最新整式的乘除计算题专项练习

合集下载

整式乘除专项训练(二)(北师版)(含答案)

整式乘除专项训练(二)(北师版)(含答案)

整式乘除专项训练(二)(北师版)一、单选题(共10道,每道10分)
1.计算的结果是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:整式的乘除
2.计算的结果是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:整式的乘除
3.计算的结果是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:整式的乘除
4.计算的结果是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:整式的乘除
5.计算的结果是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:整式的乘除
6.计算的结果是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:整式的乘除
7.计算的结果是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:整式的乘除
8.计算的结果是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:整式的乘除
9.已知一个多项式与单项式的积为,则这个多项式为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:整式的乘除
10.当,时,代数式的值为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:化简求值。

整式的乘除(习题及答案)

整式的乘除(习题及答案)

整式的乘除(习题及答案)知识像烛光,能照亮一个人,也能照亮无数的人。

——XXX整式的乘除(题)例1:计算(2x^3y)^2·(-2y)+(-8x^8y^3+4x^2)/(-2x^2)。

操作步骤】1)观察结构划部分:(2x^3y)^2·(-2y)+(-8x^8y^3+4x^2)/(-2x^2)2)有序操作依法则:辨识运算类型,依据对应的法则运算。

第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算。

3)每步推进一点点。

过程书写】解:原式=4x^6y^2·(-2y)+(4x^6y^3-2)/(-2x^2)8x^6y^3+4x^6y^3-24x^6y^3-2巩固练1.①-5a^3b^2·(-ab^2)=5a^4b^4;②(-m)^3·(-2m^2n^2)=2m^4n^2;③(-2x^2)^3·(-3x^3y)^2=36x^7y^6;④3b^3·(-2ac)·(-2ab)^2=12a^2b^7c。

2.①3xy^2·(2xz^2+3x^2y)=6x^2y^3z^2+9x^3y^3;②-4xy·(y^3-2)/2=-2xy·(y^3-2);③(ab^2c-3a^2b)·abc/3=ab^3c^2-3a^3b^2c;④(2ab^2)^2·(2a^2-b)=8a^5b^4-8a^3b^2;⑤-a·(3a^3+2a^2-3a-1)=-3a^4-2a^3+3a^2+a。

3.①(x+3y)(x-3y)=x^2-9y^2;②(a-2b)(a+2b+1)=a^2-4b^2-1;③(-2m-3n)(2m-4n)=-4m^2+2mn+12n^2;④(x+2y)^2=x^2+4xy+4y^2;⑤(a-b+c)(a+b+c)=a^2-b^2+c^2.4.若长方形的长为(4a^2-2a+1),宽为(2a+1),则这个长方形的面积为8a^3-4a^2+2a-1.5.若圆形的半径为(2a+1),则这个圆形的面积为4πa^2+4πa+π。

整式的乘除计算题专项练习

整式的乘除计算题专项练习

整式的乘除计算题专项练习
1、化简4(a+b)+2(a+b)-5(a+b)得到a+6b。

2、展开(3mn+1)(3mn-1)-8mn得到9m^2n^2-1-8mn。

3、化简[(xy-2)(xy+2)-2xy+4]÷(xy),得到xy-2.
4、将a代入(2a-1)^2+(2a-1)(a+4)中,得到-15.
5、展开(x+2)(x-3)-(x+1)(x-2)得到x-5.
6、化简(-2xy+22)/(4-22/xy),得到(11xy-1)/2.
7、化简(9abc)/(2ab)·(-3abc),得到-27c。

8、将表达式展开得到-x^2-y^2+xy+xxxxxxx/4.
9、将分子展开得到-5xy+4y^2+1/3x。

10、将(2a+b)^4展开,得到
16a^4+32a^3b+24a^2b^2+8ab^3+b^4,再除以2a+b得到
8a^3+16a^2b+12ab^2+4b^3.
11、无法确定题目意思,无法改写。

12、将分子展开得到x^2+3x+2,再除以-x得到-(x+1)-2/x。

13、将124×122展开得到,再除以2得到7524.
14、将表达式展开得到16,再除以-4x得到-4.
15、将表达式化简得到-47x^2y,再代入x=2,y=1得到-94.
16、无法确定题目意思,无法改写。

17、将分子展开得到2a^2b+2ab^2-2a^2+2b^2,再代入
a=-1/2,b=24得到-2216.
18、将表达式展开得到-3y^2,再代入x=-2,y=1得到-7.
19、将分子展开得到3a^2+6a-3,再除以a-2得到3a+12.。

整式的乘除练习题初二

整式的乘除练习题初二

整式的乘除练习题初二一、单项式乘单项式1. 计算:(3x)(4x)2. 计算:(2a)(5b)3. 计算:(m^2)(3n^2)4. 计算:(4p^3)(3q^2)5. 计算:(5xy)(6xz)二、单项式乘多项式1. 计算:(3x)(x + 2y)2. 计算:(2a)(a^2 3ab + 4b^2)3. 计算:(4m^2)(2mn 3n^2 + 5)4. 计算:(5xy)(x^2 2xy + y^2)5. 计算:(7p^3)(2p^2 3pq + 4q^2)三、多项式乘多项式1. 计算:(x + 2y)(x 3y)2. 计算:(a + 3b)(2a 4b)3. 计算:(m + 4)(m 5)4. 计算:(2x + 3y)(3x 2y)5. 计算:(4a 5b)(3a + 2b)四、单项式除单项式1. 计算:$\frac{12x^2}{3x}$2. 计算:$\frac{18a^3b}{3a^2}$3. 计算:$\frac{24m^4n^2}{8mn^2}$4. 计算:$\frac{32p^5q^3}{4p^2q^2}$5. 计算:$\frac{45xy^3}{9y^2}$五、多项式除单项式1. 计算:$\frac{x^2 2xy + y^2}{x}$2. 计算:$\frac{2a^2 5ab + 3b^2}{2a}$3. 计算:$\frac{3m^3 6m^2n + 3mn^2}{3m}$4. 计算:$\frac{4p^3 8p^2q + 4pq^2}{2p}$5. 计算:$\frac{5xy 10xz + 5xz^2}{5x}$六、多项式除多项式1. 计算:$\frac{x^2 4x + 4}{x 2}$2. 计算:$\frac{a^2 5a + 6}{a 3}$3. 计算:$\frac{m^2 6m + 9}{m 3}$4. 计算:$\frac{x^2 9}{x + 3}$5. 计算:$\frac{4a^2 25}{2a + 5}$七、乘法公式应用1. 计算:(x + 3)^22. 计算:(2a 4b)^23. 计算:(m n)(m + n)4. 计算:(4x 5y)(4x + 5y)5. 计算:(a + 2b)(a 2b)(a + 2b)八、除法公式应用1. 计算:$\frac{x^3 8}{x 2}$2. 计算:$\frac{a^3 + 27}{a + 3}$3. 计算:$\frac{m^4 n^4}{m^2 + n^2}$4. 计算:$\frac{16x^4 81y^4}{4x^2 9y^2}$5. 计算:$\frac{64a^3 125b^3}{4a 5b}$九、混合运算1. 计算:(x + 2)(x 3) + (x 4)(x + 1)2. 计算:(2a 3b)(a + b) (a 2b)(a + b)3. 计算:(m^2 2mn)(n^2 + mn) (m^2 + n^2)(mn n^2)4. 计算:$\frac{3x^2 5xy + 2y^2}{x y} \frac{2x^2 3xy + y^2}{x + y}$5. 计算:$\frac{4a^3 8a^2b + 4ab^2}{2a 2b} +\frac{6a^2b 3ab^2}{3a 3b}$十、应用题1. 一块长方形菜地,长比宽多3米,宽为x米,求菜地的面积。

整式的乘除测试题练习8套(含答案)

整式的乘除测试题练习8套(含答案)

整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。

整式的乘除因式分解练习题最终版

整式的乘除因式分解练习题最终版

整式的乘除因式分解练习题最终版整式乘除与因式分解专项练知识网络归纳:幂的运算法则:a^m * a^n = a^(m+n) (m,n为正整数,a,b 可为一个单项式或一个式项式)平方差公式:(a+b)(a-b)=a^2-b^2完全平方公式:(a±b)^2=a^2±2ab+b^2整式的乘法:单项式×单项式:m*a+b=ma+mb多项式×多项式:(m+n)(a+b)=ma+mb+na+nb因式分解的意义:因式分解可以把一个多项式表示成几个单项式的乘积的形式,从而更便于计算和理解。

因式分解的方法:1.提公因式法:先观察是否存在公因式,若存在则提出来。

2.运用公式法:观察是否符合平方差公式或完全平方公式的条件,若符合则按公式进行分解。

3.十字相乘法:观察首尾项与中间项系数是否满足十字相乘条件,若满足则按十字相乘法则分解。

4.拆添项与分组分解法:如果上述方法均无法解决,尝试进行对某几项进行拆分或分组,然后再重复上述操作。

一、整式综合计算:1.幂运算:1) (-3a^2b^3c)^3 = -27a^6b^9c^32) (-1/2)^ = -27/8x^3y^3z^33) [-(a^2b)^3 * a]^3 = -a^27b^94) (ab)*(ab) = a^2b^25) 28xy/(-7xy) = -46) -2ab*(-8a^2) = 16a^3b7) (x^3-x^2)/2 = (x^3/2)-(x^2/2)9) -abc*(3ab) = -3a^2b^2c10) 2005*0.125*2006 = .2511) 若a^(3n-2) = 2.则a^(6n) = 6412) 已知4x=2x+3,则x=3/213) 如果a=2,a=3,则a=2或a=320.已知 m = n + 2,n = m + 2(m ≠ n),求 m - 2mn + n的值。

解:将 m = n + 2 代入 n = m + 2,得 n = n + 4,解得 n = -4,代入 m = n + 2,得 m = -2.因此,m - 2mn + n = -2 - 2(-2)(-4) + (-4) = 22.21.已知 9x - 12xy + 8y - 4yz + 2z - 4z + 4 = 0,求 x、y、z 的值。

整式的乘除法练习题初二

整式的乘除法练习题初二

整式的乘除法练习题初二在初中数学学习中,整式的乘除法是一个重要的内容。

通过掌握整式的乘除法,可以帮助我们解决各种数学问题,提高我们的数学能力。

本文将为大家提供一些初二整式的乘除法练习题,希望对大家的学习有所帮助。

1. 计算下列乘法:(1) $(3x-4)(2x+5)$(2) $(4x+7)(3x-2)$(3) $(2a+3b)(4a-2b)$(4) $(5m-2n)(3m+4n)$解答:(1) 先用分配率将两个括号内的项相乘,再将结果合并同类项。

计算过程如下:$3x \cdot 2x + 3x \cdot 5 - 4 \cdot 2x - 4 \cdot 5$$= 6x^2 + 15x - 8x - 20$$= 6x^2 +7x - 20$(2) 同样地,根据分配率和合并同类项的原则进行计算。

计算过程如下:$4x \cdot 3x + 4x \cdot (-2) + 7 \cdot 3x + 7 \cdot (-2)$$= 12x^2 - 8x + 21x - 14$$= 12x^2 + 13x - 14$(3) 带入同样的计算规则,计算过程如下:$2a \cdot 4a + 2a \cdot (-2b) + 3b \cdot 4a + 3b \cdot (-2b)$$= 8a^2 - 4ab + 12ab - 6b^2$$= 8a^2 + 8ab - 6b^2$(4) 最后一个乘法计算如下:$5m \cdot 3m + 5m \cdot 4n - 2n \cdot 3m - 2n \cdot 4n$$= 15m^2 + 20mn - 6mn - 8n^2$$= 15m^2 + 14mn - 8n^2$2. 计算下列除法:(1) $\frac{15x^2+6x}{3x}$(2) $\frac{16a^2+4ab}{4a}$(3) $\frac{10m^2-8mn}{2m}$解答:(1) 在除法中,我们需要将被除数分解成乘积形式,然后根据约分规则来进行计算。

整式的乘除练习题

整式的乘除练习题

整式的乘除练习题整式的乘除练习题整式是数学中的一个重要概念,它由数字和字母的乘积或除法组成。

掌握整式的乘除运算是数学学习的基础,也是解决实际问题的关键。

本文将通过一些练习题来帮助读者巩固整式的乘除运算。

1. 乘法练习题1)计算:(2x + 3)(4x - 5)解析:使用分配律,将每个项分别与另一个整式的每个项相乘,然后将结果相加。

(2x + 3)(4x - 5) = 2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5)= 8x^2 - 10x + 12x - 15= 8x^2 + 2x - 152)计算:(3a - 2b)(5a + 4b)解析:同样使用分配律,将每个项分别与另一个整式的每个项相乘,然后将结果相加。

(3a - 2b)(5a + 4b) = 3a * 5a + 3a * 4b + (-2b) * 5a + (-2b) * 4b= 15a^2 + 12ab - 10ab - 8b^2= 15a^2 + 2ab - 8b^22. 除法练习题1)计算:(6x^2 - 9x) ÷ 3x解析:使用除法的原则,将被除数的每一项除以除数。

(6x^2 - 9x) ÷ 3x = 6x^2 ÷ 3x - 9x ÷ 3x= 2x - 32)计算:(10a^2 - 15a) ÷ 5a解析:同样使用除法的原则,将被除数的每一项除以除数。

(10a^2 - 15a) ÷ 5a = 10a^2 ÷ 5a - 15a ÷ 5a= 2a - 33. 综合练习题1)计算:(2x + 3)(4x - 5) ÷ (2x + 3)解析:先将乘法计算出结果,再进行除法运算。

(2x + 3)(4x - 5) ÷ (2x + 3) = (8x^2 + 2x - 15) ÷ (2x + 3)使用长除法进行计算,首先将 8x^2 除以 2x,得到 4x。

整式的乘除计算练习题及答案

整式的乘除计算练习题及答案

整式的乘除计算练习题及答案一.解答题1.计算:①③④?[﹣4]?÷32;②[]÷[]?y233522.计算:222①﹣8y;②﹣;③;④;⑤;⑥[+﹣2x]÷2x.⑦222⑧.3.计算:564233336abc÷÷.﹣.[]?3xy. +﹣2m.2234224.计算:?x÷x﹣2x?÷x.ab÷a+b?.﹣.+﹣2.5.因式分解:3322①6ab﹣24ab;②﹣2a+4a﹣2;③4n﹣6;④2xy﹣8xy+8y;⑤a+4b;⑥4mn﹣;⑦22222222222841053232222;⑧﹣4a;⑨3x222n+1﹣6x+3xnn﹣1⑩x﹣y+2y﹣1;4a﹣b﹣4a+1;4﹣4x+4y+1;3ax﹣6ax﹣9a;x﹣6x﹣27;﹣2﹣3.242222222226.因式分解:4x﹣4xy+xy. a﹣4.7.给出三个多项式:x+2x﹣1,x+4x+1,x﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.8.先化简,再求值:+b﹣4ab÷b,其中a=﹣,b=2. 9.当x=﹣1,y=﹣2时,求代数式[2x﹣][+2y]的值. 10.解下列方程或不等式组:①﹣=0;②2﹣≤4.11.先化简,再求值:﹣,其中,.2222232222若x﹣y=1,xy=2,求xy﹣2xy+xy.12.解方程或不等式:222+2=3x+13.+>13.2223223整式的乘除因式分解习题精选参考答案与试题解析一.解答题1.计算:①②[]÷[]?y ③632523352;;④?[﹣4]?÷2.计算:22①﹣8y;2②﹣;③;④;⑤;2⑥[+﹣2x]÷2x.22⑦⑧.2一.计算题19、已知a?b?,a?b?11,求0、已知x?3,x?2,求x 3334221、m??22、 3、?22ab2a?b34、235、?432324、?x8x4x425、?2?226、xy2327、?28、2229、2006200530、231、32、22?4x33、??4xy?6xy??第1页、共6页36、?2xy7、解方程?2x2?2?2x?6x38、已知xm4,xn?3,求x2mx3n的值39、已知x2?xy?21 ,y2?xy?28,求20、已知x3a27,求x4a的值41、2??342、?3?243、?2244、6245、?46、11?222m4m47、?8?48、x?x122259、已知m?3,m?4,求m ab3a?2b的值.0、已知a?115,求a4?4的值. aa 23323261、25?2?62、23?349、4m651、253、55、257、第2页、共6页 50、2、29254、、2258、63、2?365、5667、??47369、199264、a6a2a2a366、255?33?2118、3?4?270、72、28273、74、23232375、??ab6、?77、8、?5x?79、先化简再求值x?,当x??的值80、已知:2?2?5,求2第3页、共6页ab3a?2b?33422322222221时,求此代数式4的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
手工艺制品是我国一种传统文化的象征,它品种多样,方式新颖,制作简单,深受广大学生朋友的喜欢。当今大学生的消费行为表现在追求新颖,追求时尚。追求个性,表现自我的消费趋向:购买行为有较强的感情色彩,比起男生热衷于的网络游戏,极限运动,手工艺制品更得女生的喜欢。8、如果a2-b2=12,a+b=4,则a-b=
10、
11、1232-124×122(利用乘法公式计算)
12、
13、(2x2y)3·(-7xy2)÷(14x4y3)
14、化简求值:当 , 时,求 的值
15、先化简,再求值 ,其中
16、先化简再求值: ,其中
17、先化简再求值: ,其中
18、化简求值 ,其中
19、先化简再求值: ,其中
计算
(1) (2) (3) (4)
整式乘除专项练习
1、4(a+b)+2(a+b)-5(a+b)
2、(3mn+1)(3mn-1)-8m2n2
3、[(xy-2)(xy+2)-2x2y2+4]÷(xy)
4、化简求值: ,其中
5、
6、
7、(、(15x2y2-12x2y3-3x2)÷(-3x)2
解答题
1、化简求值: ,其中
2、已知: ,求 及 的值
3、计算 ,则 =
(1)专业知识限制
4、若(9 ) =3 ,求正整数m的值.
价格便宜些□服务热情周到□店面装饰有个性□商品新颖多样□
5、若2·8 ·16 =2 ,求正整数m的值.
市场环境所提供的创业机会是客观的,但还必须具备自身的创业优势,才能使我们的创业项目成为可行。作为大学生的我们所具有的优势在于:填空
“碧芝”隶属于加拿大的beadworks公司。这家公司原先从事首饰加工业,自助首饰的风行也自西方,随着人工饰品的欣欣向荣,自制饰品越来越受到了人们的认同。1996年'碧芝自制饰品店'在迪美购物中心开张,这里地理位置十分优越,交通四八达,由于是市中心,汇集了来自各地的游客和时尚人群,不用担心客流量问题。迪美有300多家商铺,不包括柜台,现在这个商铺的位置还是比较合适的,位于中心地带,左边出口的自动扶梯直接通向地面,从正对着的旋转式楼拾阶而上就是人民广场中央,周边4、5条地下通道都交汇于此,从自家店铺门口经过的90%的顾客会因为好奇而进看一下。
(5) (6) (7) (8)


1、(-3)2-(3.14-π)0+(-12)32、
木质、石质、骨质、琉璃、藏银……一颗颗、一粒粒、一片片,都浓缩了自然之美,展现着千种风情、万种诱惑,与中国结艺的朴实形成了鲜明的对比,代表着欧洲贵族风格的饰品成了他们最大的主题。3、(9x2y-6xy2+ 3xy)÷( 3xy)4、
情感性手工艺品。不少人把自制的手机挂坠作为礼物送给亲人朋友,不仅特别,还很有心思。每逢情人节、母亲节等节假日,顾客特别多。
400-500元1326%5、(x+1)(x+3)-(x-2)26、(a+b+3)(a+b-3)
“漂亮女生”号称全国连锁店,相信他们有统一的进货渠道。店内到处贴着“10元以下任选”,价格便宜到令人心动。但是转念一想,发夹2.8元,发圈4.8元,皮夹子9.8元,好像和平日讨价还价杀来的心理价位也差不多,只不过把一只20元的发夹还到5元实在辛苦,现在明码标价倒也省心省力。7、 8、2001 1999
我们大学生没有固定的经济来源,但我们也不乏缺少潮流时尚的理念,没有哪个女生是不喜欢琳琅满目的小饰品,珠光宝气、穿金戴银便是时尚的时代早已被推出轨道,简洁、个性化的饰品成为现代时尚女性的钟爱。因此饰品这一行总是吸引很多投资者的目光。然而我们女生更注重的是感性消费,我们的消费欲望往往建立在潮流、时尚和产品的新颖性上,所以要想在饰品行业有立足之地,又尚未具备雄厚的资金条件的话,就有必要与传统首饰区别开来,自制饰品就是近一两年来沿海城市最新流行的一种。9、若 是一个完全平方式,则k=
相关文档
最新文档