多元统计分析 第四章至第九章 课后题数据
应用多元统计分析课后习题答案高惠璇第四章部分习题解答
4
第四章 回归分析
令
L(a0 , 2 ) 2 2 L(a0 , ) 2 [( y1 a0 ) ( y2 a0 ) 3( y3 3a0 ) 0 a0 2
可得
令 ln L(a ˆ0 , 2 ) 3 1 2 ˆ [( y a ) ] 0 1 0 2 2 2 2 2 2( ) drf 可得 ˆ 2 1 2 ˆ0 ) 2 ( y2 a ˆ0 ) 2 ( y3 3a ˆ0 ) 2 ˆ0 ( y1 a
1
经验证:① B-A是对称幂等阵; ② rank(B-A)=tr(B-A)=2-1=1;
25 80 35 1 256 112 330 49
8
第四章 回归分析
③ A(B-A)=O3×3 .由第三章§3.1的结论6知
Y AY与Y ( B A)Y相互独立;也就是 ˆ ˆ 与 ˆ 相互独立.
ˆi y ˆ ) ( yi y )( y i 1
n n n i 1 i 1 2
R
2
2 2 ˆ ˆ ( y y ) ( y y ) i i
2 ˆi y ) ( y i 1
n n n i 1 i 1
2
2 2 ˆ ˆ ( y y ) ( y y ) i i
(因 1n C张成的空间 , 这里有H1n 1n )
n n i 1 i 1
(2) 因 ( yi y )( y ˆi y ˆ ) ( yi y ˆi y ˆ i y )( y ˆi y )
ˆ i )( y ˆi y ) ( y ˆi y )2 ( yi y
应用多元统计分析课后答案
第二章2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd cc d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 12122222()()2[()2()]()()()()dd cc d c x a x b a t x a t dt b a d c b a d c ------=+----⎰2212122222()()[()2()]1()()()()d cdcd c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a +,方差为()212b a -。
智慧树知道网课《多元统计分析》课后章节测试满分答案
第一章测试1【单选题】(1分)研究两组变量间关系的方法是()A.因子分析B.典型相关分析C.主成分分析D.聚类分析2【多选题】(1分)多元统计分析常用的方法有()A.判别分析B.典型相关分析C.主成分分析D.聚类分析E.因子分析3【多选题】(1分)常用的外部数据读取函数有()A.read.table()B.read.spss()C.read.txt()D.read.csv()4【判断题】(1分)多元统计分析是一元统计分析的推广。
A.对B.错5【判断题】(1分)多元统计分析是对多个随机变量同时进行分析研究。
A.错B.对6【判断题】(1分)多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律性的一门统计学科。
A.错B.对7【判断题】(1分)R程序包需要到相关网站购买。
A.错B.对8【判断题】(1分)向量x<-(10.4,5.6,3.1,6.4,21.7)。
A.错B.对9【判断题】(1分)rep(1:2,5)是把1、2重复5次。
A.错B.对10【判断题】(1分)直接用read.spss()读取SPSS格式的数据。
A.错B.对第二章测试1【单选题】(1分)随机向量X和Y分别服从正态分布,如果X和Y满足(),则它们的联合分布也服从正态分布。
A.有相关关系B.相互独立C.无条件D.互不相关2【单选题】(1分)A.B.C.D.3【单选题】(1分)A.B.C.不确定D.4【多选题】(1分)离散随机向量的概率分布列具有基本性质()。
A.归一性B.非负性C.单调性D.有界性5【多选题】(1分)()。
A.互不相关B.相互独立C.不确定D.有相关关系6【判断题】(1分)样本均值向量是总体均值向量的一致估计。
A.对B.错7【判断题】(1分)A.对B.错8【判断题】(1分)Wishart分布具有可加性。
A.对B.错9【判断题】(1分)样本离差阵S就是类似于一元随机变量的离差平方和。
A.对B.错10【判断题】(1分)样本离差阵是总体协方差阵的极大似然估计。
应用多元统计分析课后习题答案高惠璇(第四章部分习题解答)
可得
令
aˆ0111(y1y23y3)
ln L (a ˆ0 , 2
2 ) 2 3 2 2 (1 2 )2[y ( 1 a ˆ0 )2 ] 0
可得 ˆ2 1 3 (y 1 a ˆ0 )2 (y 2 a ˆ0 )2 (y 3 3 a ˆ0 )2d ˆ r0 2 f
似然比统计量的分子为
可编辑ppt 3
第四章 回归分析
令 ln 2 L 2 322 (1 2)2[y (1 a ˆ)2 ] 0
可得 ˆ 2 1 3 ( y 1 a ˆ ) 2 ( y 2 2 a ˆ b ˆ ) 2 ( y 3 a ˆ 2 b ˆ ) 2
似然比统计量的分母为
L(a ˆ,b ˆ,ˆ2)(2)2 3(ˆ2)2 3exp 3][.
解:模型(4.1.3)为 Y ~NCn(0,2In),
样本的似然函数为
L (, 2 ) (2) n 2 (2 ) n 2 e x 2 1 p 2( Y C )( Y C )
lnL(,2)ln2()n 2ln(2)n 22 12(YC)(YC) ln2()n 2ln(2)n 2可2编1辑p2pt(YY2YCCC) 11
i1
n
n
(yi y)2 (yˆi yˆ)2
(其中 yˆ1 n ni1
yˆi),
i1
i1
试证明:(1) yˆ y;
n
n
(2) R2 (yˆi y)2 (yi y)2;
第四章 回归分析
③ A(B-A)=O3×3 .由第三章§3.1的结论6知
YAY 与Y(BA)Y相互独 也立 就;是
ˆ02ˆ2与ˆ2相互独立.
由第三章§3.1的结论4知(H0:a=b成立时)
Y(B2A)Y~2(1,)因 , 12(Z0a)(BA)Z0a0 3(ˆ0 22ˆ2)Y(B2A)Y~2(1)
应用多元统计分析课后答案
应用多元统计分析课后答案第二章2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 12122222()()2[()2()]()()()()dd cc d c x a x b a t x a t dt b a d c b a d c ------=+----⎰2212122222()()[()2()]1()()()()d cdcd c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a +,方差为()212b a -。
多元统计分析课后练习答案
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
应用多元统计分析习题解答 第四章
第四章判别分析4.1 简述欧几里得距离与马氏距离的区别和联系。
答:设p维欧几里得空间中的两点X=和Y=。
则欧几里得距离为。
欧几里得距离的局限有①在多元数据分析中,其度量不合理。
②会受到实际问题中量纲的影响。
设X,Y是来自均值向量为,协方差为的总体G中的p维样本。
则马氏距离为D(X,Y)=。
当即单位阵时,D(X,Y)==即欧几里得距离。
因此,在一定程度上,欧几里得距离是马氏距离的特殊情况,马氏距离是欧几里得距离的推广。
4.2 试述判别分析的实质。
答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。
设R1,R2,…,Rk 是p 维空间R p 的k 个子集,如果它们互不相交,且它们的和集为,则称为的一个划分。
判别分析问题实质上就是在某种意义上,以最优的性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。
4.3 简述距离判别法的基本思想和方法。
答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。
其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。
①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是μ1和μ 2,对于一个新的样品X ,要判断它来自哪个总体。
计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2(X ,G 2),则X,D 2(X ,G 1)D 2(X ,G 2)X,D 2(X ,G 1)> D 2(X ,G 2,具体分析,2212(,)(,)D G D G -X X111122111111111222111211122()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为X,W(X)X,W(X)<0②多个总体的判别问题。
多元统计分析课后练习答案
2 p
1
2 1
1
Σ1
2 2
1
2 p
则 f ( x1,..., xp )
p
1
Σ
2
22 12
2 p
1/2
exp
1 (x
μ) Σ1
2
1
2 1
1
2 2
( x μ)
1
2 p
p
1
12
2
1
p exp
1 (x1 1 )2
2
2 1
1 ( x2 2
3) 2
2 2
...
1 (xp 2
p )2
2 p
p
1
exp
i1 i 2
( xi
计算: 边远及少数民族聚居区社会经济发展水平的指标数据 .xls
T 2 =9* (-2003.23 2.25 -1006.11 2.71 12.01)*s^-1* (-2003.23 2.25
-1006.11 2.71 12.01)’=9*50.11793817=451,06144353 F 统计量 =45.2>6.2 拒绝零假设,边缘及少数民族聚居区的社会经济发展水平与 全国平均水平有显著差异。
4、什么是逐步判别分析? 答:具有筛选变量能力的判别方法称为逐步判别分析法。 逐步判别分析法就是先 从所有因子中挑选一个具有最显著判别能力的因子, 然后再挑选第二个因子, 这 因子是在第一因子的基础上具有最显著判别能力的因子, 即第一个和第二个因子 联合起来有显著判别能力的因子; 接着挑选第三个因子, 这因子是在第一、 第二 因子的基础上具有最显著判别能力的因子。 由于因子之间的相互关系, 当引进了 新的因子之后, 会使原来已引入的因子失去显著判别能力。 因此, 在引入第三个 因子之后就要先检验已经引入的因子是否还具有显著判别能力, 如果有就要剔除 这个不显著的因子;接着再继续引入,直到再没有显著能力的因子可剔除为止, 最后利用已选中的变量建立判别函数。
应用多元统计分析课后习题答案高惠璇第四章部分习题解答市公开课获奖课件省名师示范课获奖课件
0
2
)
3 2
(ˆ
2
)
3 2
ˆ 2 ˆ 0 2
3
2
V
3 2
下列来讨论与V等价旳统计量分布:
ˆ 2
1 3
( y1
aˆ)2
( y2
2aˆ
bˆ)2
( y3
aˆ
2bˆ)2
1 3
( y1
yˆ1 ) 2
( y2
yˆ2 )2
( y3
yˆ3 )2
1 3
(Y
Xˆ )(Y
Xˆ )
1Y 3
(I3
X
(
X
X
)1
Q(β)=(Y-Cβ) '(Y-Cβ) . 试证明β^=(C'C)-1C'Y是在下列四种意义下达最小:
(1) trQ(β^)≤trQ(β) (2) Q(β^)≤Q(β) (3) |Q(β^)|≤|Q(β)|
(4) ch1(Q(β^))≤ch1(Q(β)),其中ch1(A)表达A
旳最大特征值. 以上β是(m+1)×p旳任意矩阵.
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量旳分子为
L(aˆ0
,ˆ
2 0
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )
(完整版)多元统计分析课后练习答案
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
多元统计分析课后习题解答第四章
习题解析
• 题目:简述多元统计分析的基本思想 答案:多元统计分析是通过对多个变量进行综合分析,揭示数据之间的内在关 系和规律,进而解决实际问题的方法。其基本思想包括多变量综合分析、多变量分类分析、多变量预测分析等。
• 答案:多元统计分析是通过对多个变量进行综合分析,揭示数据之间的内在关系和规律,进而解决实际问题的方法。其基本 思想包括多变量综合分析、多变量分类分析、多变量预测分析等。
汇报人:XX
多元统计分析的 方法和技术广泛 应用于各个领域, 如心理学、经济 学、医学等。
多元统计分析的 基本步骤包括数 据收集、数据探 索、模型选择、 模型拟合和模型 评估等。
多元统计分析的基本思想
综合多个变量进行全面分析,以揭示数据之间的内在联系和规律 强调变量之间的交互作用和协同效应,以实现更准确的预测和推断 通过对数据的降维处理,简化复杂数据集,提取关键信息
• 题目:解释因子分析的基本思想。 答案:因子分析是一种探索性统计分析方法,其基本思想是通过寻找隐藏在多个变量背后的共 同因子来解释变量之间的相互关系。通过因子分析,可以揭示数据的基本结构,简化数据的复杂性,并加深对数据内在规律的认识。 • 答案:因子分析是一种探索性统计分析方法,其基本思想是通过寻找隐藏在多个变量背后的共同因子来解释变量之间的相互关系。通 过因子分析,可以揭示数据的基本结构,简化数据的复杂性,并加深对数据内在规律的认识。
多元统计课后题精选全文完整版
多元统计分析课后题第四章 回归分析1、设河流的一个断面的年径流量为y ,该断面的上游流域的年平均降水量为x1,年平均饱和差为x2,现共有14年的观测记录:时间x1x2y 时间x1x2y17201.8029085792.221512553 2.6713595152.411313575 1.75234105763.031064548 2.07182115471.832005572 2.49145125681.902246453 3.5969137201.982717540 1.88205147002.90130(1)试求y 关于x 1、x 2的二元线性回归方程;(2)对回归方程和每一个回归系数的显著性做检验;(3)求出每一个回归系数的置信水平为0.95的置信区间;(4)求出回归方程的复相关系数;(5)设某年x 1=600,x 2=2.50,求E(y)的点估计及置信水平为0.95的置信区间。
解:利用以上数据表拟合线性回归模型.22110εβββ+++=x x y 点选SPSS 视窗中的分析回归分析线性…,再将y 选入因变量的方框中,同时→→将x1和x2选入自变量的方框中,再在“统计”中选择估计、模型拟合、R 平方变化、描述、部分和偏相关、Durbin-Watson 选项,最后点击“OK ”按钮即可作线性回归分析,输出结果如下:Regression变量的样本均值和标准差:变量间的简单相关系数:这里给出了回归方程的样本决定系数和P值以及DW值:下面的框图是方差分析表,从中可以看出,y关于x1和x2的线性回归方程通过了显著性检验,均方残差为554.963,F统计量值为42.155,P值为0.000,回归方程在0.000的统计意义上是显著的。
上面的框图给出了非标准化和标准化的回归方程,以及回归系数的t 统计量检验结果。
从中我们可以看出,非标准化的回归方程为:(1)21x 647.87292.0875.209-+=x y(2)回归系数、均通过了显著性检验。
多元统计分析智慧树知到课后章节答案2023年下浙江工商大学
多元统计分析智慧树知到课后章节答案2023年下浙江工商大学浙江工商大学第一章测试1.在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,可以解决下面哪几方面的问题。
()A:简化系统结构、探讨系统内核 B:进行数值分类,构造分类模型 C:变量之间的相依性分析 D:构造预测模型,进行预报控制答案:简化系统结构、探讨系统内核;进行数值分类,构造分类模型;变量之间的相依性分析;构造预测模型,进行预报控制2.只有调查来的才是数据。
()A:对 B:错答案:错3.以下都属于大数据范畴。
()A:行车轨迹 B:交易记录 C:问卷调查 D:访谈文本答案:行车轨迹;交易记录;问卷调查;访谈文本4.只要是数据,就一定有价值。
()A:对 B:错答案:错5.统计是研究如何搜集数据,如何分析数据的学问,它既是科学,也是艺术.()A:错 B:对答案:对第二章测试1.考虑了量纲影响的距离测度方法有()。
A:欧氏距离 B:Minkowski距离 C:马氏距离 D:切比雪夫距离答案:马氏距离2.不具有单调性的系统聚类方法有()。
A:离差平方和法 B:最短距离法 C:中间距离法 D:重心法 E:类平均距离法答案:中间距离法;重心法3.聚类分析是研究分类问题的一种多元统计分析方法。
()A:对 B:错答案:对4.聚类分析是有监督学习。
()A:错 B:对答案:错5.动态聚类法的凝聚点可以人为主观判别。
()A:对 B:错答案:对第三章测试1.判别分析是通过对已知类别的样本数据的学习、构建判别函数来最大程度区分各类,Fisher判别的准则要求()。
A:各类之间各个类内部变异尽可能大B:各类之间和各类内部变异尽可能小 C:各类之间变异尽可能大、各类内部变异尽可能小D:各类之间变异尽可能小、各类内部变异尽可能大答案:各类之间变异尽可能大、各类内部变异尽可能小2.常用判别分析的方法有()。
A:逐步判别法 B:贝叶斯判别法 C:费舍尔判别法 D:距离判别法答案:逐步判别法;贝叶斯判别法;费舍尔判别法;距离判别法3.较聚类分析,判别分析是根据已知类别的样本信息,对新样品进行分类。
《多元统计分析(第5版)》课后习题答案
对数据进行标准化处理主要为了消除变量的量纲以及量纲差别较大时所带 来的影响,尤其当变量间的单位不同且量级差别特别大时,使用不做任何处理的 数据进行计算,可能会得到极不合理的结果。
2. 欧氏距离与马氏距离的优缺点是什么? 欧氏距离是计算点与点之间距离的常用方法,其缺点是坐标的各维度对计算
则y12的密度函数为:
������(������)
=
2ϕ(√������)
∙
1 2√������
=
2 √2������
exp
(−
������ 2)
∙
1 2√������
=
1 √2������������
exp
(−
������ 2)
,
������ ≥ 0
即
������(������)
=
{
1 √2������������
证 明 : 不 妨 设 Σ = diag(������12, … , ���������2��� ),X 的 均 值 向 量 为 μ = (������1, … , ������������) , 则
X~N(μ, Σ). X的概率密度函数为:
��������������)
因此,X的分量是相互独立的随机变量。
5. y1与y2是相互独立的随机变量,且y1~N(0,1),y2~N(3,4)。 (a)求y12的分布。
(b)如果y = [(y2-y31)/2],写出y′y关于y1与y2的表达式,并写出y′y的分布。 (c)如果y = [yy12]且y~N(μ, Σ),写出y′Σ−1y关于y1与y2的表达式,并写出y′Σ−1y 的分布。
多元统计分析应用 第四章课后习题
第四章判别分析习题4.8(1)根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。
(2)现有一新品牌的饮料在该超市试销,其销售价格为3.0,顾客对其口味评分为8,信任度评分平均为5,试预测该饮料的销售情况。
将数据导入SPSS,分析得到以下结果:1.典型判别函数的特征函数的特征值表表1-1 特征值表表1-1所示是典型判别函数的特征值表,只有两个判别函数,所以特征值只有2个。
函数1的特征值为17.791,函数2的特征值为0.720,判别函数的特征值越大,说明函数越具有区别判断力。
函数1方差的累积贡献率高达96.1%,且典型相关系数为0.973,而函数2方差的贡献率仅为3.9%,典型相关系数为0.647。
由此,说明函数1的区别判断力比函数2的强,函数1更具有区别判断力。
2.Wilks检验结果表1-2 Wilks 的Lambda上表中判别函数1和判别函数2的Wilks’Lambda值为0.031,判别函数2的Wilks’Lambda值为0.581。
“1到2”表示两个判别函数的平均数在三个类间的差异情况,P值=0.002<0.05表示差异达到显著水平“2”表示在排除了第一个判别函数后,第二个判别函数在三个组别间的差异情况,P值=0.197>0.05表示判别函数2未达到显著水平。
3.建立贝叶斯判别函数表1-3 贝叶斯判别法函数系数上表为贝叶斯判别函数的系数矩阵,用数学表达式表示各类的贝叶斯判别函数为:第一组:F1=-81.843-11.689X1+12.97X2+16.761X3第二组:F2=-94.536-10.707X1+13.361X2+17.086X3第三组:F3=-17.499-2.194X1+4.960X2+6.447X3将新品牌饮料样品的自变量值分别代入上述三个贝叶斯判别函数,得到三个函数值为:F1=65.271,F2=65.661,F3=47.884比较三个值,可以看出F2=65.661最大,据此得出新品牌饮料样品应该属于第二组,即该饮料的销售情况为平销。
应用多元统计分析课后答案
第二章2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd cc d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 12122222()()2[()2()]()()()()dd cc d c x a x b a t x a t dt b a d c b a d c ------=+----⎰2212122222()()[()2()]1()()()()d cdcd c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a +,方差为()212b a -。
多元统计分析课后习题解答_第四章
第四章 判别分析4、1 简述欧几里得距离与马氏距离得区别与联系。
答: 设p 维欧几里得空间中得两点X =与Y =。
则欧几里得距离为。
欧几里得距离得局限有①在多元数据分析中,其度量不合理。
②会受到实际问题中量纲得影响。
设X,Y 就是来自均值向量为,协方差为得总体G 中得p 维样本。
则马氏距离为D(X,Y)=。
当即单位阵时,D(X,Y)==即欧几里得距离。
因此,在一定程度上,欧几里得距离就是马氏距离得特殊情况,马氏距离就是欧几里得距离得推广。
4、2 试述判别分析得实质。
答:判别分析就就是希望利用已经测得得变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别得样本点尽可能地区别开来。
设R1,R2,…,Rk 就是p 维空间R p 得k 个子集,如果它们互不相交,且它们得与集为,则称为得一个划分。
判别分析问题实质上就就是在某种意义上,以最优得性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。
4、3 简述距离判别法得基本思想与方法。
答:距离判别问题分为①两个总体得距离判别问题与②多个总体得判别问题。
其基本思想都就是分别计算样本与各个总体得距离(马氏距离),将距离近得判别为一类。
①两个总体得距离判别问题设有协方差矩阵∑相等得两个总体G 1与G 2,其均值分别就是μ1与μ 2,对于一个新得样品X ,要判断它来自哪个总体。
计算新样品X 到两个总体得马氏距离D 2(X,G 1)与D 2(X,G 2),则X ,D 2(X ,G 1)D 2(X ,G 2)X ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,111122111111111222111211122()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ记 则判别规则为X ,W(X) X ,W(X)<0②多个总体得判别问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.8 某超市经销十种品牌饮料,其中四种畅销,三种平销,三种滞销。
下表是这十种品牌饮料的销售价格(元)和顾客对各种饮料的口味评分、信任度评分的平均数。
销售情况 产品序号销售价格 口味评分 信任度评分畅销1 2.2 5 8 2 2.5 6 73 3 3 94 3.2 8 6 平销5 2.8 76 6 3.5 87 7 4.89 8 滞销8 1.7 3 4 9 2.2 4 2 102.7 4 3(1) 根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。
(2) 现有一新品牌的饮料在该超市试销,其销售价格为3.0,顾客对其口味的评分平均为8,信任评分平均为5,试预测该饮料的销售情况。
4.9 银行的贷款部门需要判别每个客户的信用好坏(是否为履行还贷责任),以决定是否给予贷款。
可以根据贷款申请人的年龄(1X )、受教育程度(2X )、现在所从事工作的年数(3X )、未变更住址的年数(4X )、收入(5X )、负债收入比例(6X )、信用卡债务(7X )、其他债务(8X )等来判断其信用情况。
下表是从银行的客户资料中抽取的部分数据,(1)根据样本资料分别用距离判别法、贝叶斯判别法和费希尔判别法建立判别函数和判别规则。
(2)某客户的如上情况资料为(53,1,918,50,11.20,2.02,3.58),对其进行信用好坏的评。
目前信用好坏 客户序号X1 X2 X3 X4 X5 X6 X7 X8 已履行还贷责任1 23 1 72 31 6.6 0.34 1.71 2 34 1 173 59 8 1.81 2.91 3 42 2 7 23 41 4.6 0.94 0.94 4 39 1 195 48 13.1 1.93 4.36 5 35 1 9 1 34 5 0.4 1.3 未履行还贷责任6 37 1 1 3 24 15.1 1.8 1.82 7 29 1 13 1 42 7.4 1.46 1.65 8 32 2 11 6 75 23.3 7.76 9.72 9 28 2 2 3 23 6.4 0.19 1.29 1026 1 4 3 27 10.5 2.47 0.365.8 下表是15个上市公司2001年的一些主要财物指标,使用系统聚类法和K 均值法分别对这些公司进行聚类,并对结果进行比较分析。
公司编号 净资产收益率 每股净利润 总资产周转率资产负债率 流动负债比率 每股净资产 净利润增长率 总资产增长率 1 11.09 0.21 0.05 96.98 70.53 1.86 -44.04 81.99 2 11.96 0.59 0.7451.78 90.73 4.95 7.02 16.113 0 0.03 0.03 181.99 100 -2.98 10.33 21.18 4 11.58 0.130.17 46.07 92.18 1.14 6.55 -56.32 5 -6.19 -0.090.03 43.3 82.241.52 -1713.5 -3.36 6 10 0.47 0.48 68.4 86 4.7 -11.56 0.85 7 10.49 0.11 0.35 82.9899.871.02100.23 30.32 8 11.12 -1.69 0.12 132.14 100 -0.66 -4454.39 -62.75 9 3.41 0.04 0.2 67.86 98.51 1.25 -11.25 -11.43 10 1.16 0.01 0.54 43.7 100 1.03 -87.18 -7.41 11 30.22 0.16 0.4 87.36 94.88 0.53 729.41 -9.97 12 8.19 0.22 0.38 30.31100 2.73 -12.31 -2.77 13 95.79 -5.2 0.5 252.34 99.34 -5.42 -9816.52 -46.82 14 16.550.350.93 72.31 84.05 2.14 115.95 12141 15-24.18 -1.160.79 56.2697.84.81-533.89-27.745.9下表是某年我国16个地区农民指出情况的抽样调查数据,每个地区调查了反映每人平均生活消费支出情况的六个经济指标。
试通过统计分析软件用不同的方法进行系统聚类分析,试比较何种方法与人们观察到的实际情况接近。
地区 产品 衣着 燃料 住房 交通和通讯 娱乐教育文化 北京 190.33 43.77 9.73 60.54 49.01 9.04 天津 135.2 36.4 10.47 44.16 36.49 3.94 河北 95.21 22.83 9.3 22.44 22.81 2.8 山西 104.78 25.11 6.4 9.89 18.17 3.25 内蒙古 128.41 27.63 8.94 12.58 23.99 2.27 辽宁 145.68 32.83 17.79 27.29 39.09 3.74 吉林 159.37 33.38 18.37 11.81 25.29 5.22 黑龙江 116.22 29.57 13.24 13.76 21.75 6.04 上海 221.11 38.64 12.53 115.65 50.82 5.89 江苏 144.98 29.12 11.67 42.6 27.3 5.74 浙江 169.92 32.75 12.72 47.12 34.35 5 安徽 135.11 23.09 15.62 23.54 18.18 6.39 福建 144.92 21.26 16.69 19.52 21.75 6.73 江西 140.54 21.5 17.64 19.19 15.97 4.94 山东 115.84 30.26 12.2 33.6 33.77 3.85 河南 101.18 23.26 8.46 20.2 20.5 4.35.11 下表是2003年我国省会城市和计划单列市的主要经济指标:人均GDP 1X (元)、人均工业产值2X (元)、客运总量3X (万人)、货运总量4X (万吨)、地方财政预算内收入5X (亿元)、固定资产投资余额6X (亿元)、在岗职工占总人口比例7X (%)、在岗职工人均工资额8X (元)、城市居民年底储蓄余额9X (亿元)。
试通过统计分析软件进行系统聚类分析,并比较何种方法与人们观察到的实际情况接近。
城市 X1X2X3 X4 X5 X6 X7 X8 X9 北京 31886 33168 30520 30671 593 2000 37.8 25312 6441 天津 26433 43732 3507 34679 205 934 18.8 18648 1825 石家庄 15134 13159 11843 10008 49 416 9.5 12306 1044 太原15752 15837 2975 15248 33 197 22.8 12679 660 呼和浩特 18991 11257 3508 4155 21 182 13.5 14116 255 沈阳 23268 15446 6612 14636 81 557 14.8 14961 1423 大连 29145 27615 11001 21081 111 407 14.7 17560 1310 长春 18630 21045 6999 10892 46 294 12.5 13870 831 哈尔滨 14825 7561 6458 9518 76 423 17.7 12451 1154 上海 46586 77083 7212 63861 899 2274 21 27305 6055 南京 27547 43853 16790 14805 136 794 15.4 22190 1134 杭州 32667 49823 21349 16815 150 717 11.8 24667 1466 宁波 32543 47904 24983 13797 139 555 10.9 23691 1060 合肥 10621 11714 6034 4641 36 245 8.3 13901 359 福州 22281 21310 9680 8250 67 376 11.8 15053 876 厦门 53590 93126 4441 3055 70 238 38.6 19024 397 南昌 14221 9205 5728 4454 31 210 11 13913 483 济南 23437 22634 5810 14354 76 429 13.5 16027 758 青岛 24705 35506 14666 30553 120 548 14.5 15335 908 郑州 16674 14023 10709 7847 66 373 12.7 13538 1048 武汉 21278 17083 11882 16610 80 623 17.4 13730 1286 长沙 15446 8873 10609 10631 60 434 10 16987 705 广州 48220 55404 29751 28859 275 1089 25.1 28805 3727 深圳 191838 347519 10989 6793 291 875 69.6 31053 2199 南宁 8176 3390 7016 5893 36 170 8.3 13171 451 海口 16442 14553 13284 3304 12 99 16.5 14819 284 重庆 7190 5076 58290 32450 162 1187 6.5 12440 1897 成都 17914 9289 72793 28798 90 788 11.9 15274 1494 贵阳 11046 10350 18511 5318 40 231 15.8 12181 345 昆明 16215 11601 5126 12338 60 342 14.6 14255 709 西安 13140 8913 11413 9392 65 446 15.9 13505 1211 兰州 14459 17136 2209 5581 21 203 18 13489 468 西宁 7066 5605 2788 2037 8 76 10.1 14629 175 银川11787 11013 2146 2127 12 134 21.9 13497 193 乌鲁木齐 22508 17137 2188 12754 41 180 26.1 16509 420 南宁 31886 33168 30520 30671 593 2000 37.8 25312 6441 海口 26433 43723 3507 34679 205 934 18.8 18648 18255.12下表是我国1991~2003年的固定资产投资价格指数,试对这段时期进行分段,并据此对我国固定资产投资的价格变化情况进行分析。