高中物理动能定理的综合应用练习题及答案
高中物理动能定理的综合应用题20套(带答案)及解析
(1)滑块到达底端 B 时的速度大小 vB;
(2)滑块与传送带间的动摩擦因数 μ;
(3)此过程中,由于克服摩擦力做功而产生的热量 Q.
【答案】(1)
2gh (2) v02 2gh (3) m v0
2
2gh
2gl
2
【解析】
试题分析:(1)滑块在由
A
到
B
的过程中,由动能定理得:
mgh= 1 2
(1)求运动员在 AB 段下滑时受到阻力 Ff 的大小; (2)若运动员能够承受的最大压力为其所受重力的 6 倍,则 C 点所在圆弧的半径 R 至少应为 多大? 【答案】(1)144 N (2)12.5 m 【解析】
试题分析:(1)运动员在 AB 上做初速度为零的匀加速运动,设 AB 的长度为 x,斜面的倾 角为 α,则有 vB2=2ax
mvB2
0
,
解得:
=
B
2gh ;
(2)滑块在由 B 到 C 的过程中,由动能定理得:μmgL= 1 mv02− 1 mvB2,
2
2
解得, =v02 2gh ; 2gL
(3)产生的热量:Q=μmgL
L 相对, 相对
0 B 2
2 g
= ( 0
2gh)2 2 g
(或
(0 v02
2 gh )2 2gh
(3)传送带的速度大于或等于 v1,则滑块回到水平轨道时的速度大小仍为 v1
mgs
0
1 2
mv12
得 s=0.9m,即滑块在水平轨道上滑行的路程为 0.9m,则最后停在离 B 点 0.2m 处。
若传送带的速度 7 m/s <v<3m/s,则滑块将回到 B 点,滑上圆弧轨道后又滑到水平轨道,
高考物理动能定理的综合应用题20套(带答案)含解析
高考物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)求滑块与斜面间的动摩擦因数μ;(2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值;(3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR -μmgcos37°2sin 37R︒=0-0 解得:μ=0.375⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ①在C 点时,根据牛顿第二定律有:mg +N =2Cv m R② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37°2sin 37R ︒=212C mv -2012mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④在竖直方向的位移为:y =212gt ⑤ 根据图中几何关系有:tan37°=2R yx-⑥ 由④⑤⑥式联立解得:t =0.2s考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.3.如图所示,光滑曲面与光滑水平导轨MN 相切,导轨右端N 处于水平传送带理想连接,传送带长度L =4m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v =4.0m/s 运动.滑块B 、C 之间用细绳相连,其间有一压缩的轻弹簧,B 、C 与细绳、弹簧一起静止在导轨MN 上.一可视为质点的滑块A 从h =0.2m 高处由静止滑下,已知滑块A 、B 、C 质量均为m =2.0kg ,滑块A 与B 碰撞后粘合在一起,碰撞时间极短.因碰撞使连接B 、C 的细绳受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离.滑块C 脱离弹簧后以速度v C =2.0m/s 滑上传送带,并从右端滑出落至地面上的P 点.已知滑块C 与传送带之间的动摩擦因数μ=0.2,重力加速度g 取10m/s 2.(1)求滑块C 从传送带右端滑出时的速度大小; (2)求滑块B 、C 与细绳相连时弹簧的弹性势能E P ;(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C 总能落至P 点,则滑块A 与滑块B 碰撞前速度的最大值v m 是多少? 【答案】(1) 4.0m/s (2) 2.0J (3) 8.1m/s 【解析】 【分析】 【详解】(1)滑块C 滑上传送带到速度达到传送带的速度v =4m/s 所用的时间为t ,加速度大小为a ,在时间t 内滑块C 的位移为x ,有mg ma μ=C v v at =+212C x v t at =+代入数据可得3m x = 3m x L =<滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为v=4.0m/s(2)设A 、B 碰撞前A 的速度为v 0,A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,有2012A A m gh m v =01()A A B m v m m v =+ 12()()A B A B C C m m v m m v m v +=++A 、B 碰撞后,弹簧伸开的过程系统能量守恒222A 1A 2111()()222P B B C C E m m v m m v m v ++=++代入数据可解得2.0J P E =(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传送带的速度v .设A 与B 碰撞后的速度为1v ',分离后A 与B 的速度为2v ',滑块C 的速度为'C v ,C 在传送带上做匀减速运动的末速度为v =4m/s ,加速度大小为2m/s 2,有22()Cv v a L '-=- 解得42m/s Cv '= 以向右为正方向,A 、B 碰撞过程1()A m A B m v m m v '=+弹簧伸开过程12()()A B C C A B m m v m v m m v '''+=++22212111+()()+222p A B A B C C E m m v m m v m v '''+=+代入数据解得74228.14m v =+≈m/s .4.一个平板小车置于光滑水平面上,其右端恰好和一个光滑圆弧轨道AB 的底端等高对接,如图所示.已知小车质量M=3.0kg ,长L=2.06m ,圆弧轨道半径R=0.8m .现将一质量m=1.0kg 的小滑块,由轨道顶端A 点无初速释放,滑块滑到B 端后冲上小车.滑块与小车上表面间的动摩擦因数.(取g=10m/s 2)试求:(1)滑块到达B 端时,轨道对它支持力的大小; (2)小车运动1.5s 时,车右端距轨道B 端的距离;(3)滑块与车面间由于摩擦而产生的内能.【答案】(1)30 N (2)1 m (3)6 J 【解析】(1)滑块从A 端下滑到B 端,由动能定理得(1分)在B 点由牛顿第二定律得(2分) 解得轨道对滑块的支持力N (1分)(2)滑块滑上小车后,由牛顿第二定律对滑块:,得m/s2 (1分)对小车:,得m/s2 (1分)设经时间t后两者达到共同速度,则有(1分)解得s (1分)由于s<1.5s,故1s后小车和滑块一起匀速运动,速度v="1" m/s (1分)因此,1.5s时小车右端距轨道B端的距离为m (1分)(3)滑块相对小车滑动的距离为m (2分)所以产生的内能J (1分)5.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg 的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m6.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)0.32μ=(2)F=130N【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△t=mv′﹣mv,代入数据解得:F=130N.7.如图所示,BC 225竖直放置的光滑细圆管,O为细圆管的圆心,在圆管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球从进入圆管开始受到始终竖直向上的力F=5N的作用,当小球运动到圆管的末端C时作用力F立即消失,小球能平滑地冲上粗糙斜面.(g=10m/s2)求:(1)小球从O点的正上方某处A点水平抛出的初速度v0为多少?(2)小球在圆管中运动时对圆管的压力是多少?(3)小球在CD斜面上运动的最大位移是多少?【答案】(1)2m/s ;(2)7.1N ;(3)0.35m. 【解析】 【详解】(1)小球从A 运动到B 为平抛运动, 水平方向:r sin45°=v 0t ,在B 点:tan45°=y v gt v v =, 解得:v 0=2m/s ;(2)小球到达在B 点的速度:22m/s cos 45v v ︒==,由题意可知:mg =0.5×10=5N=F ,重力与F 的合力为零,小球所受合力为圆管的外壁对它的弹力,该力不做功, 小球在管中做匀速圆周运动,管壁的弹力提供向心力,22(22)0.5N 7.1N225v F m r ==⨯= 由牛顿第三定律可知,小球对圆管的压力大小:7.1N F '=; (3)小球在CD 上滑行到最高点过程,由动能定理得:21sin 45?cos 45?02mg s mg s mv μ︒︒--=-解得:s ≈0.35m ;8.如图,与水平面夹角θ=37°的斜面和半径R =1.0m 的光滑圆轨道相切于B 点,且固定于竖直平面内。
高中物理动能定理综合应用专题训练答案及解析
高中物理动能定理的综合应用专题训练答案及分析一、高中物理精讲专题测试动能定理的综合应用1.如下图,人骑摩托车做跳跃特技表演,以 1.0m/s的初速度沿曲面冲上高0.8m、顶部水平的高台,若摩托车冲上高台的过程中一直以额定功率 1.8kW 行驶,经过 1.2s 抵达平台顶部,而后走开平台,落至地面时,恰能无碰撞地沿圆弧切线从 A 点切入圆滑竖直圆弧轨道,并沿轨道下滑. A、 B 为圆弧两头点,其连线水平.已知圆弧半径为 R=1.0m,人和车的总质量为 180kg ,特技表演的全过程中不计全部阻力 ( 计算中取 g=10m/s2, si n53°= 0.8 ,cos53°= 0.6) .求:(1)人和车抵达顶部平台的速度v;(2)从平台飞出到 A 点,人和车运动的水平距离x;(3)圆弧对应圆心角;(4)人和车运动到圆弧轨道最低点O时对轨道的压力.【答案】( 1) 3m/s( 2) 1.2m( 3)106°( 4)7.74 ×10 3N【分析】【剖析】【详解】(1)由动能定理可知:Pt1 mgH1mv 21m v0222v= 3m/s(2)由H 1gt22 ,s vt 2可得: s v2H 1.2m 2g(3)摩托车落至 A 点时,其竖直方向的分速度v y gt 24m / s设摩托车落地时速度方向与水平方向的夹角为α,则v y4,即α= 53°tanv3因此θ= 2α= 106°(4)在摩托车由最高点飞出落至O 点的过程中,由机械能守恒定律可得:mg[H R(1 cos )] 1 mv2 1 mv222v 2在 O 点:N mg mR因此 N= 7740N由牛顿第三定律可知,人和车在最低点O 时对轨道的压力为 7740N2.如下图,半径为R 的圆管BCD竖直搁置,一可视为质点的质量为m 的小球以某一初速度从 A 点水平抛出,恰巧从 B 点沿切线方向进入圆管,抵达圆管最高点 D 后水平射出.已知小球在 D 点对管下壁压力大小为1BC弧对mg,且 A、 D 两点在同一水平线上,2应的圆心角θ=60°,不计空气阻力.求:(1)小球在 A 点初速度的大小;(2)小球在 D 点角速度的大小;(3)小球在圆管内运动过程中战胜阻力做的功.【答案】 (1)gR ;(2)g;(3)1mgR 2R4【分析】【剖析】(1)依据几何关系求出平抛运动降落的高度,进而求出竖直方向上的分速度,依据运动的合成和分解求出初速度的大小.(2)依据向心力公式求出小球在 D 点的速度,进而求解小球在 D 点角速度.(3)对 A 到 D 全程运用动能定理,求出小球在圆管中运动时战胜阻力做的功.【详解】(1)小球从 A 到 B,竖直方向 : v y2=2gR(1+ cos 60 °)解得 v y=3gR在 B 点: v0=v y=gR .tan 6001mv D2(2)在 D 点,由向心力公式得 mg-mg=2R2gR解得 v D=2ω=v D=g R.2R(3)从 A 到 D 全过程由动能定理:-1212 W 克=mv D-2mv0 2解得 W 克=1mgR. 4【点睛】此题综合考察了平抛运动和圆周运动的基础知识,难度不大,重点搞清平抛运动在水平方向和竖直方向上的运动规律,以及圆周运动向心力的根源.3.如下图,圆滑斜面 AB 的倾角θ=53°,BC为水平面, BC 的长度 l BC=1.10 m, CD 为圆滑的1圆弧,半径 R=0.60 m.一个质量 m=2.0 kg 的物体,从斜面上 A 点由静止开始下滑,物4体与水平面BC 间的动摩擦因数μ=0.20.轨道在B, C 两点圆滑连结.当物体抵达 D 点时,持续竖直向上运动,最高点距离 D 点的高度h=0.20 m, sin 53 =0°.8, cos 53 °=0.6.g 取10m/s 2.求:(1)物体运动到C点时速度大小v C(2)A 点距离水平面的高度H(3)物体最后停止的地点到 C 点的距离 s.【答案】 (1)4 m/s(2)1.02 m (3)0.4 m【分析】【详解】(1)物体由 C 点到最高点,依据机械能守恒得:mg R h 1mv c2 2代入数据解得: v C4m/ s(2)物体由 A 点到 C 点,依据动能定理得:mgHmgl BC 1mv c20 2代入数据解得: H 1.02m(3)从物体开始下滑到停下,依据能量守恒得:mgx mgH代入数据,解得:x 5.1m因为 x 4l BC0.7 m因此,物体最后停止的地点到 C 点的距离为:s0.4m .【点睛】此题综合考察功能关系、动能定理等;在办理该类问题时,要注意仔细剖析能量关系,正确选择物理规律求解.4.如下图,倾角θ=30°的斜面足够长,上有间距d=0.9 m 的P、 Q 两点,Q 点以上斜面光滑, Q 点以下粗拙。
2025届高考物理复习:经典好题专项(动能定理及其应用)练习(附答案)
2025届高考物理复习:经典好题专项(动能定理及其应用)练习1.(2023ꞏ北京市东城区模拟)复兴号动车在世界上首次实现速度350 km/h 自动驾驶功能,成为我国高铁自主创新的又一重大标志性成果。
一列质量为m 的动车,初速度为v 0,以恒定功率P 在平直轨道上运动,经时间t 达到该功率下的最大速度v m ,设动车行驶过程所受到的阻力F 保持不变。
下列关于列车在整个过程中的说法正确的是( )A .做匀加速直线运动B .牵引力的功率P =F v mC .当动车速度为v m 3时,其加速度为3F mD .牵引力做的功等于12m v m 2-12m v 022. 如图所示,竖直平面内有一半径为R 的14B 。
一质量为m的小物块从A 处由静止滑下,沿轨道运动至C 处停下,B 、C 两点间的距离为R ,物块与圆轨道和水平轨道之间的动摩擦因数相同。
现用始终平行于轨道或轨道切线方向的力推动物块,使物块从C 处缓慢返回A 处,重力加速度为g ,设推力做的功至少为W ,则( )A .W =mgRB .mgR <W <2mgRC .W =2mgRD .W >2mgR3. 如图所示,AB 是带有半径为R 的竖直圆轨道的光滑轨道,它的质量为M ,置于左右固定的水平地面上,紧挨轨道的B 点有一倾角为θ的斜面,一质量为m 的小球从光滑斜面上距B 点4R 处由静止释放,当小球通过圆轨道最高点时轨道恰好能离开地面,已知斜面倾角θ=53°,sin 53°=0.8,不计小球经过B 点时的能量损失,则轨道质量M 与小球质量m 之间的关系为( )A .M =0.8mB .M =1.2mC .M =1.4mD .M =2.0m4. 如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小球以速度v 从轨道下端滑入轨道,并保证从轨道上端水平飞出,则关于小球落地点到轨道下端的水平距离x 与轨道半径R 的关系,下列说法正确的是( )A .R 越大,则x 越大B .R 越小,则x 越大C .当R 为某一定值时,x 才有最大值D .当R 为某一定值时,x 才有最小值5. (2023ꞏ四川绵阳市诊断)如图所示,有一倾角θ=45°的粗糙斜面固定于空中的某位置。
高考物理动能定理的综合应用题20套(带答案)含解析(1)
高考物理动能定理的综合应用题20套(带答案)含解析(1)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv=tan 45° 联立解得:h =0.2 m 【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=3m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;4.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J5.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .6.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。
完整版)高中物理动能定理典型练习题(含答案)
完整版)高中物理动能定理典型练习题(含答案)1.正确答案是D。
对于一个物体来说,只有在速度大小(速率)发生变化时,它的动能才会改变。
速度的变化是一个矢量,它可以完全由于速度方向的变化而引起,例如匀速圆周运动。
速度变化的快慢是指加速度,加速度大小与速度大小之间没有必然的联系。
2.一个物体从高度为H的地方自由落体,落到高度为h的沙坑中停止。
假设物体的质量为m,重力加速度为g,根据动能定理,当物体速度为v时,mgH = 1/2mv^2,因此v =sqrt(2gH)。
在沙坑中,重力做正功,阻力做负功,根据动能定理,1/2mv^2 - Fh = mgh,其中F为物体在沙坑中受到的平均阻力。
解方程得到F = (H + h)mg / (gh)。
3.一个物体沿一曲面从A点无初速度滑下,滑至曲面的最低点B时,下滑高度为5m,物体质量为1kg,速度为6m/s。
假设物体在滑行过程中克服了摩擦力,设摩擦力为F,根据动能定理,mgh - W = 1/2mv^2,其中W为物体克服阻力所做的功。
解方程得到W = 32J。
课后创新演练:1.滑块的质量为1kg,初速度为4m/s,水平力方向向左,大小未知。
在一段时间内,水平力方向变为向右,大小不变为未知。
根据动能定理,水平力所做的功等于滑块动能的变化量,即1/2mv^2 - 1/2mu^2,其中v和u分别为滑块在水平力作用下的末速度和初速度。
根据题意,v = u = 4m/s,解方程得到水平力所做的功为16J。
2.两个物体的质量之比为1:3,高度之比也为1:3.根据动能定理,物体的动能等于1/2mv^2,其中v为物体的速度。
假设两个物体在落地时的速度分别为v1和v2,则v1 : v2 =sqrt(h1) : sqrt(h2),其中h1和h2分别为两个物体的高度。
因此,v1^2 : v2^2 = h1 : h2 = 1 : 9,即它们落地时的动能之比为1:9.3.物体沿长为L的光滑斜面下滑,速度达到末速度的一半时,物体沿斜面下滑的距离为L。
物理动能定理的综合应用题20套(带答案)
物理动能定理的综合应用题20套(带答案)一、高中物理精讲专题测试动能定理的综合应用1.为了备战2022年北京冬奥会,一名滑雪运动员在倾角θ=30°的山坡滑道上进行训练,运动员及装备的总质量m=70 kg.滑道与水平地面平滑连接,如图所示.他从滑道上由静止开始匀加速下滑,经过t=5s到达坡底,滑下的路程 x=50 m.滑雪运动员到达坡底后又在水平面上滑行了一段距离后静止.运动员视为质点,重力加速度g=10m/s2,求:(1)滑雪运动员沿山坡下滑时的加速度大小a;(2)滑雪运动员沿山坡下滑过程中受到的阻力大小f;(3)滑雪运动员在全过程中克服阻力做的功W f.【答案】(1)4m/s2(2)f = 70N (3)1.75×104J【解析】【分析】(1)运动员沿山坡下滑时做初速度为零的匀加速直线运动,已知时间和位移,根据匀变速直线运动的位移时间公式求出下滑的加速度.(2)对运动员进行受力分析,根据牛顿第二定律求出下滑过程中受到的阻力大小.(3)对全过程,根据动能定理求滑雪运动员克服阻力做的功.【详解】(1)根据匀变速直线运动规律得:x=1at22解得:a=4m/s2(2)运动员受力如图,根据牛顿第二定律得:mgsinθ-f=ma解得:f=70N(3)全程应用动能定理,得:mgxsinθ-W f =0解得:W f =1.75×104J【点睛】解决本题的关键要掌握两种求功的方法,对于恒力可运用功的计算公式求.对于变力可根据动能定理求功.2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图所示,AB是竖直面内的四分之一圆弧形光滑轨道,下端B点与水平直轨道相切.一个小物块自A点由静止开始沿轨道下滑,已知轨道半径为R=0.2m,小物块的质量为m=0.1kg,小物块与水平面间的动摩擦因数μ=0.5,g取10m/s2.求:(1)小物块在B点时受到的圆弧轨道的支持力大小;(2)小物块在水平面上滑动的最大距离.【答案】(1)3N (2)0.4m【解析】(1)由机械能守恒定律,得在B点联立以上两式得F N=3mg=3×0.1×10N=3N.(2)设小物块在水平面上滑动的最大距离为l,对小物块运动的整个过程由动能定理得mgR-μmgl=0,代入数据得【点睛】解决本题的关键知道只有重力做功,机械能守恒,掌握运用机械能守恒定律以及动能定理进行解题.4.某滑沙场的示意图如图所示,某旅游者乘滑沙橇从A点由静止开始滑下,最后停在水平沙面上的C点.设滑沙橇和沙面间的动摩擦因数处处相同,斜面和水平面连接处可认为是圆滑的,滑沙者保持一定姿势坐在滑沙橇上不动,若测得AC间水平距离为x,A点高为h,求滑沙橇与沙面间的动摩擦因数μ.【答案】h/x【解析】【分析】对A到C的全过程运用动能定理,抓住动能的变化量为零,结合动能定理求出滑沙橇与沙面间的动摩擦因数.【详解】设斜面的倾角为θ,对全过程运用动能定理得,因为,则有,解得.【点睛】本题考查了动能定理的基本运用,运用动能定理解题关键选择好研究的过程,分析过程中有哪些力做功,再结合动能定理进行求解,本题也可以结合动力学知识进行求解.5.如图所示,倾斜轨道AB 的倾角为37°,CD 、EF 轨道水平,AB 与CD 通过光滑圆弧管道BC 连接,CD 右端与竖直光滑圆周轨道相连.小球可以从D 进入该轨道,沿轨道内侧运动,从E 滑出该轨道进入EF 水平轨道.小球由静止从A 点释放,已知AB 长为5R ,CD 长为R ,重力加速度为g ,小球与斜轨AB 及水平轨道CD 、EF 的动摩擦因数均为0.5,sin37°=0.6,cos37°=0.8,圆弧管道BC 入口B 与出口C 的高度差为l.8R .求:(在运算中,根号中的数值无需算出)(1)小球滑到斜面底端C 时速度的大小. (2)小球刚到C 时对轨道的作用力.(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R /应该满足什么条件? 【答案】(1285gR(2)6.6mg ,竖直向下(3)0.92R R '≤ 【解析】试题分析:(1)设小球到达C 点时速度为v ,a 球从A 运动至C 过程,由动能定理有0021(5sin 37 1.8)cos3752c mg R R mg R mv μ+-⋅=(2分) 可得 5.6c v gR 1分)(2)小球沿BC 轨道做圆周运动,设在C 点时轨道对球的作用力为N ,由牛顿第二定律2c v N mg m r-=, (2分) 其中r 满足 r+r·sin530=1.8R (1分) 联立上式可得:N=6.6mg (1分)由牛顿第三定律可得,球对轨道的作用力为6.6mg ,方向竖直向下. (1分) (3)要使小球不脱离轨道,有两种情况:情况一:小球能滑过圆周轨道最高点,进入EF 轨道.则小球b 在最高点P 应满足2P v m mg R '≥(1分) 小球从C 直到P 点过程,由动能定理,有2211222P c mgR mg R mv mv μ--'⋅=-(1分) 可得230.9225R R R ='≤(1分) 情况二:小球上滑至四分之一圆轨道的Q 点时,速度减为零,然后滑回D .则由动能定理有2102c mgR mg R mv μ--⋅='-(1分)2.3R R '≥(1分)若 2.5R R '=,由上面分析可知,小球必定滑回D ,设其能向左滑过DC 轨道,并沿CB 运动到达B 点,在B 点的速度为v B ,,则由能量守恒定律有22111.8222c B mv mv mg R mgR μ=+⋅+(1分) 由⑤⑨式,可得0B v =(1分)故知,小球不能滑回倾斜轨道AB ,小球将在两圆轨道之间做往返运动,小球将停在CD 轨道上的某处.设小球在CD 轨道上运动的总路程为S ,则由能量守恒定律,有212c mv mgS μ=(1分) 由⑤⑩两式,可得 S=5.6R (1分)所以知,b 球将停在D 点左侧,距D 点0.6R 处. (1分)考点:本题考查圆周运动、动能定理的应用,意在考查学生的综合能力.6.如图所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电微粒静止在空间范围足够大的电场强度为E1的匀强电场中.取g =10 m/s 2. (1)求匀强电场的电场强度 E1的大小和方向;(2)在t =0时刻,匀强电场强度大小突然变为E2=4.0×103N/C ,且方向不变.求在t =0.20 s 时间内电场力做的功;(3)在t =0.20 s 时刻突然撤掉第(2)问中的电场,求带电微粒回到出发点时的动能.【答案】(1)2.0×103N/C ,方向向上 (2)8.0×10-4J (3)8.0×10-4J 【解析】 【详解】(1)设电场强度为E ,则:Eq mg =,代入数据解得:4362.01010/ 2.010/1010mg E N C N C q --⨯⨯===⨯⨯,方向向上 (2)在0t =时刻,电场强度突然变化为:32 4.010/E N C =⨯,设微粒的加速度为a ,在0.20t s =时间内上升高度为h ,电场力做功为W ,则:21qE mg ma -=解得:2110/a m s =根据:2112h a t =,解得:0.20=h m 电场力做功:428.010J W qE h -==⨯(3)设在0.20t s =时刻突然撤掉电场时粒子的速度大小为v ,回到出发点时的动能为k E ,则:v at =,212k E mgh mv =+解得:48.010J k E -=⨯7.如图所示,ABC 是一条长L =10m 的绝缘水平轨道,固定在离水平地面高h =1.25m 处,A 、C 为端点,B 为中点,轨道BC 处在方向竖直向上,大小E =5×105N/C 的匀强电场中,一质量m =0.5kg ,电荷量q =+1.0×10-5C 的可视为质点的滑块以初速度v 0=6m/s 在轨道上自A 点开始向右运动,经B 点进入电场,从C 点离开电场,已知滑块与轨道间动摩擦因数μ=0.2,g 取10m/s 2。
高考物理动能定理的综合应用题20套(带答案)
高考物理动能定理的综合应用题20套(带答案)一、高中物理精讲专题测试动能定理的综合应用1.小明同学根据上海迪士尼乐园游戏项目“创极速光轮”设计了如图所示的轨道。
一条带有竖直圆轨道的长轨道固定在水平面上,底端分别与两侧的直轨道相切,其中轨道AQ 段粗糙、长为L 0=6.0m ,QNP 部分视为光滑,圆轨道半径R =0.2m ,P 点右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.5m 。
一玩具电动小车,通电以后以P =4W 的恒定功率工作,小车通电加速运动一段时间后滑入圆轨道,滑过最高点N ,再沿圆轨道滑出。
小车的质量m =0.4kg ,小车在各粗糙段轨道上所受的阻力恒为f =0.5N 。
(重力加速度g =10m/s 2;小车视为质点,不计空气阻力)。
(1)若小车恰能通过N 点完成实验,求进入Q 点时速度大小; (2)若小车通电时间t =1.4s ,求滑过N 点时小车对轨道的压力; (3)若小车通电时间t≤2.0s ,求小车可能停在P 点右侧哪几段轨道上。
【答案】(1)22m/s ;(2)6N ,方向竖直向上;(3)第7段和第20段之间 【解析】 【分析】 【详解】(1)小车恰能过N 点,则0N v =,Q →N 过程根据动能定理2211222N mg R mv mv -⋅=- 代入解得22m/s v =(2)A →N 过程2011202Pt fL mg R mv --⋅=- 代入解得15m/s v =在N 点时21N mv mg F R+= 代入解得N 6N F =根据牛顿第三定律可得小汽车对轨道压力大小6N ,方向竖直向上。
(3)设小汽车恰能过最高点,则0020Pt fL mg R --⋅=代入解得0 1.15s 2s t =<此时小汽车将停在12mg R n fL ⋅=代入解得1 6.4n =因此小车将停在第7段; 当通电时间 2.0s t =时020Pt fL n fL --=代入解得220n =因此小车将停在第20段;综上所述,当t ≤2.0s 时,小汽车将停在第7段和第20段之间。
高三物理动能定理的综合应用试题答案及解析
高三物理动能定理的综合应用试题答案及解析1.已知一足够长的传送带与水平面的倾角为θ,以一定的速度匀速运动.某时刻在传送带适当的位置放上具有一定初速度的物块(如图a所示),以此时为t=0时刻记录了小物块之后在传送带上运动速度随时间的变化关系,如图b所示(图中取沿斜面向上的运动方向为正方向,其中两坐标大小v1>v2),已知传送带的速度保持不变(g取10 m/s2),则A.0~t1内,物块对传送带做正功B.物块与传送带间的动摩擦因数为μ,μ<tanθC.0~t2内,传送带对物块做功为D.系统产生的热量大小一定大于物块动能的变化量大小【答案】D【解析】分析题图b可知,传送带沿斜面向上运动;0~t1内,物块沿斜面向下运动,物块受到的摩擦力沿斜面向上,故传送带受到的摩擦力沿斜面向下,物块对传送带做负功,选项A错误;0~t1内,物块沿斜面向下减速运动,故物块加速度沿斜面向上,即μmgcosθ>mgsinθ,故μ>tanθ,选项B错误;0~t2内,传送带对物块做的功W加上物块重力做的功WG等于物块动能的增加量,即,根据v-t图像的“面积”法求位移可知,WG≠0,选项C错误;设0~t1内物块的位移大小为s1,t1~t2内物块的位移大小为s2,全过程物块与传送带之间有相对滑动,物块受到的摩擦力f大小恒定,系统的一部分机械能会通过“摩擦生热”转化为热量即内能,其大小Q=fs相对,对0~t1内和t1~t2内的物块运用动能定理,有-(f-mgsinθ)s1=0-mv,(f-mgsinθ)s2=mv,即f(s1+s2)=mv+mv+mgsinθ(s1+s2)>mv-mv,因s相对>s1+s2,故Q=fs相对>f(s1+s2)>mv-mv,选项D正确2.(15分)如图所示,MN与PQ为在同一水平面内的平行光滑金属导轨,间距l=0.5m,电阻不计,在导轨左端接阻值为R=0.6Ω的电阻.整个金属导轨置于竖直向下的匀强磁场中,磁感应强度大小为B=2T.将质量m=1kg、电阻r=0.4Ω的金属杆ab垂直跨接在导轨上.金属杆ab在水平拉力F的作用下由静止开始向右做匀加速运动.开始时,水平拉力为F=2N.(1)求金属杆ab的加速度大小;(2)求2s末回路中的电流大小;(3)已知开始2s内电阻R上产生的焦耳热为6.4J,求该2s内水平拉力F所做的功.【答案】(1)2 m/s2(2)4A (3)18.7J【解析】(1)(4分)在初始时刻,由牛顿第二定律:(2分)得(2分)(2)(5分)2s末时,(1分)感应电动势(2分)回路电流为(2分)(3)(6分)设拉力F所做的功为, 由动能定理:(2分)为金属杆克服安培力做的总功,它与R上焦耳热关系为:,(2分)得:(1分)所以:(1分)【考点】本题考查电磁感应、动能定理=5m/s的水平初速度滑上静止在光滑水平3.(10分)如图所示,质量为m=1kg的滑块,以υ面的平板小车,若小车质量M=4kg,平板小车足够长,滑块在平板小车上滑移1s后相对小车静止。
【物理】物理动能定理的综合应用题20套(带答案)及解析
⑵滑块要能通过最高点C,则在C点所受圆轨道的弹力N需满足:N≥0 ①
在C点时,根据牛顿第二定律有:mg+N= ②
在滑块由A运动至C的过程中,根据动能定理有:-μmgcos37° = - ③
由①②③式联立解得滑块从A点沿斜面滑下时的初速度v0需满足:v0≥ = m/s
即v0的最小值为:v0min= m/s
(1)人和车到达顶部平台的速度v;
(2)从平台飞出到A点,人和车运动的水平距离x;
(3)圆弧对应圆心角 ;
(4)人和车运动到圆弧轨道最低点O时对轨道的压力.
【答案】(1)3m/s(2)1.2m(3)106°(4)7.74×103N
【解析】
【分析】
【详解】
(1)由动能定理可知:
v=3m/s
(2)由 可得:
(3)摩托车落至A点时,其竖直方向的分速度
设摩托车落地时速度方向与水平方向的夹角为α,则
,即α=53°
所以θ=2α=106°
(4)在摩托车由最高点飞出落至O点的过程中,由机械能守恒定律可得:
在O点:
所以N=7740N
由牛顿第三定律可知,人和车在最低点O时对轨道的压力为7740N
2.如图所示,倾角为37°的粗糙斜面AB底端与半径R=0.4m的光滑半圆轨道BC平滑相连,O点为轨道圆心,BC为圆轨道直径且处于竖直方向,A、C两点等高.质量m=1kg的滑块从A点由静止开始下滑,恰能滑到与O点等高的D点,g取10m/s2,sin37°=0.6,cos37°=0.8.求:
⑶滑块从C点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x=vt ④
在竖直方向的位移为:y= ⑤
根据图中几何关系有:tan37°= ⑥
【物理】物理动能定理的综合应用题20套(带答案)
【物理】物理动能定理的综合应用题20套(带答案)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,光滑曲面与光滑水平导轨MN 相切,导轨右端N 处于水平传送带理想连接,传送带长度L =4m ,皮带轮沿顺时针方向转动,带动皮带以恒定速率v =4.0m/s 运动.滑块B 、C 之间用细绳相连,其间有一压缩的轻弹簧,B 、C 与细绳、弹簧一起静止在导轨MN 上.一可视为质点的滑块A 从h =0.2m 高处由静止滑下,已知滑块A 、B 、C 质量均为m =2.0kg ,滑块A 与B 碰撞后粘合在一起,碰撞时间极短.因碰撞使连接B 、C 的细绳受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离.滑块C 脱离弹簧后以速度v C =2.0m/s 滑上传送带,并从右端滑出落至地面上的P 点.已知滑块C 与传送带之间的动摩擦因数μ=0.2,重力加速度g 取10m/s 2.(1)求滑块C 从传送带右端滑出时的速度大小; (2)求滑块B 、C 与细绳相连时弹簧的弹性势能E P ;(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C 总能落至P 点,则滑块A 与滑块B 碰撞前速度的最大值v m 是多少? 【答案】(1) 4.0m/s (2) 2.0J (3) 8.1m/s 【解析】 【分析】 【详解】(1)滑块C 滑上传送带到速度达到传送带的速度v =4m/s 所用的时间为t ,加速度大小为a ,在时间t 内滑块C 的位移为x ,有mg ma μ=C v v at =+212C x v t at =+代入数据可得3m x = 3m x L =<滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为v=4.0m/s(2)设A 、B 碰撞前A 的速度为v 0,A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,有2012A A m gh m v =01()A A B m v m m v =+ 12()()A B A B C C m m v m m v m v +=++A 、B 碰撞后,弹簧伸开的过程系统能量守恒222A 1A 2111()()222P B B C C E m m v m m v m v ++=++代入数据可解得2.0J P E =(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传送带的速度v .设A 与B 碰撞后的速度为1v ',分离后A 与B 的速度为2v ',滑块C 的速度为'C v ,C 在传送带上做匀减速运动的末速度为v =4m/s ,加速度大小为2m/s 2,有22()Cv v a L '-=- 解得42m/s Cv '= 以向右为正方向,A 、B 碰撞过程1()A m A B m v m m v '=+弹簧伸开过程12()()A B C C A B m m v m v m m v '''+=++22212111+()()+222p A B A B C C E m m v m m v m v '''+=+代入数据解得74228.14m v =+≈m/s .2.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。
物理动能定理的综合应用题20套(带答案)
(2)在2~10 s内小车牵引力的功率P是多大?
(3)小车在加速运动过程中的总位移x是多少?
【答案】(1)2 N;(2)12W (3)28.5 m;
【解析】
(1)在10s撤去牵引力后,小车只在阻力 作用下做匀减速运动,
设加速度大小为a,则 ,根据 ,
由图像可知 ,解得 ;
【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
(1)小球通过C点时的速度 ;
(2)小球从A点运动到C点的过程中,损失的机械能
【答案】(1) (2)1.5mgR
【解析】
【详解】
(1)小球恰能通过C点时,由重力提供向心力,由牛顿第二定律得:
则得:
(2)小球从A点运动到C点的过程中,根据动能定理得:
解得:
Wf=1.5mgR
则小球从A点运动到C点的过程中,损失的机械能
(2)小车的匀速阶段即7s~10s内,设牵引力为F,则
由图像可知 ,且 ;
(3)小车的加速运动过程可以分为0~1.5s和1.5s~7s两段,
设对应的位移分别为 和 ,在0~2s内的加速度大小为 ,
则由图像可得 , ,
在1.5s~7s内由动能定理可得 , ,
解得 ,
由
9.如图所示,半圆轨道的半径为R=10m,AB的距离为S=40m,滑块质量m=1kg,滑块在恒定外力F的作用下从光滑水平轨道上的A点由静止开始运动到B点,然后撤去外力,又沿竖直面内的光滑半圆形轨道运动,且滑块通过最高点C后又刚好落到原出发点A;g=滑块B从传送带右端滑出时的速度大小;
(3)滑块B落至P点距传送带右端的水平距离.
物理动能定理的综合应用题20套(带答案)
(1)设小物块在C点的速度为 ,则在D点有:
设弹簧最初具有的弹性势能为 ,则:
代入数据联立解得: ;
设小物块在E点的速度为 ,则从D到E的过程中有:
设在E点,圆轨道对小物块的支持力为N,则有:
代入数据解得: ,
由牛顿第三定律可知,小物块到达圆轨道的E点时对圆轨道的压力为30
设小物体沿斜面FG上滑的最大距离为x,从E到最大距离的过程中有:
小物块第一次到达圆弧轨道的E点时对圆弧轨道的压力大小是30 N;
小物块沿斜面FG第一次返回圆弧轨道后不能回到圆弧轨道的D点 经过足够长的时间后小物块通过圆弧轨道最低点E的速度大小为2 .
【点睛】
(1)物块离开C点后做平抛运动,由D点沿圆轨道切线方向进入圆轨道,知道了到达D点的速度方向,将D点的速度分解为水平方向和竖直方向,根据角度关系求出水平分速度,即离开C点时的速度,再研究弹簧释放的过程,由机械能守恒定律求弹簧最初具有的弹性势能;
⑴求物块由A点运动到C点的时间;
⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;
⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.
【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m
【解析】
试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1
所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动
s=v0t0,H=
解得s=6m.
(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有vC=v0
①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:
,
解得h3=1.8m
高考物理动能定理的综合应用题20套(带答案)含解析
高考物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小.【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】(1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理mgR -W f =12mv 2W f =1.5J(2)由牛顿第二定律可知:2N v F mg m R-=解得:4.5N F N =(3)小球离开圆弧后做平抛运动根据动能定理可知:22111m m 22mgh v v =-解得:152m/s v =2.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;3.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC 长L =6m ,始终以v 0=6m/s 的速度顺时针运动.将一个质量m =1kg 的物块由距斜面底端高度h 1=5.4m 的A 点静止滑下,物块通过B 点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H =5m ,g 取10m/s 2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h3=1.8m②当离传送带高度为h4时物块进入传送带后一直匀减速运动,h4=9.0m所以当离传送带高度在1.8m~9.0m的范围内均能满足要求即1.8m≤h≤9.0m4.如图所示,半径为R的圆管BCD竖直放置,一可视为质点的质量为m的小球以某一初速度从A点水平抛出,恰好从B点沿切线方向进入圆管,到达圆管最高点D后水平射出.已知小球在D点对管下壁压力大小为12mg,且A、D两点在同一水平线上,BC弧对应的圆心角θ=60°,不计空气阻力.求:(1)小球在A 点初速度的大小; (2)小球在D 点角速度的大小;(3)小球在圆管内运动过程中克服阻力做的功.【答案】(3)14mgR【解析】 【分析】(1)根据几何关系求出平抛运动下降的高度,从而求出竖直方向上的分速度,根据运动的合成和分解求出初速度的大小.(2)根据向心力公式求出小球在D 点的速度,从而求解小球在D 点角速度. (3)对A 到D 全程运用动能定理,求出小球在圆管中运动时克服阻力做的功. 【详解】(1)小球从A 到B ,竖直方向: v y 2=2gR(1+cos 60°)解得v y在B 点:v 0=60y v tan(2)在D 点,由向心力公式得mg-12mg =2Dmv R解得v Dω=D v R (3)从A 到D 全过程由动能定理:-W 克=12mv D 2-12mv 02 解得W 克=14mgR. 【点睛】本题综合考查了平抛运动和圆周运动的基础知识,难度不大,关键搞清平抛运动在水平方向和竖直方向上的运动规律,以及圆周运动向心力的来源.5.如图,图象所反映的物理情景是:物体以大小不变的初速度v 0沿木板滑动,若木板倾角θ不同,物体沿木板上滑的距离S 也不同,便可得出图示的S -θ图象.问: (1)物体初速度v 0的大小.(2)木板是否粗糙?若粗糙,则动摩擦因数μ为多少? (3)物体运动中有否最大加速度以及它发生在什么地方?【答案】(1)017.3m /s v = (2)0.75μ= (3)最大加速度点坐标()53,12m sθ︒'==【解析】 【分析】 【详解】(1)当θ=90º时,物体做竖直上抛运动,根据速度位移公式可知:01210317.3m /s v gs ===(2)当θ=0º时,根据动能定理得,201mg 2s mv μ=,解得:203000.75221020v gs μ===⨯⨯(3)加速度cos sin 3cos sin cos sin 4mg mg a g g g mμθθμθθθθ+⎛⎫==+=+ ⎪⎝⎭得到,当θ=53º时,α有极大值2m 12.5m /s a = ,由动能定理得,20102mv mas '-= ,所以12m s '= 所以最大加速度点坐标()53,12m s θ︒'==6.质量为2kg 的物体,在竖直平面内高h = 1m 的光滑弧形轨道A 点,以v =4m/s 的初速度沿轨道滑下,并进入BC 轨道,如图所示。
高考物理动能定理的综合应用题20套(带答案)及解析
高考物理动能定理的综合应用题20套(带答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,人骑摩托车做腾跃特技表演,以1.0m/s 的初速度沿曲面冲上高0.8m 、顶部水平的高台,若摩托车冲上高台的过程中始终以额定功率1.8kW 行驶,经过1.2s 到达平台顶部,然后离开平台,落至地面时,恰能无碰撞地沿圆弧切线从A 点切入光滑竖直圆弧轨道,并沿轨道下滑.A 、B 为圆弧两端点,其连线水平.已知圆弧半径为R =1.0m ,人和车的总质量为180kg ,特技表演的全过程中不计一切阻力(计算中取g =10m/s2,sin53°=0.8,cos53°=0.6).求:(1)人和车到达顶部平台的速度v ;(2)从平台飞出到A 点,人和车运动的水平距离x ; (3)圆弧对应圆心角θ;(4)人和车运动到圆弧轨道最低点O 时对轨道的压力. 【答案】(1)3m/s (2)1.2m (3)106°(4)7.74×103N 【解析】 【分析】 【详解】(1)由动能定理可知:221011Pt mgH mv 22mv -=- v =3m/s (2)由2221H gt ,s vt 2==可得:2H s v 1.2m g== (3)摩托车落至A 点时,其竖直方向的分速度y 2v gt 4m /s ==设摩托车落地时速度方向与水平方向的夹角为α,则4tan 3yv v α==,即α=53° 所以θ=2α=106° (4)在摩托车由最高点飞出落至O 点的过程中,由机械能守恒定律可得:2211mg[H R(1cos )]mv mv 22α'+-=-在O 点:2v N mg m R-= 所以N =7740N由牛顿第三定律可知,人和车在最低点O 时对轨道的压力为7740N2.如图所示,AC 为光滑的水平桌面,轻弹簧的一端固定在A 端的竖直墙壁上.质量1m kg =的小物块将弹簧的另一端压缩到B 点,之后由静止释放,离开弹簧后从C 点水平飞出,恰好从D 点以10/D v m s =的速度沿切线方向进入竖直面内的光滑圆弧轨道(DEF 小物体与轨道间无碰撞).O 为圆弧轨道的圆心,E 为圆弧轨道的最低点,圆弧轨道的半径1R m =,60DOE ∠=o ,37.EOF ∠=o小物块运动到F 点后,冲上足够长的斜面FG ,斜面FG 与圆轨道相切于F 点,小物体与斜面间的动摩擦因数0.5.sin370.6μ==o ,cos370.8=o ,取210/.g m s =不计空气阻力.求:(1)弹簧最初具有的弹性势能;(2)小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小;(3)判断小物块沿斜面FG 第一次返回圆弧轨道后能否回到圆弧轨道的D 点?若能,求解小物块回到D 点的速度;若不能,求解经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小.【答案】()11?.25J ;()2 30N ;()3 2/m s . 【解析】 【分析】 【详解】(1)设小物块在C 点的速度为C v ,则在D 点有:C D v v cos60o=设弹簧最初具有的弹性势能为p E ,则:2P C 1E mv 2= 代入数据联立解得:p E 1.25J =;()2设小物块在E 点的速度为E v ,则从D 到E 的过程中有:()22E D 11mgR 1cos60mv mv 22-=-o 设在E 点,圆轨道对小物块的支持力为N ,则有:2E v N mg R-=代入数据解得:E v 25m /s =,N 30N =由牛顿第三定律可知,小物块到达圆轨道的E 点时对圆轨道的压力为30 N ;()3设小物体沿斜面FG 上滑的最大距离为x ,从E 到最大距离的过程中有:()()2E 1mgR 1cos37mgsin37μmgcos37x 0mv 2o o o ---+=-小物体第一次沿斜面上滑并返回F 的过程克服摩擦力做的功为f W ,则f W 2x μmgcos37=o小物体在D 点的动能为KD E ,则:2KD D 1E mv 2=代入数据解得:x 0.8m =,f W 6.4J =,KD E 5J = 因为KD f E W <,故小物体不能返回D 点.小物体最终将在F 点与关于过圆轨道圆心的竖直线对称的点之间做往复运动,小物体的机械能守恒,设最终在最低点的速度为Em v ,则有:()2Em 1mgR 1cos37mv 2-=o 代入数据解得:Em v 2m /s =答:()1弹簧最初具有的弹性势能为1.25J ;()2小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小是30 N ;()3小物块沿斜面FG 第一次返回圆弧轨道后不能回到圆弧轨道的D 点.经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小为2 m /s . 【点睛】(1)物块离开C 点后做平抛运动,由D 点沿圆轨道切线方向进入圆轨道,知道了到达D 点的速度方向,将D 点的速度分解为水平方向和竖直方向,根据角度关系求出水平分速度,即离开C 点时的速度,再研究弹簧释放的过程,由机械能守恒定律求弹簧最初具有的弹性势能;()2物块从D 到E ,运用机械能守恒定律求出通过E 点的速度,在E 点,由牛顿定律和向心力知识结合求物块对轨道的压力;()3假设物块能回到D 点,对物块从A 到返回D 点的整个过程,运用动能定理求出D 点的速度,再作出判断,最后由机械能守恒定律求出最低点的速度.3.如图,I 、II 为极限运动中的两部分赛道,其中I 的AB 部分为竖直平面内半径为R 的14光滑圆弧赛道,最低点B 的切线水平; II 上CD 为倾角为30°的斜面,最低点C 处于B 点的正下方,B 、C 两点距离也等于R.质量为m 的极限运动员(可视为质点)从AB 上P 点处由静止开始滑下,恰好垂直CD 落到斜面上.求:(1) 极限运动员落到CD 上的位置与C 的距离; (2)极限运动员通过B 点时对圆弧轨道的压力; (3)P 点与B 点的高度差.【答案】(1)45R (2)75mg ,竖直向下(3)15R【解析】 【详解】(1)设极限运动员在B 点的速度为v 0,落在CD 上的位置与C 的距离为x ,速度大小为v ,在空中运动的时间为t ,则xcos300=v 0t R-xsin300=12gt 2 0tan 30v gt = 解得x=0.8R(2)由(1)可得:025v gR =通过B 点时轨道对极限运动员的支持力大小为F N20N v F mg m R-=极限运动员对轨道的压力大小为F N ′,则F N ′=F N , 解得'75N F mg =,方向竖直向下; (3) P 点与B 点的高度差为h,则mgh=12mv 02 解得h=R/54.一种氢气燃料的汽车,质量为m =2.0×103kg ,发动机的额定输出功率为80kW ,行驶在平直公路上时所受阻力恒为车重的0.1倍。
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)及解析
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图,固定在竖直平面内的倾斜轨道AB ,与水平光滑轨道BC 相连,竖直墙壁CD 高0.2H m =,紧靠墙壁在地面固定一个和CD 等高,底边长0.3L m =的斜面,一个质量0.1m kg =的小物块(视为质点)在轨道AB 上从距离B 点4l m =处由静止释放,从C 点水平抛出,已知小物块在AB 段与轨道间的动摩擦因数为0.5,达到B 点时无能量损失;AB段与水平面的夹角为37.(o 重力加速度210/g m s =,sin370.6=o ,cos370.8)o =(1)求小物块运动到B 点时的速度大小; (2)求小物块从C 点抛出到击中斜面的时间;(3)改变小物块从轨道上释放的初位置,求小物块击中斜面时动能的最小值. 【答案】(1) 4/m s (2)115s (3) 0.15J 【解析】 【分析】(1)对滑块从A 到B 过程,根据动能定理列式求解末速度;(2)从C 点画出后做平抛运动,根据分位移公式并结合几何关系列式分析即可; (3)动能最小时末速度最小,求解末速度表达式分析即可. 【详解】()1对滑块从A 到B 过程,根据动能定理,有:2B 1mglsin37μmgcos37mv 2-=o o ,解得:B v 4m /s =;()2设物体落在斜面上时水平位移为x ,竖直位移为y ,画出轨迹,如图所示:对平抛运动,根据分位移公式,有:0x v t =,21y gt 2=, 结合几何关系,有:H y H 2x L 3-==, 解得:1t s 15=; ()3对滑块从A 到B 过程,根据动能定理,有:2B 1mglsin37μmgcos37mv 2-=o o ,对平抛运动,根据分位移公式,有:0x v t =,21y gt 2=, 结合几何关系,有:H y H 2x L 3-==, 从A 到碰撞到斜面过程,根据动能定理有:21mglsin37μmgcos37l mgy mv 02-⋅+=-oo联立解得:22125y 9H 18H mv mg 21616y 16⎛⎫=+- ⎪⎝⎭,故当225y 9H 1616y =,即3y H 0.12m 5==时,动能k E 最小为:km E 0.15J =; 【点睛】本题是力学综合问题,关键是正确的受力分析,明确各个阶段的受力情况和运动性质,根据动能定理和平抛运动的规律列式分析,第三问较难,要结合数学不等式知识分析.3.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J4.质量为m =0.5kg 、可视为质点的小滑块,从光滑斜面上高h 0=0.6m 的A 点由静止开始自由滑下。
高一物理动能定理的综合应用试题答案及解析
高一物理动能定理的综合应用试题答案及解析1.人站在h高处的平台上,水平抛出一个质量为m的物体,物体落地时的速度为v,以地面为重力势能的零点,不计空气阻力,则有()A.人对小球做的功是B.人对小球做的功是C.小球落地时的机械能是D.小球落地时的机械能是【答案】A【解析】人对小球做的功等于小球获得的初动能,根据对从开始抛到落地的过程,运用动能定理得:,所以人对小球做的功是,故B错误,A正确;小球落地的机械能等于落地时的动能加重力势能,以地面为重力势能的零点,所以小球落地的机械能等于落地时的动能,即为,故C、D错误。
【考点】考查了动能定理,机械能守恒2.小球以速率v1靠惯性沿曲面由底端向上运动,当它回到出发点时速率为v2,且v2<v1,若A点距地面高度为小球向上运动的高度一半,取曲面底端重力势能为零,小球视为质点,则()A.上升时机械能减少量大于下降时机械能减少量B.上升时机械能减少量等于下降时机械能减少量C.上升过程中动能和势能相等的位置在A点上方D.上升过程中动能和势能相等的位置在A点下方【答案】AC【解析】上升过程中总的平均速度大于下降过程的平均速度,故上升过程中小球对轨道的压力较大,故摩擦力较大,摩擦力的功较多,机械能损失较大,故上升过程上升时机械能减少量大于下降时机械能减少量[,选项A正确,B错误;在最低点,机械能为:,在最高点,机械能为:E2=mgh;在中点A处,机械能为:,又EA >E2,即即在中点的动能大于重力势能,故动能和势能相等的位置在A点上方,选项C正确,D错误。
【考点】动能定理;能量守恒定律。
3.用竖直向上大小为30 N的力F,将质量为2 kg的物体从地面由静止提升,物体上升2m后撤去力F,经一段时间后,物体落回地面。
若忽略空气阻力,g取10 m/s2。
求:(1)拉力F做的功(2)物体上升2m时的动能(3)物体刚落回地面时的速度【答案】(1)60J;(2)20J;(3)【解析】(1)(2)从物体静止上升2m,由动能定理:解得:(3)对全过程,由动能定理:解得:方向竖直向下【考点】动能定理的应用。
高中物理动能定理的综合应用题20套(带答案)含解析
高中物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;2.如图所示,在粗糙水平面上有一质量为M 、高为h 的斜面体,斜面体的左侧有一固定障碍物Q,斜面体的左端与障碍物的距离为d .将一质量为m 的小物块置于斜面体的顶端,小物块恰好能在斜面体上与斜面体一起保持静止;现给斜面体施加一个水平向左的推力,使斜面体和小物块一起向左匀加速运动,当斜面体到达障碍物与其碰撞后,斜面体立即停止运动,小物块水平抛出,最后落在障碍物的左侧P 处(图中未画出),已知斜面体与地面间的动摩擦因数为μ1,斜面倾角为θ,重力加速度为g,滑动摩擦力等于最大静摩擦力,求:(1)小物块与斜面间的动摩擦因数μ2;(2)要使物块在地面上的落点P 距障碍物Q 最远,水平推力F 为多大; (3)小物块在地面上的落点P 距障碍物Q 的最远距离. 【答案】(1)2tan μθ= (2)()()1sin cos tan M m g F M m g sin θμθθθ+=++-(3)2sin cos tan tan hd hsin θθθθθ- 【解析】 【分析】对m 受力分析,由共点力平衡条件可以求出动摩擦因数;以m 为研究对象,求出最大加速度,以系统为研究对象,由牛顿第二定律求出最大推力;对系统由动能定理求出最大速度,然后由平抛运动规律求出最大水平位移. 【详解】(1)对m 由平衡条件得:mgsinθ-μ2mgcosθ=0 解得:μ2=tanθ(2)对m 设其最大加速度为a m ,由牛顿第二定律得 水平方向:Nsinθ+μ2Ncosθ=ma m 竖直方向:Ncosθ-μ2Nsinθ-mg =0 解得:2sin cos tan sin g a θθθθ=-对M 、m 整体由牛顿第二定律得:F -μ1(M +m )g =(M +m )a m 解得:()()12sin cos tan sin M m g F M m g θμθθθ+=++- (3)对M 、m 整体由动能定理得:()()2112Fd M m gd M m v μ-+=+ 解得:sin cos tan sin dg v θθθθ=-对m 由平抛运动规律得: 水平方向:tan p hx vt θ+= 竖直方向:212h gt =解得:2sin 2cos tan sin tan p hd hx θθθθθ=-- 【点睛】本题主要考查了应用平衡条件、牛顿第二定律、动能定理、平抛运动规律即可正确解题.3.如图所示,固定斜面的倾角α=30°,用一沿斜面向上的拉力将质量m =1kg 的物块从斜面底端由静止开始拉动,t =2s 后撤去该拉力,整个过程中物块上升的最大高度h =2.5m ,物块与斜面间的动摩擦因数μ=36.重力加速度g =10m/s 2.求:(1)拉力所做的功; (2)拉力的大小.【答案】(1)40J F W = (2)F =10N 【解析】 【详解】(1)物块从斜面底端到最高点的过程,根据动能定理有:cos 0sin F hW mg mgh μαα-⋅-= 解得拉力所做的功40F W J = (2)F W Fx =由位移公式有212x at = 由牛顿第二定律有cos sin F mg mg ma μαα--=解得拉力的大小F=10N.4.如图所示,一质量为m 的小球从半径为R 的竖直四分之一圆弧轨道的顶端无初速释放,圆弧轨道的底端水平,离地面高度为R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理动能定理的综合应用练习题及答案一、高中物理精讲专题测试动能定理的综合应用1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。
物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求:(1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。
【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】(1)物块A 从出发至N 点过程,机械能守恒,有22011222mv mg R mv =⋅+ 得20445m /s v v gR =-=(2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有2N v mg F m R+=得物块A 受到的弹力为2N 150N v F m mg R=-=由牛顿第三定律可得,物块对轨道的作用力为N N 150N F F '==作用力方向竖直向上(3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有20102mgx mv μ-=-得12.5m x =2.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv =tan 45° 联立解得:h =0.2 m 【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.3.如图所示,人骑摩托车做腾跃特技表演,以1.0m/s 的初速度沿曲面冲上高0.8m 、顶部水平的高台,若摩托车冲上高台的过程中始终以额定功率1.8kW 行驶,经过1.2s 到达平台顶部,然后离开平台,落至地面时,恰能无碰撞地沿圆弧切线从A 点切入光滑竖直圆弧轨道,并沿轨道下滑.A 、B 为圆弧两端点,其连线水平.已知圆弧半径为R =1.0m ,人和车的总质量为180kg ,特技表演的全过程中不计一切阻力(计算中取g =10m/s2,si n53°=0.8,cos53°=0.6).求:(1)人和车到达顶部平台的速度v ;(2)从平台飞出到A 点,人和车运动的水平距离x ; (3)圆弧对应圆心角θ;(4)人和车运动到圆弧轨道最低点O 时对轨道的压力. 【答案】(1)3m/s (2)1.2m (3)106°(4)7.74×103N 【解析】 【分析】 【详解】(1)由动能定理可知:221011Pt mgH mv 22mv -=- v =3m/s (2)由2221H gt ,s vt 2==可得:2H s v 1.2m g== (3)摩托车落至A 点时,其竖直方向的分速度y 2v gt 4m /s ==设摩托车落地时速度方向与水平方向的夹角为α,则4tan 3yv v α==,即α=53° 所以θ=2α=106°(4)在摩托车由最高点飞出落至O 点的过程中,由机械能守恒定律可得:2211mg[H R(1cos )]mvmv 22α'+-=-在O 点:2v N mg m R-= 所以N =7740N由牛顿第三定律可知,人和车在最低点O 时对轨道的压力为7740N4.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=3,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理5.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求:(1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小;(3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。
【解析】 【分析】 【详解】(1)小球离开台面到达A 点的过程做平抛运动,故有02 3m/s tan y v ghv θ=== 小球在平台上运动,只有弹簧弹力做功,故由动能定理可得:弹簧被压缩时的弹性势能为201 4.5J 2p E mv ==; (2)小球在A 处的速度为5m/s cos A v v θ== 小球从A 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得221111sin cos 22C A mgL mgL mv mv θμθ-=- 解得()212sin cos 10m/s C A v v gL θμθ=+-=;(3)小球进入圆轨道后,要使小球不脱离轨道,即小球能通过圆轨道最高点,或小球能在圆轨道上到达的最大高度小于半径;那么对小球能通过最高点时,在最高点应用牛顿第二定律可得21v mg m R≤;对小球从C 到最高点应用机械能守恒可得2211152222C mv mgR mv mgR =+≥ 解得202m 5Cv R g<≤=;对小球能在圆轨道上到达的最大高度小于半径的情况应用机械能守恒可得212C mv mgh mgR =≤ 解得2=5m 2C v R g≥;故小球进入圆轨道后,要使小球不脱离轨道,则竖直圆弧轨道的半径R ≥5m 或0<R ≤2m ;6.如图,固定在竖直平面内的倾斜轨道AB ,与水平光滑轨道BC 相连,竖直墙壁CD 高0.2H m =,紧靠墙壁在地面固定一个和CD 等高,底边长0.3L m =的斜面,一个质量0.1m kg =的小物块(视为质点)在轨道AB 上从距离B 点4l m =处由静止释放,从C 点水平抛出,已知小物块在AB 段与轨道间的动摩擦因数为0.5,达到B 点时无能量损失;AB段与水平面的夹角为37.(o 重力加速度210/g m s =,sin370.6=o ,cos370.8)o =(1)求小物块运动到B 点时的速度大小;(2)求小物块从C 点抛出到击中斜面的时间;(3)改变小物块从轨道上释放的初位置,求小物块击中斜面时动能的最小值. 【答案】(1) 4/m s (2)115s (3) 0.15J 【解析】 【分析】(1)对滑块从A 到B 过程,根据动能定理列式求解末速度;(2)从C 点画出后做平抛运动,根据分位移公式并结合几何关系列式分析即可; (3)动能最小时末速度最小,求解末速度表达式分析即可. 【详解】()1对滑块从A 到B 过程,根据动能定理,有:2B 1mglsin37μmgcos37mv 2-=o o ,解得:B v 4m /s =;()2设物体落在斜面上时水平位移为x ,竖直位移为y ,画出轨迹,如图所示:对平抛运动,根据分位移公式,有:0x v t =,21y gt 2=, 结合几何关系,有:H y H 2x L 3-==, 解得:1t s 15=; ()3对滑块从A 到B 过程,根据动能定理,有:2B 1mglsin37μmgcos37mv 2-=o o ,对平抛运动,根据分位移公式,有:0x v t =,21y gt 2=, 结合几何关系,有:H y H 2x L 3-==, 从A 到碰撞到斜面过程,根据动能定理有:21mglsin37μmgcos37l mgy mv 02-⋅+=-oo联立解得:22125y 9H 18H mv mg 21616y 16⎛⎫=+- ⎪⎝⎭,故当225y9H1616y=,即3y H0.12m5==时,动能kE最小为:kmE0.15J=;【点睛】本题是力学综合问题,关键是正确的受力分析,明确各个阶段的受力情况和运动性质,根据动能定理和平抛运动的规律列式分析,第三问较难,要结合数学不等式知识分析.7.在某电视台举办的冲关游戏中,AB是处于竖直平面内的光滑圆弧轨道,半径R=1.6m,BC是长度为L1=3m的水平传送带,CD是长度为L2=3.6m水平粗糙轨道,AB、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g取10m/s2.求:(1)参赛者运动到圆弧轨道B处对轨道的压力;(2)若参赛者恰好能运动至D点,求传送带运转速率及方向;(3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N,方向竖直向下(2)顺时针运转,v=6m/s(3)720J【解析】(1) 对参赛者:A到B过程,由动能定理mgR(1-cos60°)=12m2Bv解得v B=4m/s在B处,由牛顿第二定律N B-mg=m2 B v R解得N B=2mg=1 200N根据牛顿第三定律:参赛者对轨道的压力N′B=N B=1 200N,方向竖直向下.(2) C到D过程,由动能定理-μ2mgL2=0-12m2Cv解得v C=6m/sB到C过程,由牛顿第二定律μ1mg=ma 解得a=4m/s2(2分)参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m 参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .8.如图所示,倾斜轨道AB 的倾角为37°,CD 、EF 轨道水平,AB 与CD 通过光滑圆弧管道BC 连接,CD 右端与竖直光滑圆周轨道相连.小球可以从D 进入该轨道,沿轨道内侧运动,从E 滑出该轨道进入EF 水平轨道.小球由静止从A 点释放,已知AB 长为5R ,CD 长为R ,重力加速度为g ,小球与斜轨AB 及水平轨道CD 、EF 的动摩擦因数均为0.5,sin37°=0.6,cos37°=0.8,圆弧管道BC 入口B 与出口C 的高度差为l.8R .求:(在运算中,根号中的数值无需算出)(1)小球滑到斜面底端C 时速度的大小. (2)小球刚到C 时对轨道的作用力.(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R /应该满足什么条件? 【答案】(1285gR(2)6.6mg ,竖直向下(3)0.92R R '≤ 【解析】试题分析:(1)设小球到达C 点时速度为v ,a 球从A 运动至C 过程,由动能定理有0021(5sin 37 1.8)cos3752c mg R R mg R mv μ+-⋅=(2分) 可得 5.6c v gR 1分)(2)小球沿BC 轨道做圆周运动,设在C 点时轨道对球的作用力为N ,由牛顿第二定律2c v N mg m r-=, (2分) 其中r 满足 r+r·sin530=1.8R (1分) 联立上式可得:N=6.6mg (1分)由牛顿第三定律可得,球对轨道的作用力为6.6mg ,方向竖直向下. (1分)(3)要使小球不脱离轨道,有两种情况:情况一:小球能滑过圆周轨道最高点,进入EF 轨道.则小球b 在最高点P 应满足2P v m mg R '≥(1分) 小球从C 直到P 点过程,由动能定理,有2211222P c mgR mg R mv mv μ--'⋅=-(1分) 可得230.9225R R R ='≤(1分) 情况二:小球上滑至四分之一圆轨道的Q 点时,速度减为零,然后滑回D .则由动能定理有2102c mgR mg R mv μ--⋅='-(1分)2.3R R '≥(1分)若 2.5R R '=,由上面分析可知,小球必定滑回D ,设其能向左滑过DC 轨道,并沿CB 运动到达B 点,在B 点的速度为v B ,,则由能量守恒定律有22111.8222c B mv mv mg R mgR μ=+⋅+(1分) 由⑤⑨式,可得0B v =(1分)故知,小球不能滑回倾斜轨道AB ,小球将在两圆轨道之间做往返运动,小球将停在CD 轨道上的某处.设小球在CD 轨道上运动的总路程为S ,则由能量守恒定律,有212c mv mgS μ=(1分) 由⑤⑩两式,可得 S=5.6R (1分)所以知,b 球将停在D 点左侧,距D 点0.6R 处. (1分)考点:本题考查圆周运动、动能定理的应用,意在考查学生的综合能力.9.如图所示,BC 竖直放置的光滑细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球从进入圆管开始受到始终竖直向上的力F =5N 的作用,当小球运动到圆管的末端C 时作用力F 立即消失,小球能平滑地冲上粗糙斜面.(g =10m/s 2)求: (1)小球从O 点的正上方某处A 点水平抛出的初速度v 0为多少? (2)小球在圆管中运动时对圆管的压力是多少? (3)小球在CD 斜面上运动的最大位移是多少?【答案】(1)2m/s ;(2)7.1N ;(3)0.35m.【解析】【详解】(1)小球从A 运动到B 为平抛运动,水平方向:r sin45°=v 0t ,在B 点:tan45°=00y v gt v v =, 解得:v 0=2m/s ;(2)小球到达在B 点的速度: 022m/s cos 45v v ︒==, 由题意可知: mg =0.5×10=5N=F ,重力与F 的合力为零,小球所受合力为圆管的外壁对它的弹力,该力不做功,小球在管中做匀速圆周运动,管壁的弹力提供向心力,22(22)0.5N 7.1N 225v F m r ==⨯= 由牛顿第三定律可知,小球对圆管的压力大小:7.1N F '=;(3)小球在CD 上滑行到最高点过程,由动能定理得:21sin 45?cos 45?02mg s mg s mv μ︒︒--=- 解得:s ≈0.35m ;10.如图所示,在水平路段AB 上有一质量为2kg 的玩具汽车,正以10m/s 的速度向右匀速运动,玩具汽车前方的水平路段AB 、BC 所受阻力不同,玩具汽车通过整个ABC 路段的v-t 图象如图所示(在t =15s 处水平虚线与曲线相切),运动过程中玩具汽车电机的输出功率保持20W 不变,假设玩具汽车在两个路段上受到的阻力分别有恒定的大小.(解题时将玩具汽车看成质点)(1)求汽车在AB路段上运动时所受的阻力f1;(2)求汽车刚好开过B点时的加速度a(3)求BC路段的长度.【答案】(1)f1=5N (2) a=1.5 m/s2 (3)x=58m【解析】【分析】根据“汽车电机的输出功率保持20W不变”可知,本题考查机车的启动问题,根据图象知汽车在AB段匀速直线运动,牵引力等于阻力,而牵引力大小可由瞬时功率表达式求出;由图知,汽车到达B位置将做减速运动,瞬时牵引力大小不变,但阻力大小未知,考虑在t=15s处水平虚线与曲线相切,则汽车又瞬间做匀速直线运动,牵引力的大小与BC 段阻力再次相等,有瞬时功率表达式求得此时的牵引力数值即为阻力数值,由牛顿第二定律可得汽车刚好到达B点时的加速度;BC段汽车做变加速运动,但功率保持不变,需由动能定理求得位移大小.【详解】(1)汽车在AB路段时,有F1=f1P=F1v1联立解得:f1=5N(2)t=15 s时汽车处于平衡态,有F2=f2P=F2v2联立解得:f2=2Nt=5s时汽车开始加速运动,有F1-f2=ma解得a=1.5m/s2(3)对于汽车在BC段运动,由动能定理得:解得:x=58m【点睛】抓住汽车保持功率不变这一条件,利用瞬时功率表达式求解牵引力,同时注意隐含条件汽车匀速运动时牵引力等于阻力;对于变力做功,汽车非匀变速运动的情况,只能从能量的角度求解.11.如图所示,质量为2kg 的物体在竖直平面内高h =1m 的光滑弧形轨道A 点,以初速度0v =4m/s 沿轨道下滑,并进入水平轨道BC .BC =1.8m ,物体在BC 段所受到的阻力为8N 。