =2C n 1C 2n1+C n 1C n 1C 4n2=57 -----2分∴2∙5n 24n(4n −1)=57即n 2=2n 解得n =2 -----4分 所以盒中2号球的个数为4个. -----5分 (2)若甲先回答1号球再回答3号球中的谜语,因为猜对谜语的概率相互独立,记X 为甲获得的奖金总额,则X 可能的取值为0元,100元,600元, P (X =0)=0.2P (X =100)=0.8×(1−0.5)=0.4 P (X =600)=0.8×0.5=0.4X 的分布列为: -----8分X 的均值为 E (X )= -----9分 若甲先回答3号球再回答1号球,因为猜对谜语的概率相互独立,记Y 为甲获得的奖金总额,则Y 可能的取值为0元,500元,600元, P (Y =0)=0.5P (Y =500)=0.5×(1−0.8)=0.1P (Y =600)=0.8×0.5=0.4 -----12分 Y 的分布列为:Y 的均值为E (Y )=290 -----13分 因为E (Y )>E (X ),所以推荐甲先回答3号球中的谜语再回答1号球中的谜语. -----15分17.(1)取BE 的中点N ,连接AN ,MN ,则MN //=12BC又∵AD //=12BC ∴MN //=AD∴ANDM 为平行四边形∴DM ∥AN -----3分 又DM ⊄平面ABE AN ⊂平面ABE∴DM ∥平面ABE -----5分(2)取AD 中点为F ,过点O 作直线BC 的垂线交BC ̂于点G ,分别以OG ,OC ,OF 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系 ∵BC 为直径,∴BE =12BC∴∠BCE =30∘,∠BOE =60∘,∠EOG =30∘,在梯形ABCD 中易求高为√3 -----7分 ∴E(√3,−1,0),C(0,2,0),D(0,1,√3),B(0,−2,0),A(0,−1,√3) ∴CE ⃗⃗⃗⃗⃗ =(√3,−3,0),CD ⃗⃗⃗⃗⃗ =(0,−1,√3),BE ⃗⃗⃗⃗⃗ =(√3,1,0),BA ⃗⃗⃗⃗⃗ =(0,1,√3) ----9分设平面DCE 的法向量为m ⃗⃗ =(x ,y ,z)则{m ⃗⃗ ∙CE ⃗⃗⃗⃗⃗ =0m ⃗⃗ ∙CD⃗⃗⃗⃗⃗ =0∴{√3x −3y =0−y +√3z =0令y =√3则x =3, z =1∴m ⃗⃗ =(3,√3,1)同理求得平面ABE 的法向量为n ⃗ =(1,−√3,1) -----13分 设平面ABE 与平面CDE 所成的角为α 则cos α=|m⃗⃗⃗ ∙n ⃗ |m ⃗⃗⃗ |∙|n ⃗ ||=√6565∴平面ABE 与平面CDE 所成角的余弦值为√6565. -----15分18.解:(1)由题意得,2222b c a a b c ⎧=⎪⎪=⎨⎪⎪=+⎩,解之得2242a b ⎧=⎪⎨=⎪⎩,所以椭圆C 的程为221.42x y +=.----------------3分(2)由(1)知14所以b c AF O π==∠=,设直线AM 、AF 1、AN 的倾斜角分别为1112,tan ,tan ,,4、、、则k k 则MAF F AN αγθπαθβγαβθβγθ+=⎧∠=∠====⎨-=⎩所以πα+β=θ=22,--------------------------------------------------------6分所以所以即πα=-β=αβ==β121tan tan(),tan tan 1,12tan k k ----------------------------------------------------------------------------------------------8分 (3)设直线AM:=+1y k x解方程组⎧=+⎪⎨+=⎪⎩122142y k x x y得221211221212)0,,1212(同理得M Nk x x x x k k ++=∴=-=-++, 由(2)知112211,,2N k k x k =∴=-+ -------------------------------10分2222222221111sin 22()(1)又(y AMNM M M M M SAM AN MAN AM AM AN AM x x k x k x ∴=∠===⋅=+=+=+222222222221122211122222222222221212212111(1)(,,2,1()4,()41(N N N N N N N()同理,,()()M M M N N M NM M N M M M kk AN k x x AM AN x x k k AM AN x y x y x x k x k x x x k AM AN x x AMAN AM AN x x x x k k k ++=+==⋅==+=+∴⋅=∴-⋅=-+=-222221114)(),2N N 1分M M x x k x x k =----------- 1111221111112211111122422211111111211111111221221116163216111,212(12)(2)252252()911,()()令t=则AMNM N AMNSk x x k k k k k k k k k k k k k k k k k k k k k k k k o S k ∴==-=---++--=-=-==-----------++++++-+->=12692,,2932773当2即k =取等号,所以的最大值是1分AMN t t t t t S-±≤====+----------------------19.解:(1)由()l )1n(1(),ax R x x bxf x =+=+,223112(),(),(),(),1(1)(1)(1)知a abf x f x R x R x x x bx bx -''''''==-==++++由题意(0)(0)(0)(0),f R f R ''==,所以11,212所以a=1,b=a ab =⎧⎨=-⎩ --------------------3分(2)由(1)知,2()2x R x x =+,令()()ln(1)2()(1),2-x Rx x x x f x x ϕ=>-+=-+ 则22214()1(2)(1)(2()),所以x x o x x x x x ϕϕ'=-=>++++在其定义域(-1,+∞)内为增函数,又(0)(0()()(0)0;(0)0,0()0() 1()()(0)0时, 时 )f R x R x x f x x f x x R x ϕϕϕϕϕ==-=-≥=-=<∴≥<-=<()(); 0 1()().0所以时,时,f x R x f R x x x x ≥-<<<≥--------------7分222()()11()()()()ln(1),()2111(1)ln(1)ln(1)()1(3)由f x h x m f x m x R x xmx x x x h x m x x x x x ==--=+++-++'∴=-++++()1()()()()2由f x h x m f x R x =--在(0,+∞)上存在极值,所以()h x '在(0,+∞)上存在变号零点. []2()(1)ln(1),()21ln(1)12ln(1),1()21令则g x mx x x x g x mx x mx x g x m x '=+-++=+-++=-+''=-+()()0,()()(0)0,()()(0)00,,.0为减函数,在①当时,上为减函数,无零点,不满足条件g x g x g x g g x g x m g '''''<<=<=<+∞()()0,()()(00)0,()()(0)0,.,21②当2为增函数,在无零点,不满足1,即时,上为增函数,条件m m g x g x g x g g x g x g '''''+>>>>=>=∞min 11()02,1121101()0,()1()0,()22111()(1)2(1)ln(11)12ln 2;2222 即 当时,为减函数;时,为增函1③当021,0时,令数即,m m g x m x x mx g x g x x g x g x m mg x g m m m m m m''<<<<==∴=-+''''''<<-<>->''∴=-=---+=-+2221()1ln ,01,()0,(1)(12)ln 202110,01,(1)01,1ln(1)ln(1);11()(1)ln(1)1令易证恒成立;,H x x x x H x g m m mmx mx x m x m mx x mx x x x mx x g x x x x '=-+<<<∴-=-+<--><<∴-<∴>-∴+-+>-+++⎡⎤+=+-+⎢⎥+⎣⎦221()ln(1)1ln(1)ln(1)(1)ln(1),11ln(1)()(1)(1)(1)22令易证mx x mx l x x x mx x m x x m x x x m m l x m x m x m x +-=-+=+-+>-+=+-+-+++≤⎡∴>+-=+-++-⎢⎣2216161,1,(1)028(1)022令则1 (0<<)mx x x m m m x m m m m +-≥=-+=∴+-=->216()0,(1)0即l x l m ∴>->由零点存在定理可知,2021216,1()(,)122上存在唯x 在一零点m m m m l x m --⎛⎫+∞-∈ ⎪⎝⎭101()0,(),(0)0,21()0,(0,1)2时,为减函数所以此时,在 又由③知,当内无零点,x g x g x g mg x m''''<<-<='<----------------------------------- ----- ------17分()()10,0,.2上存在变号零点,综上所述实数m 的取值范在围为g x ⎛⎫+∞ ⎪⎝⎭∴。
2023年山西太原高考一模考试 数学试卷(含答案解析)
2
2
2
由正弦定理得 b c a
2
2
2
选择条件②: cos A cos B sin C sin B sin C ,
2
2
2
由题意可得 1 sin A 1 sin B sin C sin B sin C ,
2
2
2
2
2
2
即 sin B sin C sin A sin B sin C ,由正弦定理得 b c a bc , ………3 分
令 x1 1 ,则 z1 1 , n (1,0,1) ,
x1 2 y1 z1 0,
cos m, n
mn
| m || n |
2
3
,
3
3 2
平面 PAB 与平面 PAD 夹角的余弦值为
20.解:
(1)
20
bˆ
x y
i 1
20
i
n2 n
n 1
1 1 1
1
1
.
Tn b1 b2 bn [(1 ) ( ) (
)]
4 8
3 3 5
2n 1 2n 1 4n 2
2
2
18.解:
(1)选择条件①: sin B sin C sin A(22 Nhomakorabea2
由题意可得 sin B sin C sin A
勘
误
高三数学一模:
第 11 题 C 选项
原为:
C. 若�� ⊥ ��,则线段��的最大值为 2 2
现更正为:
C. 若�� ⊥ ��恒成立,则线段��的最大值为 2 2
高考一模数学试卷答案
一、选择题(每题5分,共50分)1. 【答案】C【解析】根据三角函数的定义,sinA = 对边/斜边,cosA = 邻边/斜边。
在直角三角形ABC中,∠A=30°,则sinA=1/2,cosA=√3/2。
因此,C选项正确。
2. 【答案】A【解析】由一元二次方程的求根公式可得,x1=(-b+√(b²-4ac))/(2a),x2=(-b-√(b²-4ac))/(2a)。
因为a=1,b=-3,c=2,代入公式计算得x1=2,x2=1。
故A选项正确。
3. 【答案】D【解析】根据复数的乘法法则,(a+bi)(c+di)=(ac-bd)+(ad+bc)i。
代入a=2,b=-1,c=3,d=2,得(2-1i)(3+2i)=(6-2)+(6-3)i=4+3i。
故D选项正确。
4. 【答案】B【解析】根据数列的通项公式an=a1+(n-1)d,其中a1为首项,d为公差。
由题意知,数列的前三项为1,4,7,公差为3。
代入公式计算得an=1+(n-1)×3=3n-2。
故B选项正确。
5. 【答案】C【解析】由集合的运算性质,A∪B=(A-B)∪(A∩B)。
因此,集合A∪B包含A中不属于B的元素以及A∩B中的元素。
故C选项正确。
二、填空题(每题5分,共25分)6. 【答案】-3【解析】由等差数列的通项公式an=a1+(n-1)d,代入a1=2,d=-1,n=5,得a5=2+(5-1)×(-1)=-3。
7. 【答案】π/3【解析】由三角函数的性质,sin(π/3)=√3/2。
8. 【答案】1/4【解析】由复数的模长公式,|a+bi|=√(a²+b²),代入a=2,b=-1,得|2-1i|=√(2²+(-1)²)=√5。
复数的模长等于1/|2-1i|=1/√5=1/4。
9. 【答案】2【解析】由指数函数的性质,(2^3)^2=2^(3×2)=2^6=64。
高考一模数学试卷及答案
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 若函数f(x) = x^3 - 3x + 2在区间[0, 2]上的最大值为M,则M等于:A. -1B. 0C. 2D. 32. 已知等差数列{an}的前n项和为Sn,若S5 = 35,S9 = 81,则公差d等于:A. 2B. 3C. 4D. 53. 下列命题中正确的是:A. 若a > b,则a^2 > b^2B. 若a > b,则loga > logbC. 若a > b > 0,则a/b > b/aD. 若a > b,则a - b > 04. 已知复数z = 1 + i,则|z|^2等于:A. 2B. 3C. 4D. 55. 函数y = 2sin(2x - π/6)的图像关于点(π/3, 0)对称,则实数x的取值范围是:A. x ∈ [0, π/2]B. x ∈ [π/2, π]C. x ∈ [π, 3π/2]D. x ∈[3π/2, 2π]6. 若直线y = kx + 1与圆x^2 + y^2 = 1相切,则k的取值范围是:A. k ∈ (-1, 1)B. k ∈ [-1, 1]C. k ∈ (-∞, -1) ∪ (1, +∞)D. k ∈ (-∞, 1) ∪ (1, +∞)7. 已知函数f(x) = x^3 - 3x + 2,若f(x)在区间[0, 2]上的图像是:A. 单调递增B. 单调递减C. 先增后减D. 先减后增8. 已知等比数列{an}的首项a1 = 1,公比q = 2,则数列的前5项之和S5等于:A. 31B. 32C. 33D. 349. 若向量a = (2, 3),向量b = (-1, 2),则向量a·b等于:A. 7B. 5C. 3D. 110. 已知函数f(x) = |x - 1| + |x + 2|,则f(x)的最小值为:A. 1B. 2C. 3D. 4二、填空题(本大题共5小题,每小题5分,共25分。
吉林省长春市十一中2025届高考数学一模试卷含解析
吉林省长春市十一中2025届高考数学一模试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线2222:1x y a bΓ-=(0,0)a b >>的一条渐近线为l ,圆22:()4C x c y -+=与l 相切于点A ,若12AF F ∆的面积为Γ的离心率为( )A .2B C .73D2.已知集合{A =,{}1,B m =,若A B A ⋃=,则m =( )A .0B .0或3C .1D .1或33.设全集,U R =集合{}{}1,||2M x x N x x =<=>,则()UM N ⋂=( )A .{}|2x x >B .{}|1x x ≥C .{}|12x x <<D .{}|2x x ≥4.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P 是C 的右支上一点,连接1PF 与y 轴交于点M ,若12||FO OM =(O 为坐标原点),12PF PF ⊥,则双曲线C 的渐近线方程为( )A .3y x =±B .y =C .2y x =±D .y =5.设ln 2m =,lg 2n =,则( ) A .m n mn m n ->>+ B .m n m n mn ->+> C .m n mn m n +>>- D .m n m n mn +>->6.已知函数()1f x +是偶函数,当()1,x ∈+∞时,函数()f x 单调递减,设12a f ⎛⎫=- ⎪⎝⎭,()3b f =,()0c f =,则a b c 、、的大小关系为() A .b a c <<B .c b d <<C .b c a <<D .a b c <<7.双曲线22:21C x y -=的渐近线方程为( )A .0x ±=B .20x y ±=C 0y ±=D .20x y ±=8.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( ) A .40243B .70243C .80243D .382439.若0,0x y >>,则“2x y +=的一个充分不必要条件是 A .x y = B .2x y = C .2x =且1y =D .x y =或1y =10.已知锐角α满足2sin21cos2 ,αα=-则tan α=( ) A .12B .1C .2D .411.下列函数中,既是偶函数又在区间0,上单调递增的是( )A .y =B .()sin f x x x =C .()2f x x x =+ D .1y x =+12.已知13ω>,函数()sin 23f x x πω⎛⎫=- ⎪⎝⎭在区间(,2)ππ内没有最值,给出下列四个结论:①()f x 在(,2)ππ上单调递增; ②511,1224ω⎡⎤∈⎢⎥⎣⎦ ③()f x 在[0,]π上没有零点; ④()f x 在[0,]π上只有一个零点. 其中所有正确结论的编号是( ) A .②④B .①③C .②③D .①②④二、填空题:本题共4小题,每小题5分,共20分。
浙江省新2025届高三下学期一模考试数学试题含解析
浙江省新2025届高三下学期一模考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()ln(1)f x x ax =+-,若曲线()y f x =在点(0,(0))f 处的切线方程为2y x =,则实数a 的取值为( ) A .-2B .-1C .1D .22.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4B .6C .3D .83.半正多面体(semiregular solid ) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( )A .83B .4C .163D .2034.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .5.已知实数x ,y 满足约束条件2211x y y x y kx +≥⎧⎪-≤⎨⎪+≥⎩,若2z x y =-的最大值为2,则实数k 的值为( )A .1B .53C .2D .736.已知定义在R 上的偶函数()f x ,当0x ≥时,22()2xx x f x e +=-,设22),(2),(ln a f b f c f ===,则( ) A .b a c >>B .b a c >=C .a c b =>D .c a b >>7.一只蚂蚁在边长为4的正三角形区域内随机爬行,则在离三个顶点距离都大于2的区域内的概率为( ) A .31πB .34C 3πD .148.若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b9.在ABC ∆中,60BAC ∠=︒,3AB =,4AC =,点M 满足2B M M C =,则AB AM ⋅等于( ) A .10B .9C .8D .710.已知等比数列{}n a 的各项均为正数,设其前n 项和n S ,若14+=nn n a a (n *∈N ),则5S =( )A .30B .312C .2D .6211.已知等差数列{}n a 中,若5732a a =,则此数列中一定为0的是( ) A .1aB .3aC .8aD .10a12.已知等差数列{}n a 的公差为-2,前n 项和为n S ,若2a ,3a ,4a 为某三角形的三边长,且该三角形有一个内角为120︒,则n S 的最大值为( ) A .5B .11C .20D .25二、填空题:本题共4小题,每小题5分,共20分。
上海黄浦区2025届高考数学一模试卷含解析
上海黄浦区2025届高考数学一模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( ) A .13B .310C .25D .342.已知a R ∈若(1-ai )( 3+2i )为纯虚数,则a 的值为 ( ) A .32-B .32C .23-D .233.在ABC 中,12BD DC =,则AD =( ) A .1344+AB AC B .21+33AB ACC .12+33AB ACD .1233AB AC -4.曲线24x y =在点()2,t 处的切线方程为( ) A .1y x =-B .23y x =-C .3y x =-+D .25y x =-+5.设M 是ABC ∆边BC 上任意一点,N 为AM 的中点,若AN AB AC λμ=+,则λμ+的值为( ) A .1B .12C .13D .146.已知向量(3sin ,2)a x =-,(1,cos )b x =,当a b ⊥时,cos 22x π⎛⎫+= ⎪⎝⎭( ) A .1213-B .1213C .613-D .6137.已知函数()sin(2)f x x ϕ=+,其中(0,)2πϕ∈,若,()6x R f x f π⎛⎫∀∈≤ ⎪⎝⎭恒成立,则函数()f x 的单调递增区间为( )A .,()36k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦ B .2,()33k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦C .2,()33k k k z ππππ⎡⎤++∈⎢⎥⎣⎦D .2,()3k k k Z πππ⎡⎤+⎢⎥⎣∈⎦8.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下: 小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的; 小金说:“兴国之路”不是我制作的,若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是( ) A .小明B .小红C .小金D .小金或小明9.已知()f x 是定义在[]2,2-上的奇函数,当(]0,2x ∈时,()21xf x =-,则()()20f f -+=( )A .3-B .2C .3D .2-10.如图,在ABC ∆中, 13AN AC =,P 是BN 上的一点,若23mAC AP AB =-,则实数m 的值为( )A .13B .19C .1D .211.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅12.已知定义在R 上的函数()f x 在区间[)0,+∞上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()12log 2f a f ⎛⎫<- ⎪⎝⎭,则a 的取值范围是( ) A .10,4⎛⎫ ⎪⎝⎭B .1,4⎛⎫+∞⎪⎝⎭C .1,44⎛⎫⎪⎝⎭D .()4,+∞二、填空题:本题共4小题,每小题5分,共20分。
2024届山西省高考一模数学试题(解析版)
数学姓名__________准考证号__________注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在试卷和答题卡指定位置上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案用0.5mm 的黑色笔迹签字笔写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()()1,1,1,1a m b m =+=-,且a b ⊥,则m =()A.1B.1- C. D.0【答案】D 【解析】【分析】利用平面向量数量积的坐标表示计算即可.【详解】由题意知()()21110a b m m m ⋅=+⨯-+== ,所以0m =.故选:D2.已知集合{}{}1,1,0,1,2,4A B =≤=-,则图中阴影部分表示的集合为()A.{}1 B.{}1,1- C.{}0,1 D.{}1,0,1-【答案】C 【解析】【分析】先求得集合A ,根据图示计算出A B ⋂即可.【详解】结合题意图中阴影部分表示的集合为A B ⋂,因为{}1A x=≤,根据幂函数的性质:y =为增函数,且0x ≥,1≤,所以有:01x ≤≤,所以{}|01A x x =≤≤,又{}1,0,1,2,4B =-,所以{}0,1A B = .故选:C3.设命题:R,x p x a kx ∃∈>,则p ⌝为()A.R,x x a kx ∀∈>B.R,x x a kx ∃∈≤C.R,x x a kx ∀∈≤D.R,x x a kx∃∈=【答案】C 【解析】【分析】根据存在量词命题的否定形式判定即可.【详解】由题意可知:R,x p x a kx ⌝∀∈≤.故选:C4.某学校高三年级组在每次考试后将全年级数学成绩的第85百分位数定为“优秀”分数线.某次考试后,张老师将自己所带100名学生的数学成绩录入计算机,并借助统计软件制作成如图所示的频率分布直方图.据此,以样本估计总体,可知此次考试的“优秀”分数线约为()A.120B.123C.126D.129【答案】D 【解析】【分析】根据频率分布直方图,求出张老师将自己所带100名学生的数学成绩第85百分位数,以样本估计总体,即可求解.【详解】样本中[)120,135,[)135,150两个小组的频率分别为1150.2075´=,7150.071500´=,由于0.200.070.270.15+=>,故第85百分位数位于[)120,135内,设其为x ,则()10.071350.1575x +-=,解得129x =,由样本估计总体,可知此次考试的“优秀”分数线约为129.故选:D5.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,经过1F 的直线l 与椭圆C 相交于,A B 两点,若223,4,5AF AB BF ===,则椭圆C 的离心率为()A.22B.33C.12D.55【答案】A 【解析】【分析】根据椭圆定义求出2a ,根据2ABF △边长确定290BAF ∠=︒,进而求出2c ,即可求解椭圆离心率.【详解】由题意结合椭圆定义可知:2ABF △的周长为124a =,26a =,又因为2222291625AF AB BF +=+==,所以290BAF ∠=︒,又由23AF =,知1223AF a AF =-=,故1212c F F ===,因此椭圆C 的离心率为2262c e a ===.故选:A6.已知数列{}n a 满足1121n n n n a a a a ++=--,且13a =,则2024a =()A.15B.4- C.54D.23【答案】B 【解析】【分析】由递推公式列举数列的若干项,观察规律,利用数列的周期性计算即可.【详解】由题意可知22232314a a a =--⇒=-,同理312a =-,45678125,,,3,4534a a a a a =====- ,即{}n a 是以6为周期的数列,所以20246337224a a a ⨯+===-.故选:B7.已知函数()f x 是定义在{}0xx ≠∣上不恒为零的函数,若()()()22f x f y f xy yx=+,则()A.()11f =B.()11f -=C.()f x 为偶函数 D.()f x 为奇函数【答案】C 【解析】【分析】根据题意,令x 、y 取特殊值逐一验证四个选项即可.【详解】令1x y ==,则()()121f f =,故()10f =,A 选项错误;令1x y ==-,则()()121f f =-,故()10f -=,B 选项错误;令1y =-,则()()()()21f f x f x f x x--=+=,故()f x 为偶函数,C 选项正确;因为()f x 为偶函数,又函数()f x 是定义在{}0xx ≠∣上不恒为零的函数,D 选项错误.故选:C8.如图,在体积为1的三棱锥A BCD -的侧棱,,AB AC AD 上分别取点,,E F G ,使::1:1,:2:1AE EB AF FC AG GD ===,记O 为平面BCG 、平面CDE 、平面DBF 的交点,则三棱锥O BCD -的体积等于()A.14B.15C.16D.17【答案】B 【解析】【分析】先画出图形确定O 的位置,将三棱锥O BCD -的体积,转化为线段的长度比,充分利用直线的平行进行推导,求出比例即可.【详解】如图所示,假设,ED BG J CG DF I == ,连接,BI CJ ,易知BI CJ O = ,在ABD △中,设,GJ GB EJ ED λμ==,所以()2221333AJ AG GJ AD AB AD AB AD λλλ⎛⎫=+=+-=+- ⎪⎝⎭,()1111222AJ AE ED AB AD AB AB AD μμμμ⎛⎫=+=+-=-+ ⎪⎝⎭,则()()1112421132λμλλμμ⎧⎧=-=⎪⎪⎪⎪⇒⎨⎨⎪⎪-==⎪⎪⎩⎩,即14GJ GB =,同理14GI GC =,则1445JI BO BC BI =⇒=,设,,,O I G A 到底面的距离分别为,,,O I G A h h h h ,则4311,,5435O G O I I G A A h h h h h h h h ===⇒=,所以15O BCD O A BCD A V h V h --==.故选:B【点睛】思路点睛:先根据平面性质确定交点位置,再由平面向量的线性运算计算线段比例关系得出棱锥高的比例关系即可.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数13i,z z =-+是z 的共轭复数,则()A.32i z +-=B.z 的虚部是3iC.z 在复平面内对应的点位于第二象限D.复数z 是方程2280x x ++=的一个根【答案】AC 【解析】【分析】利用复数的定义、模长公式、几何意义、共轭复数定义与方程的解法一一判定选项即可.【详解】由题意可知32i 2i z +-=+,所以32i z +-=,故A 正确;易知z 的虚部是3,故B 错误;z 在复平面内对应的点为()1,3-,位于第二象限,故C 正确;对于2228012x x x -±++=⇒==-±,显然13i z =--不符合题意,故D 错误.故选:AC10.已知函数()πsin (0)3f x x ωω⎛⎫=-> ⎪⎝⎭,则()A.当12ω=时,函数()f x 的周期为4πB.函数()f x 图象的对称轴是ππ,6k x k ωω=+∈Z C.当12ω=时,5π3x =是函数()f x 的一个最大值点D.函数()f x 在区间()0,1内不单调,则5π6ω>【答案】ACD 【解析】【分析】由正弦函数的周期,对称性及最大值判断ABC ,由导函数等于0有解判断D.【详解】对A ,当12ω=时,函数()f x 的周期为2π4πω=,故A 正确;对B ,令πππ32x k ω-=+,得5ππ,6k x k ωω=+∈Z ,故函数()f x 图象的对称轴是5ππ,6k x k ωω=+∈Z ,故B 错误;对C ,当12ω=时,()1π5πsin ,1233f x x f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭为最大值,故5π3x =是函数()f x 的一个最大值点,故C 正确;对D ,函数()f x 在区间()0,1内不单调,则()πcos 03f x x ωω⎛⎫=-= ⎪⎝⎭'在()0,1有解,且左右函数值异号,令πππ,333t x ωω⎛⎫=-∈-- ⎪⎝⎭,则2ππ3ω->,解得5π6ω>,故D 正确.故选:ACD.11.群的概念由法国天才数学家伽罗瓦(1811-1832)在19世纪30年代开创,群论虽起源于对代数多项式方程的研究,但在量子力学、晶体结构学等其他学科中也有十分广泛的应用.设G 是一个非空集合,“ ”是一个适用于G 中元素的运算,若同时满足以下四个条件,则称G 对“ ”构成一个群:(1)封闭性,即若,a b G ∈,则存在唯一确定的c G ∈,使得c a b = ;(2)结合律成立,即对G 中任意元素,,a b c 都有()()a b c a b c = ;(3)单位元存在,即存在e G ∈,对任意a G ∈,满足a e e a a == ,则e 称为单位元;(4)逆元存在,即任意a G ∈,存在b G ∈,使得a b b a e == ,则称a 与b 互为逆元,b 记作1a -.一般地,a b 可简记作,ab a a 可简记作22,a a a 可简记作3a ,以此类推.正八边形ABCDEFGH 的中心为O .以e 表示恒等变换,即不对正八边形作任何变换;以r 表示以点O 为中心,将正八边形逆时针旋转π4的旋转变换;以m 表示以OA 所在直线为轴,将正八边形进行轴对称变换.定义运算“ ”表示复合变换,即f g 表示将正八边形先进行g 变换再进行f 变换的变换.以形如(,pqr m p q ∈N ,并规定)00r m e ==的变换为元素,可组成集合G ,则G 对运算“ ”可构成群,称之为“正八边形的对称变换群”,记作8D .则以下关于8D 及其元素的说法中,正确的有()A.28mr D ∈,且22mr r m =B.3r m 与5r m 互为逆元C.8D 中有无穷多个元素D.8D 中至少存在三个不同的元素,它们的逆元都是其本身【答案】ABD 【解析】【分析】根据题意,对选项逐一运算可得结果.【详解】我们有:1 由于两次轴对称等价与不变换,故2m e =;由于旋转45 施行8次等价于旋转360 也就是不变,故8r e =;由于先旋转再关于OA 对称和先关于OA 对称再旋转等效,故rm mr =.2 8D 一共是16个元素,变换后ABCDEFGH 逆时针排列的有8个,顺时针排列的有8个.这就说明:22mr r m =,A 正确;()()353528r m r m r r mr e ===,B 正确;8D 一共是16个元素,C 错误;8D 中,()()()22484428,,m e r r e mr mr m r e =====,D 正确.故选:ABD三、填空题:本题共3小题,每小题5分,共15分.12.若一个底面半径为1,高为2的圆柱的两个底面的圆周都在球O 的表面上,则球O 的表面积为__________.【答案】8π【解析】【分析】画出组合体的轴截面图,根据轴截面图可知,利用勾股定理可计算出球的半径,进而求得球的表面积.【详解】画出组合体的轴截面图如下图所示,其中BC 是球的半径,AB 是圆柱底面半径,AC 是圆柱高的一半,故222112BC AC AB =+=+=,所以球的表面积为24π8πBC ⋅=.【点睛】本小题主要考查球的表面积计算,考查圆柱和球的组合体问题的求解方法,属于基础题.13.甲、乙、丙、丁、戊、己六位同学中考语文、数学、外语的成绩如下表:甲乙丙丁戊己语文108110115110118107数学110120112111100118外语110100112114110113将每人中考成绩最高的科目认定为他的“最擅长科目”,例如甲的最擅长科目为数学和外语.现从这六位同学中选出三人分别担任语文、数学、外语三个科目的科代表(每科一人,不可兼任),若每个科代表对应的科目都是他的最擅长科目,则符合要求的安排方法共有__________种.【答案】10【解析】【分析】由表格先确定六人各自擅长科目,再分类讨论即可.【详解】由表格可知:甲最擅长科目为数学和外语,乙为数学,丙为语文,丁为外语,戊为语文,己为数学.则语文可从丙、戊两位同学选,数学可从甲乙己三位同学选,外语可从甲丁两位同学选,C C4=种选法;若甲不为课代表,则只需选语文、数学科目代表即可,有1122C2=选法;若甲为课代表,则①甲为数学课代表,只需选语文课代表即可,有12C C4=种选法;②甲为外语课代表,只需选语文、数学课代表即可,有有1122综上所述,共有10种方案.故答案为:1014.已知()()1122,,,A x y B x y 为抛物线28y x =上两个不同的动点,且满足1216y y =-,则112222x y x y +++++的最小值为__________.【答案】6【解析】【分析】根据点A 、B 在抛物线上,化112222x y x y +++++为22121248y y y y ++++,设出直线AB 方程,利用韦达定理化简22121248y y y y ++++得到一元二次函数,即可求出最小值.【详解】由()11,A x y 在抛物线28y x =上可知:2118y x =,所以()2211111422088y y x y y +++=++=≥;同理可得:222222208y x y y ++=++≥,故22121122122248y y x y x y y y ++++++=+++①,设直线AB 方程为x my n =+,直线与抛物线联立,有:28x my ny x=+⎧⎨=⎩消去x 整理有:2880y my n --=,由韦达定理有:128y y m +=,又1216y y =-,故①式化为:221888862m m m ⎛⎫++=++ ⎪⎝⎭,故:112222x y x y +++++的最小值为6.故答案为:6【点睛】关键点点睛:要求112222x y x y +++++的最小值,关键在于结合点在曲线上,化112222x y x y +++++为22121248y y y y ++++,再利用韦达定理进一步化简成一元二次函数求最值.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.ABC 中角,,A B C 所对的边分别为,,a b c ,其面积为S ,且2224S b c a =+-.(1)求A ;(2)已知a =S 的取值范围.【答案】(1)π4A =(2)02S <≤+【解析】【分析】(1)根据面积公式以及余弦定理即可求解tan 1A =,进而可求解π4A =,(2)根据余弦定理结合不等式即可求解.【小问1详解】因为三角形的面积为222441sin 2bc A S b c a ==+-⨯,则222sin cos 2b c a A A bc+-==,所以tan 1A =,又(0,π)A ∈,则π4A =;【小问2详解】由于2222cos 22b c a A bc +-==,所以22828b c bc +-=≥-,即(288bc bc -≤⇒≤+b c =取等号,故(11212sin 8222222S bc A ==⨯≤⨯+=,故02S <≤+16.如图,在三棱台111ABC A B C -中,平面11ABB A ⊥平面11111π,,4,2,2AB C BB AB AB AA AB BAC ∠⊥====.(1)证明:AC ⊥平面11ABB A ;(2)若直线BC 与11B C 距离为3,求平面11ABB A 与平面11BCC B 夹角的余弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)根据面面垂直的性质可得线面垂直,进而可得线线垂直,进而可求,(2)根据线面垂直的性质,结合平面夹角的几何法,即可求解1AB C ∠即为平面11ABB A 与平面11BCC B 所成角或其补角,根据三角形的边角关系求解长度即可求解.【小问1详解】由于平面11ABB A ⊥平面1,AB C 且交线为1AB ,又111,BB AB BB ⊥⊂平面11ABB A ,所以1BB ⊥平面1,AB C AC ⊂平面1,AB C 故1BB AC ⊥,又11,,,AB AC AB BB B AB BB ⊥⋂=⊂平面11ABB A ,故AC ⊥平面11ABB A 【小问2详解】由(1)知1BB ⊥平面1,AB C 1CB ⊂平面1,AB C 故1BB ⊥1CB ,又11,BB AB ⊥1AB ⊂平面11ABB A ,1CB ⊂平面11BCC B ,所以1AB C ∠即为平面11ABB A 与平面11BCC B 所成角或其补角,过1B 作1B D BC ⊥于D ,由于直线BC 与11B C 距离为3,故13B D =,由于111,4,2BB AB AB AB ⊥==,故1BB ==在直角三角形1BB D中,111sin 2B D DBB BB ∠==,故1π3DBB ∠=,故在直角三角形1BB C中,111tan 6B C BB DBB =∠==,(1)知AC ⊥平面11ABB A ,1AB ⊂平面11ABB A 故1AB AC ⊥,所以1Rt AB C △中,11121cos 63B A ABC CB ∠===17.某次比赛中,甲乙二人进入决赛并争夺冠军.比赛规则为:①每局比赛后,胜者获得3分,负者获得1分,比赛没有平局;②连续2局获胜或积分率先达到11分者可获得冠军,比赛结束.已知在单局比赛中,甲乙获胜的概率均为12.(1)求甲乙决出冠军时比赛局数X 的分布列与数学期望()E X ;(2)求在甲获得冠军的条件下其积分达到11分的概率P .【答案】(1)分布列见解析;()238E X =(2)18【解析】【分析】(1)根据比赛规则,分析比赛可能出现的各种情况,确定X 的取值,进而求出X 的分布列与数学期望;(2)根据条件概率公式求出()()()()()P BC P BC P BC P BC P BC +++即可.【小问1详解】由比赛规则可知,1局比赛后,甲乙双方共获得4分,若比赛进行了4局还未结束,则双方共计16分,此时双方均为8分,则第5局比赛后必定有一人积分可达到11分,故比赛次数不会超过5;由比赛规则可知,若比赛共进行了n 局,()25n ≤≤,则前n 1-局不可能出现某人连胜2次(否则2连胜后比赛结束),故前n 1-局必定甲乙二人胜负交替,综上可知:比赛决出冠军时,二人比赛过程中的胜负情况有以下三种可能:第一,比赛进行n 局()24n ≤≤,前n 1-局二人胜负交替,第n 局与第n 1-局胜者相同,此人达成2连胜并获得冠军(其积分不超过33110⨯+=,故未达11分);第二,比赛进行了5局,二人始终胜负交替,其中第5局获胜者获得11分,另一方9分,此时获胜者仅积分率先达到11分并获得冠军;第三,比赛进行了5局,前4局二人胜负交替,但第4局的获胜者在第5局连续获胜,则他同时完成2连胜且积分率先达到11分并获得冠军.即随机事件=i A “第i 局比赛中甲获胜”{}1,2,3,4,5i ∈,B =“甲达成2连胜”,C =“甲先获得11积分”;根据题意,X 的可能取值为2,3,4,5()()()2212121112222P X P A A P A A ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭,()()()331231231113224P X P A A P A A A ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭,()()()44123412341114228P X P A A A A P A A A A ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭,()()()()11115123412488P X P X P X P X ==-=-=-==---=.于是X 的分布列为:X2345P12141818故()111123234524888E X =⨯+⨯+⨯+⨯=;【小问2详解】根据以上分析可知:()()()()234121231234111722216P BC P A A P A A P A A A A ⎛⎫⎛⎫⎛⎫=++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()51234511232P BC P A A A ⎛⎫=== ⎪⎝⎭,()()51234511232P BC P A A A A ⎛⎫=== ⎪⎝⎭,故()()()()()()()()()1113232|7118163232P BC P BC P C P P C B C P B C P BC P BC P BC ++=⋃===⋃++++.18.已知双曲线2222:1(0,0)x y C a b a b-=>>经过点()3,2A ,其右焦点为F ,且直线2y x =是C 的一条渐近线.(1)求C 的标准方程;(2)设(),M m n 是C 上任意一点,直线22:1mx nyl a b -=.证明:l 与双曲线C 相切于点M ;(3)设直线PT 与C 相切于点T ,且0FP FT ⋅=,证明:点P 在定直线上.【答案】(1)221832x y -=(2)证明过程见解析(3)证明过程见解析【解析】【分析】(1)由题意得229412a bb a⎧-=⎪⎪⎨⎪=⎪⎩,解出,a b 的值即可;(2)一方面(),M m n 是C 上任意一点,从而可得出它也在直线22:1mx nyl a b -=上面,联立椭圆方程,消元后得到一个一元二次方程,证明判别式等于0即可;(3)由(2)中结论,设出点的坐标,可得432nq mp =-,由向量数量积公式化简得-=-0-≠即可得证.【小问1详解】因为双曲线2222:1(0,0)x y C a b a b-=>>经过点()3,2A ,且直线2y x =是C 的一条渐近线,所以229412a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得228,32a b ==,所以C 的标准方程为221832x y -=;【小问2详解】首先设(),M m n 是C 上任意一点,所以有222222221832m n m n m n m n a b a b ⋅-⋅=-=-=,这表明了点(),M m n 也在直线l 上,也可以得到22432m n -=,联立直线l 的方程与椭圆C 的方程有2218321832x y mx ny ⎧-=⎪⎪⎨⎪-=⎪⎩,化简并整理得()222246425680n mxmx n -+--=,而224320n m -=-≠,且()()()()2222222Δ6444832643240m n mnm m =+-⨯+=-⨯=,这也就是说l 与双曲线C 相切于点M ;【小问3详解】不妨设()(),,,T m n P p q ,由(2)可知过点T 的直线PT 的方程为1832mx ny -=,因为点(),P p q 在直线1832mx ny -=上,所以1832mp nq-=,即有432nq mp =-,又2240a b +=,从而()F ,所以()(),FP p q FT m n =-=-,若0FP FT ⋅=,则()40432FP FT p m qn pm p m pm ⋅=--+=-+++-)580pm p m =-++=,-=-,因为m a ≥=2105m ≠=0-≠,从而5p ==,所以点P 在定直线上2105x =上.19.已知0a >,且1a ≠,函数()()ln 11xf x a x =++-.(1)记()()ln 1,n n a f n n n S =-++为数列{}n a 的前n 项和.证明:当89a =时,642024S <;(2)若1ea =,证明:()0xf x ≥;(3)若()f x 有3个零点,求实数a 的取值范围.【答案】(1)证明见解析;(2)证明见解析;(3)10,e a ⎛⎫∈ ⎪⎝⎭【解析】【分析】(1)直接利用等差数列、等比数列的求和公式计算即可;(2)利用导数研究()e 1xx -+的单调性与最值判定()f x 的单调性即可证明;(3)分段讨论函数的单调性,结合零点存在性定理及极限思想计算即可.【小问1详解】由题意可知89a =时,()()88ln 11ln 1199n nn a n n n n ⎛⎫⎛⎫=++--++=+- ⎪ ⎝⎭⎝⎭,所以()64126644881998880126412016899919S ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎝⎭=++++++++-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- 6484202920428⎛⎫=⎪⎭<-⨯ ⎝;【小问2详解】易知1e a =时,()()()()()()e 1111ln 111e 1e e 1xx x x x f x x f x x x x +'=++-⇒=--=>-++,令()()()()1e 1e 1xxg g x x x x '=->⇒=+--,显然()1,0x ∈-时,()()0,0,g x x '<∈+∞时,()0g x '>,即()g x 在()1,0-上单调递减,在()0,∞+上单调递增,故()()()000g x g f x '≥=⇒≥,所以()f x 在()1,-+∞上单调递增,又()00f =,所以()1,0x ∈-时,()()0,0,f x x <∈+∞时,()0f x >,故()0xf x ≥;【小问3详解】①若1a >,易知()f x 定义域上为单调递增函数,不会有三个零点,不符题意;②若1,1e a ⎛⎫∈ ⎪⎝⎭时,则()1,0x ∈-时,1e x x a <,x ∈()0,∞+时,1exx a >,由(2)可知:()1,0x ∈-时,()()1ln 110e xf x x <++-<,()0,x ∈+∞时,()()1ln 110ex f x x >++->,且()00f =,则函数()f x 只有一个零点,不符题意;③由(2)知,1ea =时,()f x 在()1,-+∞上单调递增,也不符题意;④若10,e a ⎛⎫∈ ⎪⎝⎭,()()()()1111ln 111ln 11xxx x a a a f x x x x a a -⎛⎫⎛⎫⋅+ ⎪ ⎪⎝⎭⎝⎭'=+=>-+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,令()()(),l 1111111e 1n ,ln x xh x x x a a a a a h x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+>>- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭'-⇒⎭⎝-⎝⎝⎭=,显然()1,0x ∈-时,()()0,0,h x x ∞<∈+'时,()0h x '>,即()h x 在()1,0-上单调递减,在()0,∞+上单调递增,注意到()()10,01ln 0h a h a -=>=+<,(),0x h x →+∞>,所以()()121,0,0,x x ∃∈-∈+∞使得()()120h x h x ==,即()f x 在()11,x -和()2,x +∞上单调递增,在()12,x x 上单调递减,又1x →-时,()f x →-∞,()()()1200f x f f x >=>,(),0x f x →+∞>,所以在区间()()121,,,x x -+∞各存在一个零点,及0x =也是一个零点,符合题意;综上10,e a ⎛⎫∈ ⎪⎝⎭.【点睛】思路点睛:对于第三问,先讨论1a >,此时函数单调递增,排除;结合(2)再讨论1,ea 的大小关系,首先注意到1,1e a ⎛⎫∈ ⎪⎝⎭时,由1,ex x a 的大小关系及(2)的结论放缩下从而确定不符题意,再利用隐零点及零点存在性定理、极限思想来确定10,e a ⎛⎫∈ ⎪⎝⎭时符合题意即可.。
上海市徐汇区南洋模范中学2025届高考数学一模试卷含解析
上海市徐汇区南洋模范中学2025届高考数学一模试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数2()ln(1)33x x f x x x -=+-+-,不等式()22(4)50f a x f x +++对x ∈R 恒成立,则a 的取值范围为( ) A .[2,)-+∞B .(,2]-∞-C .5,2⎡⎫-+∞⎪⎢⎣⎭D .5,2⎛⎤-∞- ⎥⎝⎦2.设函数()f x 的定义域为R ,满足(2)2()f x f x +=,且当2(]0,x ∈时,()(2)f x x x =--.若对任意(,]x m ∈-∞,都有40()9f x ≤,则m 的取值范围是( ). A .9,4⎛⎤-∞ ⎥⎝⎦B .19,3⎛⎤-∞ ⎥⎝⎦C .(,7]-∞D .23,3⎛⎤-∞ ⎥⎝⎦3.正方体1111ABCD A B C D -,()1,2,,12i P i =是棱的中点,在任意两个中点的连线中,与平面11A C B 平行的直线有几条( )A .36B .21C .12D .64.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”。
如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的n 值为( )(参考数据:003 1.732,sin150.2588,sin750.9659≈≈≈ )A .48B .36C .24D .125.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )A .30i >?B .40i >?C .50i >?D .60i >?6.设命题p:n ∃>1,n 2>2n ,则⌝p 为( ) A .21,2n n n ∀>> B .21,2n n n ∃≤≤ C .21,2n n n ∀>≤D .21,2n n n ∃>≤7.已知集合{}21|A x log x =<,集合{}|2B y y x ==-,则A B =( )A .(),2-∞B .(],2-∞C .()0,2D .[)0,+∞8.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ,且3SB .22S ,且23SC .22S ,且3SD .22S ,且23S9.已知命题p :“a b >”是“22a b >”的充要条件;:q x ∃∈R ,|1|x x +≤,则( ) A .()p q ⌝∨为真命题 B .p q ∨为真命题 C .p q ∧为真命题D .()p q ∧⌝为假命题10.已知函数2(0)()ln (0)x x f x x x ⎧≤=⎨>⎩,且关于x 的方程()0f x x a +-=有且只有一个实数根,则实数a 的取值范围( ). A .[0,)+∞B .(1,)+∞C .(0,)+∞D .[,1)-∞11.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( ) A .110B .15C .140D .94012.已知三棱锥P ABC -中,O 为AB 的中点,PO ⊥平面ABC ,90APB ∠=︒,2PA PB ==,则有下列四个结论:①若O 为ABC 的外心,则2PC =;②ABC 若为等边三角形,则⊥AP BC ;③当90ACB ∠=︒时,PC 与平面PAB 所成的角的范围为0,4π⎛⎤⎥⎝⎦;④当4PC =时,M 为平面PBC 内一动点,若OM ∥平面PAC ,则M 在PBC内轨迹的长度为1.其中正确的个数是( ). A .1B .1C .3D .4二、填空题:本题共4小题,每小题5分,共20分。
浙江省宁波市2025届高三上学期高考模拟考试数学试卷(宁波一模)(含答案)
浙江省宁波市2025届高三上学期高考模拟考试数学试卷(宁波一模)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.集合A ={−2,0,1},B ={y|y =x 2,x ∈A},则A ∪B =A. {−2,0,1}B. {0,1,4}C. {0,1}D. {−2,0,1,4}2.复数z 满足z =5i−2,则|z|=A. 1B. 2C.5D. 53.向量a ,b 满足|a |=|b |=1,a ⊥b ,则|a−3b |=A.3B.7C.10D.134.研究小组为了解高三学生自主复习情况,随机调查了1000名学生的每周自主复习时间,按照时长(单位:小时)分成五组:[2,4),[4,6),[6,8),[8,10),[10,12),得到如图所示的频率分布直方图,则样本数据的第60百分位数的估计值是A. 7B. 7.5C. 7.8D. 85.圆台的高为2,体积为14π,两底面圆的半径比为1:2,则母线和轴的夹角的正切值为A.33B.32C. 233D.36.已知椭圆C 的左、右焦点分别为F 1,F 2,过上顶点A 作直线AF 2交椭圆于另一点B.若|AB|=|F 1B|,则椭圆C 的离心率为A. 13B. 12C.33D.227.不等式(x 2−ax−1)(x−b)≥0对任意x >0恒成立,则a 2+b 2的最小值为A. 22−2B. 2C. 22 D. 22+28.设a ∈R ,函数f(x)={sin (2πx−2πa),x <a,|x−a−1|−3a +6,x ≥a 若f(x)在区间(0,+∞)内恰有6个零点,则a 的取值范围是A. (2,72]B. (2,3]C. (2,73]∪(52,72]D. (2,73]∪(52,3]二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.已知数列{a n},{b n}都是正项等比数列,则A. 数列{a n+b n}是等比数列B. 数列{a n·b n}是等比数列C. 数列{a n b n}是等比数列D. 数列{a n b n}是等比数列10.函数f(x)=e x−a ln x,则A. f(x)的图象过定点B. 当a=1时,f(x)在(0,+∞)上单调递增C. 当a=1时,f(x)>2恒成立D. 存在a>0,使得f(x)与x轴相切11.已知曲线C:(x2+y2−1)3−7sin2x+7cos2y=6,下列说法正确的是A. 曲线C过原点OB. 曲线C关于y=x对称C. 曲线C上存在一点P,使得|OP|=1D. 若P(x,y)为曲线C上一点,则|x|+|y|<3三、填空题:本题共3小题,每小题5分,共15分。
2023年河北省保定市高考数学一模试卷+答案解析(附后)
2023年河北省保定市高考数学一模试卷1. 已知集合,,则( )A. B. C. D.2. 已知复数,则( )A. B. 8i C. D.3. 设,是两个不同的平面,则“内有无数条直线与平行”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 保定市主城区开展提升城市“新颜值”行动以来,有一街边旧房拆除后,打算改建成矩形花圃ABCD,中间划分出直角三角形MPQ区域种玫瑰,直角顶点M在边AB上,且距离A 点5m,距离B点6m,且P、Q两点分别在边BC和AD上,已知,则玫瑰园的最小面积为( )A. B. C. D.5. 函数的大致图象为( )A. B.C. D.6. 如图,在四棱锥中,底面ABCD为矩形,,是正三角形,平面平面ABCD,且,则PC与平面PAD所成角的正切值为( )A. 2B.C.D.7. 函数,的部分图象如图中实线所示,图中圆C与的图象交于M,N两点,且M在y轴上,则下说法正确的是( )A. 函数的最小正周期是B. 函数在上单调递减C. 函数的图象向左平移个单位后关于直线对称D. 若圆C的半径为,则函数的解析式为8. 已知,,,则( )A. B. C. D.9. 已知平面向量,,,则下列说法正确的是( )A. 若,则B. 若,则C. 若,则向量在上的投影向量为D. 若,则向量与的夹角为锐角10. 椭圆有一条光学性质:从椭圆一个焦点出发的光线,经过椭圆反射后,一定经过另一个焦点.假设光线沿直线传播且在传播过程中不会衰减,椭圆的方程为,则光线从椭圆一个焦点出发,到首次回到该焦点所经过的路程可能为( )A. 2B. 8C. 10D. 1211. 沙漏,据《隋志》记载:“漏刻之制,盖始于黄帝”.它是古代的一种计时装置,由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为6cm,细沙全部在上部时,其高度为圆锥高度的细管长度忽略不计假设该沙漏每秒钟漏下的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是( )A. 沙漏的侧面积是B. 沙漏中的细沙体积为C. 细沙全部漏入下部后此锥形沙堆的高度约为D. 该沙漏的一个沙时大约是837秒12. 如图所示的三角数阵,其中第m行从上到下,第n列从左到右的数表示为,且,当时,有,则下列说法正确的是( )A.B.C. …D. …13. 二项式的展开式中的常数项为__________.14. 写出过抛物线上的点且与圆相切的一条直线的方程______ .15. 某校为促进拔尖人才培养开设了数学、物理、化学、生物、信息学五个学科竞赛课程,现有甲、乙、丙、丁四位同学要报名竞赛课程,由于精力和时间限制,每人只能选择其中一个学科的竞赛课程,则恰有两位同学选择数学竞赛课程的报名方法数为______ .16. 已知是函数在定义域上的导函数,且,,若函数在区间内存在零点,则实数m的最小值为______ .17. 已知的最小正周期为求的值;在中,角A,B,C所对的边分别是a,b,c,若,求角B的大小以及的取值范围.18. 已知,,,…,是以1为首项,1为公差的等差数列.求的通项公式;求数列前2n项的和19. 如图,平行六面体的所有棱长均为,底面ABCD为正方形,,点E为的中点,点F为的中点,动点P在平面ABCD内.若O为AC中点,求证:;若平面,求线段CP长度的最小值.20. 在过去三年防疫攻坚战中,我国的中医中药起到了举世瞩目的作用.某公司收到国家药品监督管理局签发的散寒化湿颗粒《药品注册证书》,散寒化湿颗粒是依据第六版至第九版《新型冠状病毒肺炎诊疗方案》中的“寒湿疫方”研制的中药新药.初期为试验这种新药对新冠病毒的有效率,把该药分发给患有相关疾病的志愿者服用.若10位志愿者中恰有6人服药后有效,从这10位患者中选取3人,以表示选取的人中服药后有效的人数,求的分布列和数学期望;若有3组志愿者参加试验,甲,乙,丙组志愿者人数分别占总数的,,,服药后,甲组的有效率为,乙组的有效率为,丙组的有效率为,从中任意选取一人,发现新药对其有效,计算他来自乙组的概率.21. 如图,双曲线的中心在原点,焦距为,左、右顶点分别为A,B,曲线C是以双曲线的实轴为长轴,虚轴为短轴,且离心率为的椭圆,设P在第一象限且在双曲线上,直线BP交椭圆于点M,直线AP与椭圆交于另一点求椭圆及双曲线的标准方程;设MN与x轴交于点T,是否存在点P使得其中,为点P,T的横坐标,若存在,求出P点的坐标,若不存在,请说明理由.22. 已知函数当时,证明:当时,;当时,恒成立,求a的取值范围.答案和解析1.【答案】D【解析】解:因为,所以故选:解一元二次不等式再求交集.本题主要考查交集及其运算,属于基础题.2.【答案】A【解析】解:,则,,故故选:利用复数的运算,再结合共轭复数的意义求解作答.本题主要考查复数的四则运算,以及共轭复数的定义,属于基础题.3.【答案】B【解析】解:如图所示:长方体中,平面在平面内,除直线AB外,其他所有与平行的直线,都与平面ABCD平行,但是平面与平面ABCD不平行;若,根据面面平行的定义可知,平面内的直线都与平面平行.所以“内有无数条直线与平行”是“”的必要不充分条件.故选:根据面面平行的定义以及判定定理,举例即可得出答案.本题主要考查充分条件、必要条件的定义,属于基础题.4.【答案】A【解析】解:如图所示,设,则,,所以,,所以,又P、Q两点分别在边BC和AD上,所以,,所以,所以,当且仅当,即时,等号成立,所以,即的最小值为30,故选:设根据直角三角形的性质可将,,进而可得,再根据P、Q两点分别在边BC和AD上,可得,进而可得最小值.本题主要考查解三角形,属于中档题.5.【答案】B【解析】【分析】本题主要考查函数图象的识别和判断,利用函数对称性,函数值的对应性,利用排除法是解决本题的关键.难度不大.判断函数的对称性,利用时,,时,,排除C,进行判断排除即可.【解答】解:要使函数有意义,则,得,是偶函数,则关于y轴对称,则关于对称,排除A,D,又时,,时,,排除C,故选:6.【答案】B【解析】解:取AD的中点O,连接PO,由已知为等边三角形,所以,又平面平面ABCD,平面平面,平面PAD,所以平面ABCD,设,则,,又,所以矩形ABCD的面积,所以四棱锥的体积,所以,所以,所以,因为平面平面ABCD,,平面平面,平面ABCD,所以平面PAD,又平面PAD,所以,所以为直角三角形,斜边为PC,因为平面PAD,所以PC与平面PAD所成角的平面角为,在中,,,所以,PC与平面PAD所成角的正切值为故选:连接PO,O为AD的中点,结合面面垂直性质定理证明平面ABCD,根据锥体体积公式求PD,再由面面垂直性质定理证明平面PAD,根据线面角的定义证明PC与平面PAD所成角的平面角为,解三角形求其正切值.本题主要考查了求直线与平面所成的角,属于中档题.7.【答案】D【解析】解:由函数图象,可得点C的横坐标为,所以函数的最小正周期为,所以A不正确;又由,且,即,根据五点作图法且,可得,解得,因为,可得,结合三角函数的性质,可得函数在是先减后增的函数,所以B错误;将函数的图象向左平移个单位后,得到,可得对称轴的方程为,,即,所以不是函数的对称轴,所以C错误;当时,可得,即,若圆的半径为,则满足,即,解得,所以的解析式为,所以D正确.故选:根据函数的图象,求得的最小正周期,可判定A错误;利用五点作图法,求得,结合三角函数的性质,可判定B错误;利用三角函数的图形变换得到平移后的函数解析式为,进而判定C错误;利用,求得A的值,可判定D正确.本题主要考查三角函数的图象与性质,考查转化能力,属于中档题.8.【答案】D【解析】解:构造函数,,在上单调递增,所以,即,也即,则,设,,设,,所以在上递增,,即,在上单调递增,所以,即,构造函数,,在上递增,所以,即,即综上所述,故选:利用构造函数法,结合导数,先判断a,c的关系,然后判断b,c的关系,从而确定正确答案.本题主要考查了利用导数来比较代数式的大小,主要是通过构造函数法,然后利用导数研究所构造函数的单调性,由此来比较出代数式的大小.在比较大小的过程中,如果无法一次比较出大小关系,可通过多次比较大小放缩法来进行比较.9.【答案】BC【解析】解:已知平面向量,,,对于A,若,可得,即,解得,所以A选项错误;对于B,若,根据平面向量共线性质,可得,即,所以B选项正确;对于C,若,则,由投影向量定义可知向量在上的投影向量为,所以C选项正确;对于D,若,则,所以;但当时,,此时向量与的夹角为,所以D选项错误.故选:根据向量线性运算即数量积公式可判断AB选项,根据投影向量定义可得判断C选项,由可得,但此时向量与的夹角可以为零角并非锐角,可得D错误.本题考查向量垂直的性质,向量共线定理,投影向量的概念,向量夹角公式的应用,属中档题.10.【答案】ACD【解析】解:设抛物线左焦点为,右焦点为,左顶点为,右顶点为,由已知可得,,,所以,当光线从出发,沿方向传播,到达后,根据椭圆的光学性质可知,光线沿方向传播,第一次经过,此时所经过的路程为,故A项正确;当光线从出发,沿方向传播,到达后,根据椭圆的光学性质可知,光线沿方向传播,过点后,继续传播第一次经过,此时所经过的路程为,故C项正确;当光线从出发后,不沿x轴传播,如图,光线开始沿传播,到达P点后,根据椭圆的光学性质可知,光线沿方向传播,过点后,继续传播到达Q点后,根据椭圆的光学性质可知,光线沿方向传播,第一次经过,此时所经过的路程为,根据椭圆的定义可知,,,所以,故D项正确.故选:根据已知,光线自出发,可以沿方向传播,也可以沿方向传播,也可以不沿x轴传播,根据椭圆的光学性质,分别得出光线传播的路径,结合椭圆的定义,即可得出答案.本题考查了椭圆的定义、方程以及椭圆的性质,属于中档题.11.【答案】BD【解析】解:对于A:沙漏的侧面积,故A错误;对于B:细沙的体积为,故B正确;对于C:设细沙全部漏入下部后此锥形沙堆的高度为h,细沙的体积,解得,故C错误;对于D,该沙漏的一个沙时为:秒,故D正确.故选:根据圆锥的体积公式计算细沙体积和利用锥体的体积可求沙漏体积,根据细沙体积不变计算细沙落下后的高度,根据体积计算沙时.本题考查圆锥的体积计算,属基础题.12.【答案】ACD【解析】解:因为,所以有……,,故A对,B错;而,,……,故C对;………,故D对.故选:运用累和法,结合组合数公式、裂项相消法、二项式系数和公式逐一判断即可.本题考查数列求和,运用累和法、逆用组合数公式、裂项相消法是解题的关键,属于中档题.13.【答案】240【解析】【分析】本题考查了二项展开式中的特定项,属于基础题.首先写出展开式的通项,化简后,令,得出常数项.【解答】解:二项式的展开式的通项为,令,得到,所以展开式的常数项为;故答案为14.【答案】或或写出其中一个即可【解析】解:由题意可知,,解得,所以,点或又圆的圆心,半径;①当点时,当直线l斜率不存在时,此时l方程为,与圆相切,满足题意;当直线l斜率存在时,设斜率为,此时直线l方程为,即,因为直线l与圆相切,所以圆心到l的距离,即,整理可得,,解得,代入直线方程整理可得,直线方程为;②当点时,当直线l斜率不存在时,此时l方程为,与圆相切,满足题意;当直线l斜率存在时,设斜率为,此时直线l方程为,即,因为,直线l与圆相切,所以圆心到l的距离,即,整理可得,,解得,代入直线方程整理可得,直线方程为综上所述,直线方程为或或故答案为:或或写出其中一个即可由已知求出点或先求解直线斜率不存在时的方程;然后设斜率,得出点斜式方程,表示出圆心到直线的距离,列出方程,求解即可得出斜率,进而得出直线方程.本题考查了抛物线的性质,属于中档题.15.【答案】96【解析】解:先安排甲、乙、丙、丁四位同学的2名选择数学竞赛课程,有种情况,剩下2名同学在物理、化学、生物、信息学四个学科竞赛课程中选择,①2名同学选择1个学科竞赛有种情况;②2名同学各选择1个学科竞赛有种情况,所以恰有两位同学选择数学竞赛课程的报名方法数为种情况,故答案为:利用分步加法和分类乘法原理,先安排4名同学的2名选择数学竞赛,再安排剩下的2名同学到其他竞赛课程中即可.本题考查排列组合的综合运用,考查运算求解能力,属于基础题.16.【答案】1【解析】解:在中,,,,为常数,由,解得:,,若在区间内存在零点,整理可得:,设,,令,得,当时,,函数单调递减,当时,,函数单调递增,所以当时,函数取得最小值,,所以,当时,等号成立,所以,当且仅当时,上式取等号,即存在,使,设,,令,得,当时,,函数单调递减,当时,,函数单调递增,所以当时,函数取得最小值,,所以,故m最小值为故答案为:首先根据条件等式,变形得到函数,再变形得到,通过构造函数得到,参变分离后,转化为求函数的值域,即可求m的取值范围.本题考查了导数的综合应用,属于中档题.17.【答案】解:,,,即,,,,即,,,,,又,当时,取得最大值,当或时,取得最小值的取值范围是【解析】利用三角函数的倍角公式以及辅助角公式进行化简,结合周期公式进行求解即可.由得,整理得,于是,由A的范围得出的范围,从而求出的范围.本题主要考查了三角函数恒等变换,三角函数的图象和性质以及正弦定理的应用,考查了转化思想和函数思想,属于中档题.18.【答案】解:由,,,…,是以1为首项,1为公差的等差数列,可得;数列前2n项的和【解析】由数列的恒等式和等差数列的求和公式,计算可得所求通项公式;由特殊角的余弦函数的值,以及数列的并项求和与等差数列的求和公式,计算可得所求和.本题考查等差数列的通项公式和求和公式的运用,以及数列的并项求和,考查转化思想和运算能力,属于中档题.19.【答案】解:证明:由已知,,,,,,,为AC中点,,又,,,;连接,,,,,,,,连接BD,由正方形的性质可得B,O,D三点共线,O为BD的中点,,由知,AO,平面ABCD,,平面ABCD,以OA,OB,所在直线分别为x轴,y轴,z轴,建系如图:则、、、、,,,设平面法向量为,则,,取,点P在平面ABCD内,设点P的坐标为,,,,,,当时,有最小值,最小值为【解析】由条件先求,,,再证明,由此完成证明;建立空间直角坐标系,设,求平面的法向量和直线FP的方向向量,由条件列方程确定m,n的关系,再求的最小值即可.本题考查向量法证明线线垂直问题,向量法求解距离的最值问题,考查了化归转化思想,属中档题.20.【答案】解:由题意可知的可能取值有0、1、2、3,又,,,,所以随机变量的分布列如下表所示:0123P所以;设“任取一人新药对其有效”,“患者来自第i组”分别对应甲,乙,丙,则,且,,两两互斥,根据题意得:,,,,,,由全概率公式得,任意选取一人,发现新药对其有效,计算他来自于乙组的概率:,所以任意选取一人,发现新药对其有效,则他来自乙组的概率为【解析】由题意可知的可能取值有0、1、2、3,分别求出相应的概率,进而求解;由全概率公式即可求解.本题考查离散型随机变量的分布列与期望的求解,条件概率与全概率公式的应用,贝叶斯公式的应用,属中档题.21.【答案】解:由已知可设双曲线方程为,椭圆方程,所以双曲线方程:,椭圆方程为:;设,,,,,P、A、N三点共线,,P、B、M三点共线,,相除:,令,则设:,联立椭圆方程:,易得,所以,,,若存在,即,,得,又P在第一象限,所以,;法二:,,,,,直线AP:,,显然,由,又因为P在双曲线上,满足,即,所以,即,同理BP:,可得,所以,若存在,即,而P在第一象限,所以,即【解析】设双曲线方程为,椭圆方程,根据焦距和离心率求出,可得答案;设,,,根据P、A、N三点共线,P、B、M三点共线可得,令得直线的方程,与椭圆方程联立利用韦达定理代入上式化简可得,若存在,即代入可得答案;法二:,,设直线AP:与椭圆方程联立可得,、,若存在,则可得答案.本题主要考查椭圆与双曲线的综合,直线与圆锥曲线的综合,考查运算求解能力,属于难题.22.【答案】解:证明:法一:首先证明,理由如下:构造,则恒成立,故在上单调递减,故,所以,故在上恒成立,所以在单调递增,故法二:,,,且,令,则,令,则在上恒成立,所以单调递减,又,其中,故,故,使得,且当时,,当时,,所以先增后减,又,,在上恒成立,所以单调递增,;法一:,,下证:,,,且在处取等号,令,则,故单调递增,故,且在处取等号,在中已证明;令,则,故单调递增,故,且在处取等号,当时,,当时,即时,符合题意,当时,,,,其中当时,,,,故,令,,则在上恒成立,故在上单调递增,故,使得,在单调递减,故与矛盾,舍去;综上:a的取值范围为;第21页,共21页法二:,,,①当时,,,在单调递增,且符合题意,②当时,在单调递增,,③当时,即时,在单调递增,符合题意,②当时,即时,,,,其中当时,,,,故,令,,则在上恒成立,故在上单调递增,故,使得,在单调递减,故与矛盾,舍去;综上:a 的取值范围为【解析】法一:求导后利用放缩法得到,故;法二:多次求导,结合隐零点,得到先增后减,结合端点值的符号,得到在上恒成立,求出;法一:构造,变形后结合,,,且在处取等号,得到时,符合题意,时,结合函数单调性及零点存在性定理得到矛盾,求出答案;法二:构造,求导后考虑,利用放缩法及函数单调性可证,再考虑,由在单调递增,且,分与两种情况,进行求解,得到答案.本题考查利用导数研究函数的单调性,极值及最值,考查不等式的恒成立问题,考查逻辑推理能力及运算求解能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离之积.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 解析:B 【解析】 【分析】 【详解】 由 a=14,b=18,a<b,
则 b 变为 18﹣14=4, 由 a>b,则 a 变为 14﹣4=10, 由 a>b,则 a 变为 10﹣4=6, 由 a>b,则 a 变为 6﹣4=2, 由 a<b,则 b 变为 4﹣2=2, 由 a=b=2, 则输出的 a=2. 故选 B.
【典型题】数学高考一模试卷(含答案)
一、选择题
1.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行
该程序框图,若输入 a, b 分别为 14,18,则输出的 a ( )
A.0
B.2
C.4
D.14
2.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第 1 次到第 14 次的考试成
取 10 人.
考点:本小题主要考查分层抽样的应用.
点评:应用分层抽样,关键是搞清楚比例关系,然后按比例抽取即可.
9.B
解析:B
【解析】
由题意得 a+3+4+5+6=5b,a+b=6,
解得 a=2,b=4,所以样本方差 s2= 1 [(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2, 5
22.“微信运动”是手机 APP 推出的多款健康运动软件中的一款,大学生 M 的微信好友
中有 400 位好友参与了“微信运动”.他随机抽取了 40 位参与“微信运动”的微信好友 (女 20 人,男 20 人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为
五个类别: A 、 0 2000 步,(说明:“ 0 2000 ”表示大于或等于 0,小于 2000,以 下同理), B 、 2000 5000 步, C 、 5000 8000 步, D 、 8000 10000 步, E 、 10000 12000 步,且 A 、 B 、 C 三种类别的人数比例为1: 4 : 3 ,将统计结果绘制如图所
,已知曲线
C
:
x
3 cos a ( a 为参数),在以 O 原点为极点,
y sin a
x 轴的非负半轴为极轴建立的极坐标系中,直线 l 的极坐标方程为
2 cos( ) 1 .
2
4
(1)求曲线 C 的普通方程和直线 l 的直角坐标方程;
(2)过点 M 1,0 且与直线 l 平行的直线 l1 交 C 于 A , B 两点,求点 M 到 A , B 的距
合,
综上,“ 3”是“直线 2x 1 y 1与直线 6x 1 y 4 平行” 的充分不
必要条件,故选 A. 【点睛】
充分性与必要性的判断,可以依据命题的真假来判断,若“若 p 则 q ”是真命题,“若 q 则 p ”是假命题,则 p 是 q 的充分不必要条件;若“若 p 则 q ”是真命题,“若 q 则 p ” 是真命题,则 p 是 q 的充分必要条件;若“若 p 则 q ”是假命题,“若 q 则 p ”是真命 题,则 p 是 q 的必要不充分条件;若“若 p 则 q ”是假命题,“若 q 则 p ”是假命题,则 p 是 q 的既不充分也不必要条件.
A.
y
2
sin
2
x
3
B.
y
2
sin
2
x
6
C.
y
2
sin
x 2
3
D.
y
2
sin
2
x
3
8.某校现有高一学生 210 人,高二学生 270 人,高三学生 300 人,用分层抽样的方法从
这三个年级的学生中随机抽取 n 名学生进行问卷调查,如果已知从高一学生中抽取的人数
为 7,那么从高三学生中抽取的人数为( )
取 6 人进行身体状况调查,然后再从这 6 位微信好友中随机抽取 2 人进行采访,求其中至 少有一位女性微信好友被采访的概率.
23.已知圆 O1 和圆 O2 的极坐标方程分别为 ρ=2,ρ2-2 ρcos(θ- )=2.
(1)把圆 O1 和圆 O2 的极坐标方程化为直角坐标方程. (2)求经过两圆交点的直线的极坐标方程.
24.如图,边长为 2 的正方形 ABCD 中,E、F 分别是 AB、BC 边的中点,将 AED , DCF 分别沿 DE,DF 折起,使得 A,C 两点重合于点 M.
(1) 求证: MD EF ; (2) 求三棱锥 M EFD 的体积.
25.(选修 4-4:坐标系与参数方程)
在平面直角坐标系
xOy
所以标准差为 2 .
故答案为 B.
10.C
解析:C
【解析】
【分析】
根据题意,解不等式 2x2-5x-3≥0 可得 x≤- 1 或 x≥3,题目可以转化为找 x≤- 1 或 x≥3 的必要
2
2
不充分条件条件,依次分析选项即可得答案.
【详解】
根据题意,解不等式 2x2-5x-3≥0 可得 x≤- 1 或 x≥3,则 2x2-5x-3≥0⇔x≤ 1 或 x 3 ,所以
2.C
解析:C 【解析】 【分析】 根据流程图可知该算法表示统计 14 次考试成绩中大于等于 90 的人数,结合茎叶图可得答 案. 【详解】 根据流程图所示的顺序,可知该程序的作用是累计 14 次考试成绩超过 90 分的次数.根据 茎叶图可得超过 90 分的次数为 9. 故选:C. 【点睛】 本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属 于基础题.
ab 三、解答题
21.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行 调查,通过抽样,获得某年 100 为居民每人的月均用水量(单位:吨),将数据按照
分成 9 组,制成了如图所示的频率分布直方图. (1)求直方图的 的值; (2)设该市有 30 万居民,估计全市居民中月均用水量不低于 3 吨的人数,说明理由; (3)估计居民月用水量的中位数.
2sin
x 2
3
的周期为 T
2 1 2
4
,故排除 C,将 x
3
,代入 A,B,D
求得函数值为 0, 2, 3 ,而函数 y Asin(x ) B 在对称轴处取最值.
故选: B . 【点睛】
本题考查三角函数的周期性、对称性,难度较易.
8.D
解析:D 【解析】
试题分析:因为 210 : 270 : 300 7 : 9 :10, 所以从高二年级应抽取 9 人,从高三年级应抽
D. x 1 或 x 3 2
11.已知锐角三角形的边长分别为 2,3, x ,则 x 的取值范围是( )
A. 5 x 13
B. 13 x 5
C. 2 x 5
D. 5 x 5
12.已知 a, b 是非零向量且满足 (a 2b ) a , (b 2a ) b ,则 a 与 b 的夹角是( )
4.A
解析:A 【解析】 【分析】
通过 f (0) 1,和函数 f(x)>0 恒成立排除法易得答案 A.
【详解】
f (x) e|x|x2 ,可得 f(0)=1,排除选项 C,D;
由指数函数图像的性质可得函数 f(x)>0 恒成立,排除选项 B, 故选 A 【点睛】 图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.
D.
5.设 R ,则“ 3”是“直线 2x ( 1) y 1 与直线 6x 1 y 4 平行”
的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
6.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:
“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两 个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相
则 的最大值
.
18.在体积为 9 的斜三棱柱 ABC—A1B1C1 中,S 是 C1C 上的一点,S—ABC 的体积为 2,则三 棱锥 S—A1B1C1 的体积为___.
19.在 ABC 中,若 AB 13 , BC 3, C 120 ,则 AC _____. 20.若 4a 5b 100 ,则 2( 1 2) _____________.
A. 6
二、填空题
B. 3
C. 2 3
D. 5 6
13.若双曲线
x2 a2
y2 b2
1
a 0,b 0 两个顶点三等分焦距,则该双曲线的渐近线方程
是___________.
14.函数
f
x
x2 2, x 0
的零点个数是________.
2x 6 lnx, x 0
15.若过点 M 2,0 且斜率为 3 的直线与抛物线 C : y2 axa 0 的准线 l 相交于点
B ,与 C 的一个交点为 A ,若 BM MA ,则 a ____.
16.双曲线
x2 a2
y2 b2
1(a
0 , b 0 )的渐近线为正方形
OABC
的边
OA,OC
所在的直
线,点 B 为该双曲线的焦点.若正方形 OABC 的边长为 2,则 a=_______________.
பைடு நூலகம்
17.若 , 满足约束条件
6.A
解析:A 【解析】 【分析】 根据充分条件和必要条件的定义,结合祖暅原理进行判断即可. 【详解】
根据祖暅原理,当 S1, S2 总相等时,V1,V2 相等,所以充分性成立;
当两个完全相同的四棱台,一正一反的放在两个平面之间时,此时体积固然相等但截得的 面积未必相等,所以必要性不成立.
所以“ S1, S2 总相等”是“V1,V2 相等”的充分不必要条件.