塞曼效应
赛曼效应
结果。根据原子物理理论,原子中的电子既作轨
道运动又作自旋运动。原子的总轨道磁距 L 与总
轨道角动量 p L的关系
为:
L
e PL , 2m PL L( L 1)
DK
实验仪器
法布里—珀罗标准具
J为光源
N,S为电磁铁的磁极 L1为会聚透镜 L2为成像透镜 P为偏振片 F为透射干涉滤光片 F-P为法布里—珀罗标准具 L3和L4分别为望远镜的 物镜和目镜
a b
2 D 2 b D 2 a
2d D 2 1 D 2
1 D2b D2a ~ ~ b a 2 2d D 1 D 2
数据记录
谱线 K 环位置(mm) 6.834 4.667 环径(mm) 平方 2.167 4.70
K-1
Da
7.654
5.641
3.808
3.867
3.846
1.774
14.79
3.147
Db
5.861
3.561
2.3
5.29
数据处理
e 2 c D D m dB D D
洛仑兹单位:
L eB 4me
赛曼效应效果图
分裂前 分裂后
在磁场中,其上下能级发生分裂,原子发光遵从选择定则为ΔM = 0 或±1 ,因此,从 垂直于磁场方向(横向)观察,共有9 种跃迁存在,故原546. 07nm 一条谱线将分 裂为9 条彼此靠近的谱线(三条π分量,三条σ+ 分量,三条σ- 分量) ,为了分辨裂距 只有nm 数量级的谱线,我们采用 ( Fabry —perot ) 标准具,测量时,调节偏振片从 0 度(九条线角度) 到90 度角即可看到塞曼π分量,滤掉σ分量,可以观察到如下图 所示图像
塞 曼 效 应
塞曼效应1896年塞曼(Zeeman)发现当光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同。
后人称此现象为塞曼效应。
早年把那些谱线分裂为三条,而裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位)。
正常塞曼效应用经典理论就能给予解释。
实际上大多数谱线的塞曼分裂不是正常塞曼分裂,分裂的谱线多于三条,谱线的裂距可以大于也可以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。
反常塞曼效应只有用量子理论才能得到满意的解释。
塞曼效应的发现, 为直接证明空间量子化提供了实验依据, 对推动量子理论的发展起了重要作用。
直到今日, 塞曼效应仍是研究原子能级结构的重要方法之一。
实验目的1.掌握观测塞曼效应的实验方法。
2.观察汞原子546.1nm谱线的分裂现象以及它们偏振状态。
3.由塞曼裂距计算电子的荷质比。
实验原理原子中的电子由于作轨道运动产生轨道磁矩,电子还具有自旋运动产生自旋磁矩,根据量子力学的结果,电子的轨道角动量和轨道磁矩以及自旋角动量和自旋磁矩在数值上有下列关系:(1)式中分别表示电子电荷和电子质量;分别表示轨道量子数和自旋量子数。
轨道角动量和自旋角动量合成原子的总角动量,轨道磁矩和自旋磁矩合成原子的总磁矩,由于绕运动只有在方向的投影对外平均效果不为零, 可以得到与数值上的关系为:(2)式中g叫做朗德(Lande)因子,它表征原子的总磁矩与总角动量的关系,而且决定了能级在磁场中分裂的大小。
在外磁场中, 原子的总磁矩在外磁场中受到力矩L的作用(3)式中表示磁感应强度,力矩使角动量绕磁场方向作进动, 进动引起附加的能量为将(2)式代入上式得(4)由于和在磁场中取向是量子化的,也就是在磁场方向的分量是量子化的。
的分量只能是的整数倍,即(5)磁量子数M 共有2J+1 个值,(6)这样,无外磁场时的一个能级,在外磁场的作用下分裂成2J+1个子能级,每个能级附加的能量由式(6)决定, 它正比于外磁场B和朗德因子g。
赛曼效应讲解.pptx
Dk, 2
4
f
2
d
16
第17页/共26页
Dk
k 1 k
代入:k 2d /
k,a
k,b
2 (D2 k,a D2 k,b )
2d (D2(k1), D2 k, )
~
1(
D2 k ,b
D2 k ,a
)
2d
D2 (k 1),
D
2 k ,
参考参数:汞 546.1nm
17
第18页/共26页
2. F—P标准具测量测电子荷质比(不做)
4
第5页/共26页
正常赛曼效应的产生是由于原子电子的轨道磁矩与 磁场作用的结果。而反常赛曼效应则是原子的电子总 磁矩(轨道磁矩加自旋磁矩)和磁场相互作用的结果, 在磁场较弱时,原子的轨道磁矩与自旋磁矩首先耦合 后再和外磁场作用,产生所谓的一般的反常塞曼效应; 如果磁场极强时,则原子的轨道磁矩与自旋磁矩分别 和磁场相互作用,从而产生所谓的帕刑-巴克效应。
原子由于磁矩的存在,在磁场中就会受到
磁场的力矩作用,原子的总磁矩在外磁场中 受到的力矩为:
J
M j B
8
第9页/共26页
力矩使原子的总磁矩绕磁场方向旋进,也就是总角动量 绕磁场方向旋进,旋进会引起原子能级的附加能量为:
E
j
B
j B cos
g
e 2m
BPj
cos
其中, B eh为/ 4玻 m尔磁子。由于原子总角动量在磁场中
3
第4页/共26页
实验原理及设计
赛曼效应实验是研究原子的光谱在磁场中受磁场影响而变 化的实验。根据原子所处的磁场强度不同谱线分裂的条数 不同,赛曼效应由于历史的习惯可分为正常赛曼效应和反 常赛曼效应。通常一条谱线分裂条数为三条的效应叫正常 赛曼效应(可以用经典理论加以解释),多于三条的叫反常 赛曼效应(只能用量子理论解释)。反常赛曼效应通常发 生在磁场很弱或者磁场很强的条件下。
塞曼效应
4 π mc
v
选择定则是: M = M 2 M 1 = 0,±1 其中M=0跃迁谱线称为π分支线, M=±1跃迁谱线称为σ分支 线。
Hg5461谱线的分裂现象以及它的偏振状态:
谱线分裂,表明能量差的变化。要了解谱线在磁场中的分裂象就 要考察光源与磁场如何发生相互作用。具有磁矩为的体系,在 外磁场中具有的势能为U=- ZB
,Z=mg B
,U=mg BB
考虑一个原子的两个能级之间的光谱跃迁,在无外磁场时,这个 跃迁的能量为:hν = E 2 E1 在外加磁场时,两能级的能量分别为:
Байду номын сангаас
以汞5460.74光 谱线的塞曼分裂为例, 该谱线是能级6s7s3S1 到6s6p3P2之间跃迁。 与这两能级及其塞曼 分裂能级对应的量子 数和g、M、Mg值如 表:
在外磁场作用 下能级间的跃 迁如图所示。
Hg5461谱线的塞曼分裂示意图
实验装置
塞曼效应实验装置示意图
电磁铁、磁场测量探头、笔型汞灯 、会聚透镜、5461滤光片、法 布里-珀罗标准具 、刻度盘(内有偏振片)、成像透镜、读数显微 镜、控制主机、CCD摄像器件、计算机等。
E2 = E2 + m2 g 2 B B
′
E1 = E1 + m1 g1 B B
′
=
e PL 2 mc
e S = PS mc
总有效磁矩: J = g e P J 2 mc J ( J + 1) + S ( S + 1) L ( L + 1) g称为朗德因子,对于LS耦合 :g = 1 + 2 J ( J + 1) 在外磁场作用下,产生原子磁矩与外磁场的相互耦合,赋予的耦 合能量为: E = J H cos α = Mg B H eh 式中 B = 4 π m 称为玻尔磁子;为磁量子数,是在磁场方向上 的量子化投影。J一定时,取值为-J,-J+1,,J-1,J,即取2J+1 个数值。两精细能级中磁能级之间的跃迁得到塞曼效应观察到的 分裂光谱线,用波数表示为:
塞曼效应的原理与应用
塞曼效应的原理与应用引言塞曼效应是指在磁场中运动的粒子所产生的谱线被磁场分裂成多个频率的现象。
这一现象是由瑞典物理学家塞曼于1896年首次发现的,随后被广泛应用于物理学和化学领域的研究中。
本文将介绍塞曼效应的原理及其在科学研究与应用中的重要性。
塞曼效应的原理塞曼效应是基于磁光现象的原理而产生的。
当光线穿过磁场时,由于光波的电矢量与磁场方向垂直,会受到磁场的作用而发生改变。
具体来说,如果原子或分子的能级结构中存在着电子的紧密能级,那么在磁场中,原子或分子的电子将发生能级的分裂和重新排列,从而产生出不同频率的谱线。
塞曼效应的原理可以用以下公式来表示: \[ ΔE = g \cdot μ_B \cdot B \cdot m \] 其中,\[ ΔE \]表示能级的分裂,\[ g \]表示磁量子数,\[ μ_B \]表示玻尔磁子,\[ B \]表示磁场强度,\[ m \]表示电子的自旋量子数。
根据这个公式,我们可以推断出塞曼效应与磁场强度、自旋量子数等因素密切相关。
塞曼效应的应用塞曼效应在科学研究和实际应用中有着广泛的应用价值。
以下是其中几个重要的应用领域:1. 光谱学塞曼效应在光谱学中起着重要的作用。
利用塞曼效应可以对物质的结构和性质进行分析和研究。
通过测量物质在磁场中的吸收或发射谱线的分裂情况,可以获得有关原子或分子的信息,比如其能级结构、转动和振动等特性,从而推断出物质的组成和结构。
2. 核磁共振成像(MRI)核磁共振成像是一种非侵入式的医学成像技术,广泛应用于医学诊断中。
在核磁共振成像中,利用塞曼效应可以对人体组织中的氢原子进行分析和成像。
通过对核磁共振现象的观察,可以获得具有空间分辨能力的影像,用于检测和诊断人体内部的病变。
3. 量子计算塞曼效应也在量子计算领域得到了应用。
量子计算是一种利用量子力学原理设计和实现的计算方法,相较于传统计算机具有更高的计算效率和存储容量。
塞曼效应在量子比特的控制和测量中扮演着重要的角色,通过调节磁场强度可以实现量子比特的耦合和操作,从而实现量子计算。
塞曼效应
图1-3-5 塞曼效应实验装置图 汞灯光由会聚透镜成平行光,经滤光片后5461 A0光入射到F-P标准 具上,由偏振片鉴别π成份和σ成份,再经成像透镜将干涉图样成像在 测量望远镜(或CCD光敏面、摄谱仪底板)上。观察塞曼效应纵效应 时,可将电磁铁极中的芯子抽出,磁极转900,光从磁极中心通过。将 1/4波片置于偏振片前方,转动偏振片可以观测σ成份的左旋和右旋圆 偏振光。
光谱线的间线(上下能级自旋量子数S=0即单重态间的跃迁)在磁场 作用下,把原波数为
的一条谱线分裂成波数为
,
,
的三条谱线,中间的一条为π成份,分裂的二条为σ成份,谱线间隔为 一个洛仑兹单位。对于双重态以上的谱线将分裂成更多条谱线。前者称 为正常塞曼效应,后者称为反常塞曼效应。 例:钠589nm 谱线的塞曼效应 钠589nm谱线是
一、原理
1、 电子自旋和轨道运动使原子具有一定的磁矩。在外磁场中,原子磁 矩与磁场相互作用,使原子系统附加了磁作用能ΔE。又由于电子 轨道和自旋的空间量子化。这种磁相互作用能只能取有限个分立的 值,此时原子系统的总能量为:
(1-3-1) 式中E0为未加磁场时的能量,M为磁量子数,B为外加磁场的磁感应 强度,e为电子电量,m为电子质量,h为普朗克常数,g为朗德因子。 朗德因子的值与原子能级的总角动量J、自旋量子数S和轨道量子 数L有关,在L-S耦合情况下:
塞曼效应
实验一 塞曼效应一.实验原理(1) 外磁场对原子能级的影响根据量子力学知识,原子内电子的自旋和轨道运动使原子具有一定的磁矩,该磁矩在外磁场B 的作用下,使原子系统附加了磁作用能E ∆。
由于电子自旋和轨道运动的空间量子化,使得E ∆也只能取有限个分立的值,即:BMg B μ=∆E (2.4.1) 式中玻尔磁子mhe B πμ4=,磁量子数M=J ,J-1···,-J ,共有2J+1个值(即原来的一个能级将分裂为2J+1个子能级),g 为朗德因子,对于L-S 耦合有:)1(2)1()1()1(1++++-++=J J S S L L J J g (2.4.2)其中J 为原子的总角动量量子数,L 为轨道量子数,S 为自旋量子数。
由(2.4.1)式看出,在外磁场的作用下原子的某一能级将分裂为2J+1个子能级,相邻能级间的间隔为B g B μ。
由(2.4.2)式知随量子态的不同g 因子也不相同,因此不同能级分裂的子能级的个数和间隔也不同。
由于能级的分裂必引起光谱的分裂,通常把一条谱线分裂为三条且裂距(相邻两子谱线的波数差)正好等于一个洛伦兹单位的现象称为正常塞曼效应,而把分裂的谱线多于三条且裂距大于或小于一个洛伦兹单位的现象称为反常塞曼效应。
设由原子的上能级2E 跃迁到下能级1E 所产生的谱线频率为ν,并有12E E h -=ν在外磁场的作用下,上下两能级分别分裂为2J 2+1和2J 1+1个子能级,附加的能量分别为B g M E B μ222=∆和B g M E B μ111=∆,这样上下两个子能级之间跃迁将发出频率为ν'的谱线,并有:)()(1122E E E E h ∆+-∆+='ν分裂后的谱线与原谱线的频率差为h B g M g M h E E B /)(/)(112212μννν-=∆-∆=-'=∆用波数差来表示则有:hc B g M g M B/)(~1122μν-=∆ 规定式中 7.464//==mc eB hc B B πμB 米-1为裂距的单位,称为洛伦兹单位,用L 表示,则上式可写为:L g M g M )(~1122-=∆ν (2.4.3) 实验中若测得ν~∆,即可据该式求出电子荷质比。
塞曼效应ZeemanEffect
塞曼效应Zeeman Effect1986年,塞曼(Pieter Zeeman 1865-1943荷兰物理学家)在洛仑兹电磁理论指导下发现,当光源放在足够强的外磁场中时,原来的一条光谱线分裂成波长靠得很近的几条偏振化的谱线,分裂的条数随能级的类别而不同,这种现象称为塞曼效应。
塞曼效应是继法拉第效应和克尔效应之后被发现的第三个磁光效应,是物理学的重要发现之一。
通常人们把谱线在磁场中分裂为三条,两边的两条与中间一条的波数差正好是mc eB π4/(即一个洛仑兹单位L )的效应称为正常塞曼效应;而把谱线的分裂多于三条,谱线的裂距是洛仑兹单位L 的简单分数倍的效应称为反常塞曼效应。
它不能用经典理论解释,只有用量子理论才能得到满意的解释。
实际上大多数谱线的塞曼分裂不是正常塞曼分裂, 1925年,乌仑贝克和吉兹米特为了解释反常塞曼效应提出了电子自旋的假设,应用这一假设能很好地解释反常塞曼效应。
也可以说,反常塞曼效应是电子自旋假设的有力证据之一。
从塞曼效应的实验结果中可以得到有关能级分裂的数据,即由能级分裂的个数可以知道能级的J 值,由能级的裂距可以知道g 因子。
因此直到今天塞曼效应仍是研究原子能级结构的重要方法之一。
而反常塞曼效应的研究推动了量子理论的发展和实验手段的进步。
近年来,在原子吸收光谱分析中用它来扣除背景,以提高分析的精度。
在天文工作上,用塞曼效应来测量太阳和星体表面的磁场强度等。
反常塞曼效应证实了原子具有磁矩的空间量子化,可以精确测定电子的荷质比。
一.预习提要(1)什么是塞曼效应?分裂谱线与原子能级的关系如何? (2)什么叫偏振光?它的分类和辨别方法有哪些? (3)法布里一珀罗标准具的结构及其用途? (4)如何观察塞曼效应的线偏振和圆偏振? 二.实验要求(1)学习调节法布里一珀罗标准具的方法,养成严谨的科学实验态度。
(2)定性地观察塞曼效应现象,从而区分分裂谱线的成分;定量地测量分裂谱线丌成分的直径,从而掌握一种计算荷质比的方法。
塞曼效应
圆偏振光。
σ线和π线的偏振特性见上图,塞曼效应分为正常塞曼
效应和反常塞曼效应。汞绿线是6s7s 3s1能级到6s6p
3P 2能级跃迁产生的谱线。这两个能级的分裂情况及
对应的量子数M和g表示见下图。
• 上能级6s7s 3s1分裂为三个子能级,下能级6s6p 3P2分
裂为五个能级,选择定则允许的跃迁共有九种。因此,
实验步骤
1、按图调节光路,即以磁场中心到摄谱仪窗口中心的 等高线为轴,暂不放置干涉滤色片,光源通过聚光 镜以平行光入射法—珀标准具,出射光通过成像透 镜再进入摄谱仪,摄谱仪观察成像。
2、调节法-珀标准具的平行度使两平晶平行,即调节法 -珀标准具的三个螺丝,使左右上下移动入眼时对着 法—珀看到的干涉条纹形状不变。
实验目的
本实验通过高分辨率的分光器件法布里 -珀罗观 0 察5461 A 汞绿线在磁场中的分裂并测量分裂谱 线的波数差 等物理量。 1、加深对原子磁矩及空间量子化等原子物理 学概念的理解 2、学习法布里-珀罗标准具在光谱测量中的 应用
实验原理
塞曼效应的产生是原子磁距与外加磁场 作用的结果。根据原子物理理论,原子中 的电子既作轨道运动又作自旋运动。原子 的总轨道磁距 L与总轨道角动量 pL 的关系为:
(B的单位取Gs),L称为洛仑兹单位。磁量子数M 的选择定则为
M M 2 M 1 0 , 1
但是,并非任何两个能级的跃迁都是可能的。
当
J J1
,
M 2 0 M 1 0 时除外
①.当 M 0 时,产生 线,沿垂直于磁场的方向观察时,
得到光振动方向平行于磁场的线偏振光。沿平行于磁场的
原来的 谱线将分裂成九条谱线。分裂后的九条谱线
塞曼效应
原子在外磁场中发光谱线发生分裂且偏振的现象称为塞曼效应;历史上首先观测到并给予理论解释的是谱线一分为三的现象,后来又发现了较三分裂现象更为复杂的难以解释的情况,因此称前者为正常或简单塞曼效应,后者为反常或复杂塞曼效应。
基本信息中文名称:塞曼效应外文名称:Zeeman effect解释:原子的光谱线在外磁场中出现分裂发现者:荷兰物理学家塞曼发现时间:1896年奖项:诺贝尔物理学奖原理简介荷兰物理学家塞曼在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼效应。
塞曼效应是法拉第磁效致旋光效应之后发现的又一个磁光效应。
这个现象的发现是对光的电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子有更多了解,特别是由于及时得到洛仑兹的理论解释,更受到人们的重视,被誉为继X射线之后物理学最重要的发现之一。
1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰他们研究磁场对光的效应所作的特殊贡献)。
详细内容塞曼效应,英文:Zeeman effect,是1896年由荷兰物理学家塞曼发现的.他发现,原子光谱线在外磁场发生了分裂。
随后洛仑兹在理论上解释了谱线分裂成3条的原因。
这种现象称为"塞曼效应"。
进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。
完整解释塞曼效应需要用到量子力学,电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。
在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。
塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。
塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。
塞曼效应
塞曼效应,英文:Zeeman effect,是1896年由荷兰物理学家塞曼发现的.1896年,荷兰物理学家塞曼使用半径10英尺的凹形罗兰光栅观察磁场中空间的取向是量子化的,因此在磁场作用下能级发生分裂,谱线分裂成间隔相等的3条谱线。
塞曼和洛仑兹因为这一发现共同获得了1902年的诺贝尔物理学奖。
1897年12月,普雷斯顿(T.supeston)报告称,在很多实验中观察到光谱线有时塞曼效应的发现者——荷兰物理学家塞曼。
并非分裂成3条,间隔也不尽相同,人们把这种现象叫做为反常塞曼效应,将塞曼原来发现的现象叫做正常塞曼效应。
反常塞曼效应的机制在其后二十余年时间里一直没能得到很好的解释,困扰了一大批物理学家。
1925年,两名荷兰学生乌仑贝克(G.E.Uhlenbeck,1900--1974)和古兹米特(S.A.Goudsmit,1902--1978)提出了电子自旋假设,很好地解释了反常塞曼效应。
应用正常塞曼效应测量谱线分裂的频率间隔可以测出电子的荷质比。
由此计算得到的荷质比数值与约瑟夫·汤姆生在阴极射线偏转实验中测得的电子荷质比数量级是相同的,二者互相印证,进一步证实了电子的存在。
塞曼效应也可以用来测量天体的磁场。
1908年美国天文学家海尔等人在威尔逊山天文台利用塞曼效应,首次测量到了太阳黑子的磁场。
偏振特性对于Δm=+1,原子在磁场方向的角动量减少了一个\hbar,由于原子和光子的角动量之和守恒,光子具有与磁场方向相同的角动量\hbar,方向与电矢量旋转方向构成右手螺旋,称为σ+偏振,是左旋偏振光。
反之,对于Δm=-1,原子在磁场方向的角动量增加了一个\hbar,光子具有与磁场方向相反的角动量\hbar,方向与电矢量旋转方向构成左手螺旋,称为σ-偏振,是右旋偏振光。
对于Δm=0,原子在磁场方向的角动量不变,称为π偏振。
如果沿磁场方向观察,只能观察到σ+和σ-谱线的左旋偏振光和右旋偏振光,观察不到π偏振的谱线。
简单塞曼效应
简单塞曼效应
塞曼效应,又称作塞曼分裂,是物理学中的一个重要现象。
当原子或分子受到外界磁场的作用时,它们的能级会发生分裂,从而产生出一系列不同能量的谱线。
这一现象的发现者是瑞士物理学家塞曼,他通过实验观察到了光谱线的分裂现象,并成功解释了这一现象的原因。
在实验中,塞曼将一个光源放入一个强磁场中,然后通过光学仪器观察光源发出的光谱。
他发现,在磁场的作用下,原本单一的光谱线会分裂成多条谱线。
这些谱线的数量和排列方式与磁场的强弱、方向以及原子的性质有关。
塞曼效应的解释是基于原子内部的电子运动。
在外部磁场的作用下,电子的运动轨迹会发生变化,从而导致原子能级的分裂。
这种分裂是由于磁场引起的磁力对电子的作用,使电子在能级上发生分布不均匀的现象。
塞曼效应的发现对于物理学的发展具有重要意义。
它不仅验证了磁场对原子的影响,也为后来的量子力学理论提供了重要的实验依据。
通过对塞曼效应的研究,科学家们更深入地理解了原子的结构和性质,为原子物理学的发展奠定了基础。
除了在科学研究中的应用,塞曼效应也在其他领域产生了广泛的应用。
例如,在医学影像学中,利用塞曼效应可以通过核磁共振成像
技术来观察人体内部的结构与变化。
在材料科学中,塞曼效应也被用于研究材料的磁性和电子结构等特性。
塞曼效应是一项重要的物理现象,它揭示了原子在磁场作用下的行为规律,并为科学家们提供了更深入地研究原子和材料性质的途径。
通过进一步的研究和应用,相信塞曼效应将为人类的科技进步和生活带来更多的惊喜和发展。
塞曼效应
塞曼效应是物理学史上一个著名的实验。
荷兰物理学家塞曼(Zeeman)在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体,使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼效应。
塞曼效应是法拉第磁致旋光效应之后发现的又一个磁光效应。
这个现象的发现是对光的电磁理论的有力支持,证实了原子具有磁距和空间取向量子化,使人们对物质光谱、原子、分子有更多了解。
塞曼效应另一引人注目的发现是由谱线的变化来确定离子的荷质比的大小、符号。
根据洛仑兹(H.A.Lorentz)的电子论,测得光谱的波长,谱线的增宽及外加磁场强度,即可称得离子的荷质比。
由塞曼效应和洛仑兹的电子论计算得到的这个结果极为重要,因为它发表在J、J汤姆逊(J、J Thomson)宣布电子发现之前几个月,J、J汤姆逊正是借助于塞曼效应由洛仑兹理论算得的荷质比,与他自己所测得的阴极射线的荷质比进行比较具有相同的数量级,从而得到确实的证据,证明电子的存在。
塞曼效应被誉为继X射线之后物理学最重要的发现之一。
1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰他们研究磁场对光的效应所作的特殊贡献)。
至今,塞曼效应依然是研究原子内部能级结构的重要方法。
本实验通过观察并拍摄Hg(546.1nm)谱线在磁场中的分裂情况,研究塞曼分裂谱的特征,学习应用塞曼效应测量电子的荷质比和研究原子能级结构的方法。
一、塞曼分裂谱线与原谱线关系1、磁矩在外磁场中受到的作用(1)原子总磁矩在外磁场中受到力矩的作用:其效果是磁矩绕磁场方向旋进,也就是总角动量(P)绕磁场方向旋进。
J(2)磁矩在外磁场中的磁能:由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化:∴原子受磁场作用而旋进引起的附加能量M为磁量子数g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。
在LS耦合下:其中:L为总轨道角动量量子数S为总自旋角动量量子数J为总角动量量子数M只能取J,J-1,J-2 …… -J(共2J+1)个值,即ΔE有(2J+1)个可能值。
原子物理课件 第5节 塞曼效应
波数为:
~1' ~1
5 3
,
1,
1, 3
1, 3
~2
'
~2
4 3
,
2, 2, 33
1, 5 ,L 3
4 ,L 3
洛仑兹单位: L e B 46.7B m1 4 mc 11
三、塞曼效应的偏振特性
设电磁波沿 z 轴传播,电矢量必在 xy 平面(横波特性)
M1g1
1
-1
M 2 g2 M1g1 -5/3 -3/3 -1/3 1/3 3/3 5/3
( 1 ) ( 5 , 3 , 1 , 1 , 3 , 5)L
3 3 33339Fra bibliotek2S1/2 2P1/2 2P3/2
LS J M
g Mg
0 1/2 1/2 ±1/2 2 ± 1
1 1/2 1/2 ±1/2 2/3 ±1/3
2S1/2
LS J M
g Mg
2S1/2 0 1/2 1/2 ±1/2
2
±1
2P1/2 1 1/2 1/2 ±1/2 2/3 ±1/3
2P3/2 1 1/2 3/2 ±1/2±3/2 4/3 ±2/3 ±6/3
在外磁场中2P3/2分裂为四个塞曼能级, 间距为4 μBB /3;
2P1/2分裂为二,间距为 2μBBo/3 ; 2S1/2分裂为二,间距为 2μBBo
-右旋偏振
+左旋偏振
光传播方向
光传播方向
J 光的角动量方向
J 光的角动量方向 12
-右旋偏振
+左旋偏振
光传播方向
光传播方向
J 光的角动量方向
J 光的角动量方向
4.5 塞曼效应
J
e 2m
Lcos(L, J )
e m
S cos(S, J )
(1)
S 2 J 2 L2 2JLcos(L, J ) L2 J 2 S 2 2JS cos(S, J )
J 2 L2 S 2 Lcos(L, J )
2J J 2 S 2 L2 S cos(S, J )
分析步骤:
第一:求出原子的总磁矩,特别是它的有效部分; 第二:求出原子磁矩与外磁场相互作用使原子附加的能量; 第三:求出因附加能量导致原子有能级分裂,以及新能级之 间符合选择定则的跃迁使原有谱线分裂,从而解释塞曼效应。
二、原子的总磁矩和有效磁矩
原子的核外电子具有轨道磁矩和自旋磁矩。
轨道磁矩:
l
e 2m
L, 其中L
Li
自旋磁矩:
s
e m
S , 其中S
Si
1、原子总磁矩:
μ=
μl
+ μs
=
-
e 2m
(2S
+
L)
由上可见,总磁矩的大小 不是正比于 J L S
的值,总磁矩的方向也不是与 总角动量反向,即总磁矩并不 在总角动量的延长线上。如图, 轨道角动量和自旋角动量分别 绕总角动量旋进,所以总磁矩 也绕总角动量旋进。把总角动 量分解成两个分量,一个沿着 J的延长线,称为 μJ(有效磁 矩),另一个与J垂直,称为 μ⊥。
4.5 塞曼效应
一、塞曼效应 二、原子的总磁矩和有效磁矩 三、塞曼效应的解释
小结
一、塞曼效应
1、塞曼效应的概念 把原子放入磁场中,其光谱线发生分裂,原 来的一条谱线分裂成几条的现象,被称为塞曼 效应。
塞曼效应实验概述
塞曼效应实验概述塞曼效应(Zeeman effect)是关于光谱线在磁场中的分裂现象,是荷兰物理学家塞曼(Pieter Zeeman)在1896年首次观察到的,这一实验对于理解原子结构和磁性材料的性质具有重要意义。
1.实验装置:2.实验原理:塞曼效应根据原子在磁场中的能级分裂,可以将分光仪的工作方式分为两种:正常塞曼效应和反常塞曼效应。
正常塞曼效应:当一个带电粒子(如原子)受到磁场作用时,它的能级将被分裂成多个能级。
这是由于粒子的轨道角动量和自旋角动量受到磁场力的作用,导致能级的分裂。
在正常塞曼效应中,光谱线的分裂是由于轨道角动量的分裂引起的。
反常塞曼效应:在一些情况下,光谱线的分裂不仅由轨道角动量的分裂导致,还受到自旋角动量的影响。
此时,称之为反常塞曼效应。
反常塞曼效应的存在表明自旋与轨道间的耦合可能会影响能级的分裂。
3.实验步骤:(1)调整光谱仪:首先,需要调整光谱仪,确保它能够产生单色光并对其进行分散。
通常,系统会添加一根狭缝来控制入射光线的宽度,并通过调节光栅或棱镜来使光线呈现出不同的波长。
(2)建立磁场:在光谱仪中建立一个恒定的磁场。
可以使用电磁铁或永久磁铁等方式来产生磁场。
磁场的强度可以通过改变电磁铁中的电流或磁铁的位置来调节。
(3)测量光强:在磁场的作用下,光谱线会发生分裂。
通过使用光电倍增管或者CCD相机等光电探测器测量不同波长光的强度。
记录下不同波长光的强度分布图。
4.实验结果分析:根据测量到的光强分布图,可以分析光谱线的分裂情况。
正常塞曼效应下,光谱线将会分裂成多条,而反常塞曼效应下,光谱线的分裂形式可能更为复杂。
通过分析实验结果,可以计算出不同分裂能级之间的能量差,从而了解原子或分子的结构和性质。
这对于研究原子的轨道角动量、自旋角动量和原子能级结构等方面具有重要的意义。
塞曼效应的研究促进了光谱学和原子物理学的发展,对于理解原子结构和磁性材料的性质等领域有着广泛应用。
经典力学解释塞曼效应
经典力学解释塞曼效应
塞曼效应是原子、分子或固体中的磁性物质在外磁场作用下出现的谱线分裂现象。
经典力学可以在一定程度上解释塞曼效应。
根据经典电动力学,电子在外磁场中会受到洛伦兹力的作用,在原子、分子或固体中运动的电子也不例外。
这个洛伦兹力会使得电子的运动轨迹发生改变,从而导致塞曼效应的出现。
具体来说,外磁场的存在会对电子的运动轨迹施加一个侧向的力。
这个力会使得电子的运动路径发生偏转,并且在几个可能的路径中选择其中一条。
根据经典力学,这些选择的路径对应于不同的能量值,因此会导致能级的分裂。
此外,经典力学还可以解释为什么磁场的强度会影响塞曼效应。
根据经典力学,磁场越强,电子偏转轨迹的半径也会越大,进而导致能级分裂的差异变大。
然而,需要注意的是,经典力学对于解释塞曼效应并不完全准确。
实际上,塞曼效应的解释需要借助于量子力学的理论,才能更加准确地描述电子在外磁场中的行为。
量子力学能够解释电子在不同能级之间跃迁的概率和选择性,从而更好地解释了塞曼效应的实验观测结果。
因此,尽管经典力学在一定程度上可以解释塞曼效应,但量子力学才是更为准确和完备的理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塞曼效应
塞曼效应实验室物理学史上一个著名的实验,早在1896年,塞曼发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体,使其光谱发生变化,一条谱线分裂成几条偏振化的谱线,这种现象称为塞曼效应。
塞曼效应的实验证实了原子具有磁矩和空间取向的量子化,并得到罗仑兹理论的解释。
1902年,塞曼因为这一发现与罗仑兹共享诺贝尔物理学奖。
至今,塞曼效应仍然是研究原子内部能级结构的重要方法。
【实验目的】
1.掌握塞曼效应理论,测量电子的荷质比。
2.学习光路的调节和掌握法布里-珀罗标准具的原理及使用。
3. 了解CCD器件的原理和应用。
【实验器材】
F-P标准具,CCD,电脑,电磁铁,电源,透镜,偏振片,滤波片,低压汞灯,导轨等
【实验原理】
在外磁场作用下,光源所
发射的一条光谱线被分裂成
多条光谱线的现象称为塞曼
(Zeeman)效应。
塞曼效应
证实原子具有磁矩,而且其空
间取向是量子化的。
在磁场
中,原子磁矩受到磁场作用,图1
使原子在原来能级上获得一附加能量。
由于原子磁矩在磁场中的不同取向而获得的不同附加能量,使得原来一个能级裂成为能量不同的几个子能级。
在原子发光过程中,原来两能级之间跃迁产生的一条光谱线,由于上、下能级分裂成几个能级。
因此,由光源发出的一条光谱线也会分裂成若干成份。
根据理论推导,在磁场中原子附加的能量△E的表达式如下:
由汞光源发出的546.1nm光谱线在外磁场作用下产生了跃迁,如图1,而原子发光必须遵从△M=0或±1的选择定则(△M表示光谱线由于能级跃迁而产生的磁量子数的差值),而且选择定则与光的偏振有关,光的偏振状态又与观察角度有关。
垂直于磁场时为线偏振光,而平行于磁场时则是圆偏振光。
因此,当我们分别从垂直于磁场方向(横向)和平行于磁场方向(纵向)观察时,所得结果如表1中所列。
表1
由图1中我们可看到,由于选择定则的限制,只允许9种跃迁存在,从横向角度观察,原546.1nm光谱线将分裂成9条彼此靠近的光谱线,如图2所示,其中包括3条π分量线(中心3条)和6条σ分量线。
这些条纹互相迭合而使观察困难。
由于这两种成份偏振光的偏振方向是正交的,因此我们可利用偏振片将σ分量的6条条纹滤去,只让π分量条纹留下来,如图3所示。
相邻谱线之间的间距非常小, 为了能准确地分析谱线的精细结构,需要一个高分辨的光谱仪,本仪器采用法布里—珀罗标准具。
图2 图3
WPZ—Ⅲ型塞曼效应仪采用2mm间隔的法布里—珀罗标准具,并用干涉滤光片把笔型汞灯中的546.1nm光谱线选出,在磁场中进行分裂,然后用CCD摄像装置记录,并将图像传送到计算机中,用智能软件进行处理,整套仪器组成如图4所示。
【实验的内容、步骤】
1.按图4将仪器安置在实验桌上。
2.将笔形汞灯插入两线圈中间的灯架中。
其接线分别接入电磁铁前的接线柱上。
3.将CCD的输出视频电缆接入电脑主机视频输入端。
4.分别将电源插头插入电源插座(CCD电源通过变压器接入DC 12V)。
5.打开开关,点亮汞灯,调整透镜座、干涉滤光片座和F-P标准具座,使它们与光源同轴,让光线能完全进入CCD。
6.打开电脑电源,运行“塞曼效应智能分析软件”,并单击“预览”按钮,仔细调节透镜、干涉滤光片、F-P标准具相互间的位置直至在屏幕中能看到清晰的圆环。
7.打开磁场开关,逐渐加大电流至能看到分裂的九条谱线。
8.旋转偏振片,将分别看到π分量的3条谱线和σ分量的6条谱线。
9.利用智能分析软件可对谱线进行分析,详见“塞曼效应智能分析软件使用说明书”。
10. 电磁铁架在电源上方;松开锁紧螺丝可使电磁铁旋转90°,抽出电磁铁中间插芯,可作纵向塞曼实验。
此时在电磁铁插芯孔前加上λ/4玻片,使圆偏振光变成线偏振光、旋转偏振片45°,使分裂的两条谱线,其中一条消失,再反方向
旋转偏振片,消失的一条谱线重现,而另一条谱线消失了得以证明分裂的两条谱线是左、右旋圆偏振光。
【注意事项】
1.各光学器件的光轴必须保持一致。
调节时,第一,要使各器件的轴心等高,第二,注意各器件之间要保持平行,第三,注意对光具座的调节,不要让各器件的横向位置相互错开;
2. 实验成功的关键是F-P标准具的镜片必须严格平行。
粗调:通过标准具观察汞灯照明可见一组同心圆环。
观察者的眼睛向着微调螺丝的方向移动时,圆环也可能会移动,这说明标准具的镜片还未严格平行。
应仔细调整三颗微调螺丝,直至眼睛移动时圆环不动。
精调:在实验时仍需进一步地调整微调螺丝,直至在显示器上观察时,图象最清晰止。
3. 磁场电流的增加要缓慢,尽量在电流表蓝区内工作,在黄区内工作时要控制实验时间,以免电磁铁过热发烫。
4. 成像透镜的位置要恰当,要缓慢地调节透镜直至采集到的曲线幅值最大、细节最清晰为止;如果曲线的幅度较小,可以考虑如下两种方法:一是将CCD采集盒的积分时间DIP作适当的调整,一是将软件的增益加大,有时也可以考虑减小FP标准具与CCD成像透镜的距离;如果采集到的曲线为幅度很高的一条直线,这是环境光过强所致,请减弱环境光;
【思考题】
1.如何鉴别F-P标准具的两反射面是否严格平行,如发现不平行,应如何调节?
2.F-P标准具产生的干涉图是多光束干涉的结果,它与牛顿环、迈克耳孙干涉
仪的双光束干涉图有何区别?
3.偏振片如何判断偏振光π成分和σ成分?。