金属腐蚀与防护
金属的腐蚀与防护完整版PPT课件
对实验数据进行处理和分析,提取金属内部或表面的缺陷信息,评 估金属的腐蚀程度和剩余寿命。
06 金属防护工程实践案例 分享
石油化工行业金属设备防护案例
案例一
某石化公司炼油厂塔器设备腐蚀防护。采用高分子复合涂层技术进 行防护,有效延长了设备使用寿命。
案例二
某油田输油管道腐蚀防护。采用阴极保护技术,结合涂层保护,降 低了管道的腐蚀速率。
阴极保护法
01
将被保护金属与外加直流电源的负极相连,使其成为阴极而防
止金属腐蚀的方法。
阳极保护法
02
将被保护金属与外加直流电源的正极相连,使其处于阳极电位
下成为钝态或致钝而防止金属腐蚀的方法。
牺牲阳极保护法
03
在被保护金属上连接电位更负的金属或合金作为阳极,使其在
腐蚀介质中优先溶解,从而保护被连接金属的方法。
金属的腐蚀与防护完 整版PPT课件
目录
CONTENTS
• 金属腐蚀概述 • 金属腐蚀类型及特点 • 金属防护方法及原理 • 不同环境下金属腐蚀与防护策略 • 金属腐蚀实验方法与检测技术 • 金属防护工程实践案例分享
01 金属腐蚀概述
腐蚀定义与分类
腐蚀定义
金属与周围环境发生化学或电化学 反应,导致金属性能劣化的现象。
案例三
某变电站高压开关柜金 属外壳腐蚀防护。采用 阴极保护技术,结合涂 层保护,降低了金属外 壳的腐蚀速率。
交通运输领域金属部件防护案例
案例一
某地铁列车车体腐蚀防护。采用 不锈钢车体材料,结合电化学保 护技术,提高了车体的耐蚀性。
案例二
某汽车制造厂车身钢板腐蚀防护。 采用镀锌钢板材料,结合涂层保 护技术,延长了车身的使用寿命。
金属的腐蚀与防护
金属的腐蚀与防护金属材料在日常生活和工业生产中扮演着重要的角色,然而,金属的腐蚀是一种常见的问题,会导致金属失去其原有的性能和功能。
为了延长金属材料的使用寿命,我们需要了解金属腐蚀的原因以及采取相应的防护措施。
一、金属腐蚀的原因金属腐蚀是指金属材料与周围环境中的化学物质(如氧气、水、酸、碱等)发生化学反应,导致金属表面发生破坏或氧化的过程。
金属腐蚀的原因主要有以下几个方面:1. 电化学反应:金属与电解质溶液中的阳离子和阴离子反应,形成电池,电流通过金属表面引起金属的腐蚀。
2. 氧化反应:金属与氧气发生氧化反应,产生金属氧化物,导致金属发生腐蚀。
3. 化学反应:金属与酸、碱等化学物质发生化学反应,导致金属腐蚀。
4. 湿度和温度:高湿度和高温环境中,金属材料更容易受到腐蚀的侵袭。
二、金属腐蚀的分类金属腐蚀可以分为几种不同的类型,常见的有以下几种:1. 高温腐蚀:金属在高温环境中与气体或化学物质反应,产生高温氧化、硫化等反应,导致金属材料的腐蚀。
2. 氧化腐蚀:金属与氧气反应,生成金属氧化物,使金属表面形成氧化层,导致金属材料的腐蚀。
3. 酸腐蚀:金属与酸反应,形成金属盐和气体,发生化学变化,导致金属材料腐蚀。
4. 碱性腐蚀:金属与碱反应,形成金属盐和水,导致金属发生腐蚀。
5. 电化学腐蚀:金属与电解质溶液中的阳离子和阴离子反应,形成电池,产生电流,引起金属的腐蚀。
三、金属腐蚀的防护措施为了防止金属腐蚀引起的损失,我们可以采取一些防护措施:1. 表面涂层:在金属表面涂覆一层耐腐蚀的涂层,如漆、蜡、聚合物等,以隔绝金属与环境的接触,起到防护作用。
2. 阳极保护:通过将金属制成阳极,并与可溶性阳极材料(如锌)联接,使其成为电池中的阴极,实现对金属的防护。
3. 隔离保护:通过将金属与环境隔离,如使用橡胶垫片、塑料包覆等方式,减少金属与腐蚀介质的接触,起到保护作用。
4. 防蚀剂使用:使用防蚀剂涂覆金属表面,形成一层保护膜,降低金属与腐蚀介质的接触,防止金属腐蚀。
金属材料的腐蚀与防护
金属材料的腐蚀与防护金属材料在使用过程中容易受到腐蚀的影响,从而降低其机械性能和寿命。
为了延长金属材料的使用寿命,保护措施是至关重要的。
本文将讨论金属材料腐蚀的原因和常见的防护方法。
一、金属材料腐蚀的原因金属材料腐蚀的原因主要包括化学腐蚀和电化学腐蚀两种。
1. 化学腐蚀化学腐蚀是指金属材料与大气中的氧、水、酸、碱等物质发生反应,导致金属表面发生变化。
常见的化学腐蚀有氧化腐蚀、酸性腐蚀和碱性腐蚀等。
氧化腐蚀是指金属与氧气反应生成金属氧化物的过程。
例如铁与氧气反应生成铁氧化物,即常见的铁锈现象。
在湿润环境下,氧化腐蚀速度更快。
酸性腐蚀是指金属与酸性溶液接触产生的化学反应。
常见的酸性腐蚀有硫酸腐蚀、盐酸腐蚀等。
酸性腐蚀可导致金属材料表面产生腐蚀坑。
碱性腐蚀是指金属与碱性溶液接触产生的化学反应。
常见的碱性腐蚀有氢氧化钠腐蚀、氢氧化钾腐蚀等。
碱性腐蚀会使金属表面发生腐蚀、变硬或变脆等。
2. 电化学腐蚀电化学腐蚀是指金属在电解质中发生的电化学反应导致腐蚀现象。
电化学腐蚀包括阳极腐蚀和阴极腐蚀。
阳极腐蚀是指金属作为阳极,在电化学反应中溶解生成阳离子。
金属表面因此变薄,甚至出现孔洞。
例如,铁的阳极腐蚀就是普遍的铁锈现象。
阴极腐蚀是指金属作为阴极,在电化学反应中受到硬币金属材料的腐蚀与防护电子供给,发生反应并生成金属阳离子的过程。
阴极腐蚀可导致金属表面发生凹陷或沉积物形成。
二、金属材料的防护方法金属材料的防护方法主要包括表面涂层、阳极保护和电化学防护等。
1. 表面涂层表面涂层是指在金属材料表面形成一层附着力强的保护层。
常见的表面涂层有油漆、镀层和涂覆层等。
这些涂层可以隔绝金属材料与环境介质的接触,从而减少腐蚀的发生。
2. 阳极保护阳极保护是通过在金属材料上施加电流,使其成为阴极从而抑制腐蚀的发生。
常用的阳极保护方法有热浸镀锌、电镀和阳极保护涂层等。
这些方法可在金属材料表面形成一层保护膜,提供额外的保护。
3. 电化学防护电化学防护是利用电化学原理减缓金属材料腐蚀的速率。
金属腐蚀与防护
铁钉渐 渐生锈
无现象
无现象
分 析
铁钉被 腐蚀 铁钉未被
腐蚀
由铁于钉无 未被O2,由 H2于O铁无
腐蚀
钉不能
被腐蚀
思考
为什么左边家用燃气灶的中心部位很容易 生锈,而右边的食品罐头放在南极近90
年了,却很少生锈,你知道为什么吗?
一般情况下,温度的升高会加快化学反应速率。 因此,温度对化学腐蚀的影响较明显。
析氢腐蚀
吸氧腐蚀
条
水膜呈酸性。
件 CO2+H2O H2CO3
H++HCO
-
3
水膜呈中性或酸性很弱。
负极Fe(- ) Fe-2e- =Fe2+
2Fe-4e- =2Fe2+
电 正极C(+) 2H++2e- =H2↑ O2+2H2O+4e- =4OH-
极 总反应: Fe+2H+=Fe2+ +H2 ↑ 2Fe+2H2O+O2= 2 Fe(OH)2
请根据生活常识以及下图总结金属防 护常用的方法,并解释这些方法为什 么可以达到防止金属腐蚀的目的。
健身器材刷油漆 某些工具的“机械转动部位”涂 油脂(机油),为什么不能用油
漆
衣架和电线的外面包上一层塑料层
自行车的钢 圈和车铃是 在钢上镀上 一层既耐腐 蚀又耐磨的 Cr
金属腐蚀的防护
1、金属表面覆盖保护层 如涂油漆、油脂、塑料、陶瓷等,镀上一层耐腐
金属的腐蚀
(1)定义: 金属或合金与周围接触到的气体或液体 进行化学反应而腐蚀损耗的过程。
(2)金属腐蚀的本质: 金属失去电子被氧化
金属原子 失e-
金属腐蚀与防护措施
金属腐蚀与防护措施金属腐蚀是指金属在特定环境条件下与周围介质发生一系列不可逆转的化学或电化学反应,导致金属表面质量和性能的变化。
腐蚀对于工业、制造和基础设施等各个领域都造成了巨大的经济损失。
为了延长金属的使用寿命和减少腐蚀带来的损害,各种防护措施得到了广泛的应用。
本文将讨论金属腐蚀的原因以及常见的防护措施。
一、金属腐蚀的原因金属腐蚀的主要原因是金属与外界环境中的化学物质相互作用,导致金属表面发生物理、化学或电化学的改变。
以下是金属腐蚀的几个常见原因:1. 氧化:金属与氧气反应会产生金属氧化物层,这层氧化物层可能会进一步被水和其他物质侵蚀,从而导致金属腐蚀。
2. 湿气:金属暴露在湿润的环境中,特别是含有盐类等腐蚀性物质的湿气中,容易发生腐蚀反应。
3. 酸碱腐蚀:金属与酸碱溶液接触会发生化学反应,破坏金属表面的结构和性能。
4. 电化学腐蚀:当金属处于电解质溶液中时,会发生电化学反应,从而引发金属腐蚀。
特别是存在电解质间隙效应或形成局部腐蚀的情况下,腐蚀会更为严重。
二、金属腐蚀的防护措施为了防止金属腐蚀,人们采取了多种防护措施,既包括表面防护措施,也包括合金改性和涂层防护等。
下面将列举一些常见的金属腐蚀防护措施:1. 电镀:通过电解的方法,在金属表面形成一层具有防护性的金属薄膜,如镀锌和镀铬等。
2. 钝化处理:将金属浸泡在含有腐蚀抑制剂的溶液中,形成一层钝化膜,提高金属的抗腐蚀性能。
3. 涂层:通过在金属表面涂覆一层具有防护性能的物质,如油漆、聚合物和橡胶等,来阻隔金属与外界环境的接触。
4. 合金改性:将其他金属或非金属元素与金属进行合金化,改变金属的组织结构和化学成分,提高其抗腐蚀能力。
5. 热处理:通过加热和冷却等工艺手段,改变金属的晶体结构,提高其物理和化学性能,提高抗腐蚀性能。
6. 阳极保护:通过将一个更容易被腐蚀的金属连接到需要防护的金属上,使其成为阳极,从而减少需要防护金属的腐蚀程度。
7. 控制环境:控制金属周围的环境条件,比如减少湿度、避免金属长时间暴露在潮湿、有害气体等恶劣环境中。
金属的腐蚀与防护
金属的腐蚀与防护金属在我们的日常生活中无处不在,我们使用金属制成的物品,例如汽车、建筑物、家具等。
然而,金属经常会遭受腐蚀,这会导致它们的性能下降甚至失效。
为了保护金属,我们需要了解腐蚀的原因和预防方法。
1.什么是金属腐蚀?金属腐蚀是指金属在与环境中的化学物质接触时发生的氧化反应。
这种反应会导致金属表面的腐蚀物产生,使金属变得破损、变脆,并最终造成金属的失效。
2.腐蚀的原因金属腐蚀有多种原因,其中最常见的是氧气和水的存在。
当金属与氧气和水分子接触时,氧气将与金属发生氧化反应,形成金属氧化物,同时水分子中的离子也参与到化学反应中,加速金属的腐蚀过程。
除了氧气和水的影响,其他因素如酸、盐等也会对金属腐蚀起促进作用。
例如,当金属暴露在盐水中时,盐中的离子会加速金属的腐蚀速度,使金属更容易被腐蚀。
3.金属腐蚀的危害金属腐蚀不仅仅影响了金属的外观,还会对金属的性能和使用寿命造成不可逆的损害。
例如,腐蚀可能导致金属的力学性能下降,如强度、韧性和硬度的减弱。
腐蚀还会导致金属的电导率降低,对电气设备的性能产生不利影响。
金属腐蚀还可能引发环境问题。
一些金属腐蚀产物可能对生态系统和人体健康造成危害。
因此,金属腐蚀的防护显得尤为重要。
4.金属腐蚀的防护方法为了有效防止金属腐蚀,我们可以采取以下几种方法:4.1金属涂层金属涂层是一种常见的金属腐蚀防护方法。
涂层作为一层保护层覆盖在金属表面,可以阻断金属与环境中物质的接触,减缓金属腐蚀的进程。
常见的金属涂层包括涂漆、涂蜡和镀层等。
4.2阳极保护阳极保护是一种利用金属之间的电化学原理来防止金属腐蚀的方法。
通过在金属表面放置一个更容易被腐蚀的金属,将其作为阳极,并将被保护的金属作为阴极,以形成一个电池系统,从而减缓金属的腐蚀速度。
4.3合金化合金化是通过将金属与其他元素或化合物进行混合,形成具有更好腐蚀抵抗性的金属。
通过改变金属的成分,可以改善其腐蚀性能,延长金属的使用寿命。
金属的腐蚀与防护
金属的腐蚀与防护简介:金属是一种常见的材料,在各个领域中都有广泛应用。
然而,金属材料在使用过程中,容易受到腐蚀的影响,从而导致质量下降甚至失效。
本文将探讨金属腐蚀的原因、危害以及常见的防护措施。
一、腐蚀的原因金属腐蚀是指金属在特定环境下与所处介质发生反应,从而引起金属表面或内部的氧化、脱层、破损等现象。
主要原因如下:1. 化学反应:金属与介质中的氧气、水、酸等发生化学反应,形成金属氧化物或金属盐,从而破坏金属结构;2. 电化学反应:金属在电解质溶液中,作为阴阳极参与电化学反应,产生腐蚀电流,导致金属丧失;3. 生物腐蚀:微生物、海洋生物或土壤中的细菌、藻类等对金属表面进行化学作用,加速金属腐蚀;4. 物理因素:高温、高湿度、紫外线、机械刮擦等物理因素也会对金属产生腐蚀影响。
二、腐蚀的危害金属腐蚀带来的危害主要体现在以下几个方面:1. 结构破损:金属腐蚀导致金属结构受损,影响其使用寿命,甚至引发安全事故;2. 功能下降:腐蚀使金属表面变得不平整、粗糙,降低了其原有的功能,如电导性、导热性等;3. 资源浪费:腐蚀使金属材料减少,需要更多的资源进行修复和替换,增加了成本和能源消耗;4. 环境污染:金属腐蚀产生的废物、气体和废水会对环境造成污染,对植物和动物产生不良影响。
三、金属腐蚀的防护措施为了减少金属腐蚀的发生,需要采取一系列的防护措施。
以下是常见的几种防护方法:1. 表面涂层:通过涂覆金属表面的保护膜,阻隔介质对金属的侵蚀。
常见的涂层包括漆膜、涂层、电镀层等;2. 阳极保护:在金属表面附近放置一个具有更高活性的金属,作为阳极进行保护,使其更容易受到腐蚀。
常见的阳极保护材料包括锌合金、铝合金等;3. 防蚀合金:将金属与其他元素进行合金化处理,提高其抗腐蚀性能。
如不锈钢中的铬能形成致密的氧化膜,阻隔外界介质;4. 缓蚀剂:添加适量的缓蚀剂到金属表面,形成保护膜,减缓腐蚀速度。
常见的缓蚀剂有无机盐、有机酸等;5. 电化学防蚀:利用电化学原理,通过施加外电场或电流,实现金属防蚀。
金属的腐蚀与防护
化学腐蚀
在外界环境中的水蒸气、酸碱等物质影响下,金属表面发生氧化还原反应,形成氧化物或其他化合物。例如,当铁暴露于氧和水中时,会形成铁锈(Fe₂O₃·nH₂O),这是一种典型的化学腐蚀现象。
电化学腐蚀
在一定条件下,例如在电解质溶液中,不同电位造成的电流分布变化,会导致金属表面上出现阳极区和阴极区。在阳极区,金属发生氧化反应而溶解,释放出电子;在阴极区,则发生还原反应,这一过程是通过离子在溶液中传递形成闭合回路,从而加剧了金属的整体损失。
三、影响金属腐蚀因素
影响木材及其抗风雨能力的重要因素有很多,包括:
环境湿度
高湿度会加速空气中的氧气、水分与金属的接触,加快氧化反应。因此,在潮湿环境下,金属更易受到腐蚀。
温度
氧化反应通常随着温度升高而境下金属更容易发生严重腐蚀。
pH值
环境中的酸碱程度直接影响着局部区域的电极电位。不同pH值下的介质对不同类型的金属具有不同程度的侵害。例如,低pH值(酸性环境)往往对铁等铸铁材料具有较强的侵袭性。
电化学腐蚀
电化学腐蚀是由于电流在金属表面产生的不均匀分布而导致的。比如,当金属与不同电位的金属连接时,低电位部分会被加速腐蚀。
生物腐蚀
这种腐蚀是由微生物造成的,尤其是在水体中生活的微生物,会通过其代谢过程改变周围环境,从而促进了金属的腐蚀过程。生物膜或污垢层常常在这种情况下形成,进一步加速了腐蚀。
二、金属腐蚀机制
金属的腐蚀与防护
金属腐蚀是指金属在环境的作用下,发生化学或电化学反应,导致其物理和化学性能劣化的过程。腐蚀不仅削弱了金属材料的强度、韧性,还可能引发结构失效,造成巨大的经济损失和安全隐患。因此,了解金属腐蚀的原理和机制,以及实施有效的防护措施,对于延长金属构件的使用寿命,提高工程安全性具有重要意义。
金属的腐蚀与防护
金属的腐蚀与防护在我们的日常生活中,金属是一种我们经常接触到的材料。
从我们的家居设备到车辆和基础设施,金属都得到了广泛的应用。
然而,金属在长时间使用的过程中,会面临一个普遍的问题,那就是腐蚀。
本文将探讨金属的腐蚀原因以及常见的防护方法。
一、腐蚀的原因腐蚀是金属与周围环境发生反应,导致金属表面质量的损失。
金属腐蚀的主要原因可以归结为以下几点:1. 化学反应:金属与空气中的氧气、水分以及其他化学物质发生反应,形成腐蚀产物。
例如,铁的腐蚀是由于氧气和水的存在形成的氧化铁。
2. 电化学反应:金属在电解质溶液中与氧化还原反应发生,形成电极体系。
其中,金属作为阳极发生氧化反应,被溶解为阳极离子。
3. 环境因素:金属腐蚀还与环境的酸碱度、湿度、温度等因素有关。
酸性环境、高湿度和高温都会加速金属的腐蚀过程。
二、常见的金属腐蚀防护方法为了保护金属免受腐蚀的损害,一系列的腐蚀防护方法被开发出来。
下面是一些常见的金属腐蚀防护方法:1. 表面涂层:在金属表面覆盖一层防腐涂料或涂层是常见的防护方法之一。
这可以阻止环境中对金属的直接接触,并减少氧气和水分的接触,从而降低腐蚀的速度。
2. 阴极保护:通过将一种更容易被腐蚀的金属(如锌)与需要保护的金属(如铁)连接在一起,形成一个阴阳极体系。
这样,腐蚀过程会移动到更容易被腐蚀的金属上,保护主要金属不受腐蚀。
3. 合金化处理:通过添加其他元素或合金成分来改变金属的结构,提高金属的抗腐蚀性能。
例如,不锈钢是通过在铁中添加铬和镍来制成的,以增加其抗腐蚀性能。
4. 电镀:将要保护的金属浸入带有活性金属离子的电解质溶液中,在金属表面形成保护性的金属沉积层。
这种方法可以提供一个屏障,阻止环境中的腐蚀物质接触到金属表面。
5. 降低环境因素:通过控制周围环境的酸碱度、湿度和温度等因素,可以减缓腐蚀速度。
例如,在暴露在潮湿环境中的金属表面添加干燥剂可以降低湿度,减少腐蚀的风险。
三、结语金属的腐蚀问题在我们的生活中是一个常见且重要的挑战。
金属腐蚀的防护方法
金属腐蚀的防护方法金属腐蚀是一个全球性的问题,对材料、设备、设施和结构产生重大影响。
为了防止和减轻金属腐蚀的危害,以下是一些常用的金属腐蚀防护方法:1.涂层保护:涂层保护是一种常见的金属腐蚀防护方法。
通过在金属表面涂覆一层耐腐蚀的涂层,如油漆、涂料、塑料等,隔离金属与腐蚀介质,从而减缓或阻止金属腐蚀的进程。
2.改变金属结构:改变金属结构可以改变金属在腐蚀环境中的耐蚀性能。
例如,通过合金化添加耐腐蚀元素,提高金属表面的耐蚀性能。
此外,还可以采用耐腐蚀的合金材料,如不锈钢、钛合金等。
3.电化学保护:电化学保护是通过外部电流或牺牲阳极等方法改变金属表面的电化学状态,使金属表面形成一层保护膜,防止腐蚀介质与金属接触,从而达到防止腐蚀的目的。
4.表面处理:表面处理是通过物理或化学方法改变金属表面的形貌和结构,提高金属表面的耐蚀性能。
例如,表面抛光、喷砂处理、钝化处理等。
5.介质处理:介质处理是通过改变环境中的腐蚀介质来达到防止腐蚀的目的。
例如,去除环境中的腐蚀性气体或离子,控制湿度、温度等环境因素。
6.缓蚀剂:缓蚀剂是一种能够降低金属腐蚀速率的物质。
它们可以吸附在金属表面,形成一层保护膜,或改变金属表面的电化学状态,从而减缓或阻止金属腐蚀的进程。
7.温度控制:温度控制是通过控制环境中的温度来达到防止腐蚀的目的。
例如,通过加热、冷却、控制工作温度等方式,使金属表面保持干燥或维持适宜的温度范围。
8.维护保养:维护保养是通过定期检查、清洁、润滑、维修等方式来保持金属设备和设施的良好状态。
及时发现并修复腐蚀损伤,防止腐蚀进一步发展,是防止金属腐蚀的重要措施之一。
综上所述,以上这些方法可以单独或结合使用,以有效地防止和减轻金属腐蚀的危害。
在实际应用中,应根据具体的情况选择合适的方法。
金属的腐蚀与防护
金属的腐蚀与防护
金属的腐蚀是指金属与其周围环境中的化学物质相互作用,导致金属表面发生氧化、腐蚀或损坏的过程。
金属的腐蚀主要由以下几种因素引起:
1. 氧气:金属与氧气相结合形成氧化物,如铁与氧气结合
形成铁锈。
2. 湿度:水分可以加速金属的腐蚀过程,称为湿氧腐蚀。
3. 酸碱物质:酸、碱等具有腐蚀性的物质可以对金属表面
造成损坏。
4. 盐水:海水等盐性溶液中的离子对金属具有强腐蚀性。
为了防止金属的腐蚀,常采用以下几种防护方法:
1. 金属涂层:在金属表面涂覆一层耐腐蚀的涂层,如漆、
涂料、金属镀层等。
涂层可以隔离金属与环境的接触,起
到防腐蚀的作用。
2. 阳极保护:在金属表面放置一个更容易被腐蚀的金属,
使其成为阴极,从而保护金属不受腐蚀。
例如,在铁制品
上涂层锌,形成镀锌钢。
3. 防蚀剂:使用含有防腐剂的溶液或涂料处理金属表面,
形成保护膜,起到阻止腐蚀的作用。
4. 优化设计:合理设计金属结构,减少金属表面积暴露在
腐蚀介质中,避免暴露在高湿度或腐蚀性环境中。
需要注意的是,不同金属在不同环境下的抗腐蚀性能各异,因此在选择防护方法时需考虑具体情况,并根据金属的特
性和所处环境进行合理的腐蚀防护措施。
金属的腐蚀与防护
金属的腐蚀与防护
金属的腐蚀是指金属与外界环境中的氧、水、酸、碱等物质发生化学反应,导致金属表面发生氧化、溶解或剥落的现象。
常见的金属腐蚀有铁锈、铝腐蚀等。
金属的腐蚀可以通过以下几种方式进行防护:
1. 防止氧气和水的接触:金属腐蚀主要是由于金属与氧气和水发生反应而引起的,因此可以通过涂层、涂漆等方法将金属与氧气和水隔离开来,防止接触。
2. 添加防腐剂:在金属表面涂覆一层含有防腐剂的涂层,可以形成一层保护膜,防止氧气和水的侵蚀,延缓金属的腐蚀速度。
3. 电化学防护:也称为阳极保护,可以通过在金属表面加上一层不容易被腐蚀的金属,将金属本身作为靶阴极,从而保护金属不被腐蚀。
4. 良好的维护保养:定期清洗金属表面的污垢、油脂等,及时修复和更换出现腐蚀的金属部件,可以延长金属的使用寿命。
5. 使用耐腐蚀的金属:对于一些要求较高的场合,可以选择使用具有较好耐腐蚀性能的金属,如不锈钢、铝合金等。
需要注意的是,不同的金属在不同环境条件下的腐蚀速度和防护方法也有所不同,具体应根据实际情况进行选择和应用。
金属的腐蚀与防护
金属的腐蚀与防护金属腐蚀是指金属材料在其所在环境中因化学或电化学反应发生的降解现象。
这一过程导致金属结构强度显著降低,从而影响其功能和使用寿命。
因此,在工程和材料科学领域,理解金属腐蚀的机制以及有效的防护手段显得极为重要。
一、金属腐蚀的类型金属腐蚀主要可以分为以下几种类型:均匀腐蚀均匀腐蚀是最常见的形式,特点是在整个金属表面上均匀地减薄通常由氧气和水分子引起。
此类型很难觉察,尤其是在较小的物体上。
均匀腐蚀的速率受温度、pH值、离子浓度等多种因素影响。
局部腐蚀局部腐蚀常集中在某些特殊区域,常见的包括:点蚀:在金属表面形成小而深入的孔洞。
点蚀往往是由于局部环境缺乏氧气或受到污染造成。
沟槽腐蚀:这种形式通常发生在两种不同金属接触的地方,或者金属表面有异物覆盖。
晶间腐蚀:这种现象主要在某些合金中出现,造成金属晶界处迅速氧化,导致结构脆弱。
电化学腐蚀电化学腐蚀涉及金属材料与其环境之间的电流流动,与温度、电解质浓度和电位差密切相关。
这种类型的腐蚀通常被认为是最复杂且破坏性最大的。
疲劳腐蚀疲劳腐蚀是指在循环载荷下,结合化学腐蚀的影响。
此类腐蚀通常用于高强度材料,例如航空航天器材和艇船等。
二、导致金属腐蚀的因素环境因素金属所处的环境是决定其腐蚀程度的重要因素。
湿度、酸碱度、温度和存在于空气中的污染物等都会加速金属的氧化过程。
合金成分不同元素及其配比对抗腐蚀性能有直接影响。
例如,不锈钢中添加铬会提高耐腐蚀能力,但加入镍却可能导致更高成本。
表面状态金属表面的处理状态,如光滑状态还是粗糙状态,也会影响其耐腐蚀性能。
一般来说,表面愈光滑愈容易抵抗腐蚀。
电化学关系当两个不同金属接触时,它们形成了电池作用,可能导致一定速度的加速腐蚀。
这种效应亦被称为“异种金属腐蚀”。
三、金属腐蚀的检测方法为了有效地评估和预防金属腐蚀,需要采用多种检测手段:视觉检验通过肉眼观察,了解金属表面的变化。
这通常作为初步筛查手段,有助于快速识别较大面积的均匀或局部腐蚀现象。
金属的腐蚀与防护实验
金属的腐蚀与防护实验引言:金属腐蚀是指金属在特定环境中与周围介质发生化学或电化学反应导致其逐渐破坏的现象。
金属腐蚀不仅会减少金属材料的使用寿命,还对工业生产、基础设施等方面造成了严重的经济损失。
因此,研究金属腐蚀的机理和开发有效的防护措施对于改善材料耐蚀性具有重要意义。
本文将介绍一些常见的金属腐蚀实验方法和防护技术,以帮助了解和应对金属腐蚀问题。
一、金属腐蚀实验方法1. 腐蚀速率测定实验腐蚀速率测定实验是通过定量检测金属在特定环境中被腐蚀的速率来评估材料的耐腐蚀性能的。
常用的方法有失重法、电化学法和微观测量法等。
其中,失重法是最常见的实验方法之一,通过在特定环境中浸泡金属样品,然后测量样品在一段时间内的质量变化,从而计算出金属的腐蚀速率。
2. 构建电化学腐蚀实验系统电化学腐蚀实验是用来研究金属在电解质溶液中受电化学反应的影响。
构建一个电化学腐蚀实验系统需要的设备包括电化学工作站、扫描电位计、电化学腐蚀池等。
实验过程中,通过控制电位、电流等参数来模拟不同腐蚀环境,从而研究金属在特定电化学条件下的腐蚀机制。
3. 金属腐蚀形貌观察通过光学显微镜、扫描电子显微镜等仪器,观察腐蚀金属的表面形貌和微观结构变化。
这些观察可以帮助我们更好地理解金属腐蚀的机理,并为防护技术的开发提供具体参考。
二、金属腐蚀的分类金属腐蚀可以分为化学腐蚀和电化学腐蚀两类。
1. 化学腐蚀化学腐蚀是指金属在无电流条件下与周围环境中的化学物质发生反应导致金属受损的过程。
常见的化学腐蚀类型有酸腐蚀、碱腐蚀、盐腐蚀和氧化腐蚀等。
不同的金属在不同的环境中会发生不同类型的化学腐蚀。
2. 电化学腐蚀电化学腐蚀是指金属在电解质溶液中由于电化学反应而受到腐蚀的过程。
电化学腐蚀通过电子迁移和离子迁移两个步骤进行,其中电子迁移导致金属的离子化,离子迁移使离子迁移到金属的表面或远离金属表面。
常见的电化学腐蚀类型有腐蚀电池、差电池腐蚀和受控电位腐蚀等。
三、金属腐蚀的原因金属腐蚀的原因主要有以下几个方面:1. 环境因素:包括湿度、温度、pH值、氧气含量、盐度等;2. 金属材料的成分:不同金属材料的成分会影响其对特定环境的耐腐蚀能力;3. 金属的微观结构:晶界、晶粒大小、缺陷等对金属的腐蚀行为有重要影响。
金属的腐蚀与防护
全面腐蚀的破坏方式
韧 性 失 效
腐蚀导 致材料有效 厚度减薄, 引起“超压 ”,经塑性 变形后产生 破裂。
脆 断 失 效
腐蚀介 质的作用使材 料成份发生变 化,导致材料 脆化,且有效 厚度减薄,并 在应力作用下 引起断裂。
一、金属的腐蚀
磨损腐蚀
由腐蚀和磨损联合 作用引起的损伤过程。
高速流动的腐蚀介质(气体或)液体 对金属材料冲刷,导致金属表面的保 护膜破损,加速了破口处的腐蚀。 其表现形式有: 湍流腐蚀和冲击腐蚀 空泡腐蚀
一、金属的腐蚀
湍流腐蚀和冲击腐蚀机理
高速流体 湍流 切应力
完好的膜 (阴极)
+
破坏钝化膜 电解质 溶液 原电池
一、金属的腐蚀
间隙腐蚀机理
缝隙 积液 浓度差
电位低 (阳极)
+
电解质 溶液
+
电位高 (阴极)
电化学腐蚀
原电池
催化腐蚀
缝内 (阳极)
+
电解质 溶液
+
缝外 (阴极)
耗O2
阻塞腐蚀 电位差
一、金属的腐蚀
泄漏失效
破坏形式
爆破失效
防止方法
采用抗缝隙腐蚀的金属或合金材料; 采用合理的设计方案,解决或降低缝隙腐蚀程度。严重的腐 蚀往往由于连接处结构不合理,造成缝隙、死角,使腐蚀溶液易积 存造成的。如,法兰配合不严密,或选用不适宜的垫片等等; 采用电化学保护。用负电性强的金属作阳极,与易发生缝隙 腐蚀的金属(阴极)部位构成电化学体系,从而使其得到保护。也 可以采用外接电源的方法使缝隙得到电化学保护; 采用缓蚀剂保护 采用耐蚀材料、适当加大流动速度。
金属的腐蚀与防护
金属的腐蚀与防护金属是一种常见而重要的材料,广泛应用于工业、建筑、制造等领域。
然而,金属在使用过程中常常面临腐蚀的问题,对其性能和使用寿命造成了严重影响。
因此,了解金属腐蚀的原因和防护方法显得尤为重要。
一、金属腐蚀的原因金属腐蚀是由于金属与环境中的氧气、水和其他化学物质发生反应而导致的。
以下是几个常见的金属腐蚀原因:1. 电化学腐蚀:电化学腐蚀是金属在电解质溶液中受到外加电位作用而发生的腐蚀。
金属表面存在着自然的氧化膜,当金属与电解质接触时,形成一个电池,产生氧化还原反应,导致金属腐蚀。
2. 化学腐蚀:化学腐蚀通常是由于金属与酸、碱等化学物质直接接触而引起的。
这些化学物质腐蚀金属表面,破坏其结构,使金属失去原有的性能。
3. 氧化腐蚀:金属与空气中的氧气发生反应而引起的腐蚀称为氧化腐蚀。
氧化腐蚀是一种常见的金属腐蚀形式,例如铁与氧气发生氧化反应产生铁锈。
二、金属腐蚀的防护方法为了延长金属的使用寿命,减少腐蚀带来的负面影响,人们采取了各种防护方法。
以下是几种常见的金属腐蚀防护方法:1. 金属涂层:涂层是一种常见的金属腐蚀防护方法。
通过在金属表面形成一层保护膜,阻隔金属与环境的接触,减少氧气、水分和化学物质对金属的腐蚀作用。
常用的涂层材料包括涂漆、镀层等。
2. 阳极保护:阳极保护是一种利用电化学原理来防护金属腐蚀的方法。
通过向金属表面提供一个较为容易腐蚀的阳极,使金属处于被保护的状态,避免与环境中的氧气发生氧化反应。
3. 金属合金:金属合金是由两种或多种金属混合而成的材料。
通过合金的方式可以提高金属的抗腐蚀性能,减少腐蚀的发生。
例如,不锈钢是一种使用广泛的金属合金,它具有较高的耐腐蚀性能。
4. 防护涂层:防护涂层可以在金属表面形成一层保护膜,以减少金属与环境的接触,降低腐蚀的发生。
常见的防护涂层材料有陶瓷涂层、有机涂层等。
三、金属腐蚀与环境因素金属腐蚀的发生与环境因素密切相关。
以下是几个常见的环境因素对金属腐蚀的影响:1. 温度:高温环境会加速金属腐蚀的速度。
金属的腐蚀与防护..
2、按需排流 由以上各个国家目前的排流指标标准不一,国内
很多排流现场的直流干扰源与土壤湿度和电阻率各不相同这些情况 出发,研究设计一款能按需排流的排流器是非常必要的。如:当以 英国标准排流时,将正向极化电位设置为20mV,当极化电位大于 20mV时,排流器接通管道与牺牲阳极,开始排流;当极化电位小于 20mV时,排流器断开管道与牺牲阳极,关闭排流,以此类推,当在 不同的直流干扰源与土壤湿度和电阻率下,选择设定需要的排流电 位值,即可实现不同地理环境下的按需排流。按需排流最大的优势 就是在不需要排流的的情况下不接通阳极,大大减缓了阳极的腐蚀 速率,增加了阳极的使用寿命。
三、物理腐蚀:
金属由于单纯的物理溶解作用而引 起的 破坏。
管道腐蚀
以上三种腐蚀在电气化铁路沿线的 石油管道中都存在,只不过是考量那一种 腐蚀的腐蚀速率最快,对管道具有保护要 求 。就目前世界各国的研究表明,在这些 地下管道和地下埋地金属中,最应该关注 的就是电化学腐蚀,因为只要有电化学腐 蚀的环境其腐蚀速率要远远大于其他两种 腐蚀速率。
当电位检测算法得到所采集到的准确数据后,我 们将采用快速傅里叶算法处理由电位检测算法送来的管地 电位信号,准确判定管地电位极化方向的趋势以及大小, 由于快速傅里叶算法一般用于通讯领域,因此要想作为管 地极性判定还得花重精力研发。
3、主/备回路控制算法
因为主回路和备用回不是同时工作,因此怎么 将主备回路的工作时序用代码表示出来,也将成为一个难 点。
现有排流设备
现有设备不做任何检测,都采用通过二极管直 接连接镁阳极,无论何时,都在排流,消耗镁阳极,原理 图如下:
金属的腐蚀与防护知识点总结
金属的腐蚀与防护知识点总结
金属的腐蚀与防护是材料科学和工程中的一个重要领域。
以下是几个关键的知识点总结:
1. 金属腐蚀的类型:金属腐蚀可以分为电化学腐蚀和化学腐蚀两种类型。
电化学腐蚀是指金属在电解质溶液中发生的氧化还原反应,其中金属被氧化为阳离子,而电子被转移到其他位置。
化学腐蚀是指金属与非电解质溶液或气体发生的化学反应。
2. 腐蚀的影响因素:金属腐蚀受到多种因素的影响,包括环境因素(如湿度、温度、酸碱度等)、金属的物理和化学性质、金属表面的处理状态以及金属与其他材料的接触等。
3. 常见的金属腐蚀防护方法:为了保护金属不被腐蚀,可以采取以下几种防护方法:
- 使用防腐涂层:如喷涂或浸涂一层防腐漆、涂覆一层防腐薄膜等。
- 电化学防护:如电镀、阳极保护等。
- 使用金属合金:将易腐蚀的金属与其他金属或非金属元素进行合金化,提高材料的抗腐蚀性能。
- 表面处理:如酸洗、磷化、镀铬等,改变金属表面的化学性质和形貌,增加其抗腐蚀性能。
- 使用缓蚀剂:添加一定量的缓蚀剂到腐蚀介质中,减缓金属的腐蚀速率。
4. 腐蚀监测与评估:对于一些重要的金属构件,需要进行腐蚀监测与评估,以及时发现和处理潜在的腐蚀问题。
常用的方法包括金属损失测量、电化学测试(如极化曲线法、电化学阻抗谱法等)和无损检测技术(如超声波检测、X射线检测等)。
总之,了解金属腐蚀的类型、影响因素以及常见的防护方法是保护金属材料的关键。
通过合理的防护措施和监测评估,可以延长金属构件的使用寿命,减少损失和事故的发生。
金属的腐蚀与防护
绪论金属腐蚀的定义: 金属材料和环境介质发生化学或电化学作用,引起材料的退化与破坏称为金属的腐蚀.本课程研究的内容• 1. 研究金属和周围介质作用时所发生的化学或电化学的现象、机理及其一般规律。
• 2. 研究各种条件下金属材料的防止腐蚀的方法和措施。
三、金属腐蚀与防护的重要性经济损失:•直接损失:指采用防护技术的费用和发生腐蚀破坏以后的维修、更换费用和劳务费用。
•间接损失:指设备发生腐蚀破坏造成停工、停产;引起的物资跑、冒、滴、漏损失;对环境污染以至爆炸、火灾等事故的间接损失更是无法估量。
第一章金属材料的高温化学腐蚀第一节概述一、高温化学腐蚀定义:高温化学腐蚀是研究金属材料和与它接触的环境介质在高温条件下所发生的界面反应过程的科学。
金属高温腐蚀与常温腐蚀的区别:高温腐蚀:主要是以界面的化学反应为特征。
常温腐蚀:主要是电化学过程。
金属材料的高温腐蚀反应式:Me(金属)+X(介质)--MeX(腐蚀产物)二、高温腐蚀分类按环境介质状态分1)高温气态介质腐蚀(2)高温液态介质腐蚀(3)高温固态介质腐蚀(1)高温气态介质腐蚀:气态介质中包括有单质气体分子。
非金属化合物气体分子。
金属氧化物气态分子,和金属盐气态分子。
由于这种高温腐蚀是在高温,干燥的气体分子环境中进行的,所以常被称为“高温气体腐蚀”“干腐蚀”“化学腐蚀”。
(2)高温液态介质腐蚀:液态介质(包括液态金属,液态融盐及低熔点氧化物)对固态金属材料的高温腐蚀。
这种腐蚀包括界面化学反应,也包括液态物质对固态物质的溶解。
(3)高温固态介质腐蚀:金属材料在带有腐蚀性的固态颗粒状物质的冲刷下发生的高温腐蚀。
这类腐蚀包括固态燃灰与盐颗粒对金属材料的腐蚀。
又包括这些固态颗粒状物质对金属材料表面的机械磨损,所以人们又称为“磨蚀”或“冲蚀”。
高温腐蚀现象(1)在金属热处理过程中,碳氮共渗和盐浴处理易于产生增碳、氮化损失和熔融盐的腐蚀。
(2)含有燃烧的各个过程,比如柴油发动机、燃气轮机、焚烧炉等所产生的复杂气氛的高温氧化等腐蚀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论腐蚀:由于材料与其介质相互作用(化学与电化学)而导致的变质和破坏。
腐蚀控制的方法:1)、改换材料 2)、表面涂漆/覆盖层3)、改变腐蚀介质和环境 4)、合理的结构设计5)、电化学保护均匀腐蚀速率的评定方法:失重法和增重法;深度法;容量法(析氢腐蚀);电流密度;机械性能(晶间腐蚀);电阻性.第二章电化学腐蚀热力学热力学第零定律状态函数(温度)热力学第一定律(能量守恒定律) 状态函数(内能)热力学第二定律状态函数(熵)热力学第三定律绝对零度不可能达到2.1、腐蚀的倾向性的热力学原理腐蚀反应自发性及倾向性的判据:∆G:反应自发进行<∆G:反应达到平衡=∆G:反应不能自发进行>注:ΔG的负值的绝对值越大,该腐蚀的自发倾向性越大.热力学上不稳定金属,也有许多在适当条件下能发生钝化而变得耐蚀.2.2、腐蚀电池2.2.1、电化学腐蚀现象与腐蚀电池电化学腐蚀:即金属材料与电解质接触时,由于腐蚀电池作用而引起金属材料腐蚀破坏.腐蚀电池(或腐蚀原电池):即只能导致金属材料破坏而不能对外做工的短路原电池.注:1)、通过直接接触也能形成原电池而不一定要有导线的连接;2)、一块金属不与其他金属接触,在电解质溶液中也会产生腐蚀电池.丹尼尔电池:(只要有电势差存在)a)、电极反应具有热力学上的可逆性;b)、电极反应在无限接近电化学平衡条件下进行;c)、电池中进行的其它过程也必须是可逆的.电极电势略高者为阴极电极电势略低者为阳极电化学不均匀性微观阴、阳极微观、亚微观腐蚀电池均匀腐蚀2.2.2、金属腐蚀的电化学历程腐蚀电池:四个部分:阴极、阳极、电解质溶液、连接两极的电子导体(即电路)三个环节:阴极过程、阳极过程、电荷转移过程(即电子流动)1)、阳极过程氧化反应++-M nM→ne金属变为金属离子进入电解液,电子通过电路向阴极转移.2)、阴极过程还原反应[]--⋅DDne+ne→电解液中能接受电子的物质捕获电子生成新物质.(即去极化剂)3)、金属的腐蚀将集中出现在阳极区,阴极区不发生可察觉的金属损失,只起到了传递电荷的作用金属电化学腐蚀能够持续进行的条件是溶液中存在可使金属氧化的去极化剂,而且这些去极化剂的阳极还原反应的电极电位比金属阴极氧化反应的电位高2.2.3、电化学腐蚀的次生过程难溶性产物称二次产物或次生物质由于扩散作用形成,且形成于一次产物相遇的地方阳极——[]+n M(金属阳离子浓度)(形成致密对金属起保护作用) 阴极——pH高2.3、腐蚀电池类型宏观腐蚀电池、微观腐蚀电池、超微观腐蚀电池2.3.1、宏观腐蚀电池特点:a)、阴、阳极用肉眼可看到;b)、阴、阳极区能长时间保持稳定;c)、产生明显的局部腐蚀1)、异金属(电偶)腐蚀电池——保护电位低的阴极区域2)浓差电池由于同一金属的不同部位所接触的介质浓度不同所致a、氧浓差电池——与富氧溶液接触的金属表面电位高而成为阳极区eg:水线腐蚀——靠近水线的下部区域极易腐蚀b、盐浓差电池——稀溶液中的金属电位低成为阴极区c、温差电池——不同材料在不同温度下电位不同eg:碳钢——高温阳极低温阴极铜——高温阴极低温阳极2.3.2、微观腐蚀电池特点:a)、电极尺寸与晶粒尺寸相近(0.1mm-0.1μm);b)、阴、阳极区能长时间保持稳定;c)、引起微观局部腐蚀(如孔蚀、晶间腐蚀)原因:a)、化学成分的不均匀性;b)、金属组织结构的不均匀性;多项合金不同相的电位不同c)、金属物理状态的不均匀性——应变、内应力不均匀;d)、金属表面膜(涂层)的不完整性.由于以上原因而形成的微观电池并不是金属发生电化学腐蚀的充分条件,还应在溶液中具有去极化剂才可发生2.3.3、超微观腐蚀电池特点:a)、电极用肉眼和普通显微镜难以分辨(100-1000nm);b)、阴、阳极区随时间不断变化;c)、引起均匀腐蚀2.4、电极电位与电化学腐蚀倾向性的判断2.4.1、电极和电极电位电极:指电子导体和离子导体组成的体系,常以金属/溶液表示注:腐蚀中的电极只指电子导体电极电位的表示:1)、金属浸入溶液中经水化作用而形成双电层 负点性金属水化后金属阳离子进入溶液——水化能 > 金属键能难溶性金属水化后从溶液中吸附阳离子——水化能 < 金属键能2)、形成气体电极——极难溶金属(Pt)和非金属导体(石墨)特点:电极导体本身不参与反应,仅起导电和反应载体作用2.4.2、平衡电极电位和非平衡电极电位平衡电极电位:水合与脱水达到动态平衡时的电极电位能斯特方程:⎪⎪⎭⎫ ⎝⎛+=R a a nF RT e e 0ln θ其中:e θ为标准电极电位; F 为法拉第常数;R aa 0为氧化态物质与还原态物质的活化比 注:浓度对电极电位有影响对于非平衡电极电位,其电极反应是不可逆的,因为电极过程中,即使阴极与阳极过程反应速率相等,达到了电子交换的平衡,但物质交换达不到平衡. 非平衡电极电位可以是稳定的也可以是不稳定的.电荷转移速率相等时即为稳定点位,也称开路电位或自腐蚀电位,即外电流为零时的电位.非平衡电极电位不服从能斯特方程,只能实验测得.2.4.3、电化学腐蚀倾向性的判断和电动序∵nFE G P T -=∆, e A e C E E E -=其中:F 为法拉第常数,F =96500 C/mol ; n 为参与反应的电子数;e C E 、e A E 分别为阴、阳极反应的平衡电位e A e C E E <:电位为e A E 的金属不会发生腐蚀 ∴电极电位判据 e A e C E E =:平衡状态e A e C E E >:电位为e A E 的金属自发进行腐蚀电动序:按金属在标准电极电位值E e 由低(负)值到高(正)值逐渐增大的次序排 列,得到的次序表称电动序.标准氢电极电位为零,电位比其低的为负电性金属,比其高的为正点性金属. 金属负电性越强,其在酸性溶液中越易发生析氢腐蚀.在可自发发生的反应中,电极电位较负的反应是氧化反应,较正的反应是还原反应.电偶序:金属或合金在一定电解质溶液中测得的稳定电位的相对大小排列而成的 次序表.电偶序比电动序更能反映金属实际腐蚀的性质.2.5、电位-pH 图及其应用2.5.1、水的E-pH 图要素:两条直线三个区域:a ---氢电极反应平衡电位-pH 关系的直线;b ---氧电极反应平衡电位-pH 关系的直线.b 线以上: 水被阳极电解为氧气;a 线以下: 水被阴极电解为氢气;a 、b 线之间: 水稳定区.2.5.2、电位-pH 图的绘制A 、列出可能发生的反应方程;B 、列出每个反应相应的Nernst 公式;C 、在水的电位-pH 图上绘制平衡关系。
三类区域:Immunity (免蚀区):[M n+]<10-6 mol/L.Corrosion (腐蚀区):[M n+]<10-6 mol/L.Passivation (钝化区)据参加电极反应的物质不同,电位-pH 图上的曲线可分为3类:1)、反应只与电极电位有关值无关,而与溶液的pH 值无关;特点:电极反应必然有电子参与,而无H +或OH -参与。
反应平衡电位与pH 值无关, 在一定温度下,随比值B A a a 的变化而变化。
当BA a a 一定时,电位E 也将固定, 在图上这类反应为一条水平线。
2)、反应只与pH 值有关,而与电极电位无关;特点:有H +或OH -参加,而无电子参与的化学反应,因此这类反应不构成电极反 应,不能用Nernst 方程表示电位与pH 值的关系。
反应的平衡与电极电位 无关。
在一定温度下,K 值一定,若给定BA a a ,则pH 值为一定值,在E-pH 图上这类反应表示为一垂直线段。
3)、反应既与电极电位有关,又与溶液的pH 值有关.特点:H +(或OH -)和电子都参加反应,通式为:O cH bB ne mH aA 2+=++-+;在 一定温度下,反应的平衡条件既与电极电位有关,又与溶液的pH 值有关。
在一定温度下,给定BA a a 值,平衡电位随pH 值升高而降低,在电位-pH 图 上这类反应为一斜线,其斜率为:nF mRT 3.2- 2.5.3、电位-pH 图主要应用:1)、判断反应自发进行的方向,从热力学上分析金属腐蚀的可能性;2)、估计腐蚀产物的组分;3)、预测控制腐蚀的措施,寻找控制腐蚀的途径。
第三章 腐蚀电化学动力学3.1、腐蚀电池的电极过程3.1.1、阳极过程即金属发生电化学溶解或阳极钝化的过程.水溶液中阳极溶解通式:-++•→+ne O mH M O mH M n 2121 或 ()--+•→++ne O yH MA O yH xA M x n x 221 阳极溶解步骤:1)、金属原子离开晶格,转变为表面吸附原子;2)、在溶剂分子作用下,表面吸附原子失电子并进入金属溶液界 面双电子层,成为溶剂化阳离子;3)、溶剂化阳离子从双电子层向溶液本体迁移阳极反应: -++==ne M M n阳极区的自由电子移向电极电势高的阴极,使阳极区电子缺乏,而阳极反应产生的电子又来不及补充,因而阳极电势偏离平衡电势,向正向移动,产生阳极极化.3.1.2、阴极过程发生电化学腐蚀的基本条件是:腐蚀电池和去极化剂同时存在,或阴、阳极过程同时进行.去极化剂发生的反应:A 、析氢反应:222H e H ==+-+电位较低的金属在酸性溶液中常见的阴极反应B 、吸氧反应:--==++OH e O H O 44222 (中性、碱性环境)O H e H O 22244==++-+ (酸性环境)大多数金属在海水、大气、土壤和中性溶液中常见阴极反应C 、溶液中高价金属离子还原反应 eg :+-+==+23Fe e FeD 、氧化性阳离子还原反应 eg :O H NO e H NO 22322+==++--+- E 、溶液中某些有机化合物还原反应eg :O H COH R e H COOH R 222+-==++--+F 、水还原反应(水解): --+==+OH H e O H 22222阳极转移的电子在阴极未被及时消耗而积累,使阴极电势偏离平衡位置,电势向负向移动,产生阴极极化.阴阳极极化使阴阳极电位最终相等而达到动态平衡,此时的电位称腐蚀电位.3.1.3、金属的全面与局部腐蚀1)、全面腐蚀 即分布于整个金属表面和连成一片的腐蚀破坏A 、均匀腐蚀 即腐蚀均匀的发生在整个金属表面,个点腐蚀速率均匀B 、非均匀腐蚀 即腐蚀作用虽然发生在整个金属表面上,但各区域的腐蚀速率 相差较大,对于整个表面而言腐蚀不均匀2)、局部腐蚀 即腐蚀作用仅发生在金属表面某一区域内3.2、腐蚀速率及极化作用3.2.1、腐蚀速率:电位时间内金属腐蚀程度的大小法拉第定律: 表达式:nFIta m = m ——质量;I ——电流;t ——时间;a ——原子量; n ——参加反应电子数;F ——法拉第常数( F=96500 C/mol) 单位时间、单位面积的腐蚀金属质量(表征的腐蚀速度):即nFia At m r == A I i =——电流密度 单位时间的腐蚀深度:DnFia DAt m r == D ——金属密度注:以上各式仅适用于均匀腐蚀交换电流密度(0i )——基本动力学参数当一氧化还原反应的正、逆向反应速度相等,即nFa i r r r f 0==,此时的0i 即为交换电流密度注:交换电流密度仅适用于可逆反应,且受材料表面状态影响较大半电池电极电势(e )——基本热力学参数 即还原态氧化态a a nF RT e e ln 0+= 注:半电池电极电势不受材料表面状态的影响3.2.2、腐蚀电池的极化现象电极上有电流通过时,电极电位偏离平衡位置E e (可逆反应)或稳态电位E s (不可逆反应)的现象称极化现象,偏离值称极化值通常用过电位或超电位η(取正值)来表征电极极化程度A 、活化极性:当半电池反应中某一步骤控制着电子流动,就说该反应处于活化(或电子转移)控制下,导致活化极化活化极化(用过电位表征)与反应速率(用电流密度i a or i c 表征)间的关系: 即 0log i i a a a βη= 或 0log i i c c c βη= c a ββ,为达菲尔常数 B 、浓度极化:即由电极附近溶液中的反应物贫化而引起的电极电势偏离浓差极化conc η一般在阴极还原反应中明显,而在阳极反应中不存在即 ⎪⎪⎭⎫ ⎝⎛-=L c conc i i nF RT 1log 3.2η 极限电流密度(L i ),即因H +的有限扩散速度,L i 为不可超越的最大反应速度 δBz L C nF D i =z D :反应物的扩散能力;B C :溶液本体的反应物浓度;δ:溶液浓度梯度厚度 影响L i 的因素:加快溶液搅拌速度 δ 温度升高 D z L溶液浓度升高 C BC 、混合极化:总阴极极化是活化极化与浓差极化的和;总阳极极化只是活化极化.a.阳极极化产生原因:活化极化和电阻极化b.阴极极化产生原因:活化极化和浓差极化阴极极化程度越大,说明极化过程受阻越严重,因此阴极极化对减缓金属腐蚀有利3.2.3、极化曲线即表示电极电位与极化电流强度I 或极化电流密度i 之间的关系曲线曲线的倾斜程度(即极化率)表示极化程度3.3、混合电势理论3.3.1、混合电位理论两个基本假设:1)、任何电化学反应都能分成两个或两个以上的氧化分解反应和还原反应;2)、电化学反应中不可能有净电荷的积累,即氧化反应总速度等于还原反应总速 度(或电荷守恒).据混合电势理论,金属发生腐蚀时,腐蚀电位是金属阳极氧化和阴极去极化剂还原过程共同决定的,是整个腐蚀体系的混合电位.3.3.2、腐蚀电位金属处于腐蚀电位时,有腐蚀电流通过体系,因此在腐蚀电位下腐蚀体系是不可逆体系,腐蚀电位不是平衡电位,不能用能斯特方程计算.测量方法:用被腐蚀金属和参比电极组成测量电池,用电位差计或高阻抗数字电 压表得到被测电池的电动势,然后计算出腐蚀电极相对于标准氢电极 的电位,该电位即是金属的腐蚀电位. 阴极控制下的腐蚀,腐蚀电位略高于该体系中金属阳极氧化反应的平衡电位; 阳极控制的腐蚀过程中,腐蚀电位略低于阴极还原反应的平衡电位,而比金属 的平衡电位要高得多.3.3.3、多种阴极去极化反应的腐蚀行为对于存在两个或多个阴极还原反应的腐蚀,腐蚀电位和腐蚀电流将由金属阳极氧化过程和多个阴极还原过程共同确定如果加入的去极化剂阴极反应速率接近或大于原去极化剂的,这时新去极化剂的加入会大大加快腐蚀速率.3.3.4、多电极体系的腐蚀行为电极的极化程度对多电极腐蚀极化图有较大影响,电极的极化程度越小,极化曲线趋平坦,该电极对阳极或阴极电流的贡献越大;反之电极极化程度越大,极化曲线趋陡,该电极对阳极或阴极电流的贡献越小.3.4、腐蚀极化图及其应用3.4.1、腐蚀极化图作用:1)、定出该体系的腐蚀电位和最大的腐蚀电流;2)、从阴阳极的起始电位差值可说明腐蚀倾向;3)、从曲线斜率大小可说明腐蚀反应的难易程度,分析腐蚀控制因素.A 、初始电位差腐蚀电池的初始电位差e a e c E E 是腐蚀的原动力,当其他条件完全相同时,初始电位差越大,腐蚀电流就越大.不同金属具有不同的平衡电位,当阴极反应及其极化曲线相同时,如果金属阳极极化程度较小,金属的平衡电位越低,则腐蚀电池的初始电位差越大,腐蚀电流越大.B 、极化性能在其他条件相同时,极化率越小,其腐蚀电流越大,即腐蚀速率越大C 、去极化剂浓度及配位剂若溶液中有配位剂,其将与阳极溶解的金属离子形成配离子,据能斯特方程,金属配离子的形成将使金属在溶液中的平衡电极电位向负方向移动,而使原本不能构成腐蚀电池的金属在溶液中构成腐蚀电池,发生溶解D 、交换电流密度的影响E 、附加氧化剂的影响前提:氧化剂的交换电流密度必须足够高,可以影响腐蚀速度加入强氧化剂后,溶液的腐蚀驱动力会增加. a 、腐蚀电势向正向移动b 、腐蚀速度增加c 、析氢反应速度降低3.4.2、腐蚀速度的控制因素阳极极化率(电阻):αtan ,0=-=I E E p cc c ;阴极极化率:βtan ,0=-=I E E p aa a(a)、阴极控制(b)、阳极控制(b)、混合控制(c)、欧姆控制不同控制因素的腐蚀极化图差异(数)效应:在一定的阳极外加电流下,定义腐蚀电位下的自然析氢速度I 0与外加电流I appl 时的实际测得的析氢反应速率I H 之差为Δ,Δ≠0,这种现象称为差异(数)效应.正差异(数)效应 对于金属Fe 、Zn,Δ=I 0-I H >0,这种极化现象叫正差数效应.负差异(数)效应 对于金属Mg 、Al,Δ=I 0-I H <0,这种极化现象叫负差数效应。