热力学复习知识点汇总
热力学知识点归纳
热力学知识点归纳热力学是研究能量转化与能量传递的一门学科,它是物理学的重要分支之一。
在热力学中,有许多重要的知识点,本文将对其中一些主要的知识点进行归纳和总结。
一、热力学基本概念1. 系统和环境:在热力学中,我们通常将研究对象划分为系统和环境两部分。
系统是我们希望研究和描述的物体或者物质,而环境则是系统以外的其他部分。
2. 热力学平衡:热力学平衡是指系统中各个部分的热力学性质处于稳定状态,不发生变化。
在热力学平衡状态下,系统的温度、压力、物质的化学组成等参数都不发生变化。
3. 状态函数和过程函数:在热力学中,有两种类型的函数,分别为状态函数和过程函数。
状态函数的取值只与系统的初始和末状态有关,与过程无关;而过程函数的取值则取决于系统的路径和过程。
4. 热力学第一定律:热力学第一定律是能量守恒定律在热力学中的表述,它指出能量可以从一个系统转移到另一个系统,但总能量保持不变。
5. 热力学第二定律:热力学第二定律是指自然界中存在一种不可逆的趋势,使得热量只能从高温物体流向低温物体,而不能反向传播。
这个定律也可以理解为热力学过程的不可逆性。
二、热力学过程1. 等温过程:等温过程是指系统与外界保持恒温接触,系统的温度不发生变化的过程。
在等温过程中,系统对外界做的功与吸收的热量相等。
2. 绝热过程:绝热过程是指系统与外界隔绝热量交换的过程。
在绝热过程中,系统对外界不做功,也不吸收热量。
3. 等容过程:等容过程是指系统在不进行体积变化的条件下进行的过程。
在等容过程中,系统对外界的做功为零,吸收的热量等于内能的增量。
4. 绝热绝容过程:绝热绝容过程是指系统既不与外界交换热量,也不进行体积变化的过程。
在绝热绝容过程中,系统对外界既不做功,也不吸收热量。
5. 等压过程:等压过程是指系统与外界保持恒压接触的过程。
在等压过程中,系统对外界所做的功等于压强与体积的乘积,吸收的热量等于焓的增量。
三、热力学循环1. 卡诺循环:卡诺循环是一种理想的循环过程,用来描述理想热机的工作原理。
高中化学热力知识点总结
高中化学热力知识点总结一、热力学基本概念1. 热力学系统:被研究的对象,可以是固体、液体或气体。
2. 环境:系统之外的所有物体。
3. 边界:系统与环境之间的分界面。
4. 状态:系统在某一时刻的所有宏观性质的集合。
5. 状态函数:系统的宏观性质,其值只与系统的状态有关,如温度、压力、体积等。
6. 过程:系统从一个状态变化到另一个状态的一系列状态的集合。
7. 热力学平衡:系统与环境之间没有能量和物质交换的状态。
二、热力学第一定律1. 内能:系统内部所有微观粒子的动能和势能之和。
2. 热力学第一定律:能量守恒定律在热力学中的表现形式,即系统内能的变化等于系统与环境之间能量交换的净效应。
3. 热量:系统与环境之间因温度差而产生的热能传递。
4. 功:力作用在物体上并使物体发生位移所产生的能量转换。
5. 等容过程:系统体积不变的热力学过程。
6. 等压过程:系统压力不变的热力学过程。
7. 等温过程:系统温度不变的热力学过程。
三、热力学第二定律1. 熵:系统无序度的量度,也是能量分散程度的指标。
2. 热力学第二定律:自然过程总是向着熵增加的方向进行。
3. 可逆过程:系统和环境都能完全恢复原状的过程。
4. 不可逆过程:系统或环境不能完全恢复原状的过程。
5. 熵变:系统经历一个过程后熵的增加量。
四、化学反应热力学1. 化学反应:原子重新排列形成新物质的过程。
2. 反应热:化学反应发生时吸收或放出的热量。
3. 热化学方程式:表示化学反应及其伴随热量变化的方程式。
4. 燃烧热:1摩尔物质完全燃烧时放出的热量。
5. 中和热:酸和碱中和反应生成1摩尔水时放出的热量。
6. 电化学:研究化学反应与电能转换的科学。
五、溶液与电解质1. 溶液:一种或几种物质以分子或离子形式分散在另一种物质中形成的均匀混合物。
2. 饱和溶液:在一定温度下,溶质在溶剂中达到最大溶解度的溶液。
3. 电解质:在溶液或熔融状态下能导电的物质。
4. 非电解质:在溶液或熔融状态下不能导电的物质。
工程热力学知识点
工程热力学复习知识点一、知识点基本概念的理解和应用(约占40%),基本原理的应用和热力学分析能力的考核(约占60%)。
1. 基本概念掌握和理解:热力学系统(包括热力系,边界,工质的概念。
热力系的分类:开口系,闭口系,孤立系统)。
掌握和理解:状态及平衡状态,实现平衡状态的充要条件。
状态参数及其特性。
制冷循环和热泵循环的概念区别。
理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。
2. 热力学第一定律掌握和理解:热力学第一定律的实质。
理解并会应用基本公式计算:热力学第一定律的基本表达式。
闭口系能量方程。
热力学第一定律应用于开口热力系的一般表达式。
稳态稳流的能量方程。
理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。
3. 热力学第二定律掌握和理解:可逆过程与不可逆过程(包括可逆过程的热量和功的计算)。
掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文表述等)。
卡诺循环和卡诺定理。
掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。
理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。
热力系的熵方程(闭口系熵方程,开口系熵方程)。
温-熵图的分析及应用。
理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。
4. 理想气体的热力性质熟悉和了解:理想气体模型。
理解并掌握:理想气体状态方程及通用气体常数。
理想气体的比热。
理解并会计算:理想气体的内能、焓、熵及其计算。
理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。
5. 实际气体及蒸气的热力性质及流动问题理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。
例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。
蒸汽的定压发生过程(包括其在p-v和T-s图上的一点、二线、三区和五态)。
理解并掌握:绝热节流的现象及特点6. 蒸汽动力循环理解计算:蒸气动力装置流程、朗肯循环热力计算及其效率分析。
物理化学 热力学一定律、二定律复习
H nC p,m dT
T1
T2
H Qp
此式适用于W′=0、dp=0的封闭系统所进行的一切过程
理想气体恒温pVT 变化:
U 0
H 0
4. 化学反应热效应
由生成焓求反应焓 r H m B f H m B 由燃烧焓求反应焓 r H m B c H m B
2. 单纯pVT变化过程的熵变
V2 T2 S nR ln nCV ,m ln V1 T1 p1 T2 S nR ln nC p ,m ln p2 T1
将C p ,m、CV ,m看成定值
p2 V2 S nCV ,m ln nC p ,m R ln p1 V1
3. 相变化过程的熵变
U QV 适用于W ' 0, dV 0的封闭系统所进行的一切过程。
H U ( pV ),式中:( pV ) p2V2 pV1 1
此式适用于封闭系统的一切过程。
此式适用于n、Cp,m恒定的理想气体单纯pVT变化的一切过程; 或n、Cp,m恒定的任意单相纯物质的恒压变温过程。
熵判据
不可逆 自发 隔离系统:S 0 或 dS 0 可逆 平衡 自发 S隔离 S系统 S环境 0 平衡
V2 p1 nR ln 理想气体的恒温可逆和不可逆过程:T S nR ln V1 p2
纯物质的恒压变温可逆和不可逆过程: p S nC p ,m ln T2 T1 纯物质的恒容变温可逆和不可逆过程:V S nCV ,m ln T2 T1 理想气体pVT都变的可逆过程:
5. 理想气体的绝热可逆方程:
T2
T1
Cv ,m
热力学复习要点梳理与总结
热力学复习要点梳理与总结热力学是物理学中的重要分支,研究物质及其相互作用中所涉及的能量转化与传递规律。
为了更好地复习热力学知识,以下是热力学的核心要点进行梳理与总结。
一、热力学基本概念1. 热力学系统:指所研究的物质或物质的集合。
可以分为封闭系统、开放系统和孤立系统三种。
2. 热力学平衡:指热力学系统各个部分相互之间没有宏观可观测到的差别。
3. 热力学第零定律:当两个系统与第三个系统分别达到热力学平衡时,这两个系统之间也达到热力学平衡,它们之间的温度相等。
4. 热力学第一定律:能量守恒定律,系统的内能变化等于系统对外做功加热量的代数和。
5. 热力学第二定律:自发过程只会在熵增加的方向上进行。
二、热力学方程1. 理想气体状态方程:pV = nRT,其中p表示气体的压强,V表示气体的体积,n表示气体的摩尔数,R为气体常量,T表示气体的温度。
2. 等温过程:系统温度恒定,内能不变。
pV = 常数。
3. 绝热过程:系统与外界没有能量的交换,熵不变。
pV^γ = 常数,其中γ为气体的绝热指数。
4. 等容过程:系统体积恒定,内能变化全部转化为热量。
p/T = 常数。
5. 等压过程:系统压强恒定,内能变化全部转化为热量。
V/T = 常数。
6. 等焓过程:系统焓恒定,内能变化全部转化为热量。
Q = ΔH,其中Q表示吸热量,ΔH表示焓变化。
三、热力学循环1. 卡诺循环:由等温膨胀、绝热膨胀、等温压缩、绝热压缩四个过程组成,是一个理想的热力学循环。
它能够以最高效率转换热能为功。
2. 斯特林循环:由等容膨胀、绝热膨胀、等容压缩、绝热压缩四个过程组成,可应用于制冷领域。
四、热力学熵1. 熵的定义:系统的无序程度。
dS = dQ/T,其中dS表示系统熵变,dQ表示系统吸热量,T表示系统温度。
2. 熵增原理:孤立系统熵不断增加,自发过程只能在熵增加的方向上进行。
3. 等温过程中熵变:ΔS = Q/T。
五、熵与热力学函数1. 熵与状态函数:熵是状态函数,只与初末状态有关,与过程无关。
热力学知识点
填空题
1 A-B二元系固溶体,如果 >0,而且温度不高,则摩尔自由能曲线所形成拐点。这时整个成分范围可以分成三个区域,分别称为:稳定区、失稳区和亚稳区
2在固溶体的亚稳区成分范围内,固溶体会发生分解,但不能以失稳分解的机制发生,而要通过普通的形核长大机制进行。
2试证明晶界偏析这一热力学现象的平衡判据——平行线法则
3试在摩尔自由能成分曲线即Gm-X图中标出,一个二元固溶体α,析出同结构固溶体的相变驱动力和形核驱动力,并分析对两组元的相互作用能和温度有何要求,析出什么成分的晶核时驱动力最大。
计算题
1Байду номын сангаас
3第二相析出是指从过饱和固溶体中析出另一结构的相
4弯曲表面的表面张力 和附加压力P的关系式为 ,假设弯曲表面的半径为r.
5根据Trouton定律:多数物质的液体在沸点汽化时的熵变约是气体常数R的11倍
论述题
1如图所示A-B二元系中,成分低于 的γ单相可以通过无扩散相变,转变成同成分不同结构的α单相。若γ相及α相都可以用正规溶体近似描述,试写出其无扩散相变驱动力表达式并加以证明。
计算题
1已知Fe-W合金中,W在γ相及α相中的分配系数 ,α中W的含量为 ,试求在1100OC下,纯铁的相变自由能
2在Fe-Sb合金中,Sb在γ相及α相中的分配系数 ,试计算在1100OC下两相的平衡成分。已知在1100OC下,纯铁的相变自由能 =-116J•mol-1
3如果A-B二元系中的固相的相互作用键能具有成分依存性,关系为 ,试求溶解度间隙的顶点温度。
4一级相变:压力一定时,在可逆相变温度下,成分不变相变的母相和新相化学势相等,而化学势对温度、压力的一阶偏微分不等的相变。特点是发生一级相变时会伴随体积和熵(焓)的突变。
最新工程热力学复习总结
第一章基本概念、基本过程一、热力系统1、(热力)系统:系统:通常选取一定的工质或空间作为研究对象,称之为热力系统。
2、外界:与体系发生质、能交换的物系。
3、边界:系统与外界的分界面(线)。
边界可实可虚,可定可动。
二、系统的分类根据系统和外界之间物质、能量的交换情况分:1、闭口系统(控制质量):和外界没有物质交换。
2、开口系统(控制容积、控制体)和外界有物质交换。
3、绝热系统:和外界间没有热量交换。
4、孤立系统:和外界既无能量交换又无物质交换。
三、平■衡状态(一)定义:无外界影响(重力场除外)的条件下,系统保持状态参数不随时间而改变的状态。
1、热平衡:在无外界作用的条件下,系统内部、系统与外界之间无温差。
2、力平衡:在无外界作用的条件下,系统内部、系统与外界之间无压差。
3、化学平衡:在无外界作用的条件下,系统内部、系统与外界之间无化学势差。
平衡的充要条件:系统同时达到热平衡、力平衡、化学平衡。
(二)平衡状态的特点:1、在不受外界影响下,平衡不会自发的破坏;2、处于不平衡的系统,在不受外界影响时,会自发的趋于平衡;3、单相工质处于平衡状态时,在忽略重力的影响下,其内部性质均匀一致。
4、平衡必稳定,稳定未必平衡,平衡可以不均匀。
★对于气液两相并存的热力平衡系统,气相和液相密度不同,所以整个系统不是均匀的。
四、状态参数状态确定,状态参数的数值也确定,反之亦然。
非平衡状态系统内部存在不平衡势,因此不能用状态参数来描写。
(一)状态参数分类:1、基本状态参数:压力P、比体积v、温度T (可以直接测量)导出状态参数:内能U、粉H、痼S2、强度参数:参数与系统质量无关,且不可相加。
如:P、T广延参数:参数与系统质量成正比,且可相加。
如:m、V、U、H、S(二)基本状态参数1、温度摄氏温度t (C)与热力学温度T (K)关系:t=T-273.152、压力(绝对压力)p Pa、MPa(压强)单位面积上的垂直作用力。
绝对压力P;表压力p e;真空度p v;环境压力p bo,绝对压力的值不变,表压力或真空度会随着环境压力的变化而变化。
高考热力学知识点归纳整理
高考热力学知识点归纳整理热力学,作为物理学的重要分支之一,研究的是物质和能量之间的相互转化关系。
而在高考物理考试中,热力学是一个重要的考点。
为了帮助同学们更好地掌握和应用热力学的知识,下面将对高考热力学知识点进行归纳整理,希望对同学们的备考提供一些帮助。
1. 热力学基本概念- 系统和环境:热力学研究的对象称为系统,与系统有相互作用的部分称为环境。
- 简单系统和复合系统:由一个或多个物质组成的系统称为简单系统,由两种以上的物质组成的系统称为复合系统。
- 边界:系统与环境之间的物理或化学障碍称为边界,可以是真实的物理界面,也可以是想象的边界。
- 状态和过程:系统的状态由宏观性质和微观性质来描述,状态的变化称为过程。
- 平衡与非平衡态:系统达到平衡态时,各个宏观性质不再发生变化,称为平衡态。
2. 热力学定律- 第一定律:能量守恒定律,能量既不能创造也不能消失,只能在各个系统之间转移和转化。
- 第二定律:熵增定律,自然界中任何孤立系统的熵总是趋于增大,不可以减小。
- 第三定律:绝对零度不可达到定律,无法将任意系统冷却到绝对零度。
3. 热力学过程- 等温过程:系统与恒温热源接触,系统内部温度保持不变。
- 绝热过程:系统与环境再无任何热交换,系统内部熵不变。
- 等容过程:系统体积不变,对外做功为零。
- 等压过程:系统压强保持不变。
- 等焓过程:系统焓保持不变。
- 绝热绕行过程:系统在非平衡状态下发生变化,历经一系列平衡态。
4. 热力学函数- 内能:系统由于微观粒子之间相互作用而具有的总能量。
- 焓:系统的内能与对外做的等容功之和。
- 熵:系统的无序程度,反映系统能量转移到不可逆过程的趋势。
- 自由能:系统做功能减少的极限值。
- 等温压强:系统中某种物质的压强与温度之比。
- 摩尔气体的理想气体状态方程:PV=nRT。
5. 热力学循环- 卡诺循环:由两个等温过程和两个绝热过程组成,是理论效率最高的循环。
- 热机效率:以输出功为分子,输入热量为分母,计算热机的效率。
热力学重点知识总结(期末复习必备)
热力学重点知识总结(期末复习必备)热力学重点知识总结 (期末复必备)1. 热力学基本概念- 热力学是研究物质和能量转化关系的科学领域。
- 系统:研究对象,研究所关注的物体或者物质。
- 环境:与系统相互作用的外部世界。
- 边界:系统与环境之间的分界面。
2. 热力学定律第一定律:能量守恒定律- 能量既不会凭空产生,也不会凭空消失,只会在不同形式之间转化。
- $\Delta U = Q - W$,其中 $U$ 表示内能,$Q$ 表示传热量,$W$ 表示对外界做功。
第二定律:热力学箭头定律- 热量不会自发地从低温物体传递到高温物体,而是相反的方向。
- 热量自发地会沿着温度梯度从高温物体传递到低温物体。
- 第二定律的一个重要应用是热机效率计算:$\eta =\frac{W}{Q_H}$,其中 $Q_H$ 表示从高温热源吸收的热量,$W$ 表示对外界做的功。
第三定律:绝对零度定律- 温度无法降低到绝对零度,即 $0$K 是一个温度的下限。
- 第三定律提供了热力学的温标基准,即绝对温标。
3. 热力学过程绝热过程- 绝热过程是指在过程中不与环境发生热量交换的过程。
- 绝热过程中,系统的内能会发生改变,但传热量为零。
等温过程- 等温过程是指在过程中系统与环境保持恒定的温度。
- 在等温过程中,系统的内能不变,但会发生热量交换。
绝热可逆过程- 绝热可逆过程是指绝热过程与可逆过程的结合。
- 在绝热可逆过程中,系统不仅不与环境发生热量交换,还能够在过程中达到热力学平衡。
4. 热力学系统分类封闭系统- 封闭系统是指与环境隔绝,但能够通过物质和能量交换来进行工作的系统。
开放系统- 开放系统是指与环境可以进行物质和能量交换的系统,也称为流体系统。
孤立系统- 孤立系统是指与环境既不进行物质交换,也不进行能量交换的系统。
5. 热力学熵- 熵是热力学中一个重要的物理量,表示系统的无序程度或混乱程度。
- 熵的增加反映了系统的混乱程度的增大,熵的减少反映了系统的有序程度的增大。
中考化学热力学知识点归纳
中考化学热力学知识点归纳热力学是化学中一个重要的分支,它研究物质系统与能量之间的关系。
在中考化学中,热力学的知识点主要包括以下几个方面:1. 热力学基本概念:- 温度:表示物体冷热程度的物理量。
- 热量:在热传递过程中传递的能量。
- 热能:物体内部分子运动的能量。
2. 热化学方程式:- 热化学方程式表示化学反应中能量变化的方程式。
- 需要标明反应物和生成物的状态,以及反应的焓变。
3. 能量守恒定律:- 能量既不能被创造,也不能被消灭,只能从一种形式转化为另一种形式,或从一个物体转移到另一个物体。
- 在任何封闭系统中,能量的总量是恒定的。
4. 焓变:- 焓变(ΔH)是系统在恒压条件下发生化学反应时能量的变化量。
- 吸热反应的焓变为正,放热反应的焓变为负。
5. 热力学第一定律:- 第一定律是能量守恒定律在热力学过程中的表述,即系统吸收的热量等于系统内能的增加量加上对外做的功。
6. 热力学第二定律:- 第二定律表述了能量转换的方向性,即自发过程总是向着熵增加的方向进行。
7. 熵:- 熵是表示系统无序程度的物理量。
- 熵增加通常与系统变得更加无序相关。
8. 热力学第三定律:- 第三定律指出,在绝对零度下,所有完美晶体的熵为零。
9. 热力学过程:- 等温过程:系统温度保持不变的过程。
- 等压过程:系统压力保持不变的过程。
- 等容过程:系统体积保持不变的过程。
- 绝热过程:系统与外界没有热量交换的过程。
10. 化学反应的热效应:- 吸热反应:需要吸收热量才能进行的反应。
- 放热反应:在反应过程中释放热量的反应。
结束语:热力学在化学中的应用非常广泛,它不仅帮助我们理解化学反应中的能量变化,还对材料科学、环境科学等领域有着重要的影响。
掌握热力学的基本概念和原理,对于深入理解化学现象和进行科学探究具有重要意义。
希望以上的知识点归纳能够帮助同学们在中考化学中取得优异的成绩。
工程热力学知识点笔记总结
工程热力学知识点笔记总结第一章热力学基本概念1.1 热力学的基本概念热力学是研究能量与物质的转化关系的科学,它关注热与功的转化、能量的传递和系统的状态变化。
热力学中最基本的概念包括系统、热力学量、状态量、过程、功和热等。
1.2 热力学量热力学量是描述系统的性质和状态的物理量,包括内能、焓、熵、自由能等。
内能是系统的总能量,焓是系统在恒压条件下的能量,熵是系统的无序程度,自由能是系统进行非体积恒定的过程中能够做功的能量。
1.3 热力学第一定律热力学第一定律是能量守恒的表达形式,在闭合定容系统中,系统的内能变化等于系统所接受的热量减去系统所做的功。
1.4 热力学第二定律热力学第二定律是描述系统不可逆性的定律,它包括开尔文表述和克劳修斯表述。
开尔文表述指出不可能将热量完全转化为功而不引起其他变化,克劳修斯表述指出热量自然只能从高温物体传递到低温物体。
根据第二定律,引入了熵增大原理和卡诺循环。
1.5 热力学第三定律热力学第三定律是指当温度趋于绝对零度时,系统的熵趋于零。
这一定律揭示了绝对零度对热力学过程的重要意义。
第二章热力学系统2.1 定态与非定态定态系统是指系统的性质在长时间内不发生变化,非定态系统是指系统的性质在长时间内发生变化。
2.2 开放系统与闭合系统开放系统是指与外界交换物质和能量的系统,闭合系统是指与外界不交换物质但可以交换能量的系统。
2.3 热力学平衡热力学平衡是指系统内各部分之间的温度、压力、化学势等性质达到一致的状态。
系统处于热力学平衡时,不会产生宏观的变化。
第三章热力学过程3.1 等温过程在等温过程中,系统的温度保持不变,内能的变化全部转化为热量输给外界。
3.2 绝热过程在绝热过程中,系统不与外界交换热量,内能的变化全部转化为对外界所做的功。
3.3 等容过程在等容过程中,系统的体积保持不变,内能的变化全部转化为热量。
3.4 等压过程在等压过程中,系统的压强保持不变,内能的变化转化为对外界所做的功和系统所吸收的热量。
工程热力学知识点总结
工程热力学知识点总结一、基本概念1. 热力学系统热力学系统是指研究对象的范围,可以是一个物体、一个系统或者多个系统的组合。
根据系统与外界的物质交换和能量交换情况,将系统分为封闭系统、开放系统和孤立系统。
2. 热力学状态热力学状态是指系统的一种特定状态,由系统的几个宏观性质确定。
常用的状态参数有温度、压力、体积和能量等。
3. 热力学过程热力学过程是系统在一定条件下的状态变化。
常见的热力学过程有等温过程、绝热过程、等压过程和等容过程等。
4. 热力学平衡系统的平衡是指系统内各部分之间不存在宏观的能量或物质的不均匀性。
在平衡状态下,系统内各部分之间的宏观性质是不发生变化的。
5. 热力学势函数热力学势函数是描述系统平衡状态的函数,常见的有内能、焓、自由能和吉布斯自由能等。
二、热力学定律1. 热力学第一定律热力学第一定律是能量守恒定律的热力学表述。
它可以表述为:系统的内能变化等于系统对外界所做的功与系统吸收的热的代数之和。
2. 热力学第二定律热力学第二定律是热力学中一个非常重要的定律,它对能量转化的方向和效率进行了限制。
根据热力学第二定律,系统内部永远不会自发地将热量从低温物体传递到高温物体,这就是热机不能做功的原因。
3. 卡诺定理卡诺定理是热力学第二定律的一种推论,它指出在两个恒温热源之间进行热机循环时,效率最高的情况是卡诺循环。
4. 热力学第三定律热力学第三定律规定了在温度接近绝对零度时热容为零,即系统的熵在绝对零度时为常数。
三、热力学循环1. 卡诺循环卡诺循环是一种理想的热机循环,它采用绝热和等温两个可逆过程。
卡诺循环的效率是所有热机循环中最高的。
2. 斯特林循环斯特林循环是一种理想的外燃循环,它采用绝热和等温两个可逆过程。
斯特林循环比卡诺循环的效率低一些,但是实际上,在制冷机中应用得比较广泛。
3. 布雷顿循环布雷顿循环是一种理想的内燃循环,它采用等容和等压两个可逆过程。
布雷顿循环是内燃机的工作循环,应用比较广泛。
热力学复习知识点汇总
热力学复习知识点汇总概念部分汇总复第一章热力学的基本规律1、热力学和统计物理学研究的对象是由大量微观粒子组成的宏观物质系统。
根据能量和物质交换的情况,研究系统可分为孤立系、闭系和开系。
2、热力学系统平衡状态的四种参量是几何参量、力学参量、化学参量和电磁参量。
3、一个物理性质均匀的热力学系统称为一个相,根据相的数量,可以分为单相系和复相系。
4、热平衡定律(热力学第零定律)表述:如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡。
5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。
6、XXX方程是对理想气体状态方程作了修正之后的实际气体的物态方程,考虑了气体分子之间的相互作用力(排斥力和吸引力)。
7、准静态过程是由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。
8、准静态过程外界对气体所作的功是个过程量。
9、绝热过程是系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。
绝热过程中内能是一个态函数。
10、热力学第一定律(能量守恒定律)表述:任何形式的能量既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定。
11、态函数焓H是系统内能U和体积V的函数,等压过程中,系统从外界吸收的热量等于焓的增加量。
12、焦耳定律表述:气体的内能只是温度的函数,与体积无关。
13、定压热容比Cp是内能U对温度T的偏导数,定容热容比Cv是焓H对温度T的偏导数,两者之差为nR。
14、绝热过程的状态方程为pV^γ=const,TV^(γ-1)=const,其中γ为定压热容比和定容热容比的比值。
15、卡诺循环由两个等温过程和两个绝热过程组成,正循环为卡诺热机,效率为η=1-T2/T1,逆循环为卡诺制冷机,效率为η=(T1-T2)/T1(只能用于卡诺热机)。
1、获得低温的方法有两种:节流过程和绝热膨胀过程。
在节流过程中,气体的温度会发生变化,这被称为焦耳-汤姆孙效应。
热力学定律归纳复习
热力学定律归纳复习知识点一、功和内能1、绝热过程:热力学系统只由于外界对它做功而与外界交换能量,它不从外界吸热,也不向外界传热的热力学过程,称为绝热过程。
2、内能:内能是一种与热运动有关的能量。
在物理学中,我们把物体内所有分子作无规则运动的动能和分子势能的总和叫做物体的内能。
内能用字母U表示。
在宏观上,热力学系统的内能U是状态量的函数,由系统的分子数、温度、体积决定。
3、绝热过程功和能的关系功是过程量,能量是状态量,功是能量变化的量度。
某热力学系统从状态1经过绝热过程达到状态2时,内能的增加量就等于外界对系统所做的功W,即ΔU=W可见,这一过程实现了其它形式的能与内能之间的转化。
知识点二、热和内能1、热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。
2、热传递的方式:热传导、对流热、热辐射。
3、热传递过程热和能的关系某热力学系统从状态1经过单纯的传热过程达到状态2时,内能的增加量就等于外界对系统传递的热量Q,即ΔU=Q可见,这一过程只是实现了内能与内能之间的转移。
知识点三、热力学第一定律、能量守恒定律1、热力学第一定律①热力学第一定律表述:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。
②热力学第一定律表达式ΔU=W+Q③应用热力学第一定律解题的思路与步骤:1)、明确研究对象是哪个物体或者是哪个热力学系统。
2)、分别列出物体或系统(吸收或放出的热量)和外界对物体或系统所做的功。
3)、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也同样依照规则来解释其意义。
4)、几种特殊情况:若过程是绝热的,即Q=0,则:W=ΔU,外界对物体做的功等于物体内能的增加。
若过程中不做功,即W=0,则:Q=ΔU,物体吸收的热量等于物体内能的增加。
若过程的始末状态物体的内能不变,即ΔU=0,则:W+Q=0,外界对物体做的功等于物体放出的热量。
热力学知识点总结及习题
1.热力学第零定理:如果两个物体各自与第三个物体达到热平衡,他们彼此也必然处于热平衡2.热力学第一定律:能量可以从一种形式转变为另一种形式,但在转化过程中能量的总量保持不变3.热力学第二定理:实质:自然界中一切与热现象有关的实际过程都是不可逆过程,他们有一定的自发进行的方向开式:不可能从单一热源吸热使之完全变成有用的功而不引起其他变化 克式:不可能把热量从低温物体传到高温物体而不引起其他变化热力学第三(绝对零度定理):不可能通过有限步骤是一个物体冷却到热力学温度的零度4.孤立系统:与外界无物质、无能量交换 dQ=0 dW=05.封闭系统:与外界无物质交换、有能量交换 dQ ≠0 dW=06.准静态过程:是一个进行得无限缓慢以致系统连续不断的经历着一些列平衡态的过程。
只有系统内部各部分之间及系统与外界之间始终同时满足力学、热学、化学平衡条件的过程才是准静态过程(准静态过程是一个理想过程)7.熵增加原理:系统经可逆绝热过程熵不变,经不可逆绝热过程熵增加,在绝热条件下,熵减少过程是不可能实现的。
8.广延量:与系统大小成正比的热力学量(如质量M 、体积V 、内能U 等) 强度量:不随系统大小变化的热力学量(如系统的P 、T 、ρ等)9.获得低温的方法:节流过程、节流过程与绝热膨胀相结合、绝热去磁制冷、激光制冷、核绝热去磁10.特性函数的定义:在适当选择独立变量条件下,只要知道系统的一个热力学函数,就可以用只求偏导数的方法求出系统的其他基本热力学函数,从而完全确定均匀系统的平衡性质,这个热力学函数就称为特性函数。
11.一级相变:在相变点两点的化学势连续,但化学势的一阶偏导数存在突变12.二级相变:在相变点两点的化学势及一阶导数连续,但二阶导数存在突变13.单元复相系平衡条件:一个单元两个系统(ɑ相和β相)组成一孤立系统,其总内能总体积和总物质的量恒定。
14.中肯半径:在一定的蒸气压下,于正其达到平衡的液滴半径称为中肯半径15.能量均分定理:对于外在温度为T 的平衡状态的经典系统,例子的能量中每一个平方项的平均值等于(1/2)KT16.微观粒子全同性原理:微观粒子全同性原理指出,全同粒子是不可分辨的,在含有多个全同粒子的系统中,将任何两个全同粒子加以对换,不改变整个系统的微观运动状态。
热力学复习知识点汇总
概念部分汇总复习第一章热力学的基本规律1、 热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换乂有物质交换的系统。
2、 热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量o3、 一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。
4、 热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡 ・5、 符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。
6、 范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力) ,对理想气体状态方程作了修正之 后的实际气体的物态方程。
7、 准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。
8准静态过程外界对气体所作的功:dW pdV ,外界对气体所作的功是个过程量。
9、 绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。
绝热过程中内能 u是一个态函数:W =U B _U A10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能最的总量保持恒定;热力学表达式: U B _U A 二W —Q ;微分形式:dU =dQ dW11、 态函数燈H : H =: U pV ,等压过程:• U・p V ,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焙的增加量o12、 焦耳定律:气体的内能只是温度的函数,与体积无矣,即U =U (T )。
13 -疋压热谷比:Cp 二一;定容热容比:Cvp WT p14、绝热过程的状态方程: pV = con st ; TV = con st ;15、卡诺循环过程由两个等温过程和两个绝热过程组成。
热力学基础知识点总结
热力学基础知识点总结热力学是研究热现象中能量转化规律的科学,它为我们理解和分析许多自然现象和工程过程提供了重要的理论基础。
以下是对热力学基础知识点的总结。
一、热力学系统与状态热力学系统是我们研究的对象,可以是一个封闭的容器中的气体,也可以是整个地球的大气。
根据系统与外界的物质和能量交换情况,可分为孤立系统、封闭系统和开放系统。
系统的状态由一些宏观物理量来描述,比如压强、温度、体积等,这些被称为状态参量。
状态参量的数值确定,系统的状态就确定了。
二、热力学第一定律热力学第一定律其实就是能量守恒定律在热力学中的表现形式。
它指出,一个热力学系统从外界吸收的热量,等于系统内能的增加与系统对外做功之和。
数学表达式为:$Q =\Delta U + W$ ,其中$Q$ 表示系统从外界吸收的热量,$\Delta U$ 表示系统内能的增量,$W$ 表示系统对外界所做的功。
如果系统从外界吸热,$Q$ 为正值;系统向外界放热,$Q$ 为负值。
系统对外做功,$W$ 为正值;外界对系统做功,$W$ 为负值。
例如,在一个热机的工作循环中,燃料燃烧产生的热量一部分转化为机械能对外做功,另一部分用来增加系统的内能。
三、热力学第二定律热力学第二定律有多种表述方式,常见的有克劳修斯表述和开尔文表述。
克劳修斯表述:热量不能自发地从低温物体传向高温物体。
开尔文表述:不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。
热力学第二定律揭示了热现象的方向性,也就是说,在自然条件下,热传递和热功转换过程都是不可逆的。
比如,冰箱能够将内部的热量传递到外部,但这需要消耗电能,并且这个过程不是自发进行的。
四、热力学温标热力学温标是一种与测温物质的性质无关的温标,单位是开尔文(K)。
热力学温度与摄氏温度的关系为:$T = t + 27315$ ,其中$T$ 是热力学温度,$t$ 是摄氏温度。
绝对零度(0 K)是理论上能达到的最低温度,但实际上无法达到。
工程热力学知识点总结
工程热力学知识点总结1. 热力学基本概念1.1 热力学系统:研究对象,与周围环境有能量和物质交换。
1.2 环境:系统之外的一切,与系统形成对比。
1.3 边界:系统与环境之间的分界线。
1.4 状态:系统在某一时刻宏观性质的集合。
1.5 平衡态:系统状态不随时间变化的状态。
1.6 过程:系统从一个平衡态到另一个平衡态的演变。
2. 热力学第一定律2.1 能量守恒:系统内能量的变化等于热量与功的和。
2.2 内能:系统内部微观粒子动能和势能的总和。
2.3 热量:系统与环境之间由于温度差而交换的能量。
2.4 功:系统对环境或其他系统施加的力与其位移的乘积。
2.5 热力学第一定律公式:ΔU = Q - W。
3. 热力学第二定律3.1 熵:系统无序度的量度,是不可逆过程的度量。
3.2 孤立系统:不与外界交换能量或物质的系统。
3.3 熵增原理:孤立系统熵永不减少。
3.4 卡诺定理:所有热机的最大效率由卡诺循环确定。
4. 热力学性质4.1 温度:系统热动能的度量,是热力学过程的驱动力。
4.2 压力:分子对容器壁单位面积的平均作用力。
4.3 体积:系统占据的空间大小。
4.4 比热容:单位质量的物质温度升高1K所需吸收的热量。
4.5 热容:系统温度升高1K所需吸收的热量。
5. 理想气体行为5.1 理想气体状态方程:PV = nRT。
5.2 摩尔体积:1摩尔理想气体在标准状态下的体积。
5.3 气体常数:理想气体状态方程中的常数R。
5.4 马略特定律:理想气体在恒定温度下,体积与压力成正比。
5.5 波义耳定律:在恒温条件下,理想气体的压强与其体积成反比。
6. 热力学循环6.1 卡诺循环:理想化的热机循环,由四个可逆过程组成。
6.2 奥托循环:内燃机的理想循环,包括等容加热、绝热膨胀、等容放热和绝热压缩。
6.3 朗肯循环:蒸汽动力循环,包括泵吸、锅炉加热、涡轮膨胀和冷凝器排热。
7. 相变与潜热7.1 相变:物质从一种相态转变为另一种相态的过程。
热力学知识点
热力学知识点热力学是研究热量和能量转化的物理学科,涉及到能量在热力学系统中的转移和转化过程。
在热力学中,有一些重要的知识点需要我们了解和掌握,下面将逐一介绍这些知识点。
一、热力学基本概念热力学是研究热现象和动力学相互关系的物理学科。
研究的范围包括热平衡、热力学第一定律、热力学第二定律等内容。
1. 热平衡:热平衡是指在热力学系统中,系统内各部分之间没有热传递的过程。
在热平衡状态下,系统内各部分的温度是相等的。
2. 热力学第一定律:热力学第一定律是指能量守恒定律,即能量不会自行消失,也不会自行产生,只能在各种形式之间相互转换。
3. 热力学第二定律:热力学第二定律是指热量不可能自发地从低温物体传递到高温物体,而只有从高温物体传递到低温物体。
二、热力学参数在热力学中,有一些重要的参数需要我们了解,这些参数可以帮助我们描述和分析热力学系统的性质。
1. 温度:温度是物体内部微观粒子热运动的程度,是衡量物体热量高低的物理量。
2. 热量:热量是物体内部由于温度差异而传递的能量,是物体的一种能量形式。
3. 内能:内能是热力学系统内部分子和原子的热运动能量,是系统的一个基本性质。
4. 熵:熵是描述系统无序程度的物理量,是系统能量分布的一种统计性质。
三、热力学循环热力学循环是指在热力学系统中,系统经过一系列的过程后,最终回到初始状态的过程。
常见的热力学循环包括卡诺循环、布雷顿循环等。
1. 卡诺循环:卡诺循环是一个理想的热力学循环过程,由等温膨胀、绝热膨胀、等温压缩和绝热压缩四个过程组成。
2. 布雷顿循环:布雷顿循环是一种内燃机循环过程,应用于内燃机和蒸汽轮机等发动机中。
四、热力学方程热力学方程是描述热力学系统中热量和能量转化关系的数学表达式,包括理想气体方程、卡诺循环效率等。
1. 理想气体方程:理想气体方程描述了理想气体状态下温度、压力和体积之间的关系,即PV=nRT。
2. 卡诺循环效率:卡诺循环效率是指卡诺循环中高温热源和低温热源之间能量转化的效率,其最大效率与工作物质的性质有关。
热力学基础知识点总结
热力学基础知识点总结热力学是研究能量转化和传递的物理学分支,它研究了热量、温度和能量之间的关系。
在热力学中,有一些基础知识点是我们必须要了解的。
本文将对热力学的一些基础知识点进行总结和介绍。
一、热力学系统和热力学过程热力学系统是指我们要研究的对象,可以是一个物体、一组物体或者一个系统。
热力学过程是系统从一个状态到另一个状态的变化过程,可以是恒温过程、绝热过程等。
在热力学中,我们通常通过观察系统的性质变化来研究热力学过程。
二、热力学函数热力学函数是描述热力学系统性质的函数,常见的热力学函数有内能、焓、自由能和吉布斯自由能等。
内能是系统热力学性质的基本函数,它是系统的微观状态和能量之间的函数关系。
焓是在恒压条件下的热力学函数,它对应于系统对外做功的能力。
自由能是系统的可用能量,它对应于系统在恒温恒容条件下对外做功的能力。
吉布斯自由能是系统在恒温恒压条件下的可用能量,它对应于系统在外界条件不变的情况下能够发生的最大非体积功。
三、热力学定律热力学定律是热力学研究的基本规律,包括零th定律、第一定律、第二定律和第三定律。
零th定律指出当两个物体与第三个物体处于热平衡时,它们之间也处于热平衡。
第一定律是能量守恒定律,它指出能量可以转化形式,但不能被创造或破坏。
第二定律是热力学不可逆性定律,它指出任何一个孤立系统的熵都不会减少,即系统总是趋于混乱。
第三定律是关于绝对零度的定律,它指出在0K时,系统的熵为零。
四、热力学平衡和热力学态热力学平衡是指系统内各部分之间不存在宏观差异,不再发生宏观的变化。
热力学态是指系统所处的状态,它可以通过温度、压力等宏观性质来描述。
在热力学中,我们通常通过热力学函数的变化来研究系统的平衡和态的变化。
五、热力学的应用热力学是一门广泛应用于工程和科学领域的学科,它在能源转换、化学反应、材料科学等方面有着重要的应用。
热力学的应用可以帮助我们理解和优化能量转化和传递的过程,提高能源利用效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念部分汇总复习第一章热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换又有物质交换的系统。
2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。
3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。
4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。
6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。
7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。
8准静态过程外界对气体所作的功:dW pdV,外界对气体所作的功是个过程量。
9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。
绝热过程中内能U是一个态函数:W =U B _U A10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:U B _U A二W —Q ;微分形式:dU =dQ dW11、态函数焓H: H =:U pV,等压过程:. U - p V,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。
12、焦耳定律:气体的内能只是温度的函数,与体积无关,即U =U (T)。
13•疋压热谷比:C p二—;定容热容比:C V公式:C p -C V = nRP W T 丿p ._V pV-414、绝热过程的状态方程:pV = con st;TV = con st;———=const。
15、卡诺循环过程由两个等温过程和两个绝热过程组成。
正循环为卡诺热机,效率「=1 -卫,逆循环为卡诺制冷机,效率为—(只能用于卡诺热机)16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体而不引起其他变化(表明热传导过程是不可逆的);开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其他变化(表明功变热的过程是不可逆的);另一种开氏表述:第二类永动机不可能造成的。
17、无摩擦的准静态过程是可逆过程。
18、卡诺定理:所有工作于两个一定温度T1与T2之间的热机,以可逆机的效率为最高。
并且所有的可逆机的效率都相等=1-三,与工作物质无关,只与热源温度有关。
T219、热机的效率:「二[―Q z Q为热机从高温热源吸收的热量,Q为热机在低温热源放出的热量。
Q120、克劳修斯等式与不等式:Q Qz _ 0。
T1 T z21、可逆热力学过程I dQ = o,不可逆热力学过程dQ ::: o。
L T L T22、热力学基本方程:dU二TdS-pdV。
23、熵函数是一个广延量,具有可加性;对于可逆过程,熵S是一个态函数,积分与路径无关;对于绝热过程中,熵永不减少。
24、 理想气体的熵函数 S : s =nC v lnT nRlnV S ; S = nC p lnT — nRIn p S 0。
25、 熵增加原理:系统经过可逆绝热过程后熵不变,经过不可逆绝热过程后熵增加,在绝热条件下熵减少 的过程是不可能实现的。
熵增加原理用来判断过程进行的方向和限度。
26、 孤立系统内所发生的过程的方向就是熵增加的方向, 若系统经绝热过程后熵不变,则此过程是可逆的; 若熵增加,则此过程是不可逆的。
27、 熵是系统中微观粒子作无规则运动的混乱程度的量度。
28、 在等温等容过程中,系统的自由能(F 二U -TS )永不增加,系统发生的不可逆过程总是朝着自由能减少的方向进行;在等温等压过程中,吉布斯函数( G 二U _TS • pV )永不增加,系统发生的 不可逆过程总是朝着吉布斯函数减少的方向进行。
第二章均匀物质的热力学性质1、内能、焓、自由能和吉布斯函数的全微分dH =TdS Vdp ; dG - -SdT Vdp ; dF - -SdT - pdV ; dU =TdS - pdV2、麦氏关系:::p S:S3、获得低温的方法主要有节流过程和绝热膨胀过程; 节流过程前后气体的温度发生了变化, 这个效应称之为:焦耳-汤姆孙效应;对于理想气体,节流过程前后温度不变。
4、受热的物体会辐射电磁波,叫做热辐射;热平衡辐射体对电磁波的吸收和辐射达到平衡,热辐射的特性 只取决于辐射体的温度,与辐射体的其他性质无关,所以说平衡辐射下,辐射体具有固定的温度。
计算及证明题:习题1.2试证明任何一种具有两个独立参量的物质T, p ,其物态方程可由实验测得的体胀系数 Ct 及等温1 1压缩系数'-T ,根据下述积分求得:l nV 二(〉dT-'“dp )如果 T ,试求物态方程。
T p解:因为f (T,V,p )=O ,所以,我们可写成V =V (T,p ),由此,eV刃」 1 eVdV=^V )pdT W )Tdp,因为:=v^?)p/T-J\ /所以,dV 二V : dT —V' T dp,〒dT - .T dp所以,lnV = -■ d^ _ ■ T dp ,当「=1/T,、T=1/p.「dT dp 、, “,得到:pV = CTT p第二章例题2和作业题:2.2,2.4,2.12概念部分汇总复习:V*(')T1 (8V、11 H 10(=———1— __三一一 ——!= 一,则该物质的物态方程为V 0丿pT' T V <£p ,'T p第一章例题1和3, 作业题 :1.1,1.2,1.16,1.21例题1.3 :假设一物质的体涨系数和等温压缩系数经过实验测得为:第三章单元系的相变1、孤立系统达到平衡态的时候,系统的熵处于极大值状态,这是孤立系统平衡态的判据;如果极大值不止 一个,则当系统处于较小的极大值的时候,系统处于亚稳平衡态。
2 •孤立系统处在稳定平衡态的充要条件是:AS ::: 0 ;等温等容系统处在稳定平衡态的充要条件是::F . 0;等温等压系统处在稳定平衡态的充要条件是: G 0。
3、 当系统对于平衡状态而发生某种偏离的时候, 系统中将会自发地产生相应的过程,直到恢复系统的平衡。
4、 开系的热力学基本方程: dU 二TdS - pdV • "dn5、 单元系的复相平衡条件:T 〉=T : p> = p :‘ --6、 汽化线、熔解线与升华线的交点称为三相点,在三相点固、液、气三相可以平衡共存。
TJT — 7、 单元系三相共存时,<p°=pP=pY=p 0;即三相(a B Y )的温度、压强和化学严(T,p )」P (T, p ) p )势必须相等。
作业题,3.1 ,3.4, 3.5■:q r 'Pi:h ,相格的大小为「q …厶qjp …厶p r > h r。
5、 近独立粒子系统:系统中粒子之间的相互作用很弱,相互作用的平均能量远小于单个粒子的平均能量, 忽略粒子之间的相互作用,系统的能量就简单地认为是单个粒子的能量之和。
6、 经典物理:全同粒子可以分辨,可以跟踪粒子的轨道运动轨迹;量子物理:全同粒子不可分辨,不可能 跟踪粒子的运动(不确定关系)。
7、 费米子:自旋量子数为半整数的基本粒子或复合粒子,如:电子、质子、中子等。
玻色子:自旋量子数 为整数的基本粒子或复合粒子,如:光子、-介子等。
8玻耳兹曼系统:粒子可以分辨,不满足泡利不相容原理,对三个粒子两个能级体系,有态;玻色系统:粒子不可以分辨,不满足泡利不相容原理,有 6个不同的量子态; 费米系统:粒子不可以分辨,满足泡利不相容原理,有3个不同的量子态。
9、 统计物理的根本问题:确定各微观状态岀现的概率;宏观状态量是相应微观物理量的统计平均值。
10、 等概率原理:对于平衡态的孤立系统,系统各个可能的微观状态岀现的概率是相等的,等概率原理是 统计热力学的基本原理。
统计物理学部分第六章近独立粒子的最概然分布1、粒子的能量是粒子的广义坐标和广义动量的函数 的运动状态(q 「q 2,…,q r ; P" p 2,…p r )可以用是粒子的实际运动轨迹。
;-;(q 1,q 2,…,P 2,… p r ),某一时刻粒子J空间的一点来表示,注意,粒子在"空间的轨迹并不2、自由粒子自由度3,空间维数6,能量(球)2m(px2 p22P z );线性谐振子自由度1,空间维数2,能量(椭圆)-m 2x 2 ;(长度一定轻杆连接质点)2转子自由度 2,空间维数4,能3、 4、2I.1 自旋磁量子数 m^ :2粒子的自由度为r ,各自由度的坐标和动量的不确定值■:q i 和■:p i 满足海森伯不确定关系粒子运动状态的量子描述: E - - ; p 二上(德布罗意关系)9个不同的量子11、玻耳兹曼分布:a l 二訶汀;玻色分布:印二胃':比;费米分布:印二丁例题第七章玻耳兹曼统计1、 内能是系统中粒子无规则运动总能量的统计平均值,其统计表达式为:U = _N ln Z 1,其中配dP 分函数Z j =為』:i e 」,N 二厂乙。
i2、 (玻耳兹曼系统)熵的统计物理意义:熵是混乱度的量度,某个宏观状态对应的微观状态数越多,它的 混乱度就越大,熵就越大。
3、理想气体的物态方程: 135 等于丄kT 。
根据能量均分定理,单原子分子的平均能量为kT ,双原子分子的平均能量 kT 22 2【平动能+转动能+0振动能(相对运动动能+ 相对运动势能)】。
第八章玻色统计和费米统计1、 当系统不满足非简并性条件,而且也不是定域系统时,需要采取玻色统计或费米统计的方法来处理。
微 观粒子全同性原理决定了二者与玻耳兹曼系统不同的宏观性质。
2、 巨配分函数:=:]「1II3、 熵与微观状态数的关系:S=kl n 二亠:*N •:U = k l n 〔丨4、 巨热力势和巨配分函数的关系:J - -kTIn35、 当理想玻色气体的n>2.612的临界值的时候将会出现玻色一爱因斯坦凝聚现象。
6、 光子气体 特征1:自旋量子数为1 ;特征2:所有光子速度均为常数 c ,具有极端相对论的能量动量关系; 特征3:光子系统的总粒子数不固定;能量动量关系:c h :—cp (用德布罗意关系证明: ;二h i 二h c &普朗克假说:能量是一份份传播的,即能量量子化,每一份光子的能量为,称为能量子,这是物理革命性的飞跃。