北京丰台区第二中学数学整式的乘法与因式分解(篇)(Word版 含解析)
北京丰台区第二中学八年级数学上册第四单元《整式的乘法与因式分解》检测(有答案解析)
一、选择题1.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是( )(用含有a 、b 的代数式表示).A .a-bB .a+bC .abD .2ab 2.多项式2425a ma ++是完全平方式,那么m 的值是( ) A .10±B .20±C .10D .20 3.下列因式分解正确的是( )A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)2 4.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18 B .12 C .9 D .75.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5 D .-56.下列因式分解正确的是( )A .24414(1)1m m m m -+=-+B .a 2+b 2=(a +b )2C .x 2-16y 2=(x +8y )(x -8y )D .-16x 2+1=(1+4x )(1-4x )7.将11n n x x +--因式分解,结果正确的是( )A .()121n xx -- B .()11n x x -- C .()1n x x x -- D .()()111n x x x -+-8.记A n =(1﹣212)(1﹣213)(1﹣214)…(1﹣21n),其中正整数n ≥2,下列说法正确的是( )A .A 5<A 6B .A 52>A 4A 6C .对任意正整数n ,恒有A n <34D .存在正整数m ,使得当n >m 时,A n <100820159.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( ) A .a b c >> B .b c a >> C .c a b >> D .a c b >>10.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+ 11.已知x =7+1,y =7﹣1,则xy 的值为( )A .8B .48C .27D .612.a ,b ,c 在数轴上的位置如下图所示,则下列代数式中值为正的是( )A .()()1a c b --B .()11c a b c ⎛⎫-- ⎪⎝⎭C .()1a a c b ⎛⎫+- ⎪⎝⎭D .()1ac bc -二、填空题13.如图,是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.例如,若输入x =10,则第一次输出y =5.若输入某数x 后,第二次输出y =3,则输入的x 的值为_________.14.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.15.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对(23,2)+放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简)16.如图是一块长方形ABCD 的场地,长AB a 米,宽AD b 米,从A 、B 两处入口的小路宽都为1米,两小路汇合处的路宽是2米,其余部分种植草坪,则草坪面积为________2m .17.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______. 18.如果()()223232x x y ---=-,那么代数式()3()4(2)x y x y x y ++----的值是___________.19.要使()()22524x x x mx -+--的展开式中不含2x 项,则m 的值是______. 20.计算:32(2)a b -=________. 三、解答题21.先化简,再求值:2()(2)(2)()x y x y y x y ⎡⎤---+÷-⎣⎦,其中1x =-,2y =. 22.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a 2+6a +8,解:原式=a 2+6a +8+1-1=a 2+6a +9-1=(a +3)2-12=[(a +3)+1][(a +3)-1]=(a +4)(a +2)②M =a 2-2a -1,利用配方法求M 的最小值.解:a 2-2a -1=a 2-2a +1=(a -1)2-2∵(a -b )2≥0,∴当a =1时,M 有最小值-2.请根据上述材料解决下列问题:(1)用配方法...因式分解:x 2+2x -3. (2)若M=2x 2-8x ,求M 的最小值.23.阅读下面的材料:常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如22926a b a b --+,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下: ()()2222926926a b a b a b a b --+=---()()()3323a b a b a b =+---()()332a b a b =-+-.像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:22222x xy y x y -+-+;(2)已知ABC 的三边长a ,b ,c 满足220a bc b ac +--=,判断ABC 的形状并说明理由.24.(1)23235ab a b ab (2)23233x x x x 25.若一个三位或三位以上的整数A 分成左、中、右三个数后满足:①中间数=左边数2-右边数2,则称中间数是A 的“吉祥数”.如231的“吉祥数”是3,4122的“吉样数”是12;②中间数=(左边数-右边数)2,则称中间数是A 的“如意数”.如143的“如意数”是4,5161和1165的“如意数”是16.(1)若一个三位数的“吉祥数”是5,则这个数是_________,若一个四位数的“如意数”是81,则这个数是____,(2)一个“吉祥数”与一个“如意数”的左边数均为m ,右边数均为n ,且这个“吉祥数”比这个“如意数”大12,求满足条件的“吉样数”.26.把下列多项式因式分解:(1)2()4a b ab -+;(2)22()()a x y b y x -+-.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设小正方形的边长为x ,大正方形的边长为y ,列方程求解,用大正方形的面积减去4个小正方形的面积即可.【详解】解:设小正方形的边长为x ,大正方形的边长为y ,则:22x y a y x b+=⎧⎨-=⎩ , 解得:42a b x a b y -⎧=⎪⎪⎨+⎪=⎪⎩, ∴阴影面积=(2a b +)2﹣4×(4a b -)22222224444a ab b a ab b ab ++-+=-==ab . 故选C .【点睛】本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键. 2.B解析:B【分析】由4a 2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m 的值.【详解】解:∵4a2+ma+25是完全平方式,∴4a2+ma+25=(2a±5)2=4a2±20a+25,∴m=±20.故选:B.【点睛】本题考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.3.B解析:B【分析】根据因式分解的定义判断即可.【详解】解:A、等号左右两边不相等,故错误;B、a3-a=a(a+1)(a-1),故正确;C、右边不是整式的积,故错误;D、等号左右两边不相等,故错误.故选:B.【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.4.D解析:D【分析】将x2﹣2x当成一个整体,在第一个代数式中可求得x2﹣2x=1,将其代入后面的代数式即能求得结果.【详解】解:∵3x2﹣6x+6=9,即3(x2﹣2x)=3,∴x2﹣2x=1,∴x2﹣2x+6=1+6=7.故选:D.【点睛】本题考查了代数式求值,解题的关键是将x2﹣2x当成一个整体来对待.5.B解析:B【分析】把多项式的乘积展开,合并同类项,令含y的一次项的系数为0,可求出a的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.6.D解析:D【分析】把各式分解得到结果,即可作出判断.【详解】解: A 、()224412-1-+=m m m ,原选项错误,不符合题意;B 、a 2+b 2不能分解,不符合题意;C 、x 2-16y 2=(x +4y )(x -4y ),原选项错误,不符合题意;D 、-16x 2+1=(1+4x )(1-4x ) ,原选项正确,符合题意;故选:D .【点睛】此题考查了运用公式法分解因式,熟练掌握因式分解的方法是解本题的关键. 7.D解析:D【分析】先提公因式x n-1,再用平方差公式进行分解即可.【详解】x n+1−x n-1=x n-1(x 2-1)=x n−1(x+1)(x−1),故选:D【点睛】此题考查了提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键. 8.D解析:D【分析】根据平方差公式因式分解然后约分,便可归纳出来即可.【详解】解:A 、A 5=22221111631111==2345105⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 6=231715612⎛⎫⨯-= ⎪⎝⎭, 37512> ∴A 5>A 6,此选项不符合题意;B 、A 4=2221115111=2348⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭, ∴A 52=925,A 4A 6=5735=81290⨯, ∵9352590<, ∴A 52<A 4A 6,此选项不符合题意;C 、∵A 2=2131=24-, 且345674681012<<<<<, ∴n ≥2时,恒有A n ≤34, 此选项不符合题意;D 、当m =2015时,A m =2015+120161008==2201540302015⨯, 当n >m 时,A n <10082015, ∴存在正整数m ,使得当n >m 时,A n <10082015, 此选项符合题意;故选择:D .【点睛】本题考查数字的变化规律,平方差公式,关键是根据题目找出规律是关键.9.B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> , ∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.10.A解析:A【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答.【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式;故选:A .【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键. 11.D解析:D【分析】利用平方差公式计算即可.【详解】当x +1,y 1时,xy +11))2﹣12=7﹣1=6,故选:D.【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键. 12.C解析:C【分析】现根据各数在数轴上的位置确定其取值范围,然后可确定答案.【详解】解:由图知:0<a <1,b >1,c <0,∴()100a a c b ⎛⎫+>-> ⎪⎝⎭,, ()1a a c b ⎛⎫+- ⎪⎝⎭值为正,C 正确; 而()110c a b c ⎛⎫--< ⎪⎝⎭,()()10a c b --<,()10ac bc -<;A 、B 、D 错误. 故选:C.【点睛】此题主要考查由取值范围确定代数式正负问题,解题的关键是根据点在数轴上的位置判断其正负.二、填空题13.9或10或11或12【分析】由运算流程图先求出第一次输出的数分为偶数或者奇数;然后再分两种情况求出输入的x 的值即可【详解】解:根据题意∵第二次输出设第一次输出的数是奇数m 时则解得:;设第一次输出的数 解析:9或10或11或12.【分析】由运算流程图,先求出第一次输出的数,分为偶数或者奇数;然后再分两种情况求出输入的x 的值即可.【详解】解:根据题意,∵第二次输出3y =,设第一次输出的数是奇数m 时,则132m +=,解得:5m =; 设第一次输出的数是偶数n 时,则32n =,解得:6n =. 当第一次输出为5时,又可以分为两种情况:当x 为奇数时,则152x +=,解得:9x =; 当x 为偶数时,则52=x ,解得:10x =; 当第一次输出为6时,又可以分为两种情况: 当x 为奇数时,则162x +=,解得:11x =; 当x 为偶数时,则62x =,解得:12x =; 故答案为:9或10或11或12.【点睛】本题考查有理数的运算,结合编程的流程图出题,题目新颖,并且运用到了分类讨论这一重要数学思想.熟练掌握有理数的运算法则是解题的关键.14.4【分析】根据x2-3x -1=0可得x2-3x =1再将所求代数式适当变形后分两次整体代入即可求得值【详解】解:∵x2-3x -1=0∴x2-3x =1∴==将x2-3x =1代入原式==将x2-3x =1代解析:4【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值.【详解】解:∵x 2-3x -1=0,∴x 2-3x =1,∴3223111x x x --+=223132611x x x x -+-+=()22233111x x x x x -+-+将x 2-3x =1代入原式=221113x x x +-+=23)13(x x -+将x 2-3x =1代入原式=314+=,故答案为:4.【点睛】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想. 15.-1-2-2m2+5m-2【分析】根据题目中的新定义运算规则可分别计算出数对和放入其中后最后得到的数再由数对放入其中得到数计算出m 与n 的关系再计算数对即可得到结果【详解】解:由题意得:数对放入其中时解析:-1 -2 -2m 2+5m-2【分析】根据题目中的新定义运算规则,可分别计算出数对(2,1)和放入其中后,最后得到的数,再由数对(,0)m 放入其中,得到数n ,计算出m 与n 的关系,再计算数对(,)n m ,即可得到结果.【详解】解:由题意得:数对(2,1)放入其中时,最后得到的数是:(2-1)×(1-2)=-1; 故答案为:-1;(1)将数对3-1-2)=-2;故答案为:-2;(2)根据数对(,0)m 放入其中得到数n ,可得:(m−1)×(0−2)=n , 则-2m+2=n , ∴将数对(n ,m )放入其中后,最后得到的数是:(n−1)(m−2)=(-2m+2−1)(m−2)=(-2m+1)(m−2)=-2m 2+5m-2.故答案为:-2m 2+5m-2.【点睛】此题主要考查了新定义下的实数运算,弄清题中的新定义运算规则、实数及多项式乘多项式的运算法则是解本题的关键.16.【分析】可以将草坪拼成一块完整的长方形分别表示出它的长和宽即可求出面积【详解】解:可以将草坪拼成一块完整的长方形这个长方形的长是:米宽是:米∴草坪的面积是:(平方米)故答案是:【点睛】本题考查多项式 解析:22ab a b --+【分析】可以将草坪拼成一块完整的长方形,分别表示出它的长和宽即可求出面积.【详解】解:可以将草坪拼成一块完整的长方形,这个长方形的长是:112a a --=-米,宽是:1b -米,∴草坪的面积是:()()2122a b ab a b --=--+(平方米).故答案是:22ab a b --+.【点睛】本题考查多项式的乘法和图形的平移,解题的关键是通过平移的方法将不规则的图形拼成规则图形进行求解.17.1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方熟练掌握法则是解题的关键解析:1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦== 故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键 18.8【分析】先解求出将代入代数式即可得解【详解】∵∴式子展开得:化简得:∴将代入代数式故答案为:8【点睛】此题考查整式的化简求值掌握整式的去括号法则和合并同类项法则是解题的关键【分析】先解()()223232x x y ---=-,求出0y =,将0y =代入代数式()3()4(2)x y x y x y ++---- 即可得解.【详解】∵()()223232x x y ---=-,∴式子展开得:223232x x y --+=-,化简得:0y =,∴将0y =代入代数式()3()4(2)x y x y x y ++---- 34(2)x x x =+--448x x =-+8=.故答案为:8.【点睛】此题考查整式的化简求值,掌握整式的去括号法则和合并同类项法则是解题的关键. 19.-6【分析】结合题意根据整式乘法的性质计算即可得到答案【详解】∵的展开式中不含项∴∴∴故答案为:-6【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质从而完成求解解析:-6【分析】结合题意,根据整式乘法的性质计算,即可得到答案.【详解】∵()()22524x x x mx -+--的展开式中不含2x 项∴()224520x x mx x ⨯-+⨯+⨯= ∴4100m -++=∴6m =-故答案为:-6.【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质,从而完成求解. 20.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.三、解答题21.25x y -;-12【分析】整式的混合运算,中括号内利用完全平方公式和平方差公式展开,合并,再计算多项式除以单项式,然后代入求值.【详解】解:2()(2)(2)()x y x y y x y ⎡⎤---+÷-⎣⎦=22222(4)()x xy y x y y ⎡⎤-+--÷-⎣⎦=2222(2+4)()x xy y x y y -+-÷-=2(25)()xy y y -+÷-=25x y -当1x =-,2y =时,原式=2(1)5221012⨯--⨯=--=-【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.22.(1)()(33)x x +-;(2)-8【分析】(1)应用配方法以及平方差公式,把x 2+2x -3因式分解即可.(2)应用配方法,把2x 2-8x 化成22(2)8x --,再根据偶次方的非负性质,求出M 的最小值是多少即可.【详解】解:(1)原式=22344x x +-+-=2214x x ++-=22(1)2x +-=()(33)x x +-(2)228x x -=22(4)x x -=2(2444x x -+-)=22(2)8x --因为2(2)x -0≥,所以当x =2时,M 有最小值为-8【点睛】此题主要考查了利用平方差公式和完全平方式进行因式分解,以及偶次方的非负性质的应用,要熟练掌握.23.(1)()()2x y x y ---;(2)ABC 为等腰三角形,理由见解析【分析】(1)前三项符合完全平方公式,最后一项用提公因式法进行分解因式,最后再提公因式(x-y )即可.(2)通过因式分解22a bc b ac +--()()0a b a b c =-+-=,因为0a b c +->,所以得0a b -=,则a b =,那么ABC 为等腰三角形.【详解】解:(1)原式()()22222x xy y x y =-+--()()22x y x y =--- ()()2x y x y =---.(2)结论:ABC 为等腰三角形理由:∵22a bc b ac +--()()22a b ac bc =---()()()a b a b c a b =+---()()a b a b c =-+-0=又∵0a b c +->∴0a b -=∴a b =∴ABC 为等腰三角形.【点睛】 此题主要考查了因式分解的应用,要熟练掌握,用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.24.(1)10615a b ;(2)23221x x -- 【分析】(1)先算乘方,再确定符号,把系数,相同字母分别相乘除即可;(2)先利用多项式乘以多项式和平方差公式计算,然后去括号合并同类项.【详解】解:(1)23235ab a b ab 24935a b a b ab1175a b ab10615a b =; (2)23233x xx x 23233x xx x 2222369x x x x2222129x x x 23221x x .【点睛】本题主要考查了整式的混合运算,熟悉相关计法是解题的关键.25.(1)这个数是352,这个数是9810;(2)满足条件的“吉样数”是7481,5212,5163,7136.【分析】(1)设左边数为m ,右边数为n ,由题意225m n -=,分解为51m n m n +=⎧⎨-=⎩解方程组=32m n ⎧⎨=⎩即可求出,设左边数为m ,右边数为n ,由题意()281m n -=,直接开平方得9m n -=,直接确定m=9,n=0,即可写出这个数;(2)由题意得()22212m n m n -=-+化简得26mn n -=,因式分解()6n m n -=分别讨论n 与m-n 都是6的因式组成方程组,解之即可.【详解】(1)一个三位数的“吉祥数”是5,,设左边数为m ,右边数为n ,m 、n 均为正整数, 225m n -=,51m n m n +=⎧⎨-=⎩, =32m n ⎧⎨=⎩, 则这个数是352,一个四位数的“如意数”是81,设左边数为m ,右边数为n ,()281m n -=,9m n -=,m=9,n=0,则这个数是9810,故答案为:352;9810;(2)由题意得()22212m n m n -=-+, 26mn n -=,()6n m n -=,1=6n m n =⎧⎨-⎩,2=3n m n =⎧⎨-⎩,3=2n m n =⎧⎨-⎩,6=1n m n =⎧⎨-⎩, 17n m =⎧⎨=⎩,2=5n m =⎧⎨⎩,3=5n m =⎧⎨⎩,6=7n m =⎧⎨⎩, 求满足条件的“吉样数”是7481,5212,5163,7136.【点睛】本题考查是三位或三位以上的整数A 的新定义问题,认真学习题中的定义,掌握如意数与吉祥数的约定,会根据题中的要求列出等式,会解不定方程或方程组是解题关键. 26.(1)2()a b +;(2)()()()a b a b x y +--【分析】(1)根据完全平方公式展开,合并,再根据完全平方公式即可分解;(2)先提取公因式(x y -),再根据平方差公式继续分解即可.【详解】解:(1)原式2224a ab b ab =-++222a ab b =++2()a b =+;(2)原式22()()a x y b x y =---()22()a b x y =--()()()a b a b x y =+--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。
数学八年级上册 整式的乘法与因式分解(篇)(Word版 含解析)
数学八年级上册 整式的乘法与因式分解(篇)(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .3 【答案】D【解析】【分析】 把已知的式子化成12[(a-b )2+(a-c )2+(b-c )2]的形式,然后代入求解即可. 【详解】原式=12(2a 2+2b 2+2c 2-2ab-2ac-2bc ) =12[(a 2-2ab+b 2)+(a 2-2ac+c 2)+(b 2-2bc+c 2)] =12[(a-b )2+(a-c )2+(b-c )2] =12×(1+4+1) =3,故选D.【点睛】 本题考查了因式分解的应用,代数式的求值,正确利用因式分解的方法把所求的式子进行变形是关键.2.利用平方差公式计算(25)(25)x x ---的结果是A .245x -B .2425x -C .2254x -D .2425x + 【答案】C【解析】【分析】平方差公式是(a+b )(a-b )=a 2-b 2.【详解】解:()()()()()2225252525425254x x x x x x ---=--+=--=-, 故选择C.【点睛】本题考查了平方差公式,应牢记公式的形式.3.已知a ,b ,c 是△ABC 的三边长,且满足a 2+2b 2+c 2-2b(a +c)=0,则此三角形是( )A .等腰三角形B .等边三角形C .直角三角形D .不能确定【答案】B【解析】【分析】运用因式分解,首先将所给的代数式恒等变形;借助非负数的性质得到a =b =c ,即可解决问题.【详解】∵a 2+2b 2+c 2﹣2b (a +c )=0,∴(a ﹣b )2+(b ﹣c )2=0;∵(a ﹣b )2≥0,(b ﹣c )2≥0,∴a ﹣b =0,b ﹣c =0,∴a =b =c ,∴△ABC 为等边三角形. 故选B .【点睛】本题考查了因式分解及其应用问题.解题的关键是牢固掌握因式分解的方法,灵活运用因式分解来分析、判断、推理活解答.4.下列运算正确的是( )A .236•a a a =B .()325a a =C .23•a ab a b -=-D .532a a ÷=【答案】C【解析】【分析】根据同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法法则即可求出答案.【详解】A .原式=a 5,故A 错误;B .原式=a 6,故B 错误;C .23•a ab a b -=-,正确;D .原式=a 2,故D 错误.故选C .【点睛】本题考查了同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法,解题的关键是熟练运用运算法则,本题属于基础题型.5.下列多项式中,能运用公式法进行因式分解的是( )A .a 2+b 2B .x 2+9C .m 2﹣n 2D .x 2+2xy+4y 2【答案】C【解析】试题分析:直接利用公式法分解因式进而判断得出答案.解:A 、a 2+b 2,无法分解因式,故此选项错误;B 、x 2+9,无法分解因式,故此选项错误;C 、m 2﹣n 2=(m+n )(m ﹣n ),故此选项正确;D 、x 2+2xy+4y 2,无法分解因式,故此选项错误;故选C .6.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a +b)2-(a -b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A .a 2-b 2=(a +b)(a -b)B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .(a -b)(a +2b)=a 2+ab -b 2【答案】B【解析】图(4)中,∵S 正方形=a 2-2b (a-b )-b 2=a 2-2ab+b 2=(a-b )2,∴(a-b )2=a 2-2ab+b 2.故选B7.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.8.下列各运算中,计算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a ﹣b )2=a 2﹣ab+b 2D .2a•3a=6a 2【答案】D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.9.下列运算中正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()()22224a b a b a b +--=【答案】D【解析】【分析】根据同底数幂的乘法,可判断A 和B ,根据合并同类项,可判断C ,根据平方差公式,可判断D .【详解】A. 底数不变指数相加,故A 错误;B. 底数不变指数相乘,故B 错误;C. 系数相加字母部分不变,故C 错误;D. 两数和乘以这两个数的差等于这两个数的平方差,故D 正确;故选D.【点睛】本题考查了平方差公式、合并同类项以及同底数幂的乘法,解题的关键是熟练的掌握平方差公式、合并同类项以及同底数幂的乘法的运算.10.下列式子从左至右的变形,是因式分解的是( )A .21234x y x xy -=B .11(1)x x x -=-C .2221(1)x x x -+=-D .22()()a b a b a b +-=-【答案】C【解析】【分析】根据因式分解的意义进行判断即可.【详解】因式分解是指将一个多项式化为几个整式的积的形式.A .21234x y x xy -=,结果是单项式乘以单项式,不是因式分解,故选项A 错误;B .11(1)x x x-=-,结果应为整式因式,故选项B 错误;C .2221(1)x x x -+=-,正确;D .22()()a b a b a b +-=-是整式的乘法运算,不是因式分解,故选项D 错误. 故选:C .【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,涉及完全平方公式,本题属于基础题型.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知3x y +=,3336x y +=,则xy =______.【答案】-1【解析】【分析】将3336x y +=利用立方和公式以及完全平方公式进行变形后再计算即可得出答案.【详解】解:∵3x y +=∴33222()()3()33(93)279x y x y x xy y x y xy xy xy ⎡⎤+=+-+=⨯+-=-=-⎣⎦ ∵3336x y +=∴27936xy -=∴1xy =-故答案为:-1.【点睛】本题考查的知识点是立方和公式以及完全平方公式,解此题的关键是记住立方和公式.12.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=______.【答案】()()2a b a b ++.【解析】【分析】根据图形中的正方形和长方形的面积,以及整体图形的面积进而得出恒等式.【详解】解:由面积可得:()()22a 3ab 2b a 2b a b ++=++. 故答案为:()()a 2b a b ++.【点睛】此题主要考查了十字相乘法分解因式,正确利用面积得出等式是解题关键.13.若a 2+a-1=0,则a 3+2a 2+2014的值是___________.【答案】2015【解析】【分析】根据a 2+a-1=0可得a 2+a=1,对a 3+2a 2+2014进行变形,整体代入即可.【详解】∵a 2+a-1=0∴a 2+a=1a 3+2a 2+2014=a (a 2+a )+a 2+2014=a+a 2+2014=2015故答案为2015【点睛】本题考查的是多项式的乘法,整体代入法是解答的关键.14.5(m -n)4-(n-m)5可以写成________与________的乘积.【答案】 (m-n)4, (5+m-n )【解析】把多项式5(m -n)4-(n-m)5运用提取公因式法因式分解即可得5(m -n)4-(n-m)5=(m -n)4(5+m-n ).故答案为:(m-n)4,(5+m-n ).15.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.16.若26x x k -+是一个完全平方式,那么k =_______________【答案】9【解析】因为若26x k k -+是一个完全平方式,那么()222262333x k k x k x -+=-⨯+=-,那么答案是k=9.故答案为:9.17.把多项式(x -2)2-4x +8分解因式,哪一步开始出现了错误( )解:原式=(x -2)2-(4x -8)…A=(x -2)2-4(x -2)…B=(x -2)(x -2+4)…C=(x -2)(x +2)…D【答案】C【解析】根据题意,第一步应是添括号(注意符号变化),解法正确,第二步先对后面因式提公因式4,再提取公因式(x-2)这时出现符号错误,所以从C 步出现错误.故选C.18.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.【答案】-5【解析】【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn 计算,再根据乘积中不含x 的一次项,得出它的系数为0,即可求出p 的值.【详解】解:(x +p )(x +5)=x 2+5x +px +5p =x 2+(5+p )x +5p ,∵乘积中不含x 的一次项,∴5+p =0,解得p =﹣5,故答案为:﹣5.19.已知2x +3y -5=0,则9x •27y 的值为______.【答案】243【解析】【分析】先将9x •27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x ⋅27y =32x ⋅33y =32x+3y =35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则.20.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解.详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为:12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.。
北京丰台区第二中学数学代数式(基础篇)(Word版 含解析)
一、初一数学代数式解答题压轴题精选(难)1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.2.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;3.某超市在十一长假期间对顾客实行优惠,规定如下:一次性购物优惠办法少于100元不予优惠超过100元但低于500元超过100元部分给予九折优惠超过500元超过500元部分给予八折优惠________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。
八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)(带答案)
八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)单选题1、若(2020×2020×…×2020⏟ 共2020个)×(2020+2020+⋯+2020⏟ 共2020个)=2020n ,则n =( )A .2022B .2021C .2020D .2019 答案:A分析:2020个2020相乘,可以写成20202020,2020个2020相加,可以写成2020×2020=20202,计算即可得到答案.∵2020×2020×⋯×2020=20202020⏟ 2020,2020+2020+⋯+2020⏟ 2020=2020×2020=20202,∴原式左边=20202020×20202=20202022, 即2020n =20202022, ∴n =2022. 故选:A .小提示:本题考查了乘方的意义,以及同底数幂的乘法运算.注意:求n 个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂.2、如图,阶梯型平面图形的面积可以表示为( )A .ad +bcB .ad +c (b −d )C .ab −cdD .c (b −d )+d (a −c ) 答案:B分析:把阶梯型的图形看成是两个长方形的面积之和或面积之差即可求解.解:S 阶梯型=bc +(a ﹣c )d 或S 阶梯型=ab ﹣(a ﹣c )(b ﹣d ) 或S 阶梯型=ad +c (b ﹣d ), 故选:B .小提示:本题主要考查列代数式,整式的混合运算,解答的关键是把所求的面积看作是两个长方形的面积之和或面积之差.3、将多项式x ﹣x3因式分解正确的是( )A .x (x2﹣1)B .x (1﹣x2)C .x (x+1)(x ﹣1)D .x (1+x )(1﹣x ) 答案:D分析:直接提取公因式x ,然后再利用平方差公式分解因式即可得出答案. x ﹣x 3=x (1﹣x 2) =x (1﹣x )(1+x ). 故选D .小提示:本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键. 4、已知、为实数,且√a −12+ b 2+4=4b ,则a 2015•b 2016的值是( ) A .12B .−12C .2D .﹣2答案:C分析:已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值.已知等式整理得:√a −12+ (b −2)2=0,∴a =12,b =2, 即ab =1,则原式=(ab)2015•b故选:C.小提示:本题考查了实数的非负性,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算式变形,是解题的关键.5、如图,在长方形ABCD中,横向阴影部分是长方形,纵向阴影部分是平行四边形,依照图中标注的数据,计算空白部分的面积,其面积是()A.bc−ab+ac+c2B.ab−bc−ac+c2C.a2+ab+bc−ac D.b2+bc+a2−ab答案:B分析:矩形面积减去阴影部分面积,求出空白部分面积即可.空白部分的面积为(a−c)(b−c)=ab−ac−bc+c2.故选B.小提示:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6、小阳同学在学习了“设计自己的运算程序”综合与实践课后,设计了如图所示的运算程序,若开始输入m的值为2,则最后输出的结果y是()A.2B.3C.4D.8答案:D分析:把m=2代入运算程序中计算,如小于或等于7则把其结果再代入运算程序中计算,如大于7则直接输出结果.解:当m=2时,=22-1=3<7,当m=3时,m2-1=32-1=8>7,则y=8.故选:D.小提示:此题考查了代数式求值,以及有理数的混合运算,弄清题中的运算程序是解本题的关键.7、2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0答案:D分析:先将2变形为(3−1),再根据平方差公式求出结果,根据规律得出答案即可.解:(3−1)(3+1)(32+1)(34+1)…(316+1)=(32−1)(32+1)(34+1)…(316+1)=(34−1)(34+1)…(316+1)=332−1∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…∴3n的个位是以指数1到4为一个周期,幂的个位数字重复出现,∵32÷4=8,故332与34的个位数字相同即为1,∴332−1的个位数字为0,∴2×(3+1)(32+1)(34+1)(38+1)(316+1)的个位数字是0.故选:D.小提示:本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.8、若x2+ax=(x+1)2+b,则a,b的值为()2A .a =1,b =14B .a =1,b =﹣14C .a =2,b =12D .a =0,b =﹣12 答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解. 解:∵x 2+ax =(x +12)2+b =x 2+x +14+b ,∴a =1,14+b =0,∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.9、如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b 答案:A分析:4张边长为a 的正方形卡片的面积为4a 2,4张边长分别为a 、b 的矩形卡片的面积为4ab ,1张边长为b 的正方形卡片面积为b 2,9张卡片拼成一个正方形的总面积=4a 2+4ab+b 2=(2a+b)2,所以该正方形的边长为:2a+b .设拼成后大正方形的边长为x , ∴4a 2+4ab+b 2=x 2,∴(2a+b)2=x 2,∴该正方形的边长为:2a+b. 故选A.小提示:本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长. 10、下列计算正确的是( )A .m +m =m 2B .2(m −n )=2m −nC .(m +2n)2=m 2+4n 2D .(m +3)(m −3)=m 2−9 答案:D分析:根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定. 解:A.m +m =2m ,故该选项错误,不符合题意; B.2(m −n )=2m −2n ,故该选项错误,不符合题意; C.(m +2n)2=m 2+4mn +4n 2,故该选项错误,不符合题意; D.(m +3)(m −3)=m 2−9,故该选项正确,符合题意; 故选:D .小提示:本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键. 填空题11、阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:a+b+c ,abc ,a 2+b 2,…含有两个字母a ,b 的对称式的基本对称式是a+b 和ab ,像a 2+b 2,(a+2)(b+2)等对称式都可以用a+b ,ab 表示,例如:a 2+b 2=(a+b )2﹣2ab .请根据以上材料解决下列问题: (1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是_______(填序号);(2)已知(x+a )(x+b )=x 2+mx+n . ①若m =−2,n =12,求对称式ba +ab 的值; ②若n =﹣4,直接写出对称式a 4+1a 2+b 4+1b 2的最小值.答案:(1)①③;(2)①b a +ab =6;②a 4+1a 2+b 4+1b 2的最小值为172.分析:(1)根据对称式的定义进行判断;(2)①先得到a+b =﹣2,ab =12,再变形得到b a +ab =a 2+b 2ab =(a+b)2−2abab,然后利用整体代入的方法计算;②根据分式的性质变形得到a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2,再利用完全平方公式变形得到(a+b )2﹣2ab+(a+b)2−2aba 2b 2,所以原式=1716m 2+172,然后根据非负数的性质可确定a 4+1a 2+b 4+1b 2的最小值.解:(1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是 ①③.故答案为①③;(2)∵x 2+(a+b )x+ab =x 2+mx+n ∴a+b =m ,ab =n . ①a+b =﹣2,ab =12,b a+ab =a 2+b 2ab=(a+b)2−2abab=(−2)2−2×1212=6;②a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2=(a+b )2﹣2ab+(a+b)2−2aba 2b 2=m 2+8+m 2+816=1716m 2+172, ∵1716m 2≥0, ∴a 4+1a 2+b 4+1b 2的最小值为172.小提示:本题主要考查完全平方公式,关键是根据题目所给的定义及完全平方公式进行求解即可.12、平面直角坐标系中,已知点A 的坐标为(m ,3).若将点A 先向下平移2个单位,再向左平移1个单位后得到点B(1,n),则m +n =_______. 答案:3分析:先写出点A 向下平移2个单位后的坐标,再写出向左平移1个单位后的坐标.即可求出m 、n ,最后代入m +n 即可.点A 向下平移2个单位后的坐标为(m ,3−2),即(m ,1).再向左平移1个单位后的坐标为(m −1,1).∴{m−1=11=n ,即{m=2n=1.∴m+n=2+1=3.所以答案是:3.小提示:本题考查坐标的平移变换以及代数式求值.根据坐标的平移变换求出m、n的值是解答本题的关键.13、若a+b=1,则a2−b2+2b−2=________.答案:-1分析:将原式变形为(a+b)(a−b)+2b−2,再将a+b=1代入求值即可.解:a2−b2+2b−2=(a+b)(a−b)+2b−2将a+b=1代入,原式=a−b+2b−2=a+b−2=1-2=-1所以答案是:-1.小提示:本题考查了代数式求值,其中解题的关键是利用平方差公式将原式变形为(a+b)(a−b)+2b−2.14、已知a+b=4,a−b=2,则a2−b2的值为__________.答案:8分析:根据平方差公式直接计算即可求解.解:∵a+b=4,a−b=2,∴a2−b2=(a+b)(a−b)=4×2=8所以答案是:8小提示:本题考查了因式分解的应用,掌握平方差公式是解题的关键.15、若a2−b2=−116,a+b=−14,则a−b的值为______.答案:14分析:由平方差公式进行因式分解,再代入计算,即可得到答案.解:∵a2−b2=(a+b)(a−b)=−116,∵a+b=−14,∴a−b=−116÷(−14)=14.故答案是:14.小提示:本题考查了公式法因式分解,解题的关键是熟练掌握因式分解的方法.解答题16、分解因式:2x3−2x2y+8y−8x答案:2(x−y)(x−2)(x+2)分析:先分组,然后利用提公因式法和平方差公式因式分解即可.解:2x3−2x2y+8y−8x=2x2(x−y)+8(y−x)=2x2(x−y)−8(x−y)=2(x−y)(x2−4)=2(x−y)(x−2)(x+2).小提示:此题考查的是因式分解,掌握利用分组分解法、提公因式法和公式法因式分解是解题关键.17、小邢同学在计算(x+a)(x+b)中的“b”看成了“6”,算的结果为x2+3x−18,而且小颖同学在计算(x+a)(x+b)时将“+a”看成了“−a”,算的结果为x2−x−12.(1)求出a、b的值;(2)计算出(x+a)(x+b)的正确结果,答案:(1)a=-3,b=-4(2)x2-7x+12分析:(1)根据题意得出(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2-x﹣12,得出6+a=3,﹣a+b=-1,求出a、b即可;(2)把a、b的值代入,再根据多项式乘以多项式法则求出即可.(1)根据题意得:(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2−x−12,所以6+a=3,﹣a+b=-1,解得:a=-3,b=-4;(2)当a=-3,b=-4时,(x+a)(x+b)=(x-3)(x-4)=x2-7x+12.小提示:本题考查了多项式乘以多项式法则和解方程,能正确运用多项式乘以多项式法则进行计算是解此题的关键.18、我们知道形如x2+(a+b)x+ab的二次三项式可以分解因式为(x+a)(x+b),所以x2+6x−7=x2+ [7+(−1)]x+7×(−1)=(x+7)[x+(−1)]=(x+7)(x−1).但小白在学习中发现,对于x2+6x−7还可以使用以下方法分解因式.x2+6x−7=x2+6x+9−7−9=(x+3)2−16=(x+3)2−42=(x+3+4)(x+3−4)=(x+7)(x−1).这种在二次三项式x2+6x−7中先加上9,使它与x2+6x的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了.(1)请使用小白发现的方法把x2−8x+7分解因式;(2)填空:x2−10xy+9y2=x2−10xy+________+9y2−________=(x−5y)2−16y2=(x−5y)2−(________)2=[(x−5y)+________][(x−5y)−________]=(x−y)(x−________);(3)请用两种不同方法分解因式x2+12mx−13m2.答案:(1)(x−1)(x−7);(2)25y2;25y2;4y;4y;4y;9y;(3)(x+13m)(x−m)分析:(1)在x2−8x+7上加16减去16,仿照小白的解法解答;(2)在原多项式上加25y2再减去25y2,仿照小白的解法解答;(3)将−13m2分解为13m与(-m)的乘积,仿照例题解答;在原多项式上加36m2再减去36m2仿照小白的解法解答.(1)解:x2−8x+7=x2−8x+16+7−16=(x−4)2−9=(x−4)2−32=(x−4+3)(x−4−3)=(x−1)(x−7);(2)解:x2−10xy+9y2=x2−10xy+25y2+9y2−25y2=(x−5y)2−16y2=(x−5y)2−(4y)2=[(x−5y)+4y][(x−5y)−4y]=(x-y)(x-9y)所以答案是:25y2;25y2;4y;4y;4y;9y;(3)解法1:原式=x2+[13m+(−m)]x+13m⋅(−m)=(x+13m)(x−m).解法2:原式=x2+12mx+36m2−13m2−36m2=(x+6m)2−49m2=[(x+6m)+7m][(x+6m)−7m]=(x+13m)(x−m).小提示:此题考查多项式的因式分解,读懂例题及小白的解法,掌握完全平方公式、平方差公式的结构特征是解题的关键.。
人教版数学八年级上册 整式的乘法与因式分解(篇)(Word版 含解析)
人教版数学八年级上册 整式的乘法与因式分解(篇)(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.把多项式2425m -分解因式正确的是( )A .(45)(45)m m +-B .(25)(25)m m +-C .(5)(5)m m -+D .(5)(5)m m m -+【答案】B【解析】利用公式法分解因式的要点,根据平方差公式:()()22a b a b a b -=+-,分解因式为:()()()222425252525m m m m -=-=+-.故选B.2.下列运算正确的是( )A .236•a a a =B .()325a a =C .23•a ab a b -=-D .532a a ÷=【答案】C【解析】【分析】根据同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法法则即可求出答案.【详解】A .原式=a 5,故A 错误;B .原式=a 6,故B 错误;C .23•a ab a b -=-,正确;D .原式=a 2,故D 错误.故选C .【点睛】本题考查了同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法,解题的关键是熟练运用运算法则,本题属于基础题型.3.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用x 、y (x y >)表示小长方形的长和宽,则下列关系式中错误的是( )A .22100x y +=B .2x y -=C .12x y +=D .35xy =【答案】A【解析】【分析】 由正方形的面积公式可求x +y =12,x ﹣y =2,可求x =7,y =5,即可求解.【详解】由题意可得:(x +y )2=144,(x ﹣y )2=4,∴x +y =12,x ﹣y =2,故B 、C 选项不符合题意;∴x =7,y =5,∴xy =35,故D 选项不符合题意;∴x 2+y 2=84≠100,故选项A 符合题意. 故选A .【点睛】本题考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.4.如果x m =4,x n =8(m 、n 为自然数),那么x 3m ﹣n 等于( )A .B .4C .8D .56【答案】C【解析】【分析】根据同底数幂的除法法则可知:指数相减可以化为同底数幂的除法,故x 3m ﹣n 可化为x 3m ÷x n ,再根据幂的乘方可知:指数相乘可化为幂的乘方,故x 3m =(x m )3,再代入x m =4,x n =8,即可得到结果.【详解】解:x 3m ﹣n =x 3m ÷x n =(x m )3÷x n =43÷8=64÷8=8, 故选:C .【点睛】此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.5.已知a ,b ,c 是△ABC 的三条边的长度,且满足a 2-b 2=c (a -b ),则△ABC 是( )A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.6.把228a -分解因式,结果正确的是( )A .22(4)a -B .22(2)a -C .2(2)(2)a a +-D .22(2)a +【答案】C【解析】【分析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】 228a -=22(4)a -=2(2)(2)a a +-,故选C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.7.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.8.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.9.下列等式由左边向右边的变形中,属于因式分解的是 ( )A .x 2+5x -1=x(x+5)-1B .x 2-4+3x=(x+2)(x -2)+3xC .(x+2)(x -2)=x 2-4D .x 2-9=(x+3)(x -3)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A 、右边不是积的形式,故A 错误;B 、右边不是积的形式,故B 错误;C 、是整式的乘法,故C 错误;D 、x 2-9=(x+3)(x -3),属于因式分解.故选D .【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.10.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b +D .+a b【答案】C【解析】【分析】用长方形的面积除以长可得.【详解】宽为:()()()()22222a ab ab ba b a b a b +++÷+=+÷+= ()12a b + 故选:C【点睛】考核知识点:整式除法与面积.掌握整式除法法则是关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知a 1•a 2•a 3•…•a 2007是彼此互不相等的负数,且M=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007),N=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006),那么M 与N 的大小关系是M N .【答案】M >N【解析】解:M ﹣N=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007)﹣(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006) =(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)+(a 1+a 2+…+a 2006)a 2007﹣(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)﹣a 2007(a 2+a 3+…+a 2006)=(a 1+a 2+…+a 2006)a 2007﹣a 2007(a 2+a 3+…+a 2006)=a 1a 2007>0∴M >N【点评】本题主要考查了整式的混合运算.12.若()219x y +=,()25x y -=,则22xy +=______.【答案】12【解析】【分析】根据完全平方公式的两个关系式间的关键解答即可.【详解】∵()219x y +=,()25x y -=,∴()()224x y x x y y +=-+,∴19=5+4xy ,∴xy=72, ∴()2227252122x x x y y y +-=+=+⨯=, 故答案为:12.【点睛】 此题考查完全平方公式,熟记公式并掌握两个公式的等量关系是解题的关键.13.在实数范围内因式分解:22967x y xy --=__________.【答案】9xy xy ⎛ ⎝⎭⎝⎭【解析】【分析】将原多项式提取9,然后拆项分组为222189399x y xy ⎛⎫-+- ⎪⎝⎭ ,利用完全平方公式将前一组分解后,再利用平方差公式继续在实数范围内分解.【详解】解:22967x y xy -- 2227=939x y xy ⎛⎫-- ⎪⎝⎭ 222117=9+3999x y xy ⎛⎫--- ⎪⎝⎭ 218=939xy ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦11=933xy xy ⎛---+ ⎝⎭⎝⎭11=933xy xy ⎛+--- ⎝⎭⎝⎭故答案为:11933xy xy ⎛+--- ⎝⎭⎝⎭【点睛】本题考查在实数范围内因式分解,利用分组分解法将原多项式“三一”分组后采用公式法因式分解,注意在实数范围内因式分解是指系数可以是根式.14.多项式18x n+1-24x n 的公因式是_______.【答案】6x n【解析】运用公因式的概念,找出系数的最大公约数是6,相同字母的最低指数次幂是x n ,可得公因式为6x n .故答案为:6x n.15.如果9x 2-axy+4y 2是完全平方式,则a 的值是____.【答案】±12【解析】【分析】根据完全平方式得出-axy=±2×3x2y ,求出即可.【详解】解:9x 2-axy+4y 2=(3x±2y )2即-axy=±2×3x2y所以a=±12 【点睛】本题考查了完全平方式,能熟记完全平方公式的特点是解此题的关键,注意:完全平方式有两个a 2-2ab+b 2和a 2+2ab+62是本题的易错点.16.(1)已知32m a =,33n b =,则()()332243mn m n m a b a b a +-⋅⋅=______. (2)对于一切实数x ,等式()()212x px q x x -+=+-均成立,则24p q -的值为______.(3)已知多项式2223286x xy y x y +--+-可以分解为()()22x y m x y n ++-+的形式,则3211m n +-的值是______. (4)如果2310x x x +++=,则232016x x x x +++⋅⋅⋅+=______.【答案】(1)5-; (2)9; (3)78-; (4)0. 【解析】【分析】(1)根据积的乘方和幂的乘方,将32m a =整体代入即可;(2)将等式后面部分展开,即可求出p 、q 的值,代入即可;(3)根据多项式乘法法则求出()()22x y m x y n ++-+,即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可;(4)4个一组提取公因式,整体代入即可.【详解】(1)32m a =,33n a =,()()()()332222343333m n m n m m n m n a b a b a a b a b ∴+-⋅⋅=+-22232343125=+-⨯=+-=-(2)222x px q x x -+=--对一切实数x 均成立,1p ∴=,2q =-249p q ∴-=(3)()()222223286x y m x y n x xy y x y ++-+=+--+-,()()22222322223286x xy y m n x n m y mn x xy y x y ∴+-+++-+=+--+- 21,28,6,m n n m mn +=-⎧⎪∴-=⎨⎪=-⎩解得2,3.m n =-⎧⎨=⎩ 321718m n +∴=-- (4)2310x x x +++=,232016x x x x ∴+++⋅⋅⋅+()()2320132311x x x x x x x x =++++⋅⋅⋅++++000=+⋅⋅⋅+=故答案为: −5;9;78-;0. 【点睛】本题主要考察幂的运算及整式的乘法,掌握其运算法则是关键.17.若m+1m =3,则m 2+21m =_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m=7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.18.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.【答案】-5【解析】【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn 计算,再根据乘积中不含x 的一次项,得出它的系数为0,即可求出p 的值.【详解】解:(x +p )(x +5)=x 2+5x +px +5p =x 2+(5+p )x +5p ,∵乘积中不含x 的一次项,∴5+p =0,解得p =﹣5,故答案为:﹣5.19.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解.详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为:12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.20.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x 2+2x =3代入即可得答案.【详解】原式=x 2+2x+1-(x 2-4)+x 2=x 2+2x+1-x 2+4+x 2=x 2+2x+5.∵x 2+2x =3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.。
北京丰台区第二中学七年级数学上册第二单元《整式的加减》经典习题(含解析)
一、选择题1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004-2.下面用数学语言叙述代数式1a﹣b ,其中表达正确的是( ) A .a 与b 差的倒数 B .b 与a 的倒数的差 C .a 的倒数与b 的差 D .1除以a 与b 的差3.若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3- B .0C .3D .64.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +-5.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π-6.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1B .-1C .2020D .2020-7.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3C .4D .58.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .669.下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、610.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b +11.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .2m n+ B .mnm n+ C .2mnm n+ D .m nnm + 12.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+3113.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个14.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数 D .a 的平方与b 的倒数的差15.代数式213x -的含义是( ).A.x的2倍减去1除以3的商的差B.2倍的x与1的差除以3的商C.x与1的差的2倍除以3的商D.x与1的差除以3的2倍二、填空题16.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n时,最多可有的交点数m与直线条数n之间的关系式为:m=_____.(用含n的代数式填空)17.单项式2335x yz的系数是___________,次数是___________.18.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_______________.19.将连续正整数按以下规律排列,则位于第7行第7列的数x是________________.?136********259142027?48131926??7121825??111724??1623??22?????x?20.观察下列图形它们是按一定规律排列的,依照此规律,第20个图形共有________________ 个★.21.观察下列式子: 1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2 019个式子为__________. 22.将下列代数式的序号填入相应的横线上.①223a b ab b ++;②2a b +;③23xy -;④0;⑤3y x -+;⑥2xy a ;⑦223x y +;⑧2x;⑨2x .(1)单项式:_______________; (2)多项式:_______________; (3)整式:_________________; (4)二项式:_______________.23.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.24.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.25.“a 的3倍与b 的34的和”用代数式表示为______. 26.一个三位数,个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数是____________.(填化简后的结果)三、解答题27.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目: 已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.28.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值. 29.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.30.为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算):(2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费.。
北京市八年级数学下册 整式乘法与因式分解综合专题讲解
整式乘法与因式分解综合重难点易错点辨析题一:因式分解:考点:分组分解 换元题二:先化简,再求值:(x +2)2+(x +3)(x 3)2x 2,其中x =2.考点:化简求值 金题精讲题一:已知 x 2 +xy =12,xy +y 2=15,求代数式(x +y )2 2y (x +y )的值.考点:化简求值题二:因式分解:(1)ax by bx ay --+;(2)59315xy x y +--;(3)22926a b a b -+-;(4)22a ab c bc --+.考点:分组分解 题三:因式分解(1)6321449x x y y ++;(2)()()2222483482x x x x x x ++++++;(3)()()()()16348x x x x +++++.考点:换元法分解 题四:已知a +b =4,ab =1,试求以下各式的值:(1)a 2+b 2;(2)a 3+b 3;(3)a 5+b 5. 考点:整式乘法综合思维拓展题一:已知M =62021+72015,N =62021+72021,那么M ,N 的大小关系是( )A.M>N B.M=N C.M<N D.无法确信考点:比大小因式分解整式乘法与因式分解综合讲义参考答案重难点易错点辨析题一:(a+1)(b+1);(x+1)(x1)(x2+81);(x2)(x+1)(x2x+3).题二:3.金题精讲题一:3.题二:(1)(a b)(x+y);(2)(5y3)(x3);(3)(a+3b+2)(a3b);(4)(a+c b)(a c).题三:(1) (x3+7y)2;(2) (x+2)(x+4)(x2+5x+8);(3) (x+2)(x+5)(x2+7x+8).题四:(1)14;(2)52;(3)724.思维拓展题一:A.。
人教版八年级上册第十四章《整式的乘法与因式分解》14.1.4整式的乘法(教案)
-多项式乘以多项式的分配律综合应用:一个多项式的每一项乘以另一个多项式的每一项,并将结果相加。
-例如:(x + 3) * (x + 4) = x^2 + 4x + 3x + 12,强调每一项都要相乘并相加。
五、教学反思
今天我们在课堂上学习了整式的乘法,回顾整个教学过程,我觉得有几个地方值得反思和改进。
首先,我发现学生在理解整式乘法的基本概念时,对分配律的应用还不够熟练。在单项式乘以多项式的例子中,部分同学容易忽略对常数项的乘法,导致答案出错。针对这个问题,我考虑在下一节课中增加一些基础练习,让学生反复练习分配律的应用,帮助他们更好地掌握这个重点。
-将实际问题转化为整式乘法运算:学生需要掌握如何将实际问题的描述转化为数学表达式,并运用整式乘法进行计算。
-例如:将矩形的面积计算问题转化为(x + 2) * (x + 3)的乘法运算。
在教学过程中,教师应针对这些重点和难点,通过直观的示例、反复的练习和及时的反馈,帮助学生理解并掌握整式乘法的核心知识,确保学生能够透彻理解和正确应用。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式乘法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对整式乘法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课研讨复习教学课件拔高
计算:
(1)28x4y2 ÷7x3y;
解:(1)原式=(28 ÷7)x4–3y2–1
(2)–5a5b3c ÷15a4b.
(2)原式=(–5÷15)a5–4b3–1c
=4xy;
= –
1
2c.
ab
3
多项式除以单项式要按照法则逐项进行,不得
漏项,并且要注意符号的变化.
巩固练习
下列计算错在哪里?怎样改正?
计算.
巩固练习
计算:
(1)(–xy)13÷(–xy)8;
(2)(x–2y)3÷(2y–x)2;
(3)(a2+1)6÷(a2+1)4÷(a2+1)2.
解:(1)原式=(–xy)13–8=(–xy)5=–x5y5;
(2)原式=(x–2y)3÷(x–2y)2=x–2y;
(3)原式=(a2+1)6–4–2=(a2+1)0=1.
探究新知
单项式除以单项式的法则
单项式相除, 把系数与同底数幂分别相除作为商的
因式,对于只在被除式里含有的字母,则连同它的指数作
为商的一个因式.
理解
商式=系数 • 同底的幂 • 被除式里单独有的幂
被除式的系数
除式的系数
底数不变,
指数相减.
保留在商里
作为因式.
探究新知
素养考点 3 单项式除法以单项式法则的应用
探究新知
素养考点 2
同底数幂除法法则的逆运用
例2 已知am=12,an=2,a=3,求am–n–1的值.
解:∵am=12,an=2,a=3,
∴am–n–1=am÷an÷a=12÷2÷3=2.
方法总结:解此题的关键是逆用同底数幂的除法,对am–n–1进
行变形,再代入数值进行计算.
(完整版)整式的乘法与因式分解压轴题解析
整式的乘法与因式分解【知识脉络】【基础知识】1.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.3 a2 b2×2abc=(3×2)×(a2 b2×abc)=6 a3 b3c2.单项式与多项式的乘法法则: a(b+c+d)= ab + ac + ad单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.3.多项式与多项式的乘法法则:( a+b)(c+d)= ac + ad + bc + bd多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.4.乘法公式:①完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.②平方差公式:(a+b)(a-b)=a2-b2语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.5.因式分解(难点)因式分解的定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.一、掌握因式分解的定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、熟练掌握因式分解的常用方法.1、提公因式法(1)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(2)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(3)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;①平方差公式: a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2【典例解析】例题1:数学家发明了一个魔术盒,当任意数对(a,b)进入其中时,会得到一个新的数:(a﹣1)(b﹣2).现将数对(m,1)放入其中,得到数n,再将数对(n,m)放入其中后,最后得到的数是﹣m2+2m .(结果要化简)【考点】整式的混合运算.【分析】根据题意的新定义列出关系式,计算即可得到结果.【解答】解:根据题意得:(m﹣1)(1﹣2)=n,即n=1﹣m,则将数对(n,m)代入得:(n﹣1)(m﹣2)=(1﹣m﹣1)(m﹣2)=﹣m2+2m.故答案为:﹣m2+2m【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.例题2:乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是a2﹣b2(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是a+b ,宽是a﹣b ,面积是(a+b)(a﹣b)(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:(a+b)(a﹣b)=a2﹣b2公式2:a2﹣b2=(a+b)(a﹣b)(4)运用你所得到的公式计算:10.3×9.7.【考点】平方差公式的几何背景.【分析】(1)中的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)中的长方形,宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)中的答案可以由(1)、(2)得到(a+b)(a﹣b)=a2﹣b2;反过来也成立;(4)把10.3×9.7写成(10+0.3)(10﹣0.3),利用公式求解即可.【解答】解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);故答案为:a+b,a﹣b,(a+b)(a﹣b);(3)由(1)、(2)得到,公式1:(a+b)(a﹣b)=a2﹣b2;公式2:a2﹣b2=(a+b)(a﹣b)故答案为:(a+b)(a﹣b),a2﹣b2=(a+b)(a﹣b);(4)10.3×9.7=(10+0.3)(10﹣0.3)=102﹣0.32=100﹣0.09=99.91.例题3:如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2 B. b2+a2 C.(b+a)2 D. a2+2ab考点:勾股定理.分析:先求出AE即DE的长,再根据三角形的面积公式求解即可.解答:解:∵DE=b﹣a,AE=b,∴S四边形ABCD=4S△ADE+a2=4××(b﹣a)?b=b2+(b﹣a)2.故选:A.点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.例题4:如图1,我们在2017年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为10×12﹣4×18=48,再选择其他位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为24 .(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2017,则这个十字星中心的数为975 (直接写出结果).【考点】规律型:数字的变化类.【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值;(2)定值为k2﹣1=(k+1)(k﹣1),理由为:设十字星中心的数为x,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据相应的“十字差”为2017求出a的值即可.【解答】解:(1)根据题意得:6×8﹣2×12=48﹣24=24;故答案为:24;(2)定值为k2﹣1=(k+1)(k﹣1);证明:设十字星中心的数为x,则十字星左右两数分别为x﹣1,x+1,上下两数分别为x﹣k,x+k(k≥3),十字差为(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1,故这个定值为k2﹣1=(k+1)(k﹣1);(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据题意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2017,解得:a=975.故答案为:975.【跟踪训练】1.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式a2+2ab+b2=(a+b)2.2.如图,有正方形卡片A类、B类和长方形卡片C类各若干张,如果用这三类卡片拼一个长为2a+b、宽为a+2b的大长方形,通过计算说明三类卡片各需多少张?3.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形4.在日历上,我们发现某些数会满足一定的規律,比如2016年1月份的日历,我们设计这样的算法:任意选择其中的2×2方框,将方框中4个位置上的数先平方,然后交叉求和,再相减请你按照这个算法完成下列计算,并回答以下问题[2016年1月份的日历]日一二三四五六1 23 4 5 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 2324 25 26 27 28 29 3031(1)计算:(12+92)﹣(22+82)= 14 ,﹣= 14 ,自己任选一个有4个数的方框进行计算14(2)通过计算你发现什么规律,并说明理由.5.已知(x+y)2=25,xy=,求x﹣y的值.6. 已知,则(a+b)2﹣(a﹣b)2的值为 1 .7. ①一个多项式除以2m得1﹣m+m2,这个多项式为2m﹣2m2+2m3.②6x2+5x﹣6 ÷(2x+3)=(3x﹣2).③小玉和小丽做游戏,两人各报一个整式,小玉报一个被除式,小丽报一个除式,要求商必须是3ab.若小玉报的是3a2b﹣ab2,则小丽报的是a﹣b ;若小丽报的是9a2b,则小玉报的整式是27a3b2.④如图甲、乙两个农民共有4块地,今年他们决定共同投资搞饲养业,为此他们准备将这4块地换成宽为(a+b)cm的地,为了使所换到的面积与原来地的总面积相等,交换之后的地的长应为a+c m.8. 阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,∵(y+2)2≥0即(y+2)2的最小值为0,∴y2+4y+8的最小值为4.仿照上面的解答过程,求m2+m+4的最小值和4﹣x2+2x的最大值.参考答案:1.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式a2+2ab+b2=(a+b)2.【考点】因式分解-运用公式法.【分析】根据提示可知1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形,利用面积和列出等式即可求解.【解答】解:两个正方形的面积分别为a2,b2,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)2,所以a2+2ab+b2=(a+b)2.【点评】本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.2.如图,有正方形卡片A类、B类和长方形卡片C类各若干张,如果用这三类卡片拼一个长为2a+b、宽为a+2b的大长方形,通过计算说明三类卡片各需多少张?【考点】多项式乘多项式.【分析】根据长乘以宽,表示出大长方形的面积,即可确定出三类卡片的张数.【解答】解:∵(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5ab+2b2,∴需要A类卡片2张,B类卡片2张,C类卡片5张.3.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形【考点】因式分解的应用.【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.【解答】解:已知等式变形得:(a+b)(a﹣b)﹣c(a﹣b)=0,即(a﹣b)(a+b﹣c)=0,∵a+b﹣c≠0,∴a﹣b=0,即a=b,则△ABC为等腰三角形.故选:C.4.在日历上,我们发现某些数会满足一定的規律,比如2016年1月份的日历,我们设计这样的算法:任意选择其中的2×2方框,将方框中4个位置上的数先平方,然后交叉求和,再相减请你按照这个算法完成下列计算,并回答以下问题[2016年1月份的日历]日一二三四五六1 23 4 5 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 2324 25 26 27 28 29 3031(1)计算:(12+92)﹣(22+82)= 14 ,﹣= 14 ,自己任选一个有4个数的方框进行计算14(2)通过计算你发现什么规律,并说明理由.【考点】整式的混合运算.【分析】(1)先算乘法,再合并即可;(2)设最小的数字为n,则其余三个分别为n+8,n+1,n+7,根据题意得出算式[n2+(n+8)2]﹣[(n+1)2+(n+7)2],求出即可.【解答】解:(1)(12+92)﹣(22+82)=1+81﹣4﹣64=14,﹣=100+324﹣121﹣289=14,(32+112)﹣(42+102)=9+121﹣16﹣100=14,故答案为:14;(2)计算结果等于14,理由是:设最小的数字为n,则其余三个分别为n+8,n+1,n+7,所以[n2+(n+8)2]﹣[(n+1)2+(n+7)2]=n2+n2+16n+64﹣n2﹣2n﹣1﹣n2﹣14n﹣49=14.5.已知(x+y)2=25,xy=,求x﹣y的值.【考点】完全平方公式.【分析】根据完全平方公式即可求出答案.【解答】解:∵(x+y)2=x2+2xy+y2,∴25=x2+y2+,∴x2+y2=∵(x﹣y)2=x2﹣2xy+y2,∴(x﹣y)2=﹣=16∴x﹣y=±46. 已知,则(a+b)2﹣(a﹣b)2的值为 1 .考点:因式分解-运用公式法.分析:首先利用完全平方公式展开进而合并同类项,再将已知代入求出即可.解答:解:∵(a+b)2﹣(a﹣b)2=(a2+2ab+b2)﹣(a2﹣2ab+b2)=4ab,∴将,代入上式可得:原式=4ab=4××=1.故答案为:1.点评:此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.7. ①一个多项式除以2m得1﹣m+m2,这个多项式为2m﹣2m2+2m3.②6x2+5x﹣6 ÷(2x+3)=(3x﹣2).③小玉和小丽做游戏,两人各报一个整式,小玉报一个被除式,小丽报一个除式,要求商必须是3ab.若小玉报的是3a2b﹣ab2,则小丽报的是a﹣b ;若小丽报的是9a2b,则小玉报的整式是27a3b2.④如图甲、乙两个农民共有4块地,今年他们决定共同投资搞饲养业,为此他们准备将这4块地换成宽为(a+b)cm的地,为了使所换到的面积与原来地的总面积相等,交换之后的地的长应为a+c m.考点:整式的混合运算.分析:①利用2m乘1﹣m+m2计算即可;②把除式和商相乘即可;③根据被除式÷商=除式,被除式=除式×商列式计算即可;④利用4块土地换成一块地后的面积与原来4块地的总面积相等,而原来4块地的总面积=a2+bc+ac+ab,得到4块土地换成一块地后面积为(a2+bc+ac+ab)米,又此块地的宽为(a+b)米,根据矩形的面积公式得到此块地的长=(a2+bc+ac+ab)÷(a+b),把被除式分解后再进行除法运算即可得到结论.解答:解:①2m(1﹣m+m2)=2m﹣2m2+2m3;②(2x+3)(3x﹣2)=6x2+5x﹣6;③(3a2b﹣ab2)÷3ab=a﹣b,3ab?9a2b=27a3b2;④∵原来4块地的总面积=a2+bc+ac+ab,∴将这4块土地换成一块地后面积为(a2+bc+ac+ab)米,而此块地的宽为(a+b)米,∴此块地的长=(a2+bc+ac+ab)÷(a+b)=(a2+ac+bc+ab)÷(a+b)=[a(a+c)+b(a+c)÷(a+b)]=(a+b)(a+c)÷(a+b)=a+c.故答案为:2m﹣2m2+2m3;6x2+5x﹣6;a﹣b,27a3b2;a+c.点评:此题考查整式的混合运算,掌握计算方法是解决问题的关键.8. 阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,∵(y+2)2≥0即(y+2)2的最小值为0,∴y2+4y+8的最小值为4.仿照上面的解答过程,求m2+m+4的最小值和4﹣x2+2x的最大值.考点:因式分解的应用.专题:阅读型.分析:(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.解答:解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥.则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5.点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.。
八年级上册整式的乘法与因式分解(篇)(Word版 含解析)
八年级上册整式的乘法与因式分解(篇)(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.下列四个多项式,可能是2x 2+mx -3 (m 是整数)的因式的是A .x -2B .2x +3C .x +4D .2x 2-1【答案】B【解析】【分析】将原式利用十字相乘分解因式即可得到答案.【详解】因为m 是整数,∴将2x 2+mx -3分解因式:2x 2+mx -3=(x-1)(2x+3)或2x 2+mx -3=(x+1)(2x-3),故选:B.【点睛】此题考查因式分解,根据二次项和常数项将多项式分解因式是解题的关键.2.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.3.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( )A .1、3B .3、5C .6、8D .7、9【答案】D【解析】248-1=(224+1)(224-1)= (224+1)(212+1)(212-1)= (224+1)(212+1)(26+1)(26-1)=(224+1)(212+1)(26+1)(23+1) (23-1) , 23+1=9, 23-1=7,所以这两个数是7、9.点睛:平方差公式:a 2-b 2=(a +b )(a -b ).4.若代数式x 2+ax +64是一个完全平方式,则a 的值是( )A .-16B .16C .8D .±16【答案】D【解析】试题分析:根据完全平方式的意义,首平方,尾平方,中间加减积的2倍,可知a=±2×8=16.故选:D点睛:此题主要考查了完全平方式的意义,解题关键是明确公式的特点,即:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方。
第14章整式的乘法与因式分解单元教学分析
教学时间
月 日至 月 日
教Байду номын сангаас
学
目
标
1.知识与技能
能熟练掌握整式的概念、运算性质和因式分解的概念、分解方法,逐步形成知识结构.
2.过程与方法
通过图形的变化,从直观认识的角度领会整式运算及因式分解的知识,渗透数形结合的思想.
3.情感、态度与价值观
提高学生解决问题的能力,发展推理思维,体会数学的应用价值,增强自信心.
本节课的教学过程是探索发现性学习过程注意同底数幂的乘法法则的推导过程而不单单是要求记住结论在导出的过程中从具体到抽象有层次地进行概括归纳推理学生不是被动地接受而是在已有经验的基础上创新从而培养学生的动手能力和创新意识
第14章整式的乘法与因式分解单元教学分析
单元名称
第14章 整式的乘法与因式分解
课时数
重
点
难
点
重点:熟练掌握整式,因式分解的解题方法.
难点:灵活地应用乘法公式进行运算或因式分解.
教
学
措
施
本节课的教学过程是探索发现性学习过程,注意同底数幂的乘法法则的推导过程,而不单单是要求记住结论,在导出的过程中,从具体到抽象,有层次地进行概括,归纳推理,学生不是被动地接受,而是在已有经验的基础上创新,从而培养学生的动手能力和创新意识.
八年级数学人教版上册第14章整式的乘除与因式分解14.1.4整式的乘法(第1课时图文详解)
八年级上册第14章整式的乘除与因式分解
1.下列计算中,正确的是( B )
A.2a3·3a2=6a6
B.4x3·2x5=8x8
C.2x·2x5=4x5
D.5x3·4x4=9x7
2.下列运算正确的是( D )
A.x2·x3=x6
B.x2+x2=2x4
C.(-2x)2=-4x2
D.(-2x2)(-3x3)=6x5
八年级上册第14章整式的乘除与因式分解
第14章 整式的乘除与因式分解
八年级上册
八年级上册第14章整式的乘除与因式分解
14.1.4 整式的乘法
第1课时
八年级上册第14章整式的乘除与因式分解
1.探索并了解单项式与单项式、单项式与多项式相乘的法则, 并运用它们进行运算. 2.让学生主动参与到探索过程中去,逐步形成独立思考、主 动探索的习惯,培养思维的批判性、严密性和初步解决问题 的能力.
八年级上册第14章整式的乘除与因式分解
2.填空:
a4 26
(1)6 2
a9 28
9 x2 y4 4
1
八年级上册第14章整式的乘除与因式分解
光的速度约为3×105千米/秒,太阳光照射到地球上需 要的时间大约是5×102秒,你知道地球与太阳的距离约是 多少千米吗? 分析:距离=速度×时间,即(3×105)×(5×102); 怎样计算(3×105)×(5×102)? 地球与太阳的距离约是: (3×105)×(5×102)=(3 ×5)×(105×102) =15×107=1.5×108(千米)
八年级上册第14章整式的乘除与因式分解
2.单项式与多项式相乘的法则: 单项式与多项式相乘,只要将单项式分别乘以多 项式的每一项,再将所得的积相加即可.
2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解公式法(第2课时)教案
第十四章整式的乘法与因式分解14.3因式分解14.3.2公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。
学生:三角尺、练习本、铅笔、钢笔。
六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式:a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+32.解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是()(出示课件15)A.11B.9C.–11D.–9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解:(1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b)·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a–4b+5=0,求2a 2+4b–3的值.(出示课件23)师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a–4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b–2)2=01020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩∴2a 2+4b–3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是()A.a 2+1B.a 2–6a+9C.x 2+5yD.x 2–5y 2.把多项式4x 2y–4xy 2–x 3分解因式的结果是()A.4xy(x–y)–x 3B.–x(x–2y)2C.x(4xy–4y 2–x 2)D.–x(–4xy+4y 2+x 2)3.若m=2n+1,则m 2–4mn+4n 2的值是________.4.若关于x 的多项式x 2–8x+m 2是完全平方式,则m 的值为_________.5.把下列多项式因式分解.(1)x 2–12x+36;(2)4(2a+b)2–4(2a+b)+1;(3)y 2+2y+1–x 2;6.计算:(1)38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327.分解因式:(1)4x 2+4x+1;(2)13x 2–2x+3.小聪和小明的解答过程如下:他们做对了吗?若错误,请你帮忙纠正过来.8.(1)已知a–b=3,求a(a–2b)+b 2的值;(2)已知ab=2,a+b=5,求a 3b+2a 2b 2+ab 3的值.小聪:小明:参考答案:1.B2.B3.14.±45.解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6.解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17.解:(1)原式=(2x)2+2•2x•1+1=(2x+1)2 (2)原式=13(x2–6x+9)=13(x–3)28.解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2.当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。
北京丰台区第二中学数学整式的乘法与因式分解(篇)(Word版 含解析)
一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负性这一性质增加问题的条件,这种解题方法通常被称为配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.例如:若代数式M =a 2﹣2ab +2b 2﹣2b +2,利用配方法求M 的最小值:a 2﹣2ab +2b 2﹣2b +2=a 2﹣2ab +b 2+b 2﹣2b +1+1=(a ﹣b )2+(b ﹣1)2+1.∵(a ﹣b )2≥0,(b ﹣1)2≥0,∴当a =b =1时,代数式M 有最小值1.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+4a + ;(2)若代数式M =214a +2a +1,求M 的最小值; (3)已知a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c +2=0,求代数式a +b +c 的值. 【答案】(1)4;(2)M 的最小值为﹣3;(3)a +b +c=122. 【解析】【分析】(1)根据常数项等于一次项系数的一半进行配方即可;(2)先提取14,将二次项系数化为1,再配成完全平方,即可得答案; (3)将等式左边进行配方,利用偶次方的非负性可得a ,b ,c 的值,从而问题得解.【详解】(1)∵a 2+4a+4=(a+2)2故答案为:4;(2)M =21a 4+2a+1 =14(a 2+8a+16)﹣3 =14(a+4)2﹣3 ∴M 的最小值为﹣3(3)∵a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c+2=0,∴(a ﹣b )2+(b ﹣1)2+(2c ﹣1)2=0,∴a ﹣b =0,b ﹣1=0,2c ﹣1=0∴a =b =1,1c=2 , ∴a+b+c=122..【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.2.(1)填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+.【答案】(1)22a b -,33a b -,44a b -;(2)n n a b -;(3)342.【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;(2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果.试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -;3223()()a b a a b ab b -+++=44a b -;故答案为22a b -,33a b -,44a b -;(2)由(1)的规律可得:原式=n n a b -,故答案为n n a b -;(3)令98732222...222S =-+-+-+,∴987321222...2221S -=-+-+-+-=98732[2(1)](222...2221)3---+-+-+-÷=10(21)3(10241)3341-÷=-÷=,∴S=342.考点:1.平方差公式;2.规律型.3.阅读下列解题过程,再解答后面的题目.例题:已知224250x y y x ++-+=,求x y +的值. 解:由已知得22(21)(44)0x x y y -++++=即22(1)(2)0x y -++=∵2(1)0x -≥,2(2)0y +≥ ∴有1020x y -=⎧⎨+=⎩,解得12x y =⎧⎨=-⎩∴1x y +=-.题目:已知22464100x y x y +-++=,求xy 的值.【答案】-32 【解析】【分析】先将左边的式子写成两个完全平方的和的形式,根据非负数的性质求出x 、y 的值,再代入求出xy 的值.【详解】解:将22464100x y x y +-++=,化简得22694410x x y y -++++=,即()()223210x y -++=.∵()230x -≥,()2210y +≥,且它们的和为0,∴3x = ,12y, ∴12233xy ⎛⎫=⨯-=- ⎪⎝⎭. 【点睛】本题考查的是完全平方公式的应用,解题的关键是将左边的式子写成两个完全平方的和的形式.4.阅读下列因式分解的过程,再回答所提出的问题:1+x +x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )2(1+x )=(1+x )3(1)上述分解因式的方法是 ,共应用了 次.(2)若分解1+x +x (x +1)+x (x +1)2+…+ x (x +1)2004,则需应用上述方法 次,结果是 .(3)分解因式:1+x +x (x +1)+x (x +1)2+…+ x (x +1)n (n 为正整数).【答案】(1)提公因式,两次;(2)2004次,(x +1)2005;(3) (x +1)1n +【解析】【分析】(1)根据已知材料直接回答即可;(2)利用已知材料进而提取公因式(1+x ),进而得出答案;(3)利用已知材料提取公因式进而得出答案.【详解】(1)上述分解因式的方法是:提公因式法,共应用了2次.故答案为提公因式法,2次;(2)1+x+x (x+1)+x (x+1)2+…+ x (x +1)2004,=(1+x )[1+x+x (1+x )+…+ x (x +1)2003]⋯ =22003(1)(1)(1)(1)(1)x x x x x +++++个=(1+x )2005,故分解1+x+x (x+1)+x (x+1)2+…+ x (x +1)2004,,则需应用上述方法2004次,结果是:(x+1)2005.(3)分解因式:1+x+x (x+1)+x (x+1)2…+x (x+1)n (n 为正整数)的结果是:(x+1)n+1.故答案为(x+1)n+1.【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.5.阅读下列材料:利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式, 我们把这样的变形方法叫做多项式2ax bx c ++的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++=222111111()()2422x x ++-+ =21125()24x +- =115115()()2222x x +++-=(8)(3)x x ++ 根据以上材料,解答下列问题: (1)用多项式的配方法将281x x +-化成2()x m n ++的形式;(2)下面是某位同学用配方法及平方差公式把多项式2340x x --进行分解因式的解答过程:老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始出现错误的地方,并用“ ”标画出来,然后写出完整的、正确的解答过程:(3)求证:x ,y 取任何实数时,多项式222416x y x y +--+的值总为正数.【答案】(1)2(4)17x +- ;(2)(5)(8)x x +-;(3)见解析【解析】试题分析:(1)根据配方法,可得答案;(2)根据配方法,可得平方差公式,再根据平方差公式,可得答案;(3)根据交换律、结合率,可得完全平方公式,根据完全平方公式,可得答案. 试题解析:解:(1)281x x +-=2228441x x ++--=2(4)17x +-(2)2340x x --=222333()()40222x x -+-- =23169()24x -- =313313()()2222x x -+-- =(5)(8)x x +- (3)证明:222416x y x y +--+=22214411x x y y -++-++=22(1)(2)11x y -+-+∵2(1)x -≥0,2(2)y -≥0,∴22(1)(2)110x y -+-+>.∴x ,y 取任何实数时,多项式222416x y x y +--+的值总是正数.点睛:本题考查了配方法,利用完全平方公式:a 2±2ab +b 2=(a ±b )2配方是解题关键.6.探究阅读材料:“若x 满足()()806030x x --=,求()()228060x x -+-的值” 解:设()80x a -=,()60x b -=,则()()806030x x ab --==,()()806020a b x x +=-+-=,所以()()22228060x x a b -+-=+()22220230340a b ab =+-=-⨯=.解决问题:(1)若x 满足()()451520x x --=-,求()()224515x x -+-的值. (2)若x 满足()()22202020184040x x -+-=,求()()20202018x x --的值. (3)如图,正方形ABCD 的边长为x ,20AE =,30CG =,长方形EFGD 的面积是700,四边形NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).【答案】(1)940;(2)2018;(3)2900【解析】【分析】(1)根据材料提供的方法进探究,设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-,据此即可求出()()224515x x -+-的值; (2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=,则可求出()()20202018x x --的值; (3)根据题意知S 四EFGD =(x-20)(x-30)=700,知S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700,设x-20=a ,30-x=b ,则有-ab=700,据此即可求出阴影部分的面积.【详解】解:(1)设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-∴()()()()2222224515=230220940x x a b a b ab -+-+=+-=-⨯-=;(2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=∴()()20202018x x --=-()()20202018x x --()()222+-44040-201822m n m n mn +-=== ∴()()20202018x x --=-mn=2018;(3)根据题意知S 四EFGD =(x-20)(x-30)=700,S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700设x-20=a ,30-x=b ,∴-ab=700,∴()()()()222222302021027001500x x a b a b ab -+-=+=+-=-⨯-=∴S 阴影=1500+700+700=2900故答案为:(1)940;(2)2018;(3)2900【点睛】本题考查完全平方公式,换元法等知识,解题的关键是学会利用换元法解决问题,熟练掌握完全平方公式.7.对于任意两个数a 、b 的大小比较,有下面的方法:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.请根据以上材料完成下面的题目:(1)已知:228A x y y =+,8B xy =,且A B >,试判断y 的符号;(2)已知:a 、b 、c 为三角形的三边,比较222a c b +-和2ac 的大小.【答案】(1)y >0;(2)222a c b +-<2ac【解析】【分析】(1)根据题意得到22880x y y xy +->,因式分解得到22(2)0y x ->,进而得到y 的符号即可;(2)将222a c b +-和2ac 作差,结合已知及三角形的两边之和大于第三边可求.【详解】解:(1)因为A >B ,所以A-B >0,即22880x y y xy +->,∴222(44)2(2)0y x x y x +-=->,因为2(2)0x -≥,∴y >0(2)因为a 2−b 2+c 2−2ac =a 2+c 2−2ac−b 2=(a−c )2−b 2=(a−c−b )(a−c +b ), ∵a +b >c ,a <b +c ,所以(a−c−b )(a−c +b )<0,所以a 2−b 2+c 2−2ac 的符号为负. ∴222a c b +-<2ac【点睛】本题考查了作差法比较两个式子的大小以及因式分解,解题的关键是理解题中的“求差法”比较两个数的大小,并熟练掌握因式分解的方法.8.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b )2=a 2+2ab+b 2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式: .(2)利用(1)中得到的结论,解决下面的问题:若a+b+c =10,ab+ac+bc =35,则a 2+b 2+c 2= .(3)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片拼出一个面积为(2a+b )(a+2b )长方形,则x+y+z = .(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式: .【答案】(1)(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ;(2)30;(3)9;(4)x 3﹣x =(x+1)(x ﹣1)x【解析】【分析】(1)依据正方形的面积=(a+b+c )2;正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc ,可得等式;(2)依据a 2+b 2+c 2=(a+b+c )2﹣2ab ﹣2ac ﹣2bc ,进行计算即可;(3)依据所拼图形的面积为:xa 2+yb 2+zab ,而(2a+b )(a+2b )=2a 2+4ab+ab+2b 2=2a 2+5b 2+2ab ,即可得到x ,y ,z 的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴225xyz=⎧⎪=⎨⎪=⎩,∴x+y+z=9,故答案为:9;(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.9.材料阅读:若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“完美数”.例如:因为13=32+22,所以13是“完美数”;再如:因为a2+2ab+2b2=(a+b)2+b2(a、b是正整数),所以a2+2ab+2b2也是“完美数”.(1)请你写出一个大于20小于30的“完美数”,并判断53是否为“完美数”;(2)试判断(x2+9y2)·(4y2+x2)(x、y是正整数)是否为“完美数”,并说明理由.【答案】(1)25,53是完美数; (2)是,理由见解析.【解析】【分析】(1)根据“完美数”的定义判断即可;(2)根据多项式的乘法法则计算出结果后,根据“完美数”的定义判断即可.【详解】(1)25=4²+3²,∵53=49+4=7²+2²,∴53是“完美数”;(2)(x²+9y²)⋅(4y²+x²)是“完美数”,(x²+9y²)⋅(4y²+x²)=4x 2y²+364y +4x +9x²y²=13x²y²+364y +4x =(6y²+x²) ²+x²y²,∴(x²+9y²)⋅(4y²+x²)是“完美数”.【点睛】本题考查了因式分解的应用,正确的理解新概念“完美数”是解题的关键.10.阅读材料:要把多项式am+an+bm+bn 因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(am +an )+(bm +bn )=a (m +n )+b (m +n )=(a +b )(m +n ),这种因式分解的方法叫做分组分解法.(1)请用上述方法因式分解:x 2-y 2+x-y(2)已知四个实数a 、b 、c 、d 同时满足a 2+ac=12k ,b 2+bc=12k .c 2+ac=24k ,d 2+ad=24k ,且a≠b ,c≠d ,k≠0①求a+b+c 的值;②请用含a 的代数式分别表示b 、c 、d【答案】(1)(x −y )(x +y +1);(2)①0a b c ++=;②3b a =-,2c a =,3d a =-【解析】【分析】(1)将x 2 - y 2分为一组,x-y 分为一组,前一组利用平方差公式化为(x+y)(x-y),再提取公因式即可求解.(2)①已知22a ac b bc +=+=12k ,可得220a b ac bc -+-=,将等号左边参照(1)因式分解,即可求解.②由a 2+ac=12k ,c 2+ac=24k 可得2(a 2+ac)= c 2+ac ,即可得出c=2a ,同理得出3b a =-,3d a =-【详解】(1)x 2-y 2+x-y = (x 2 -y 2)+(x-y)=(x+y)(x-y)+(x-y)=(x-y)(x+y+1)故答案为:(x-y)(x+y+1)(2)①22a ac b bc +=+=12k220a b ac bc -+-=()()0a b a b c -++=∵a b∴0a b c ++=②∵a 2+ac=12k ,c 2+ac=24k2(a 2+ac)= c 2+ac∴2a 2+ac- c 2=0得(2a-c)(a+c)=0∵a 2+ac=12k ≠0即a(a+c)≠0∴c=2a ,a 2=4k∵b 2+bc=12k∴b 2+2ba=3a 2则(a −b )(3a +b )=0∵a ≠b∴3b a =-同理可得d 2+ad=24k ,c 2+ac=24kd 2+ad=c 2+ac(d −c )(a +d +c )=0∵c d ≠∴0a d c ++=∴3d a =-故答案为:0a b c ++=;3b a =-,2c a =,3d a =-【点睛】本题考查了用提取公因式法、运用公式法、分组分解法进行因式分解.。
整式的乘法与因式分解(培优篇)(Word版 含解析)
(2)利用配方法,将S配成完美数,可求k的值
(3)根据完全平方公式,可证明mn是“完美数”;
【详解】
(1)
(2)
(3) ,则
即mn也是完美数.
【点睛】
本题考查了因式分解的应用,完全平方公式的运用,阅读理解题目表述的意思是本题的关键.
4.阅读下列解题过程,再解答后面的题目.
例题:已知 ,求 的值.
解:由已知得
即
∵ ,
∴有 ,解得
∴ .
题目:已知 ,求 的值.
【答案】-
【解析】
【分析】
先将左边的式子写成两个完全平方的和的形式,根据非负数的性质求出x、y的值,再代入求出xy的值.
【详解】
解:将 ,
化简得 ,
即 .
∵ , ,且它们的和为0,
∴ , ,
∴ .
【点睛】
本题考查的是完全平方公式的应用,解题的关键是将左边的式子写成两个完全平方的和的形式.
;
.
请你仿照以上方法,探索解决下列问题:
(1)分解因式: ;
(2)分解因式: .
【答案】(1)(x﹣3)(x﹣4);(2)(x﹣1)(3x乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案;
(2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果.
【详解】
(1)y2﹣7y+12=(x﹣3)(x﹣4);
(2)3x2﹣2x﹣1=(x﹣1)(3x+1).
【点睛】
此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.
3.若一个整数能表示成 ( , 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为 .再如, ( , 是整数),所以 也是“完美数”.
北京第二中学分校八年级数学上册第四单元《整式的乘法与因式分解》测试卷(答案解析)
一、选择题1.下列计算正确的是( ) A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷=2.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( ) A .301050B .103020C .305010D .5010303.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+-B .()2211a a a a --=--C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+ ⎪⎝⎭4.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0 B .2- C .0或2- D .以上答案都不对5.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .76.在下列的计算中正确的是( ) A .23a ab a b ⋅=; B .()()2224a a a +-=+; C .235x y xy +=;D .()22369x x x -=++7.下列运算正确的是( ). A .()2326ab a b = B .()325a a =C .236a a a ⋅=D .347a a a +=8.下列计算一定正确的是( ) A .235a b ab += B .()235610a b a b -=C .623a a a ÷=D .()222a b a b +=+9.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n -B .6323m n -C .383m n -D .6169m n -10.计算()()202020213232-⨯的结果是( )A .32-B .23-C .23D .3211.下列各式运算正确的是( ) A .235a a a +=B .1025a a a ÷=C .()32626b b = D .2421a a a-⋅=12.下列运算中,正确的是( ) A .()23294x y x y = B .3362x x x += C .34x x x ⋅=D .22(3)(3)3x y x y x y +-=-二、填空题13.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.14.若()()253x x x bx c +-=++,则b+c=______.15.分解因式:32m n m -=________.16.若()()21x a x -+的积中不含x 的一次项,则a 的值为______. 17.因式分解:316m m -=________.18.若210a a +-=,则43222016a a a a +--+的值为______.19.若方程22(1)8m x mx x --+=是关于x 的一元一次方程,则代数式2008|1|m m --的值为________.20.在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图: (a +b )0=1 (a +b )1=a +b (a +b )2=a 2+2ab +b 2 (a +b )3=a 3+3a 2b +3ab 2+b 3这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a +b )5=__________,并说出第7排的第三个数是___.三、解答题21.先化简,再求值:2(21)(21)(23)+---a a a ,其中112a =-. 22.小王购买了一套一居室,他准备将房子的地面全部铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m ,n 的代数式表示地面的总面积S ;(2)已知 1.5n =,且客厅面积是卫生间面积的6倍与厨房面积的和,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元? 23.计算(1)()()()7332233532x x x x x -++⋅(2)()()()()22223x y x y x x y x y ++--++24.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于______; (2)请用两种不同的方法求图2中阴影部分的面积. ①________________; ②__________________.(3)观察图2你能写出2()m n +,2()m n -,mn 三个代数式之间的等量_____________.(4)运用你所得到的公式,计算若知8,7a b ab +==,求-a b 和22a b -的值.(5)用完全平方公式和非负数的性质求代数式222431832x x y y ++-+的最小值.25.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).26.在通常的日历牌上,可以看到一些数所满足的规律,表①是2020年12月份的日历牌.星期一 星期二 星期三 星期四 星期五 星期六 星期日1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728 293031(1)在表①中,我们选择用如表②那样22⨯的正方形框任意圈出22⨯个数,将它们先交叉相乘,再相减.如:用正方形框圈出3,4,10,11四个数,然后将它们交叉相乘,再相减,即3114107⨯-⨯=-或4103117⨯-⨯=.请你用表②的正方形框任意圈出22⨯个数,将它们先交叉相乘,再相减.列出算式并算出结果(选择其中一个算式即可). (2)在用表②的正方形框任意圈出的22⨯个数中,将它们先交叉相乘,再相减.若设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字,列出算式并算出结果(选择其中一个算式即可).(3)若选择用表③那样33⨯的正方形方框任意圈出33⨯个数,将正方形方框四角....位置上的4个数先交叉相乘,再相减,你发现了什么.选择一种情况说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可. 【详解】解:A 、a 2∙a 4=a 6,故选项A 不合题意; B 、(a 2)3=a 6,故选项不B 符合题意; C 、(ab 2)3=a 3b 6,故选项C 不符合题意; D 、a 6÷a 2=a 4,故选项D 符合题意. 故选:D . 【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.2.B解析:B 【分析】对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码. 【详解】x 3−xy 2=x (x 2−y 2)=x (x +y )(x−y ), 当x =30,y =20时,x =30,x +y =50,x−y =10, 组成密码的数字应包括30,50,10, 所以组成的密码不可能是103020. 故选:B . 【点睛】本题主要考查提公因式法分解因式、平方差公式分解因式,立意新颖,熟记公式结构是解题的关键.3.C解析:C 【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断.【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意;B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意;C 、()()22492323a b a b a b -+=-++,故该项符合题意;D 、1212x x x ⎛⎫+=+ ⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C . 【点睛】此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.4.A解析:A 【分析】由题意,当0x y +=时,代数式取到最小值,则有x y =-,根据绝对值的意义进行化简,即可得到答案. 【详解】 解:根据题意, ∵2()0x y +≥,∴当0x y +=时,代数式2()2020x y ++的值取到最小值2020, ∴x y =-, ∴x y =-, ∴0x y --=, ∴22,x y x y ==, ∴222||2||0x y x y -+-=; 故选:A . 【点睛】本题考查了乘方的定义,绝对值的意义,以及求代数式的值,解题的关键是掌握运算法则,正确得到0x y +=和x y =-.5.D解析:D 【分析】由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可. 【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等, 则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2, ∴m +n =5+2=7, 故选:D . 【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键.6.A解析:A 【分析】根据单项式的乘法,平方差公式,完全平方公式,对各选项计算后利用排除法求解. 【详解】A 、a 2•ab =a 3b ,正确;B 、应为(a +2)(a−2)=a 2−4,故本选项错误;C 、2x 与3y 不是同类项不能合并;D 、应为(x−3)2=x 2−6x +9,故本选项错误. 故选:A . 【点睛】本题主要考查平方差公式,单项式的乘法法则,完全平方公式,熟练掌握运算法则和公式是解题的关键,合并同类项时,不是同类项的不能合并.7.A解析:A 【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方的法则进行逐一计算即可. 【详解】A 选项:()2326aba b =,正确,符合题意;B 选项:()326a a =,错误,不符合题意;C 选项:235a a a ⋅=,错误,不符合题意;D 选项:347a a a +≠,错误,不符合题意. 故选:A . 【点睛】本题主要考查了同底数幂的乘法、幂的乘方与积的乘方,熟练掌握性质和法则是解题的关键.8.B解析:B 【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可.A 、2a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、(-a 3b 5)2=a 6b 10,故选项B 符合题意;C 、a 6÷a 2=a 4,故选项C 不符合题意;D 、(a+b )2=a 2+2ab+b 2,故选项D 不合题意. 故选B . 【点睛】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.9.B解析:B 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可. 【详解】 解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n , ∴它们的积为:3163166323?3m n m n m n -=-, 故选:B . 【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.10.D解析:D 【分析】利用积的乘方的逆运算解答. 【详解】()()202020213232-⨯=20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D .此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.11.D解析:D 【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解. 【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误; B 、1028a a a ÷=,故本选项错误; C 、()32628b b =,故本选项错误;D 、24221a aa a--⋅==,正确. 故选:D . 【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.12.C解析:C 【分析】根据积的乘方与幂的乘方运算法则,合并同类项法则,同底数幂的乘法以及平方差公式分别计算各项,然后再进行判断即可. 【详解】 解:A. ()23264x y x y =,所以原选项计算错误,故不符合题意;B.3332x x x +=,所以原选项计算错误,故不符合题意;C.34x x x ⋅=,计算正确,符合题意;D.22(3)(3)9x y x y x y +-=-,所以原选项计算错误,故不符合题意. 故选:C . 【点睛】此题主要考查了乘方与幂的乘方运算法则,合并同类项法则,同底数幂的乘法以及平方差公式,要熟练掌握.二、填空题13.30【分析】直接利用正方形的性质结合三角形面积求法利用平方差公式即可得出答案【详解】解:设大正方形的边长为a 小正方形的边长为b 故阴影部分的面积是:AE•BC+AE•BD =AE (BC+BD )=(AB ﹣【分析】直接利用正方形的性质结合三角形面积求法,利用平方差公式即可得出答案. 【详解】解:设大正方形的边长为a ,小正方形的边长为b , 故阴影部分的面积是:12AE •BC +12AE •BD =12AE (BC +BD ) =12(AB ﹣BE )(BC +BD ) =12(a ﹣b )(a +b ) =12(a 2﹣b 2) =12×60 =30. 故答案为:30. 【点睛】本题主要考查平方差公式与几何图形和三角形的面积公式,用代数式表示阴影部分的面积,是解题的关键.14.-13【分析】先利用多项式的乘法展开再根据对应项系数相等确定出bc 的值最后计算出结果即可【详解】解:∵∴∴b=2c=-15∴b+c=2-15=-13故答案为:-13【点睛】此题主要考查了整式的乘法熟解析:-13 【分析】先利用多项式的乘法展开,再根据对应项系数相等确定出b ,c 的值,最后计算出结果即可. 【详解】解:∵()()253x x x bx c +-=++∴22+215x x x bx c -=++ ∴b=2,c=-15 ∴b+c=2-15=-13 故答案为:-13. 【点睛】此题主要考查了整式的乘法,熟练掌握运算法则是解答此题的关键.15.【分析】原式提取公因式再利用平方差公式分解即可【详解】解:原式==故答案为:【点睛】此题考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键 解析:(1)(1)m mn mn -+【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=3222(1)m n m m m n -=-,=(1)(1)m mn mn -+故答案为:(1)(1)m mn mn -+.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 16.2【分析】先运用多项式的乘法法则计算再合并同类项因积中不含x 的一次项所以让一次项的系数等于0得a 的等式再求解【详解】解:(2x-a )(x+1)=2x2+(2-a )x-a ∵积中不含x 的一次项∴2-a=解析:2【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x 的一次项,所以让一次项的系数等于0,得a 的等式,再求解.【详解】解:(2x-a )(x+1)=2x 2+(2-a )x-a ,∵积中不含x 的一次项,∴2-a=0,∴a=2,故答案为:2.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.17.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解解析:m (m+4)(m-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:316m m -=m (m 2-16)=m (m+4)(m-4),故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.18.【分析】原式变形为由已知得到整体代入即可求解【详解】已知得:故答案为:【点睛】本题考查了代数式求值熟练掌握整体代入法是解题的关键 解析:2015【分析】原式变形为()22222016aa a a a +--+,由已知得到21a a +=,整体代入即可求解. 【详解】已知得:21a a +=, 43222016a a a a +--+()22222016a a a a a =+--+2222016a a a =--+ ()22016a a =-++ 12016=-+2015=.故答案为:2015.【点睛】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.19.1【分析】根据一元一次方程的定义可求出m 的值在将m 代入代数式计算即可【详解】原方程可整理为根据题意可知且所以所以故答案为:1【点睛】本题考查一元一次方程的定义以及代数式求值利用一元一次方程的定义求出 解析:1【分析】根据一元一次方程的定义,可求出m 的值.在将m 代入代数式计算即可.【详解】原方程可整理为22(1)(1)80m x m x --++=.根据题意可知210m -=且10m +≠,所以1m =. 所以2008200811111m m --=--=.故答案为:1.【点睛】本题考查一元一次方程的定义以及代数式求值.利用一元一次方程的定义求出m 的值是解答本题的关键.20.a5+5a4b+10a3b2+10a2b3+5ab4+b515【分析】多项式乘方运算安全平方公式安全立方公式发现规律数字规律归纳即可【详解】解:(a+b )5=a5+5a4b+10a3b2+10a2b解析:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 15多项式乘方运算,安全平方公式,安全立方公式,发现规律,数字规律归纳即可,【详解】解:(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;第7排的第三个数是15,故答案为:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;15,【点睛】本题考查完全平方公式、完全立方公式,规律型:数字的变化类,掌握多项式乘法法则,和完全平方公式,观察式子的特征是解题关键,三、解答题21.12a -10,-11【分析】先按乘法公式进行化简,再代入求值即可.【详解】解:原式=2241(4129)---+a a a=22414129--+-a a a=12a -10 当112a =-时, 原式=112()1012⨯-- =110--=11-.【点睛】 本题考查了运用乘法公式进行化简整式并求值,解题关键是熟练运用乘法公式进行化简,注意符号的变化.22.(1)S =6m +2n +18;(2)4500元.【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;(2)根据题意求出m 的值,把m ,n 的值代入计算即可.【详解】解:(1)S=2n+6m+3×4+2×3=6m+2n+18.(2)n=1.5时2n=3根据题意,得6m=8×3=24,m=4,∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用4500元.本题考查了列代数式,准确表示出各部分矩形的长和宽是解题的关键.23.(1)96322x x x -++(2)234y xy --【分析】(1)先计算积的乘方、同底数幂的乘法,再合并同类项即可得;(2)根据整式的混合运算顺序和运算法则计算可得.【详解】解:(1)()()()7332233532x x x x x -++⋅7963225272=x x x x x -⋅++96392272=5x x x x -++96322=x x x -++(2)()()()()22223x y x y x x y x y ++--++ ()()222224262=x y x xy x xy y -++-++222224262=x y x xy x xy y -++--+234=y xy --【点睛】本题主要考查整式的运算,解题的关键是熟练掌握整式混合运算顺序和运算法则. 24.(1)m-n ;(2)①(m-n )2;②(m+n )2-4mn ;(3)(m-n )2=(m+n )2-4mn ;(4)6a b -=±,22a b -=±48;(5)3【分析】(1)根据阴影部分正方形的边长等于小长方形的长减去宽解答;(2)从整体与局部两个思路考虑解答;(3)根据大正方形的面积减去阴影部分小正方形的面积等于四个长方形的面积解答; (4)根据()()224a b a b ab -=+-,可得a-b 的值,再根据22a b -=()()a b a b +-求出22a b -的值;(5)利用完全平方公式将原式变形为()()2221333x y ++-+,再根据非负数的性质可求出最小值为3.【详解】解:(1)由图可知,阴影部分小正方形的边长为:m-n ;(2)根据正方形的面积公式,阴影部分的面积为(m-n )2,还可以表示为(m+n )2-4mn ;(3)根据阴影部分的面积相等,(m-n )2=(m+n )2-4mn ;(4)∵8,7a b ab +==,∴()()224a b a b ab -=+-=2847-⨯=36, ∴6a b -=±,若6a b -=,则22a b -=()()a b a b +-=86⨯=48,若6a b -=-,则22a b -=()()a b a b +-=()86⨯-=-48;(5)222431832x x y y ++-+=22242318273x x y y +++-++=()()2221333x y ++-+∵()2210x +≥,()2330y -≥, ∴()()2221333x y ++-+≥3,即最小值为3. 【点睛】本题考查了完全平方公式的几何背景,准确识图,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.25.()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.26.(1)91710167⨯-⨯=-或10169177⨯-⨯=,(2)+1n ,n+7,n+8,()()()+178n n n n +-+,7,或()()()8+17n n n n +-+,-7;(3)1×17-3×15=-28或3×15-1×17=28,发现:它们最后得结果是28或-28,n ,+2n ,n+14,n+16,()()()+21416n n n n +-+,28,()()()16+214n n n n +-+,-28,它们的结果与n 的值无关,最终结果保持不变,值是28或-28.【分析】(1)先画出选出的各数,再计算即可;(2)设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+1n+7n+8n ,,,列出算式()()()+178n n n n +-+或()()()8+17n n n n +-+,求出即可;(3)先圈出各个数,列出算式,设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+2n+14n+16n ,,,列出算式,求出即可.【详解】(1)圈出的数如图,9,10;16,17,91710161531607⨯-⨯=-=-或10169171601537⨯-⨯=-=,(2)设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为,+1n+7n+8n ,,,()()()+178n n n n +-+,=22878n n n n ++--,=7,或()()()8+17n n n n +-+,=22887n n n n +---,=-7;(3)圈出的数为1,2,3;8,9,10;15,16,17四角数位1,3,15,171×17-3×15=17-45=-28或3×15-1×17=35-17=28,发现:它们最后得结果是28或-28,理由是:设设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+2n+14n+16n ,,,()()()+21416n n n n +-+,=22162816n n n n ++--,=28,()()()16+214n n n n +-+,=22161628n n n n +---,=-28.结论:它们的结果与n 的值无关,最终结果保持不变,值是28或-28.【点睛】本题考查整式的混合运算的应用,掌握整式的混合运算法则,能理解题意,会按要求列式是解题关键,培养阅读能力和计算能力.。
八年级数学人教版上册第14章整式的乘除与因式分解14.3.2整式的除法(图文详解)
八年级上册第14章整式的乘除与因式分解
1.(綦江·中考)2a2÷a的结果是( )
A.2 B.2a
C.2a3
D.2a2
【解析】选B.利用单项式除以单项式的运算法则易得 选项B正确.
八年级上册第14章整式的乘除与因式分解
2.(无锡·中考)下列正确的是( )
A.(a3)2=a5 C.(a3-a)÷a=a2
B.a3+a2=a5 D.a3÷a3=1
【解析】选D.利用单项式除以单项式的运算法则易得选
项D正确.
八年级上册第14章整式的乘除与因式分解
3.(4x2y3)2 ÷ (-2xy2) 【解析】原式=16x4y6÷(-2xy2)
八年级上册第14章整式的乘除与因式分解
【例】计算:
(1)28x4y2÷7x3y (2)-15a5b3c÷5a4b
【解析】原式=4xy
原式=-3ab2c
(3)(2x2y)3×(-7xy2)÷14x4y3
原式=8x6y3×(-7xy2)÷14x4y3
=-56x7y5÷14x4y3
=-4x3y2
八年级上册第14章整式的乘除与因式分解
的值. 【解析】原式
(9x2 4 y2 5x2 2xy 10xy 4 y2 ) 8x (4x2 8xy) 8x 1xy
2 Q x 2 y 2012 1 x y 1006
2 原式 1006
八年级上册第14章整式的乘除与因式分解
通过本课时的学习,需要我们掌握: 1.单项式相除 (1)系数相除; (2)同底数幂相除; (3)只在被除式里的幂不变. 2.多项式除以单项式
北京丰台区第二中学八年级数学上册第十四章《整式的乘法与因式分解》经典习题(含解析)
一、选择题1.如下列试题,嘉淇的得分是( )姓名:嘉淇 得分:将下列各式分解因式(每题20分,共计100分)①242(12)xy xyz xy z -=-;②2363(12)x x x x --=--;③221(2)a +a a a +=+;④2224(2)m n m n -=-;⑤22222()()x y x y x y -+=-+-A .40分B .60分C .80分D .100分 2.已知: 13m m +=, 则: 331m m +的值为( ) A .15 B .18C .21D .9 3.已知25y x -=,那么()2236x y x y --+的值为( )A .10B .40C .80D .2104.下列计算中能用平方差公式的是( ).A .()()a b a b -+-B .1133x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭C .22x xD .()()21x x -+5.下列分解因式正确的是( ) A .xy ﹣2y 2=x (y ﹣2x ) B .m 3n ﹣mn =mn (m 2﹣1)C .4x 2﹣24x +36=(2x ﹣6)2D .4x 2﹣9y 2=(2x ﹣3y )(2x +3y ) 6.如图,从边长为21a +的正方形纸片中剪去一个边长为2a +的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .233a -B .233a +C .221a a -+D .2189a a ++ 7.下列运算正确是( ) A .b 5÷b 3=b 2B .(b 5)3=b 8C .b 3b 4=b 12D .a (a ﹣2b )=a 2+2ab 8.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6-B .0C .12D .18 9.当2x =时,代数式31ax bx ++的值为6,则2x =-时,31ax bx ++的值为( ) A .6-B .5-C .4D .4- 10.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( )A .6163m n -B .6323m n -C .383m n -D .6169m n -11.下列计算正确的是( )A .(a 2)3=a 5B .(2a 2)2=2a 4C .a 3•a 4=a 7D .a 4÷a =a 4 12.下列计算正确的是( ) A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=- 13.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .3214.下列各式运算正确的是( ) A .235a a a += B .1025a a a ÷= C .()32626b b = D .2421a a a -⋅= 15.若|a |=13,b|=7,且a +b>0,则a -b 的值是( ).A .6或20B .20 或-20C .6或-6D .-6或20 二、填空题 16.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.17.已知25m =,2245m n +=,则2n =_______.18.我们知道,同底数幂的乘法法则为m n m n a a a +⋅=(其中0a ≠,m 、n 为正整数),类似地我们规定关于任意正整数m 、n 的一种新运算:()()()h m n h m h n +=⋅;比如(2)3h =,则(4)(22)339h h =+=⨯=,若(2)(0)h k k =≠,那么(8)h =_______,(2)(2020)h n h ⋅=_______.19.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式42()5f x mx nx x =+++,当2x =时,多项式的值为(2)1647f m n =++,若(2)10f =,则()2f -的值为_________.20.观察下列各式: 2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-; ()324(1)11x xx x x -+++=-; …… (1)()432(1)1x x x x x -++++=___;(2)根据规律可得:()1(1)1n x x x --+++=_____(其中n 为正整数);(3)计算:()5049482(31)333331-++++++;21.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.22.计算(7+1)(7﹣1)的结果等于_____.23.计算:32(2)a b -=________.24.若a - b = 1, ab = 2 ,则a + b =______.25.若210a a +-=,则43222016a a a a +--+的值为______.26.分解因式:2a 2﹣8=______.三、解答题27.先化简,再求值:2()(2)(2)()x y x y y x y ⎡⎤---+÷-⎣⎦,其中1x =-,2y =. 28.小王购买了一套一居室,他准备将房子的地面全部铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m ,n 的代数式表示地面的总面积S ;(2)已知 1.5n =,且客厅面积是卫生间面积的6倍与厨房面积的和,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?29.计算:(1)()2323298---(2)()()2215105x y xy xy -÷-(3)()()()2321x x x -+-- 30.观察下列两个等式:22111121213,55322⨯=+-⨯=+-,给出定义如下:我们称使等式23ab a b =+-成立的一对有理数a ,b 为“海山有理数对”,记为(),a b ,如:()112,1,5,2⎛⎫ ⎪⎝⎭,都是“海山有理数对”.(1)数对()()2,1,1,1--中是“海山有理数对”的是_____________; (2)若()3n ,是“海山有理数对”,则n =_____________; (3)若()m,2是“海山有理数对”,求()223221m m m ⎡⎤---⎣⎦的值.。
北京丰台区第二中学数学一元一次方程(基础篇)(Word版 含解析)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。
(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。
(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京丰台区第二中学数学整式的乘法与因式分解(篇)(Word 版含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.下列四个多项式,可能是2x 2+mx -3 (m 是整数)的因式的是A .x -2B .2x +3C .x +4D .2x 2-1【答案】B【解析】【分析】将原式利用十字相乘分解因式即可得到答案.【详解】因为m 是整数,∴将2x 2+mx -3分解因式:2x 2+mx -3=(x-1)(2x+3)或2x 2+mx -3=(x+1)(2x-3),故选:B.【点睛】此题考查因式分解,根据二次项和常数项将多项式分解因式是解题的关键.3.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.详解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx -12∴p+q=m ,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m 的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.4.在2014,2015,2016,2017这四个数中,不能表示为两个整数平方差的数是( ).A .2014B .2015C .2016D .2017 【答案】A【解析】由于22()()a b a b a b -=+-,所以22201510081007=-;222016505503=-;22201710091008=-;因+a b 与-a b 的奇偶性相同,21007⨯一奇一偶,故2014不能表示为两个整数的平方差. 故选A.5.下列各式不能用公式法分解因式的是( )A .92-xB .2269a ab b -+-C .22x y --D .21x -【答案】C【解析】【分析】根据公式法有平方差公式、完全平方公式,可得答案.【详解】A 、x 2-9,可用平方差公式,故A 能用公式法分解因式;B 、-a 2+6ab-9 b 2能用完全平方公式,故B 能用公式法分解因式;C 、-x 2-y 2不能用平方差公式分解因式,故C 正确;D 、x 2-1可用平方差公式,故D 能用公式法分解因式;故选C .【点睛】本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.6.已知4y 2+my +9是完全平方式,则m 为( )A .6B .±6C .±12D .12【答案】C【解析】【分析】原式利用完全平方公式的结构特征求出m 的值即可.【详解】∵4y 2+my +9是完全平方式,∴m =±2×2×3=±12.故选:C .【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.7.下列运算正确的是( )A .23a a a ⋅=B .623a a a ÷=C .2222a a -=D .()22436a a =【答案】A【解析】【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【详解】解:2123•a a a a +==,A 准确; 62624a a a a -÷==,B 错误;2222a a a -=,C 错误;()22439a a =,D 错误;故选:A .【点睛】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.8.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误;B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.9.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【答案】D【解析】【分析】 根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b <0,∴b <0, ∴a 2+2ac+c 2=4b 2,即22224a ac c b ++= ∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥, 故选:D.【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.10.下列各运算中,计算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a ﹣b )2=a 2﹣ab+b 2D .2a•3a=6a 2【答案】D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.【答案】27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.12.已知25,23a b==,求2a b +的值为________.【答案】15.【解析】【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】解:∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.13.5(m -n)4-(n-m)5可以写成________与________的乘积.【答案】 (m-n)4, (5+m-n )【解析】把多项式5(m -n)4-(n-m)5运用提取公因式法因式分解即可得5(m -n)4-(n-m)5=(m -n)4(5+m-n ).故答案为:(m-n)4,(5+m-n ).14.计算:532862a a a -÷=()___________.【答案】343a a -【解析】根据整式的除法—多项式除以单项式,可知:532862a a a -÷=()8a 5÷2a 2-6a 3÷2a 2=343a a -.故答案为:343a a -.15.若a ,b 互为相反数,则a 2﹣b 2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=0,∴a 2﹣b 2=(a+b )(a ﹣b )=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.16.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6【解析】根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.17.分解因式:2x 2﹣8=_____________【答案】2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.18.若3a b +=,则226a b b -+的值为__________.【答案】9【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可. 详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.19.已知16x x +=,则221x x +=______ 【答案】34【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.20.分解因式:32231827m m n mn -+=____________________【答案】23(3)m m n -【解析】【分析】先提公因式3m ,然后再利用完全平方公式进行分解即可得.【详解】3322m 18m n 27mn -+=3m(m 2-6mn+9n 2)=3m(m-3n)2,故答案为:3m(m-3n)2.【点睛】本题考查了提公因式法与公式法的综合运用,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.。