高等数学复习题与答案

合集下载

高数复习题与答案

高数复习题与答案

复习题(一)一、选择题1. 函数⎪⎩⎪⎨⎧=≠=001cos)(x x xx x f 在0=x 处( )A 、连续;B 、不连续;C 、为第一类间断点;D 、为第二类间断点.2、已知2)]([)(x f x f =',则=)()(x f n ( )A 、1)]([+n x f ;B 、n x f n )]([;C 、1][+n f(x)n!;D 、n x f n )]([! 3、设xe y sin =,则dy=( )A 、x d e 22sin ;B 、x d e x sin sin ;C 、x d e x sin 2sin ;D 、xdx e x sin 2sin . 4.函数)(x f 在0x 可导是函数)(x f 在该点连续的 ( )A 、充分条件;B 、必要条件;C 、充要条件;D 、非充分非必要条件.5、1lim(1)n n n→∞-=( )A.2eB.1C. 1 -eD. e6. 0tan 1lim(sin )x x x x x→-=( )A. 1B. 2C. 0D. 不存在 7、 数列收敛是数列有界的( )A 、充分非必要条件;B 、必要非充分条件;C 、充分必要条件;D 、既不充分又不必要条件. 8、0x →时,下列无穷小中,( )是等价无穷小A 、arcsin x x 与 x ;B 、1cos x -与 22x ;C 、1xe -与 2x ;D 、22x x -与 24x x -.9、设1112()1xxe f x e+=+,则0x =是()f x 的( )A 、可去间断点;B 、跳跃间断点;C 、无穷间断点;D 、振荡间断点. 10、函数()f x 在0x 不可导,则()f x 在0x 处( )A 、一定不连续;B 、一定无界;C 、不一定连续;D 、一定无定义.11、设曲线L 的参数方程是2(sin )2(1cos )x t t y t =-⎧⎨=-⎩,则曲线在2t π=处的切线方程是( )A 、x y π-=;B 、4x y π+=-;C 、x y π+=;D 、4x y π-=-.12、设tan ln 2y x =+,则y '=( )A 、1sec 2x +;B 、2sec 2x +; C 、2sec x ;D 、cot x .二、填空题1. 当)(),(),(0x x x x x γβα时,→都是无穷小,且))(o()(x x βα=,)(x β~)(x γ,则)()()(limx x x x x γβα+→=2. 21lim()xx x x→∞+= 3.设a )(=x x f 在连续,且6)1(2tan lima 0=-→xe f x x x x ,则=)a (f ; 4、过曲线xxy -+=66上点(2,2)处的切线方程为 ; 5、设)0(,)sin(ln >=x x y ,则=dy x d ln 。

《高等数学一》复习题及答案

《高等数学一》复习题及答案

《高等数学〔一〕》一、选择题1、极限lim(x x x )的结果是〔C 〕x2〔A 〕0〔B 〕〔C 〕31〔D 〕不存在22、方程x 3x 1 0在区间(0,1)内〔 B〕〔A 〕无实根〔B 〕有唯一实根〔C 〕有两个实根〔D 〕有三个实根3、f (x )是连续函数, 则f (x )dx 是f (x )的〔 C〕〔A 〕一个原函数;(B) 一个导函数;(C) 全体原函数;(D) 全体导函数;4、由曲线y sin x (0 x )和直线y 0所围的面积是〔C 〕〔A 〕1/2(B)1(C)2(D)5、微分方程y x 满足初始条件y |x 0 2的特解是( D)〔A 〕x〔B 〕3211 x 3〔C 〕x 32〔D 〕x 32336、以下变量中,是无穷小量的为〔A 〕(A)ln x (x 1)(B)ln 7、极限lim(x sin x 01x 2(x 0 )(C) cos x (x 0)(D) 2(x 2)xx 411sin x )的结果是〔 C〕x x〔A 〕0〔B 〕1〔C 〕 1〔D 〕不存在8、函数y e arctan x 在区间 1,1上〔A〕〔A 〕单调增加〔B 〕单调减小〔C 〕无最大值〔D 〕无最小值9、不定积分xxx21dx =〔 D〕22(A)arctan x C (B)ln(x 1) C (C)11arctan x C (D)ln(x 2 1) C 22x10、由曲线y e (0 x 1)和直线y 0所围的面积是〔A〕〔A 〕e 1(B)1(C) 2(D)e11、微分方程dyxy 的通解为〔B〕dx〔A 〕y Ce〔B 〕y Ce2x12x 2Cxx 〔C 〕y e〔D 〕y Ce2212、以下函数中哪一个是微分方程y 3x 0的解( D )〔A 〕yx 〔B 〕y x 〔C 〕y 3x 〔D 〕yx 13、函数y sin x cos x 1是〔C〕(A) 奇函数;(B) 偶函数;(C)非奇非偶函数;(D)既是奇函数又是偶函数. 14、当x 0时,以下是无穷小量的是〔B 〕〔A 〕e x 12323(B)ln(x 1)(C) sin(x 1)(D)x 115、当x 时,以下函数中有极限的是〔A〕〔A 〕x 11cos x (B) (C)(D)arctan xx 21ex 316、方程x px 1 0(p 0)的实根个数是〔B 〕〔A 〕零个〔B 〕一个〔C 〕二个〔D 〕三个11 x 2) dx 〔B 〕11〔A 〕〔B 〕 C 〔C 〕arctan x〔D 〕arctan x c 221 x 1 x17、(18、定积分baf (x )dx 是〔C〕〔A 〕一个函数族〔B 〕f (x )的的一个原函数〔C 〕一个常数〔D 〕一个非负常数19、函数y ln x 〔A 〕奇函数x 2 1是〔A〕〔C 〕非奇非偶函数〔D 〕既是奇函数又是偶函数〔B 〕偶函数20、设函数f x 在区间 0,1 上连续,在开区间 0,1 内可导,且f x 0,则( B ) (A)f 0 0(B)f 1 f 0 (C)f 1 0(D)f 1 f 021、设曲线y21 ex2则以下选项成立的是〔C 〕,(A) 没有渐近线(B)仅有铅直渐近线(C) 既有水平渐近线又有铅直渐近线(D) 仅有水平渐近线22、(cos x sin x )dx ( D )〔A 〕sin x cos x C〔B 〕sin x cos x C〔C 〕sin x cos x C〔D 〕sin x cos x Cn ( 1)n}的极限为〔A 〕23、数列{n〔A 〕1(B) 1(C) 0(D) 不存在24、以下命题中正确的选项是〔B 〕〔A 〕有界量和无穷大量的乘积仍为无穷大量〔B 〕有界量和无穷小量的乘积仍为无穷小量〔C 〕两无穷大量的和仍为无穷大量〔D 〕两无穷大量的差为零25、假设f (x ) g (x ),则以下式子肯定成立的有〔C 〕(A)f (x ) g (x )(B)df (x ) dg (x )(C)(df (x )) (dg (x ))(D)f (x )g (x ) 126、以下曲线有斜渐近线的是( C )(A)y x sin x (B)y x sin x(C)y x sin 二、填空题1、lim 2112(D)y x sinxx1 cos x 12x 0x22x2、假设f (x ) e3、 2,则f '(0) 211(x 3cos x 5x 1)dx 2t 4、e t dxe x C5、微分方程y y 0满足初始条件y |x 0 2的特解为y 2e xx 2 40 6、lim x 2x 3x 2 x 237、极限lim x 2x 2 448、设yx sin x 1,则f () 1 29、11(x cos x 1)dx 2 10、31 x 2dx3arctan x C2211、微分方程ydy xdx 的通解为y x C12、115x 4dx 2x sin 2x1x2213、lim x 14、设y cos x ,则dy2x sin x dx 15、设y x cos x 3,则f ( ) -1 16、不定积分e x de x12xe C 21 2xe C217、微分方程y e2x的通解为y x 18、微分方程ln y x 的通解是y e C19、lim (1 )=e 3xx 2x620、设函数y x x ,则yx x (ln x 1)112n 21、lim (2 2 2)的值是n n 2n nx (x 1)(x 2)1 22、lim 3x 2x x 3223、设函数y x x ,则dyx x (ln x 1)dx2x 23x 124、lim x 0x 425、假设f (x ) e 2x14sin 6,则f '(0)226、a 2 a(1 sin 5x )dx2(a 为任意实数).xe x dx __________.27、设y ln(e 1),则微分dy ______xe 1x 328、(cos x )d x22 1 x 22三、解答题1、〔此题总分值9分〕求函数y解:由题意可得,x 1 62 x 的定义域。

高等数学试题及答案解析

高等数学试题及答案解析

高等数学试题及答案解析一、选择题1. 函数f(x) = x^2 - 4x + 3在区间[0, 5]上的最大值是:A. 3B. 5C. 7D. 9答案:D解析:首先求导f'(x) = 2x - 4,令f'(x) = 0得到x = 2,这是函数的极值点。

计算f(2) = 2^2 - 4*2 + 3 = -1。

接下来检查区间端点,f(0) = 3,f(5) = 5^2 - 4*5 + 3 = 9。

因此,最大值为f(5) = 9。

2. 若f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)答案:A解析:根据导数的基本公式,sin(x)的导数是cos(x),cos(x)的导数是-sin(x)。

因此,f'(x) = cos(x) - sin(x)。

二、填空题1. 求不定积分∫(2x + 1)dx = __________。

答案:x^2 + x + C解析:根据不定积分的基本公式,∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1。

将n = 1代入公式,得到∫(2x + 1)dx = ∫2x dx + ∫1 dx = x^2 + x + C。

2. 若y = ln(x),则dy/dx = __________。

答案:1/x解析:对自然对数函数求导,根据对数函数的导数公式,ln(x)的导数是1/x。

三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x - 2的极值点。

答案:极值点为x = 3。

解析:首先求导f'(x) = 3x^2 - 12x + 9。

令f'(x) = 0,解得x = 1 和 x = 3。

计算二阶导数f''(x) = 6x - 12,代入x = 1得到f''(1) = -6 < 0,说明x = 1是极大值点;代入x = 3得到f''(3) = 18 > 0,说明x = 3是极小值点。

高等数学试题及答案大全

高等数学试题及答案大全

高等数学试题及答案大全一、选择题1. 下列函数中,不是周期函数的是()。

A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 函数f(x) = x^2 + 3x - 2在区间[-5, 2]上的最大值是()。

A. 0B. 3C. 4D. 5二、填空题1. 若函数f(x) = 2x - 3在x = 1处的导数为5,则原函数在x = 1处的值为______。

2. 曲线y = x^3 - 2x^2 + x在x = 2处的切线斜率为______。

三、解答题1. 求函数f(x) = ln(x) + 1的导数,并说明其在x = e处的导数值。

2. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求其极值点。

四、证明题1. 证明函数f(x) = x^3在R上的单调性。

2. 证明等差数列的前n项和公式S_n = n(a_1 + a_n)/2。

五、应用题1. 某工厂生产一种产品,其成本函数为C(x) = 3x + 200,销售价格为P(x) = 50 - 0.05x,其中x表示产品数量。

求该工厂的盈利函数,并求出其盈利最大时的产品数量。

2. 一个圆的半径为r,求其面积与周长的比值。

答案:一、选择题1. C解析:函数y = e^x不是周期函数,其他选项都是周期函数。

2. D解析:函数f(x) = x^2 + 3x - 2的导数为f'(x) = 2x + 3,令其等于0,解得x = -3/2,但x = -3/2不在区间[-5, 2]内。

检查区间端点,f(-5) = -8,f(2) = 5,因此最大值为5。

二、填空题1. -1解析:由f'(x) = 2,且f'(1) = 5,可得f(1) = f'(1) * (1 - 0) + f(0) = 5 + f(0),又因为f(0) = -3,所以f(1) = 5 - 3 = 2。

2. -4解析:由y' = 3x^2 - 4x + 1,代入x = 2,得y' = 3 * 2^2 - 4 * 2 + 1 = 12 - 8 + 1 = 5。

高等数学复习题库和答案

高等数学复习题库和答案
高等数学试题库 (制作陈玄令)
第五套题 (上学期)
一、是非判断题
1、 为( )上的任意函数,则 必是奇函数。 [ ]
2、若 在x0处不可导,则在x0处必不连续。 [ ]
3、若 [ ]
4、若曲线y=?(x)上点(x,y)的切线斜率与 成正比例,并且通过点A(1,6)和B(2,-9),则该
曲线方程为__________ 。
5、 f(x)在[a,b]上可积,则g(x) )在[a,b]上不可积,则f(x)+g(x)在[a,b]上一定不可积。[ ]
8、设有非零向量 ,若 ,则必有
(A)、 = + (B)、 =
(C)、 (D)、
9、下列极限存在的是( )
(A)、 (B)、 (C)、 (D)、
第四套题(上学期)
单项选择题
1、下面四个函数中,与y=|x|不同的是
(A) (B) (C) (D)
2设 在 处可导,则 。
(A) (B)
(C) (D)
3、若 .
(A)
(B)
(C) ( 为 中任一点)
(D)、 ( , 为 中任一点)
三.下列函数是由那些简单初等函数复合而成。
1、 y=
2、 y=
二、填空题
1、若在区间上 ,则F(x)叫做 在该区间上的一个 , 的
所有原函数叫做 在该区间上的__________。
2、 定积分的几何意义知 = , = 。
3、 f(x,y)= ,则 。 。
5、由二重积分的几何意义得到 = .
6、使用Mathematica软件作函数y=x3 图象的输入格式是 ;
10.使用Mathematica软件写出x 0时 求x3极限的输入格式是 ;

《高等数学(一)》期末复习题(答案)

《高等数学(一)》期末复习题(答案)

《高等数学(一)》期末复习题一、选择题1. 极限)x x →∞的结果是 ( C ).(A )0 (B ) ∞ (C ) 12(D )不存在 2. 设()xxx f +-=11ln,则)(x f 是 ( A ). (A )奇函数 (B) 偶函数 (C )非奇非偶函数 (D )既奇又偶函数 3. 极限21lim sinx x x→= ( A ) . (A )0 (B) 1 (C )+∞ (D )-∞ 4. 方程3310x x -+=在区间(0,1)内( B ).(A )无实根 (B )有唯一实根 (C )有两个实根 (D )有三个实根 5. 设()()ln 1f x x =+,g (x )=x ,则当0x →时,()f x 是()g x 的( A ).(A )等价无穷小 (B) 低阶无穷小(C )高阶无穷小 (D) 同阶但非等价无穷小 6. 下列变量中,是无穷小量的为( A ).(A ))1(ln →x x (B ))0(1ln +→x x (C )cos (0)x x → (D ))2(422→--x x x 7. 极限011lim(sinsin )x x x x x→- 的结果是( C ).(A )0 (B ) 1 (C ) 1- (D )不存在8. 下列函数中满足罗尔定理条件的是( D ).(A )()2,[0,1]f x x x =-∈ (B) 3(),[0,1]f x x x =∈ (C )(),[1,1]f x x x =∈- (D)4(),[1,1]f x x x =∈-9. 函数1cos sin ++=x x y 是( C ).(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )既是奇函数又是偶函数 10. 当0→x 时, 下列是无穷小量的是( B ).(A )1+x e (B) )1ln(+x (C) )1sin(+x (D) 1+x11. 当x →∞时,下列函数中有极限的是( A ).(A )211x x +- (B) cos x (C) 1xe(D)arctan x 12. 方程310(0)x px p ++=>的实根个数是 ( B ).(A )零个 (B )一个 (C )二个 (D )三个 13.21()1dx x '=+⎰( B ).(A )211x + (B )211C x++ (C ) arctan x (D ) arctan x c + 14. 定积分()f x dx ⎰是( A ).(A )一个函数族 (B )()f x 的的一个原函数 (C )一个常数 (D )一个非负常数15.函数(ln y x =+是( A ).(A )奇函数 (B )偶函数 (C ) 非奇非偶函数 (D )既是奇函数又是偶函数 16. 设函数在区间上连续,在开区间内可导,且,则( B ).(A) (B) (C) (D) 17. 设曲线221x y e-=-,则下列选项成立的是( C ). (A) 没有渐近线 (B) 仅有铅直渐近线 (C) 既有水平渐近线又有铅直渐近线 (D) 仅有水平渐近线 18. 设是的一个原函数,则等式( D )成立.(A )(B) (C ) (D)19. 设⎰+=C x dx x xf arcsin )(,则⎰=dx x f )(1( B ). (A )C x +--32)1(43 (B )C x +--32)1(31 (C )C x +-322)1(43 (D )C x +-322)1(32()f x []0,1()0,1()0f x '>()00f <()()10f f >()10f >()()10f f <F x ()f x ()dd d x f x x F x (())()⎰='=+⎰F x x f x c()()d '=⎰F x x F x ()()d dd d xf x x f x (())()⎰=20. 数列})1({nn n-+的极限为( A ).(A )1(B) 1-(C) 0(D) 不存在21. 下列命题中正确的是( B ).(A )有界量和无穷大量的乘积仍为无穷大量(B )有界量和无穷小量的乘积仍为无穷小量 (C )两无穷大量的和仍为无穷大量 (D )两无穷大量的差为零 22. 若()()f x g x ''=,则下列式子一定成立的有( C ).(A)()()f x g x = (B)()()df x dg x =⎰⎰(C)(())(())df x dg x ''=⎰⎰(D)()()1f x g x =+ 23. 下列曲线有斜渐近线的是 ( C ).(A)sin y x x =+ (B)2sin y x x =+ (C)1siny x x =+ (D)21sin y x x=+ 24. 函数)1,0(11)(≠>+-=a a a a x x f x x ( B ).(A )是奇函数 (B )是偶函数(C )既奇函数又是偶函数 (D )是非奇非偶函数 25. 下列函数中满足罗尔定理条件的是( D ).(A )]1,0[,1)(∈-=x x x f (B)]1,0[,)(2∈=x x x f (C )()sin ,[1,1]f x x x =∈- (D)]1,1[,)(2-∈=x x x f26. 若函数221)1(xx x x f +=+,则=)(x f ( B ). (A )2x (B )22-x (C )2)1(-x (D )12-x 27. 设函数,ln )(x x x f =则下面关于)(x f 的说法正确的是( A ).(A )在(0,e 1)内单调递减 (B)在(+∞,1e)内单调递减 (C )在(0,+∞)内单调递减 (D)(0,+∞)在内单调递增28. 设1)(+=x x f ,则)1)((+x f f =( D ).(A )x (B )x + 1 (C )x + 2 (D )x + 329. 已知0)1(lim 2=--+∞→b ax x x x ,其中a ,b 是常数,则( C ).(A )1,1==b a , (B )1,1=-=b a (C )1,1-==b a (D )1,1-=-=b a 30. 下列函数在指定的变化过程中,( B )是无穷小量.(A ) (B )(C ) (D )31. 设函数(),2x xe ef x -+=则下面关于)(x f 的说法正确的是( B ) .(A )在(0,)+∞内单调递减 (B)在(,0)-∞内单调递减 (C )在(,0)-∞内单调递增 (D)在(,)-∞+∞内单调递增32. 下列函数中,在给定趋势下是无界变量且为无穷大的函数是( C ).(A ))(1sin∞→=x xx y (B )())(1∞→=-n n y n (C ))0(ln +→=x x y (D ))0(1cos 1→=x xx y33. 设⎪⎩⎪⎨⎧≤>=0,0,1sin )(x x x xx x f ,则)(x f 在0=x 处( B ). (A )连续且可导(B )连续但不可导 (C )不连续但可导(D )既不连续又不可导34. 在下列等式中,正确的是( C ).(A )()()f x dx f x '=⎰ (B) ()()df x f x =⎰(C )()()df x dx f x dx=⎰ (D)[()]()d f x dx f x =⎰ 35. 曲线x x y -=3在点(1,0)处的切线是( A ).(A )22-=x y(B )22+-=x ye 1xx ,()→∞sin ,()xxx →∞ln(),()11+→x x x xx +-→110,()(C )22+=x y(D )22--=x y36. 已知441x y =,则y ''=( B ). (A ) 3x (B )23x (C )x 6 (D ) 6 37. 若x xf =)1(,则=')(x f ( D ).(A )x 1 (B )21x (C )x 1- (D )21x-38. 下列各组函数中,是相同的函数的是( B ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 39. 函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩ 在0x =处连续,则a =( B ).(A )0 (B )14(C )1 (D )240. 曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 41. 设函数()||f x x =,则函数在点0x =处( C ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 42. 设()f x 可微,则0()(2)limh f x f x h h→--=( D ).(A )()f x '- (B)1()2f x ' (C )2()f x '- (D)2()f x '43. 点0x =是函数4y x =的( D ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 44. 曲线1||y x =的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线45.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( D ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭46.x x dxe e -+⎰的结果是( A ).(A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++47. 下列各组函数中,是相同函数的是( C ).(A) ()f x x =和()g x =()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =48. 设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( D ).(A) 0 (B) 1 (C) 2 (D)不存在49. 设函数22456x y x x -=-+,则2x =是函数的( A ).(A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 50. 设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为( C ). (A) 0 (B)2π(C)锐角 (D)钝角 51. 曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( D ).(A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭52. 函数2x y x e -=及图象在()1,2内是( B ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的 53. 以下结论正确的是( C ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.54. 设函数22132x y x x -=-+,则1x =是函数的( A ).(A )可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 55. 设函数()y f x =的一个原函数为12x x e ,则()f x =( A ).(A) ()121x x e - (B)12xx e - (C) ()121x x e + (D) 12xxe56. 若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( D ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+57. 函数21,0e ,0xx x y x ⎧+<=⎨≥⎩在点0x =处( D ).(A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 58. 函数 2)1ln(++-=x x y 的定义域是( C ).(A ) []1,2- (B ) [)1,2- (C )(]1,2- (D )()1,2- 59. 极限x x e ∞→lim 的值是( D ).(A )∞+ (B ) 0 (C )∞- (D )不存在 60. =--→211)1sin(limx x x ( C ).(A )1 (B ) 0 (C )21-(D )2161. 曲线 23-+=x x y 在点)0,1(处的切线方程是( B ).(A ) )1(2-=x y (B ))1(4-=x y (C )14-=x y (D ))1(3-=x y62. 函数, 0,0xx x y e x <⎧=⎨≥⎩在点0x =处( B ). (A )连续且可导 (B) 不连续且不可导 (C) 不连续但可导 (D) 连续但不可导 63. 下列各微分式正确的是( C ).(A ))(2x d xdx = (B ))2(sin 2cos x d xdx = (C ))5(x d dx --= (D )22)()(dx x d = 64. 设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( B ). (A )2sin x (B ) 2sin x - (C )C x +2sin (D )2sin 2x-65. 设()f x 可微,则0(2)()limh f x h f x h→+-=( D ).(A )()f x '- (B)1()2f x ' (C)2()f x '- (D)2()f x ' 66.⎰=+dx x xln 2( B ).(A )Cx x ++-22ln 212 (B )C x ++2)ln 2(21(C )C x ++ln 2ln (D )C xx++-2ln 1 67. 函数)1lg(12+++=x x y 的定义域是( B ).(A )()()+∞--,01,2 (B )()),0(0,1+∞- (C )),0()0,1(+∞- (D )),1(+∞-68. 设0tan 4()lim6sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )1 (B )2 (C )6 (D )24 69. 下列各式中,极限存在的是( A ).(A ) x x cos lim 0→ (B )x x arctan lim ∞→ (C )x x sin lim ∞→ (D )x x 2lim +∞→70. =+∞→xx xx )1(lim ( D ). (A )e (B )2e (C )1 (D )e1 71. 设0sin 4()lim5sin x x f x x →+=,则0()lim x f x x→=( B ) .(A )0 (B )1 (C )5 (D )2572. 曲线x x y ln =的平行于直线01=+-y x 的切线方程是( C ).(A )x y = (B ))1)(1(ln --=x x y (C )1-=x y (D ))1(+-=x y73. 已知x x y 3sin = ,则=dy ( B ).(A )dx x x )3sin 33cos (+- (B )dx x x x )3cos 33(sin + (C )dx x x )3sin 3(cos + (D )dx x x x )3cos 3(sin + 74. 下列等式成立的是( C ).(A )⎰++=-C x dx x 111ααα (B )⎰+=C x a dx a x x ln (C )⎰+=C x xdx sin cos (D )⎰++=C xxdx 211tan 75. 极限01lim sinx x x→= ( A ) . (A ) 0 (B) 1 (C )+∞ (D) -∞ 76. 设()1cos f x x =-,()2g x x =,则当0x →时,()f x 是()g x 的( D ).(A )等价无穷小 (B) 低阶无穷小 (C ) 高阶无穷小 (D) 同阶但非等价无穷小 77. 计算⎰xdx x e x cos sin sin 的结果中正确的是( D ).(A )C e x +sin (B )C x e x +cos sin (C )C x e x +sin sin (D )C x e x +-)1(sin sin78. 5lg 1)(-=x x f 的定义域是( D ).(A )()),5(5,+∞∞- (B )()),6(6,+∞∞-(C )()),4(4,+∞∞- (D )())5,4(4, ∞- ()),6(6,5+∞79. 如果函数f (x )的定义域为[1,2],则函数f (x )+f (x 2)的定义域是( B ).(A )[1,2] (B )[1,2] (C )]2,2[- (D )]2,1[]1,2[ --80. 函数)1lg()1lg(22x x x x y -++++=( D ).(A )是奇函数,非偶函数 (B )是偶函数,非奇函数 (C )既非奇函数,又非偶函数 (D )既是奇函数,又是偶函数 81. 设()sin f x x x =,则)(x f 是( C ).(A )非奇非偶函数 (B) 奇函数 (C)偶函数 (D) 既奇又偶函数 82. 函数)10(1)(2≤≤--=x x x f 的反函数=-)(1x f( C ).(A )21x - (B )21x --(C ))01(12≤≤--x x (D ))01(12≤≤---x x 83. 下列数列收敛的是( C ).(A )1)1()(1+-=+n n n f n (B )⎪⎩⎪⎨⎧-+=为偶数为奇数n nn n n f ,11,11)((C )⎪⎩⎪⎨⎧+=为偶数为奇数n n n n n f ,11,1)( (D )⎪⎪⎩⎪⎪⎨⎧-+=为偶数为奇数n n n f nn n n ,221,221)(84. 设1111.0个n n y =,则当∞→n 时,该数列( C ).(A )收敛于0.1 (B )收敛于0.2 (C )收敛于91(D )发散 85. 下列极限存在的是( A ).(A )2)1(lim x x x x +∞→ (B )121lim -∞→x x (C )x x e 10lim → (D )x x x 1lim 2++∞→ 86. xx xx x x sin 2sin 2lim 22+-+∞→=( A ).(A )21(B )2 (C )0 (D )不存在 87. =--→1)1sin(lim 21x x x ( B ).(A )1 (B )2 (C )21(D )0 88. 下列极限中结果等于e 的是( B ).(A )xx x x x sin 0)sin 1(lim +→ (B )x xx x x sin )sin 1(lim +∞→ (C )xxx xxsin )sin 1(lim -∞→- (D )xxx xxsin 0)sin 1(lim +→89. 函数||ln 1x y =的间断点有( C )个. (A )1 (B )2 (C )3 (D )4 90. 下列结论错误的是( A ).(A )如果函数f (x )在点x =x 0处连续,则f (x )在点x =x 0处可导; (B )如果函数f (x )在点x =x 0处不连续,则f (x )在点x =x 0处不可导; (C )如果函数f (x )在点x =x 0处可导,则f (x )在点x =x 0处连续; (D )如果函数f (x )在点x =x 0处不可导,则f (x )在点x =x 0处也可能连续。

高等数学复习练习题附答案

高等数学复习练习题附答案

第一章自测题一、填空题(每题 3 分,共 18 分)sin x tan x1. lim.x 0 ln 12x32.3x1x. lim2x 1x x23.已知 lim 2x2ax b3,此中为 a,b 常数,则a, b.x1x14.若 f x sin 2x x e2 ax 1, x0 在,上连续,则 a.a,x05.曲线 f ( x)x1的水平渐近线是,铅直渐近线是.x24x 316.曲线y2x 1 e x的斜渐近线方程为.二、单项选择题(每题 3 分,共 18 分)1.“对随意给定的0,1,总存在整数 N ,当 n N 时,恒有 x n a 2 ”是数列 x n收敛于 a 的.A. 充足条件但非必需条件B.必需条件但非充足条件C. 充足必需条件D.既非充足也非必需条件2x,x022.设 g x x ,x 0则 g f x.x2,x , f x0x,x02 x2 , x 0B.2 x2 , x 0C.2 x2 , x 0D.2 x2 , x 0A.2 x, x 0 2 x, x 0 2 x, x 02 x, x 03.以下各式中正确的选项是.1xA.lim1e x 0x1xC. lim1ex x1xB.lim1ex 0x1x D.lim1e-1x x4.设x0 时,e tan x1 与x n是等价无量小,则正整数n.A. 1B. 2C. 3D. 4优选文库1 e5. 曲线 ye1x 2x 2.A. 没有渐近线B.仅有水平渐近线C. 仅有铅直渐近线D.既有水平渐近线又有铅直渐近线6.以下函数在给定区间上无界的是.A.1sin x, x(0,1]B.1sin x, x(0, )xxC.11 x(0,1] D.1 x(0, )sin,x sin ,xxx三、求以下极限(每题5 分,共 35 分)1. lim x 2x 2x 24x1 312. limx e 2 xxx 013. lim 12n 3n nnx 2sin14. limxx2x 2 15. 设函数 f xa xa 0, a 1 ,求 lim12 ln f 1 f 2 L f n .nn优选文库12 e x sin x6. lim4xx 01 e x7. lim1cosx x 01cos x四、确立以下极限中含有的参数(每题5 分,共 10 分)1. limax 22x b 2x 1x2x22. lim xax 2 bx 2 1xa xb x五、议论函数 f ( x)x , x在 x 0 处的连续性, 若(a 0,b 0, a 1,b 1)0,x不连续,指出该中断点的种类. (此题 6 分)优选文库sin t 六、设 f ( x)limt x sin xxsin tsin x,求 f ( x) 的中断点并判断种类.(此题7分)七、设 f ( x) 在 [0,1]上连续,且 f (0) f (1).证明:必定存在一点0,1,使得2f ( ) f1. (此题6分)2第二章自测题一、填空题(每题 3 分,共 18 分)1.设2.设4.设5.设f (x) 在 x0可导,且 f ( x0 ) 0, f ( x0 )f1cos x2,则 f ( x). 3.xy f (e sin x ) ,此中 f ( x) 可导,则 dyy1.arccos x ,则 y21,则 lim hf1.x0h hx.1dx dx2.6. 曲线xy 1 x sin y 在点1 ,的切线方程为.二、单项选择题(每题 3 分,共 15 分)1. 以下函数中,在x0 处可导的是.2.设 y f (x) 在 x0处可导,且 f ( x0 )2,则lim f ( x02Vx) f ( x0Vx).VxV x0A. 6B.6C.1D.1 663.设函数 f ( x) 在区间 (,) 内有定义,若当 x(,) 时恒有 | f ( x) |x2,则 x0 是f ( x) 的.A. 中断点B.连续而不行导的点C. 可导的点,且 f (0)0D.可导的点,且 f (0)04.sin x, x00处 f ( x) 的导数.设 f ( x)x,则在 xx2 ,0A. 0B.1C.2D.不存在5.设函数 f (u) 可导, y f (x2 ) 当自变量 x 在x 1 处获得增量 Vx时,相应的函数增量 Vy 的线性主部为,则 f(1).A. 1B.C.1D.三、解答题(共67 分)1.求以下函数的导数(每题 4 分,共16 分)(1) y ln e x 1 e2 x(2) y x 111 xa a x(3)y x a a x a a(4)y (sin x)cos x2. 求以下函数的微分(每题 4 分,共 12 分)(1) y x ln x sin x2cot21(2)y e x(3) y x21x 1x3. 求以下函数的二阶导数(每题 5 分,共 10 分)(1)y cos2x ln x1 x(2)y1 x4. 设 f ( x)e x , x 1在 x 1可导,试求 a 与 b . (此题 6分)ax b, x15. 设 f ( x)sin x , x 0 ,求 f ' ( x) . (此题 6 分)ln(1 x), x 026. 设函数 yy( x) 由方程 lnxxy 2 1所确立,求 dy . (此题 6 分)y7. 设 yx a ln tan tcost2y(x) 由参数方程2,求 dy , d y 2 . (此题 6 分)y a sin tdx dxx1 tt 38. 求曲线在 t1处的切线方程和法线方程 . (此题 5 分)3y 1 2t 22t第三章 自测题一、填空题(每题 3 分,共 15 分)3若 a0, b0 均为常数,则 lim a x b x x1..2x02.lim11.x2x tan xx 03.lim arctan x x.3x 0ln(1 2x )4.曲线 y e x2的凹区间,凸区间为.5.若 f ( x)xe x,则 f ( n ) ( x) 在点 x处获得极小值 .二、单项选择题(每题 3 分,共 12 分)1.设 a,b 为方程 f ( x)0 的两根, f ( x) 在 [ a,b] 上连续, (a, b) 内可导,则 f (x)0 在(a,b) 内.A. 只有一个实根B.起码有一个实根C. 没有实根D.起码有两个实根2.设 f (x) 在 x0处连续,在x0的某去心邻域内可导,且x x0时, ( x x0 ) f ( x)0 ,则f ( x0 ) 是.A. 极小值B.极大值C. x0为f ( x)的驻点D.x0不是 f ( x) 的极值点3.设 f (x) 拥有二阶连续导数,且f(0)0 , lim f( x) 1 ,则.x 0| x |A. f (0)是 f (x) 的极大值B. f (0)是 f (x) 的极小值C.(0, f (0))是曲线的拐点D.f(0) 不是 f (x) 的极值, (0, f (0))不是曲线的拐点4.设 f (x) 连续,且 f(0)0 ,则0,使.A. f ( x)在(0, )内单一增添 .B. f ( x) 在 (,0) 内单一减少.C.x(0,) ,有 f (x) f (0)D.x (,0) ,有 f ( x) f (0) .三、解答题 ( 共 73 分)1. 已知函数f ( x)在[0,1]上连续,(0,1)内可导,且f (1)0 ,优选文库证明在 (0,1) 内起码存在一点f ( )使得 f ( ). (此题 6 分)tan2. 证明以下不等式(每题 9 分,共 18 分)(1)当 0a b 时,b alnbb a .ba a(2)当 0 x时,2x sin x x .23. 求以下函数的极限(每题8 分,共 24 分)( 1) lim e x e x2xx 0xsin x优选文库12( 2)lim(cos x)sin xx 01( 3)lim(1 x) x exx 04. 求以下函数的极值(每题 6 分,共 12 分)12( 1)f ( x) x3(1 x)3x2x , x0( 2)f ( x)x 1 , x05. 求y2x. (此题 6 分)的极值点、单一区间、凹凸区间和拐点ln x16. 证明方程x ln x0 只有一个实根.(此题7分)e第一章自测题一、填空题(每题 3 分,共 18 分)1. 2.3.4.5.水平渐近线是,铅直渐近线是6.二、单项选择题(每题 3 分,共 18分)1. C2. D3. D4. A5. D 6. C三、求以下极限(每题 5 分,共 35分)解: 1.. 2.. 3.,又. 4.. 5.. 6.,,因此,原式.7..四、确立以下极限中含有的参数(每题 5 分,共 10 分)解: 1.据题意设,则,令,令得,故.2.左边,右边故,则.五、解:,故在处不连续,所以为六、解:,而,故,的间断点,,故为的第一类(可去)中断点,均为的第二类中断点.七、证明:设,明显在而,,,故由零点定理知:必定存在一点,使,即优选文库第二章自测题一、填空题(每题 3 分,共 18 分)1. 2.3. 4.5.6.或二、单项选择题(每题 3 分,共 15 分)1. D2. A3. C4. D5. D三、解答题(共67 分)解: 1.(1).(2).(3).(4)两边取对数得,两边求导数得,.2. 求以下函数的微分(每题 4 分,共 12 分)(1).(2).(3).优选文库3. 求以下函数的二阶导数(每题 5 分,共 10 分)(1).(2),.4.首先在处连续,故,故,。

高等数学复习期末试题含答案

高等数学复习期末试题含答案

高等数学试题(一)(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。

第1—10题,每小题1分,第11—20小题,每小题2分,共30分) 1.函数y=5-x +ln(x -1)的定义域是( )A. (0,5]B. (1,5]C. (1,5)D. (1,+∞) 2. limsin 2x xx →∞等于( ) A. 0 B. 1 C.12D. 23.二元函数f(x,y)=ln(x -y)的定义域为( ) A. x -y>0 B. x>0, y>0 C. x<0, y<0 D. x>0, y>0及x<0, y<04.函数y=2|x |-1在x=0处( ) A.无定义 B.不连续 C.可导 D.连续但不可导5.设函数f(x)=e 1-2x,则f(x)在x=0处的导数f ′(0)等于( ) A. 0 B. e C. –e D. -2e 6.函数y=x -arctanx 在[-1,1]上( ) A.单调增加 B.单调减少 C.无最大值 D.无最小值7.设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f ′(x)>0,则( ) A. f(0)<0 B. f(1)>0 C. f(1)>f(0) D. f(1)<f(0) 8.以下式子中正确的是( ) A. dsinx=-cosx B. dsinx=-cosxdx C. dcosx=-sinxdx D. dcosx=-sinx 9.下列级数中,条件收敛的级数是( )A. n nn n =∞∑-+111()B. n nn =∞∑-11()C.n nn=∞∑-111()D.n nn=∞∑-1211()10.方程y ′—y=0的通解为( )A. y=ce xB. y=ce -xC. y=csinxD. y=c 1e x +c 2e -x11.设函数f(x)=x x x kx +-≠=⎧⎨⎪⎩⎪4200,,在点x=0处连续,则k 等于( )A. 0B. 14C.12D. 212.设F(x)是f(x)的一个原函数,则∫e -x f(e -x )dx 等于( ) A. F(e -x )+c B. -F(e -x )+c C. F(e x )+c D. -F(e x )+c13.下列函数中在区间[-1,1]上满足罗尔中值定理条件的是( ) A. y=1xB. y=|x|C. y=1-x 2D. y=x -1 14.设f t dt x ()0⎰=a 2x -a 2,f(x)为连续函数,则f(x)等于( )A. 2a 2xB. a 2x lnaC. 2xa 2x -1D. 2a 2x lna 15.下列式子中正确的是( )A. e dx edx xx112⎰⎰≤B.e dx edx xx112⎰⎰≥C.e dx edx xx0112⎰⎰=D.以上都不对16.下列广义积分收敛的是( ) A. cos 1+∞⎰xdxB. sin 1+∞⎰xdxC.ln xdx1+∞⎰D.121xdx+∞⎰17.设f(x)=e x --21,g(x)=x 2,当x →0时( ) A. f(x)是g(x)的高阶无穷小 B. f(x)是g(x)的低阶无穷小C. f(x)是g(x)的同阶但非等价无穷小D. f(x)与g(x)是等价无穷小18.交换二次积分dy f x y dx yy (,)⎰⎰01的积分次序,它等于()A. dxf x y dyxx(,)⎰⎰1B. dxf x y dy xx (,)201⎰⎰C.dxf x y dy xx (,)⎰⎰1D.dxf x y dy xx(,)21⎰⎰19.若级数n n u =∞∑1收敛,记S n =i i u =∞∑1,则( )A. lim n n S →∞=0B.lim n n S S→∞=存在C.lim n nS →∞可能不存在D. {S n }为单调数列20.对于微分方程y ″+3y ′+2y=e -x ,利用待定系数法求其特解y *时,下面特解设法正确的是( )A. y *=ae -xB. y *=(ax+b)e -xC. y *=axe -xD. y *=ax 2e -x 二、填空题(每小题2分,共20分)1. lim x x x →∞+-⎛⎝ ⎫⎭⎪=121______。

高等数学I(上)复习题共7套(答案)

高等数学I(上)复习题共7套(答案)

x)
1 1 lim 1 x lim
x
lim 1 1
x0 2 x
x0 2x(1 x) x0 2(1 x) 2
12.
1
e
1 x dx .
0
解:设 1 x t, 则 x 1 t2, dx 2tdt, 且 x 0 时, t 1 ; x 1时, t 0 ,
1 e
1 x dx
证. 对任意 x ,由于 f ( x) 是连续函数,所以
F ( x x) F ( x)
lim
x 0
x
lim f ( ) x0
xx f t dt x f t dt
lim 0
0
x 0
x
2
xx f t dt
lim x
x 0
x
f ( )x lim
x0 x
其 中 介 于 x 与 x x 之 间 , 由 lim f ( ) f ( x) , 可 知 函 数 F( x) 在 x 处 可 导 , 且 x0
所以
dy cos π π sin π 1 . dx π 1 sin π π cos π 1 π
法二: dy cos (sin )d cos sin d .
dx 1 sin (cos )d 1 sin cos d .
5
dy
dy dx
d dx
cos sin ; 1 sin cos
0 ,驻点 x
f (0) .
在 t 0 两侧, dy 变号,故驻点是函数 y y( x)的极值点。 dx
1
(2)
d2 y dx 2
dt dt
1 dx
1 0 f (t)
dt
,曲线 y y( x)没有拐点.

高数考试题库及答案解析

高数考试题库及答案解析

高数考试题库及答案解析一、选择题1. 函数f(x)=x^2-3x+2在区间[1,4]上的最大值是:A. 0B. 3C. 6D. 7答案:D解析:首先求导f'(x)=2x-3,令f'(x)=0,解得x=3/2。

在区间[1,4]上,f'(x)在x<3/2时为负,x>3/2时为正,说明f(x)在x=3/2处取得极小值。

计算f(3/2)=-1/4,再计算区间端点f(1)=0和f(4)=6,可知最大值为f(4)=6。

2. 若f(x)=sin(x)+cos(x),则f'(x)的表达式为:A. cos(x)-sin(x)B. cos(x)+sin(x)C. sin(x)-cos(x)D. sin(x)+cos(x)答案:A解析:根据导数的运算法则,f'(x)=[sin(x)]'+[cos(x)]'=cos(x)-sin(x)。

二、填空题1. 曲线y=x^3-6x^2+9x在点(2,0)处的切线斜率为______。

答案:-12解析:首先求导y'=3x^2-12x+9,将x=2代入y'得到切线斜率为-12。

2. 定积分∫(0,1) x^2 dx的值为______。

答案:1/3解析:根据定积分的计算公式,∫(0,1) x^2 dx = [x^3/3](0,1) = 1/3。

三、解答题1. 求函数f(x)=x^3-6x^2+11x-6的单调区间。

答案:函数f(x)的单调增区间为(1,3),单调减区间为(-∞,1)和(3,+∞)。

解析:首先求导f'(x)=3x^2-12x+11,令f'(x)=0解得x=1,3。

根据导数符号变化,可得单调区间。

2. 求曲线y=x^2-4x+3与直线y=2x平行的切线方程。

答案:切线方程为:x-y-1=0。

解析:曲线y=x^2-4x+3的导数为y'=2x-4,令y'=2得到x=3,此时切点坐标为(3,2)。

(完整)高等数学考试题库(附答案)

(完整)高等数学考试题库(附答案)

高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。

2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。

3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。

4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。

5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。

6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。

7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。

8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。

9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。

10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。

11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。

12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。

13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。

14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。

15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。

16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。

17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。

18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。

19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。

20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。

高等数学复习题及答案

高等数学复习题及答案

高等数学复习题及答案【篇一:大学高等数学上考试题库(附答案)】>一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是().(a)f?x??lnx 和 g?x??2lnx (b)f?x??|x| 和 g?x??2(c)f?x??x 和 g?x??2(d)f?x??|x|x和 g?x??122.函数f?x???ln?1?x??a?x?0x?0在x?0处连续,则a?().(a)0 (b)14(c)1 (d)23.曲线y?xlnx的平行于直线x?y?1?0的切线方程为().(a)y?x?1 (b)y??(x?1)(c)y??lnx?1??x?1?(d)y?x 4.设函数f?x??|x|,则函数在点x?0处().(a)连续且可导(b)连续且可微(c)连续不可导(d)不连续不可微5.点x?0是函数y?x4的().(a)驻点但非极值点(b)拐点(c)驻点且是拐点(d)驻点且是极值点6.曲线y?1|x|的渐近线情况是().(a)只有水平渐近线(b)只有垂直渐近线(c)既有水平渐近线又有垂直渐近线(d)既无水平渐近线又无垂直渐近线 7.?f???2dx的结果是(). ?x?x??1??1??1(b)(c)?c?f??cf????x??x??x?x(a)f??8.?dxe?ex??1(d)?c?f????x???c ?的结果是().x?x(a)arctane?c (b)arctane?c (c)e?e x?x?c (d)ln(e?ex?x)?c9.下列定积分为零的是().?(a)?4?arctanx1?x2??4dx (b)?4??4xarcsinxdx (c)?11?1e?e2x?x1?1?x2?x?sinxdx10.设f?x?为连续函数,则?f??2x?dx等于().(a)f?2??f?0? (b)12??f?11??f?0???(c)12??f?2??f?0???(d)f?1??f?0?二.填空题(每题4分,共20分)?e?2x?1?1.设函数f?x???x?a?x?0x?056在x?0处连续,则a?.2.已知曲线y?f?x?在x?2处的切线的倾斜角为?,则f??2??3.y?4.?xx?12.的垂直渐近线有条.dxx?1?lnx?2?.?5.?2??xsinx?cosx?dx?4?2.三.计算(每小题5分,共30分) 1.求极限①lim x??2x?1?x????x?②limx?0x?sinxxe?x2?1?2.求曲线y?ln?x?y?所确定的隐函数的导数y?. x3.求不定积分①?四.应用题(每题10分,共20分) 1.作出函数y?x?3x的图像. 232dx?x?1??x?3?②??a?0? ③?xe?xdx2.求曲线y?2x和直线y?x?4所围图形的面积.《高数》试卷1参考答案一.选择题1.b 2.b 3.a 4.c 5.d 6.c 7.d 8.a 9.a 10.c 二.填空题 1.?22.?三.计算题1①e2 ②11633.24.arctanlnx?c 5.22.y??x1x?y?13. ①ln|2x?1x?3|?c②ln|x|?c③?e?x?x?1??c四.应用题1.略2.s?18《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ). (a) f?x??x和g?x??(b) f?x??22x?1x?122和y?x?1(c) f?x??x和g?x??x(sinx?cosx)(d) f?x??lnx和g?x??2lnx ?sin2?x?1??x?1??2.设函数f?x???2?2x?1???x?1x?1 ,则limfx?1?x??().x?1(a) 0 (b) 1(c)2(d) 不存在3.设函数y?f?x?在点x0处可导,且f??x?0, 曲线则y?f?x?在点?x0,f?x0??处的切线的倾斜角为{}. (a) 0 (b)?2(c)锐角(d) 钝角4.曲线y?lnx上某点的切线平行于直线y?2x?3,则该点坐标是( ). ??1?1??(b) 2,?ln??? 2?2??2?x(a) ?2,ln (c)??1??1?,ln2? (d) ?,?ln2? ?2??2?5.函数y?xe及图象在?1,2?内是( ).(a)单调减少且是凸的 (b)单调增加且是凸的 (c)单调减少且是凹的 (d)单调增加且是凹的6.以下结论正确的是( ).(a) 若x0为函数y?f?x?的驻点,则x0必为函数y?f?x?的极值点. (b) 函数y?f?x?导数不存在的点,一定不是函数y?f?x?的极值点. (c) 若函数y?f?x?在x0处取得极值,且f??x0?存在,则必有f??x0?=0. (d) 若函数y?f?x?在x0处连续,则f??x0?一定存在.17.设函数y?f?x?的一个原函数为xex,则f?x?=( ).21111(a) ?2x?1?ex (b)2x?ex(c)?2x?1?ex(d) 2xex 8.若?f?x?dx?f?x??c,则?sinxf?cosx?dx?( ).(a) f?sinx??c (b) ?f?sinx??c (c) f?cosx??c (d) ?f?cosx??c 9.设f?x?为连续函数,则?f??1?x??dx=( ). ?2???1??(a) f?1??f?0? (b)2??f?1??f?0??? (c) 2??f?2??f?0??? (d)2?f?2??f?0??????10.定积分?dx?a?b?在几何上的表示( ).ab(a) 线段长b?a (b) 线段长a?b (c) 矩形面积?a?b??1 (d) 矩形面积?b?a??1 二.填空题(每题4分,共20分) ?ln?1?x2??1.设 f?x???1?cosx?a?x?0x?0, 在x?0连续,则a=________.2.设y?sin2x, 则dy?_________________dsinx.3.函数y?xx?12?1的水平和垂直渐近线共有_______条.4.不定积分?xlnxdx?______________________.5. 定积分?1?1xsinx?11?x22?___________.三.计算题(每小题5分,共30分) 1.求下列极限:?①lim?1?2x?x ②limx?01?arctanx1xx???2.求由方程y?1?xe所确定的隐函数的导数y?x.3.求下列不定积分:①?tanxsec3xdx②?ya?0?③?xedx2x四.应用题(每题10分,共20分) 1.作出函数y?13x?x的图象.(要求列出表格)3【篇二:高等数学试题及答案】>一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

高数一试题及答案

高数一试题及答案

x + 2 B. y = - x + 2 C. y = x + 3 D. y = - x + 3《 高等数学(一) 》复习资料一、选择题1. 若 lim x →3x 2 - x + k x - 3= 5 ,则 k = ( )A. -3B. -4C. -5D. -62. 若 lim x →1 x 2 - k x - 1= 2 ,则 k = ( )A. 1B. 2C. 3D. 43. 曲线 y = e x - 3sin x + 1 在点(0,2)处的切线方程为()A. y = 2 x + 2B. y = -2 x + 2C. y = 2 x + 3D. y = -2 x + 34. 曲线 y = e x - 3sin x + 1 在点(0,2)处的法线方程为( )A. y = 1 1 1 12 2 2 25. lim x →1 x 2 - 1 sin x= ( )A. 0B. 3C. 4D. 56.设函数 f ( x ) = ⎰ x (t + 1)(t - 2)dt ,则 f '(3) =( )A 1B 2C 3D 47. 求函数 y = 2 x 4 - 4 x 3 + 2 的拐点有( )个。

e x C.x2-1D.arctan x2h=(2B.2C.x2B.xC.xD.A1B2C4D08.当x→∞时,下列函数中有极限的是()。

A.sin xB.19.已知f'(3)=2,limf(3-h)-f(3)h→0x+1 )。

A.3-31 D.-110.设f(x)=x4-3x2+5,则f(0)为f(x)在区间[-2,2]上的()。

A.极小值B.极大值C.最小值D.最大值11.设函数f(x)在[1,2]上可导,且f'(x)<0,f(1)>0,f(2)<0,则f(x)在(1,2)内()A.至少有两个零点B.有且只有一个零点C.没有零点D.零点个数不能确定12.⎰[f(x)+xf'(x)]dx=().A.f(x)+CB.f'(x)+CC.xf(x)+CD.f2(x)+C13.已知y=f2(ln x2),则y'=(C)A.2f(ln x2)f'(ln x2)4f'(ln x2)4f(ln x2)f'(ln x2)2f(ln x2)f'(x)x214.d⎰f(x)=(B)B. f '(ln x)C. f (ln x)D.A. f '(x) + CB. f ( x )C. f '( x )D. f ( x ) + C15. ⎰ 2ln x xdx = ( D )A. 2x ln x + CB.ln xx+ C C. 2ln x + C D. (ln x )2 + C16. lim x →1 x 2 - 1 ln x= ( )A. 2B. 3C. 4D. 517. 设函数 f ( x ) = ⎰ x (t - 1)(t + 2)dt ,则 f '(-2) =( )A 1B 0C -2D 218. 曲线 y = x 3的拐点坐标是( )A.(0,0)B.( 1,1)C.(2,2)D.(3,3)19. 已知 y = f (ln x) ,则 y ' = ( A )A.f '(ln x) f (ln x)x x20. d ⎰ df ( x ) = ( A)A. df ( x )B. f ( x )C. df '( x )D. f ( x ) + C21. ⎰ ln xdx = ( A )A. x ln x - x + CB. ln x - x + CC. ln x - xD. ln x二、求积分(每题8分,共80分)1.求⎰cos x sin xdx.2.求⎰34+3ln xxdx.3.求⎰arctan xdx.4.求⎰e3x dx5.求⎰x+3dx.x2-5x+66.求定积分⎰8dx1+3x.7.计算⎰πx2cos xdx.8.求⎰1dx.x2+2x-89.求⎰dx1+3x+2.11.求⎰22x e-x2dx112.求⎰3x23-x3dx13.求⎰e1ln2x xdx14.求⎰x3-x2dx2.讨论函数 f ( x ) = x 3- 2 x 2 + 3x - 3 的单调性并求其单调区间y = b sin t⎩3. 求函数 f ( x ) =的间断点并确定其类型1( )5. 求 y = 的导数.7. 函数 f ( x ) = ⎨1, x = 0 在 x = 0 处是否连续?8. 函数 f ( x ) = ⎨1, x = 0 在 x = 0 处是否可导? 三、解答题1. 若 lim 3x - ax 2 - x + 1 = ,求 ax →∞61 3x 2 - x - 2x - 24. 设 xy 2 + sin x = e xy , 求y '.( x + 1)3 x + 2( x + 3)5⎧ x = a cos t6. 求由方程 ⎨ 确定的导数 y ' .x⎧ 1⎪e x , x < 0 ⎪⎪tan x, x > 0 ⎪⎩⎧ 1⎪e x , x < 0⎪ ⎪tan x, x > 0 ⎪⎩9. 求抛物线 y = x 2 与直线 y = x 所围成图形 D 的面积 A .10. 计算由抛物线 y 2 = 2 x 与直线 y = x - 4 围成的图形 D 的面积 A .11. 设 y 是由方程 y = sin y + xe y 确定的函数,求 y '12.求证:ln x<x-1,x>113.设y是由方程y=1+xe y确定的函数,求y'14.讨论函数f(x)=2x3-9x2+12x-3的单调性并求其单调区间15.求证:e x>2x-1,16.求函数f(x)=x(1-x)x-x3的间断点并确定其类型五、解方程1.求方程y2d x+(x2-xy)dy=0的通解.2.求方程yy''+y'2=0的通解.3.求方程y''-2y'+y=x2的一个特解.4.求方程y''-5y'+9y=5xe-3x的通解.高数一复习资料参考答案一、选择题1-5:DABAA6-10:DBCDD11-15:BCCBD16-21:ABAAAA解: ⎰ cos x sin xdx = ⎰ 224 + 3ln x 1 dx = ⎰ (4 + 3ln x) 3 d (ln x) = ⎰ (4 + 3ln x) 3 ⋅ d (4 + 3ln x)1= x arctan x - ln(1+ x 2 ) + C .3t d t = 3⎰ t dt = 3t 二、求积分1.求 ⎰ cos x sin xdx.3sin xd (sin x) = sin 2x + C = sin 3 x + C3 32. 求 ⎰34 + 3ln x xdx .解: ⎰31 1 x 34 = (4 + 3ln x) 3 + C . 43. 求 ⎰ arctan xdx .解:设 u = arctan x , dv = dx ,即 v = x ,则124. 求 ⎰ e 3x dx解: ⎰e 3x d xx = t 3⎰ e t22e t2et- 3⎰ e t ⋅ 2t dt = 3t 2e t - 6⎰ t e t d t= 3e 3x ( 3 x 2 - 2 3 x + 2) + C .5. 求 ⎰ x + 3dx .x 2 - 5x + 6解:由上述可知 x + 3 -5 6 = +x 2 - 5x + 6 x - 2 x - 3,所以6. 求定积分 ⎰ 8⎰=⎰2=3t 2-t +ln(1+t)2=3ln 3.3t 2d t0 ⎦ 解: ⎰ 1 dx = ⎰ = -5ln x - 2 + 6ln x - 3 + C .dx 0 1 + 3 x.解:令 3 x = t ,即 x = t 3 ,则 dx = 3t 2dt ,且当 x = 0 时, t = 0 ;当 x = 8 时, t = 2 ,于是8 dx⎡ 1 ⎤ ⎣ 2 ⎦ 07. 计算 ⎰ π x 2 cos xdx .解:令 u = x 2 , dv = cos xdx ,则 du = 2xdx , v = sin x ,于是⎰ π x2cos xdx = ⎰ πx 2d sin x = ( x 2 sin x)π 0- ⎰ π2 x sin xdx = -2⎰ πx sin xdx .0 0再用分部积分公式,得= 2 ⎡⎣( x cos x) π 0- sin x π ⎤ = -2π .8. 求 ⎰1dx .x 2 + 2 x - 81 1 3 - ( x + 1)d ( x + 1) = ln + Cx 2 + 2 x - 8 ( x + 1)2 - 9 6 3 + ( x + 1)1 2 - x= ln6 4 + x+ C .9. 求 ⎰dx1 + 3 x + 2.解:令 u = 3 x + 2 ,则 x = u 3 - 2 , dx = 3u 2du ,从而有d (3 - x 解: ⎰ln 2 x 1 1 1dx = ⎰ ln 2 xd (ln x) = ln x = ln e = 11 12 1() 12.讨论函数 f ( x ) = x 3 - 2 x 2 + 3x - 3 的单调性并求其单调区间11. 求 ⎰ 2 2 x e - x 2dx1解: ⎰ 2 2 x e - x 2 dx = ⎰ 2 e - x 2 dx 2 = e - x 2 2 = e -4 - e -11 112. 求 ⎰ 3x 2 3 - x 3 dx1解: ⎰ 3x2 3 - x 3dx = -⎰23 - x 33 ) = - (3 - x 33 3 ) 2 + C13. 求 ⎰ e1ln 2 xxdxe 1e e x 3 3 3 114.求 ⎰ x 3 - x 2 dx解: ⎰ x 3 - x 2dx = -⎰3 3 3 - x 2 d (3 - x 2 ) = - ⋅ (3 - x 2 ) 2 + C = - (3 - x 2 ) 2 + C2 23 3三、解答题1. 若 lim 3x - ax 2- x + 1 = ,求ax →∞6解:因为 3x - ax 2 - x + 1 = 9 x2 - ax 2 + x - 1 3x + ax 2 - x + 1,所以 a = 9否则极限不存在。

高等数学复习题(含答案)

高等数学复习题(含答案)

高等数学复习题与答案解析一、 一元函数微积分概要 (一)函数、极限与连续1.求下列函数的定义域: (1) y =216x -+x sin ln ,(2) y =)12arcsin(312-+-xx .解 (1) 由所给函数知,要使函数y 有定义,必须满足两种情况,偶次根式的被开方式大于等于零或对数函数符号内的式子为正,可建立不等式组,并求出联立不等式组的解.即⎩⎨⎧>≥-,0sin ,0162x x 推得⎩⎨⎧⋅⋅⋅±±=+<<≤≤-2,1,0π)12(π244n n x n x 这两个不等式的公共解为 π4-<≤-x 与π0<<x所以函数的定义域为)π,4[-- )π,0(.(2) 由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小于等于1.可建立不等式组,并求出联立不等式组的解.即⎪⎪⎩⎪⎪⎨⎧<->-≠-,112,03,032xx x 推得⎩⎨⎧≤≤<<-,40,33x x 即 30<≤x , 因此,所给函数的定义域为 )3,0[.2.设)(x f 的定义域为)1,0(,求)(tan x f 的定义域. 解:令x u tan =, 则)(u f 的定义域为)1,0(∈u∴)1,0(tan ∈x , ∴x ∈(k π, k π+4π), k ∈Z ,∴ )(tan x f 的定义域为 x ∈(k π, k π+4π), k ∈Z .3.设)(x f =x-11,求)]([x f f ,{})]([x f f f .解:)]([x f f =)(11x f -=x--1111=x 11- (x ≠1,0),{})]([x f f f =)]([11x f f -=)11(11x--= x (x ≠0,1).4.求下列极限:(1)123lim 21-+-→x x x x , (2)652134lim 2434-++-∞→x x x x x ,解:原式=1)1)(2(lim 1---→x x x x 解: 原式=424652134limxx x x x -++-∞→ =)2(lim 1-→x x =2.(抓大头)= 1-.(恒等变换之后“能代就代”)(3)xx x -+-→222lim 2, (4)330sin tan lim x x x →,解:原式=)22)(2()22)(22(lim2++-+++-→x x x x x 解:0→x 时33~tan x x ,=221lim2++→x x 33~sin x x ,=41. (恒等变换之后“能代就代”) ∴原式=330lim x x x →=1lim 0→x =1.(等价)(5))100sin (lim +∞→x x x , (6) 2121lim()11x x x→--- ,解:原式=100lim sin lim∞→∞→+x x x x解: 原式=2211212(1)lim()lim 111x x x x x x→→-+-=--- =0 + 100= 100 (无穷小的性质) 11(1)11limlim (1)(1)12x x x x x x →→-===-++.(7)215lim+-+∞→x x x .解 : 原式=52115lim=+-+∞→xx x .(抓大头) (8)11lim 21-+→x x x .解:因为0)1(lim 1=-→x x 而0)1(lim 21≠+→x x ,求该式的极限需用无穷小与无穷大关系定理解决.因为011lim 21=+-→x x x ,所以当1→x 时,112+-x x 是无穷小量,因而它的倒数是无穷大量,即 ∞=-+→11lim21x x x . (9)limx解:不能直接运用极限运算法则,因为当x →+∞时分子,极限不存在,但sin x 是有界函数,即sin 1x ≤而 0111lim1lim33=+=++∞→+∞→x x xx x x ,因此当+∞→x 时,31xx +为无穷小量.根据有界函数与无穷小乘积仍为无穷小定理,即得l i 0x =. (10)203cos cos limxxx x -→ . 解:分子先用和差化积公式变形,然后再用重要极限公式求极限原式=202sin sin 2limx x x x →=441)22sin 4(lim sin lim 0=⨯=⋅⋅∞→→x x x x x x .(也可用洛必达法则) (11)xx x)11(lim 2-∞→.解一 原式=10])11[(lim )11(lim )11()11(lim --∞→→∞→-⋅+=-+x x x x x x x xx x x =1ee 1=-,解二 原式=)1()(2])11[(lim 2x x x x--∞→-=1e 0=. (12)30tan sin limx x xx→-. 解 :x x x x 30sin sin tan lim -→=xx x x x cos )cos 1(sin lim 30-→ =2202sin 2limx x x → =21 ( 222~2sin ,0⎪⎭⎫⎝⎛→x x x ) .(等价替换) 5.求下列极限(1)201cot limxx x x -→ (2))e e ln()3ln(cos lim 33--+→x x x x (3))]1ln(11[lim 20x x x x +-→ (4))ln (lim 0x x n x ⋅+→ (5) xxx cos 1lim++∞→解 :(1)由于0→x 时,1tan cot →=x x x x ,故原极限为0型,用洛必达法则 所以 xx xx x x x x x x sin sin cos lim 1cot lim 2020-=-→→30sin cos limx xx x x -=→ (分母等价无穷小代换)01sin lim 3x x x→-=31-=.(2) 此极限为∞∞,可直接应用洛必达法则 所以 )e e ln()3ln(cos lim 33--+→x x x x =)e e ln()3ln(lim cos lim 333--⋅++→→x x x x x x x e lim 3cos e133+→⋅⋅=3cos = . (3) 所求极限为∞-∞型 ,不能直接用洛必达法则,通分后可变成00或∞∞型.)]1ln(11[lim 20x x x x +-→xx xx x x x 2111lim )1ln(lim 020+-=+-=→→ 21)1(21lim )1(211lim00=+=+-+=→→x x x x x x .(4)所求极限为∞⋅0型,得nx nx xx x x 10ln lim ln lim -→→++=⋅ (∞∞型) =1111lim --→-+n x x nx =.01lim lim 0110=-=-++→+→nxn xnx x nx (5)此极限为 ∞∞型,用洛必达法则,得 1sin 1limcos lim xx x x x x -=++∞→+∞→不存在,因此洛必达法则失效! 但 101c o s 1lim 11cos 11lim cos lim =+=+=+=++∞→+∞→+∞→x xxx x x x x x x . 6.求下列函数的极限:(1)42lim 22--→x x x , (2)()⎪⎩⎪⎨⎧++=,1,1sin 2xa x x x f ,0,0><x x 当a 为何值时,)(x f 在0=x 的极限存在. 解: (1)41)2)(2(2lim 42lim 222-=+--=----→→x x x x x x x ,41)2)(2(2lim 42lim 222=+--=--++→→x x x x x x x ,因为左极限不等于右极限,所以极限不存在.(2)由于函数在分段点0=x 处,两边的表达式不同,因此一般要考虑在分段点0=x 处的左极限与右极限.于是,有a a x x a x x x f x x x x =+=+=----→→→→000lim )1sin (lim )1sin(lim )(lim ,1)1(lim )(lim 2=+=++→→x x f x x ,为使)(lim 0x f x →存在,必须有)(lim 0x f x +→=)(lim 0x f x -→,因此 ,当a =1 时, )(lim 0x f x →存在且 )(lim 0x f x →=1.7.讨论函数 ⎪⎩⎪⎨⎧=,1sin ,)(x x xx f0>≤x x , 在点0=x 处的连续性.解:由于函数在分段点0=x 处两边的表达式不同,因此,一般要考虑在分段点0=x 处的左极限与右极限. 因而有01sinlim )(lim ,0lim )(lim 0====++--→→→→xx x f x x f x x x x , 而,0)0(=f 即0)0()(lim )(lim 00===+-→→f x f x f x x ,由函数在一点连续的充要条件知)(x f 在0=x 处连续.8. 求函数xx x x f )1(1)(2--=的间断点,并判断其类型:解:由初等函数在其定义区间上连续知)(x f 的间断点为1,0==x x .21lim)(lim 11=+=→→xx x f x x 而)(x f 在1=x 处无定义,故1=x 为其可去间断点.又∞=+=→x x x f x 1lim )(0 ∴0=x 为)(x f 的无穷间断点.综上得1=x 为)(x f 的可去间断点, 0=x 为)(x f 的无穷间断点.(二)一元函数微分学1.判断:(1)若曲线y =)(x f 处处有切线,则y =)(x f 必处处可导. 答:命题错误. 如:x y 22=处处有切线,但在0=x 处不可导. (2)若A ax a f x f ax =--→)()(lim(A 为常数),试判断下列命题是否正确.①)(x f 在点a x = 处可导, ②)(x f 在点a x = 处连续, ③)()(a f x f -= )()(a x o a x A -+-. 答:命题①、②、③全正确.(3)若)(x f ,)(x g 在点0x 处都不可导,则)()(x g x f +点0x 处也一定不可导. 答:命题不成立.如:)(x f =⎩⎨⎧>≤,0,,0,0x x x )(x g =⎩⎨⎧>≤,0,0,0,x x x)(x f ,)(x g 在x = 0 处均不可导,但其和函数)(x f +)(x g = x 在x = 0 处可导.(4)若)(x f 在点0x 处可导,)(x g 在点0x 处不可导,则)(x f +)(x g 在点0x 处一定不可导. 答:命题成立.原因:若)(x f +)(x g 在0x 处可导,由)(x f 在0x 处点可导知)(x g =[)(x f +)(x g ])(x f -在0x 点处也可导,矛盾.(5))('0x f 与)]'([0x f 有区别. 答:命题成立.因为)('0x f 表示0)(x x x f =在处的导数; )]'([0x f 表示对0)(x x x f =在处的函数值求导,且结果为0.(6)设)(x f y =在点0x 的某邻域有定义,且-∆+)(0x x f )(0x f =2)(x b x a ∆+∆,其中b a ,为常数,下列命题哪个正确?①()x f 在点0x 处可导,且()a x f ='0,②()x f 在点0x 处可微,且()x a x f x x d |d 0==, ③()()x a x f x x f ∆+≈∆+00 ( ||x ∆很小时). 答:①、②、③三个命题全正确.2.已知x x cos )'(sin =,利用导数定义求极限xx x 1)2πsin(lim 0-+→.解:xx x 1)2πsin(lim 0-+→=xx x 2sin)2πsin(lim0π-+→ =2π|)'(sin =x x = 2πcos=0. 3.求 ()⎩⎨⎧+=,,xx x f 1ln )(0<≥x x ,的导数.解: 当0>x 时,xx f +='11)( , 当0<x 时,1)(='x f ,当0=x 时,xf x f x f x f f x x )0()(lim 0)0()(lim)0(00-=--='→→,所以 10lim )0(0=-='-→-xx f x , 1e ln )1ln(lim 0)1ln(lim )0(100==+=-+='++→→+x x x x xx f ,因此 1)0(='f ,于是 ⎪⎩⎪⎨⎧+=',1,11)(xx f.0,0≤>x x4.设))((),1ln()(x f f y x x f =+=,求dxdy 解:)]1ln(1ln[))((x x f f y ++==,)]'1ln(1[)1ln(11d d x x x y ++⋅++=∴)1)](1ln(1[1x x +++=.5.已知arctanxy=求y ''. 解:两端对x 求导,得)(1)()(1122222'++='⋅+y x y x y xyx ,222222222221yx y y x yx yy x y y x y +'⋅+⋅+='-⋅+,整理得 x y y x y -='+)( ,故 xy xy y +-=', 上式两端再对x 求导,得=2)(22x y yy x +-', 将 xy xy y +-='代入上式,得 2)(22x y yxy xy x y +-+-⋅=''322)(2222y x xy y x xy +---=322)()(2x y y x ++-=. 6.求y = 323)4()3)(2)(1(⎥⎦⎤⎢⎣⎡+⋅+++x x x x x 的导数x yd d 解:两边取对数:y ln =)]4ln(ln 3)3ln()2ln()1[ln(32+--+++++x x x x x , 两边关于x 求导:]413312111[32'1+--+++++=⋅x x x x x y y , ∴)413312111(32d d +--+++++=x x x x x y x y . 7.设xx x f e )(=,求)('x f .解:令xx y e =, 两边取对数得:x y xln e ln =, 两边关于x 求导数得:即 )e ln e ('e xx x y xxx+=. 8.设,sin ),(2x u u f y ==求x y d d 和22d d xy.解:xy d d =2cos 2)(x x u f ⋅⋅', 22d d xy =)sin 4cos 2)(()(cos 4)(222222x x x u f x x u f -'+⋅''. 9.x x y e 4+=, 求y)4(.解:xx y e 43+=', xx y e 122+='',xx y e 24+=''', x y e 24)4(+=.10.设cos sin x t t y t=-⎧⎨=⎩,, 求 22d d x y . 解:d (sin )cos d 1sin (cos )y t tx tt t '=='+- , 222sin (1sin )cos 11(1sin )1sin (1sin )t t t t t t -+--=⋅=+++. 11.求曲线⎩⎨⎧==,,3t y t x 在点(1,1)处切线的斜率. 解:由题意知:⎩⎨⎧==,1,13t t 1=⇒t ,∴33)()(d d 12131==''====t t t t t t xy ,∴曲线在点(1,1)处切线的斜率为312. 求函数xx y tan ln e=的微分.解一 用微分的定义x x f y d )(d '=求微分, 有x x xx d )2sin 21(e tan ln +=. 解二 利用一阶微分形式不变性和微分运算法则求微分,得x xxx d )2sin 21(e tan ln +=. 13.试证当1≠x 时,x xe e >.证明:令x x f xe e )(-=,易见()f x 在),(+∞-∞内连续,且0)1(=f e e )(-='xx f .当1<x 时,e e )(-='xx f 0<可知()f x 为]1,(-∞上的严格单调减少函数,即 当1>x 时,e e )(-='x x f 0>,可知()f x 为),1[+∞上的严格单调增加函数, 即()(1)0f x f >=.故对任意 ,1≠x 有()0,f x >即 .0e e >-x xx xe e >.14.求函数344x x y -=的单调性与极值. 解:函数的定义域为),(+∞-∞.)3(3223-=-='x x x x y , 令 ,0='y 驻点 3,021==x x 列表由上表知,单调减区间为)3,(-∞,单调增区间为),3(+∞,极小值 4)3(-=y 求函数的极值也可以用二阶导数来判别,此例中0,6302=''-=''=x y x x y 不能确定0=x 处是否取极值,,093>=''=x y 得427)3(-=y 是极小值. 15.求3)(x x f =+23x 在闭区间[]5,5-上的极大值与极小值,最大值与最小值. 解:x x x f 63)(2+=', 令0)(='x f , 得2,021-==x x ,66)(+=''x x f , 06)0(>=''f , 06)2(<-=-''f ,∴)(x f 的极大值为=-)2(f 4,极小值为0)0(=f . ∵50)5(-=-f , 200)5(=f .∴ 比较)5(),0(),2(),5(f f f f --的大小可知:)(x f 最大值为200, 最小值为50-.16.求曲线32310510x x y ++=的凹凸区间与拐点. 解:函数的定义域为()+∞∞-,,21010x x y +=', x y 2010+='',令0=''y , 得21-=x , 用21-=x 把()+∞∞-,分成)21,(--∞,),21(+∞-两部分. 当∈x )21,(--∞时,0<''y , 当∈x ),21(+∞-时,0>''y , ∴曲线的凹区间为),,21(+∞-凸区间为),21,(--∞ 拐点为)665,21(-.17.求函数)1ln(2x y +=的凹向及拐点. 解:函数的定义域 ),(+∞-∞,,122x x y +=' 222222)1()1(2)1(22)1(2x x x x x x y +-=+⋅-+='', 令 ,0=''y 得1±=y , 列表知,上凹区间(1,1)-,下凹区由此可(,1)(1,)-∞-+∞,曲线的间拐点是)2ln ,1(±.的渐近线.18.求下列曲线的渐近线(1)xxy ln = ,(2)1222-+-=x x x y ,(3)()()213--+=x x x y .解 (1)所给函数的定义域为),0(+∞.由于 011lim ln lim ==+∞→+∞→x x xx x ,可知 0=y 为 所给曲线xxy ln =的水平渐近线.由于 -∞=+→xxx ln lim 0,可知 0=x 为曲线xxy ln =的铅直渐近线.(2) 所给函数的定义域)1,(-∞,),1(∞+.由于 -∞=-+-=--→→122lim )(lim 211x x x x f x x , +∞=-+-=++→→122lim )(lim 211x x x x f x x , 可知 1=x 为所给曲线的铅直渐近线(在1=x 的两侧()f x 的趋向不同).又 a x x x x x x f x x ==-+-=∞→∞→1)1(22lim )(lim2, []b x x x x x x x ax x f x x x =-=-+-=--+-=-∞→∞→∞→112lim ])1(22[lim )(lim 2, 所以 1-=x y 是曲线的一条斜渐近线.(3)()()∞=--+→213lim1x x x x , 故1=x 为曲线的铅直渐近线,()()∞=--+→213lim2x x x x , 故2=x 为曲线的铅直渐近线,()()2133lim lim 0121211x x x x x x x x x →∞→∞++==--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 故0=y 为曲线的水平渐近线,∴ 曲线的渐近线为:2,1,0===x x y .19.求解下列各题:(1)设某产品的总成本函数和总收入函数分别为x x C 23)(+=, 15)(+=x xx R , 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.解:边际成本C M =x x C 1)('=边际收入R M =2)1(5)('+=x x R边际利润xx M M q L C R 1)1(5)('2-+=-=. (2)设p 为某产品的价格,x 为产品的需求量,且有801.0=+x p , 问p 为何值时,需求弹性大或需求弹性小.解:由801.0=+x p 得10d d -=px, 所以需求价格弹性80)10(1.080-=-⨯-=p p p p Ep Ex , 故当80-p p < 1-, 即40<p <80时, 需求弹性大; 当1-<80-p p<0, 即0<p <40时,需求弹性小.(三)一元函数积分学1. 在不定积分的性质x x f k x x kf d )(d )(⎰=⎰中,为何要求0≠k ?答:因为0=k 时,C x x x kf =⎰=⎰d 0d )((任意常数),而不是0. 2. 思考下列问题:(1) 若C x x x f x++=⎰sin 2d )(,则)(x f 为何? 答:x x x f x f xcos 2ln 2)d )(()(+='⎰=. (2) 若)(x f 的一个原函数为3x ,问)(x f 为何?答:233)()(x x x f ='=(3)若)(x f 的一个原函数的x cos ,则dx x f )('⎰为何?答:C x C x f x x f x x x f +-=+='⎰-='=sin )(d )(,sin )(cos )(. 3. 计算下列积分:(1))sin d(sin 5x x ⎰, (2)x x d cos 3⎰, (3)⎰+x xx x d )sin (,(4)x xe xd 2⎰, (5)⎰-21d xx x , (6)⎰-41d xx x ,(7)⎰x xx d 2ln , (8)x x d )32(2+⎰, (9)⎰-⋅dx x x 211arcsin 1, (10)⎰+x x x d arctan )1(12, (11)⎰+22d x x, (12)⎰-24d x x . 解:(1)C xx x +=⎰6sin )sin d(sin 65. (2)x x x x x d cos )sin 1(d cos 23-⎰=⎰ =)sin d()sin 1(2x x -⎰ =)sin d(sin )sin d(2x x x ⎰-⎰=C xx +-3sin sin 3. (3)x x x x x xx x d sin 2d d )sin (⎰+⎰=+⎰=C x x +-cos 222. (4)C x x x x x x +=⎰=⎰222e 21)(d e 21d e 2. (5)C x x x x x x+--=--⎰-=--⎰2221221)1(d )1(21d 1.(6)C x x x x xx +=-=-⎰⎰22224arcsin 21)(1)(d 211d .(7(8)C x x x x x ++=++⎰=+⎰322)32(6)32(d )32(2d )32(.(9)C x x x x x x +==-⋅⎰⎰|arcsin |ln )arcsin d(arcsin 1d 11arcsin 12. (10)C x x x x x x +==+⎰⎰|arctan |ln )arctan d(arctan 1d arctan )1(12.(11)C x x x x x x x +=+=+=+⎰⎰⎰22arctan 22)2(d )2(1121)2(1d 212d 222. (12)⎰2-4d x x =⎰2)2(-12d x x=)2(d )2(-112x x⎰=C x+2arcsin . 4. 计算下列不定积分:(1)⎰++x xd 111,(2)x x d 162-⎰,(3)⎰+232)4(d x x ,(4)⎰-x xx d 122.解:(1) 令t x =+1, 则 =x 12-t , t t x d 2d =,于是原式=⎰+t t t d 12=⎰+-+t t t d 1112=]1d d [2⎰⎰+-t tt =C t t ++-1ln 22=C x x +++-+11ln 212. (2)令)2π2π(sin 4<<-=t t x ,则t x cos 4162=-,t t x d cos 4d =, 于是 t t t t t x x d )2cos 1(8d cos 4cos 4d 162+⎰=⋅⎰=-⎰ =C t t ++2sin 48.由右图所示的直角三角形,得81641642cos sin 22sin 22x x x x t t t -=-⋅⋅==,故 C xx x dx x +-+⋅=-⎰2164arcsin81622. (2)令)2π2π(tan 2<<-=t t x ,则t t x t x d sec 2d ,sec 8)4(23232==+,于是C t t t t t tx x +==⋅=+⎰⎰⎰2sin d 2cos d sec 2sec 41)4(d 23232. 由右图所示的直角三角形,得24sin xx t +=故C xx x x ++=+⎰223242)4(d .(4) 设 t x sin = ,t x cos 12=-,t t x d cos d = , 于是原式=⎰t t tt d cos cos sin 2=⎰t t d sin 2=⎰-t t d 22cos 1 =21⎰⎰-)2(d 2cos 41d t t t ==+-C t t 2sin 4121C t t t +-cos sin 2121=C x x x +--212arcsin 21.5.计算下列积分:(1)⎰x x d 2ln , (2)⎰x x d 2arctan , (3) ⎰x x xd e 4,(4)⎰x x xd 4sine 5, (5) ⎰x x x d 100sin , (6) ⎰x x x d 2arctan .解:(1))2ln d(2ln d 2ln x x x x x x ⎰-=⎰=x xx x x d 222ln ⋅⎰- =C x x x +-2ln .(2)⎰x x d 2arctan =)d(arctan22arctan x x x x ⎰- =x x x x x d )2(122arctan 2+⋅⎰- =⎰+-2241)(d 2arctan x x x x=)41(d 411412arctan 22x xx x ++-⎰ =C x x x ++-)41ln(412arctan 2.(3)x x x x x x x xx d e 41e 41de 41d e 4444⎰-==⎰⎰=C x xx +-44e 161e 41. (4)5555e 1e e sin 4d sin 4d()e sin 4d(sin 4)555x xxx x x x x x ⎰=⎰=-⎰ =x x x x xd 4cose 544sin e5155⎰-1=5e d 4cos 544sin e 5155xx x x ⎰-=⎥⎦⎤⎢⎣⎡--⎰)4cos d(5e 4cos 5e 544sin e 51555x x x xx x=x x x x x x xd 4sine 25164cos e 2544sin e 51555⎰--, 移项合并,得C x x x x xx+-=⎰)4cos 44sin 5(e 411d 4sin e55. (5)⎰---=-⎰=⎰x xx x x x x x x d )100100cos (100100cos )100100cos (d d 100sin=C xx x +-100100cos 10000100sin .(6)⎰x x x d 2arctan =⎰)2d(2arctan 2x x=⎰-)2(arctan d 22arctan 222x x x x =x x x x x d )2(1222arctan 2222⎰+⋅- =x x x x d )4111(412arctan 222⎰+-- =C x x x x ++-2arctan 8142arctan 22. 6.计算 (1)x xxd e )1(2⎰+ , (2) 3s e c d x x ⎰.解:(1) 选 12+=x u ,=v d x e x d , =v xe , x x u d 2d =, 于是原式 )1(2+=x x e ⎰-x 2xe x d ,对于⎰x x e x d 再使用分部积分法,选x u =, =v d x e x d , 则 x u d d =,=v xe ,从而⎰x xex d =x x e ⎰-x x d e =x x e C x +-e .原式=x e =+--)e e (21C x x x )12(2++x x C x+e (12C C =), 为了简便起见,所设 x u =,=v xe 等过程不必写出来,其解题步骤如下:⎰x xedx =⎰x d x e =x C x x x x x x +-=-⎰e e d e e .(2)3sec d x x ⎰=)(tan d sec x x ⎰=x x tan sec ⎰-)(sec d tan x x=x x tan sec ⎰-x x x d sec tan 2=sec tan x x -x x x d sec )1(sec 2-⎰=sec tan x x -⎰x x d sec 3+⎰x x d sec=sec tan x x -⎰x x d sec 3+x x tan sec ln +, 式中出现了“循环”,即再出现了⎰x x d sec 3移至左端,整理得3sec d x x ⎰=21[x x tan sec +x x tan sec ln +]+C . 7. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 7)1(,102427)83(,5)0(,11)1(=-===-f f f f 的大小,知 11,102427max min =-=f f , 由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即 22d )524(512271134≤+-≤-⎰-x x x .8. 求函数21)(x x f -=在闭区间[-1,1]上的平均值.解:平均值⎰-=⋅⋅=---=11224π21π21d 1)1(11x x μ. 9. 若⎰=2d sin )(2x xt t x f ,则)(x f '=?解:)(x f '=242222sin sin 2sin )sin()(x x x x x x -=-'.10.已知 ⎰+=t t xxx F d 1sin )(2 , 求 )(x F '.解:)(x F '=)2(12x x +-+x x cos sin 1⋅+=++-212x x x x cos sin 1⋅+.11. 求极限x tt x x πcos 1d πsin lim11+⎰→.解:此极限是“0”型未定型,由洛必达法则,得xtt x x πcos 1d πsin lim11+⎰→=)πcos 1()d πsin (lim11'+'⎰→x t t xx =π1)π1(lim πsin ππsin lim11-=-=-→→x x x x12.计算下列定积分(1)⎰-20d |1|x x , (2)⎰-122d ||x x x , (3)⎰π20d |sin |x x .解:(1)⎰-20d |1|x x =⎰-10d )1(x x +⎰-21d )1(x x=212122)1(2)1(-+--x x =2121+=1. (2)⎰-122d ||x x x =⎰--023d )(x x +⎰13d x x=10402444x x +--=4+41741=. (3)⎰π20d |sin |x x =⎰πd sin x x +⎰-π2πd )sin (x x=π2ππ0cos )cos (x x +-=2+2=4.13.计算下列定积分(1)⎰--2π2π3d cos cos x x x ,(2)⎰--112d 1x x .解:(1)x x x x x x d sin )(cos 2d cos cos 212π2π2π03⎰⎰-=-=34cos 34)cos d()(cos 22π0232π021=-=-⎰x x x .(2)⎰⎰⎰---=-=-112π2π2π2π222d )(cos )sin d()(sin 1d 1t t t t x x=2=+=+=⎰⎰2π02π02π02)2sin 21(d 22cos 12d )(cos t t t t t t 2π.14.计算 (1)⎰+-4d 11x xx, (2)⎰4π4d tan sec x x x .解:(1)利用换元积分法,注意在换元时必须同时换限.令 x t =,x 2t = ,t t x d 2d = ,当0=x 时,0=t ,当4=x 时,2=t ,于是⎰+-4d 11x xx=⎰+-20d 211t t t t =⎰+--20d ]1424[t t t(2)⎰4π04d tan sec x x x =⎰4π03)(sec d sec x x43411sec 414π04=-==x .15. 计算下列定积分:(1)x x x d e )15(405⎰+, (2)x x d )12ln(e21⎰+,(3)x x x d πcos e 10π⎰, (4)x x x x x d )e 3(133⎰++.解:(1)x x xd e )15(405⎰+=5e d )15(540x x ⎰+=⎰+-+10515)15(d 5e )15(5e x x xx =5155e 5e51e 6=--x .(2)x x d )12ln(e21⎰+=()())12ln d(12ln e21e21+-+⎰x x x x()1e 23ln 231e 4ln )21e 2(+--++=. (3) x x x d πcos e 10π⎰=ππsin d e 10πx x ⎰ =0x x x d πsin e 10π⎰-=)ππcos d(e 1πxx --⎰ =-+-)1e (π1πx x x d πcos e 10π⎰移项合并得x x x d πcos e 10π⎰)1e (π21π+-=.(4)x x x xxd )e 3(1033⎰++)e 313ln 34(d 3104xx x x ++=⎰ =4514e 923ln 23ln 3)e 913ln 320(e 313ln 3413213253++-=++-++x x x 16.计算(1)⎰1d arctan x x , (2)x x x d ln 2e e1⎰.解:(1)⎰1d arctan x x =10arctan x x⎰+-102d 1x x x=102)1ln(214πx +- =2ln 214-π .(2) 由于在[1,e1]上0ln ≤x ;在[2e ,1]上0ln ≥x ,所以x x x d ln 2e e1⎰=x x x d )ln (1e1⎰-+x x x d ln 2e 1⎰=)2(d ln 21e1x x ⎰-+)2d(ln 2e 12x x ⎰=[-x x ln 22+42x ]1e 1+[x x ln 22-42x ]2e 1=41-(412e 1+212e 1)+(4e -414e +41) =21-432e 1+434e .17.判别下列广义积分的敛散性,如果收敛计算其值 . (1)⎰∞++022d )1(x x x, (2)⎰∞+02d 1x x , (3)x xd e 1100⎰∞+-, (4)⎰∞++02100d x x . 解:(1) 因为积分区间为无穷区间,所以原式=+∞→b lim ⎰+bx x x 022d )1(=+∞→b lim ⎰++b x x 0222)1()1(d 21=bb x 02])1(21[lim +-+∞→ =]21)1(21[lim 2++-+∞→b b =21,故所给广义积分收敛,且其值为21. (2)⎰∞+02d 1xx =+∞=-=-+∞→→+∞+x x x x x 1lim 1lim )1(00, ∴⎰∞+02d 1x x发散. (3)x xd e 1100⎰∞+-=1001001100e 1001)100e (0100e --+∞-=--=-x .(4)⎰∞++02100d x x=20π10arctan 1010=+∞x . 18.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.解:如图,由⎪⎩⎪⎨⎧-==,)2(,22x y x y 得两曲线交点(1,1). 解一 取x 为积分变量,]2,0[∈x , 所求面积323)2(3d )2(d 213103212102=-+=-+=⎰⎰x xx x x x A . 解二 取y 为积分变量,y 的变化区间为[0,1],32)d y -y -2(1==⎰y A . 显然,解法二优于解法一.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 19. 求下列曲线所围成的图形的面积:抛物线22xy =与直线42=-y x . 解:先画图,如图所示,并由方程⎪⎩⎪⎨⎧=-=4222y x x y ,求出交点为(2,1-),(8,2). 解一 取y 为积分变量,y 的变化区间为[1-,2], 在区间[1-,2]上任取一子区间[y ,y +y d ], 则面积微元 A d =y y y d )242(2-+, 则所求面积为A =⎰--+212d )242(y y y = (32324y y y -+)21-=9.解二 取x 为积分变量,x 的变化区间 为[0,8],由图知,若在此区间上任取子区间, 需分成[0,2],[2,8]两部分完成.在区间[0,2]上任取一子区间[x ,x +x d ], 则面积微元 A d 1=x xd ]22[, 在区间[2,8]上任取一子区间[x ,x +x d ], 则面积微元 A d 2=[)4(212--x x ]x d , 于是得A =A 1+A 2A =⎰2d 22x x+A x xx d )222(82+-⎰=23322x 20+[23322x 224x x -+]82=9 .显然,解法一优于解法二.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 20.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积. 解:如右图,所求体积y=135)325(πx x x ++=π1528. 二、 微分方程1. 验证xx C C x C y --+=e e 21为微分方程0'2''=++y y y 的解,并说明是该方程的通解. 证明: xx C C x C y --+=e e 21,x x C x C C C y ----=∴e e )('121, x x C x C C C y --+-=e e )2(''112,于是0'2''=++C C C y y y ,故C y 是0'2''=++y y y 的解.x x -e 与x -e 线性无关,∴0'2''=++y y y 中的1C 与2C 相互独立,即C y 中含有与方程0'2''=++y y y 阶数相同(个数均为2)的独立任意常数,故C y 是该方程的通解. 2. 用分离变量法求解下列微分方程:(1)22d d y x x y =, (2)21d d x y x y -=, (3)y x x x y )1(d d 2++=,且e )0(=y . 解:(1)分离变量得x x yy d d 22=,(0≠y ) 两边积分得⎰⎰=x x y yd d 122 , 求积分得 3313Cx y +=-, 从而通解为Cx y +-=33及验证0=y 也是方程的解.(特别注意,此解不能并入通解)(2)分离变量得21d d xx y y -=,(0≠y )两边积分得⎰⎰-=x x y y d 11d 12,求积分得 1arcsin ||ln C x y +=, 即 )e (e ee 11arcsin arcsin C x xCC C y ±==±=,从而通解为 xC y arcsin e =,验证0=y 也是方程的解.(3)分离变量得x x x yyd )1(d 2++=,(0≠y ) 两边积分得⎰⎰++=x x x y y d )1(d 12求积分得 13232||ln C x x x y +++=, 即 )e (eee 1332232132C x x x C C C y x x x ±==±=++++,从而通解为3232ex x x C y ++=,验证0=y 也是方程的解.由e )0(=y ,得e =C , 故特解为32132e x x x y +++=.3.求解下列一阶线性微分方程(1)x b ay y sin '=+(其中b a ,为常数), (2)21d d y x x y +=. 解:(1)因a x P =)(, x b x Q s i n )(=, 故通解为)]cos sin (e 1[e 2x x a a b C axax -++=-. (2)方程变形为2d d y x yx=-, 这是x 关于y 的一阶线性微分方程,其中2)(,1)(y y Q y P =-=,通解为:)22(e 2++-=y y C y .以上是用一阶线性微分方程的通解公式求解,要熟练掌握常数变易法! 4.求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解:这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-,两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .5.求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为1d d +=xyx yx y ,令 x yu =, 则 1d d +=+u u x u x u ,即 x x u u u d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程 01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =, 所以原方程的通解为 1ln C y y x=,即yx C ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy x y 分离变量,得xy xy2d d =,x x y y d 2d =, 两边积分,得x x y y ⎰⎰=d 2d ,C x y +=2ln , )e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数). 解二 这里x x P 2)(-=,x x Q x cos e)(2=代入通解的公式得=)d ecos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).6.求微分方程 123='+''y x y x 的通解.解:方程中不显含未知函数y ,令P y =',x P y d d ='',代入原方程,得 1d d 23=+P x xP x , 311d d xP x x P =+,这是关于未知函数)(x P 的一阶线性微分方程,代入常数变易法的通解公式,所以 =)(x P 1d 13d 1d e 1(eC x xxx xx +⎰⎰⎰-) =1ln 3ln d e 1(e C x x x x+⎰-)=13d 1(1C x x xx +⋅⎰)=11(1C x x +-)=x C x 121+-, 由此x y d d =x Cx 121+-,⎰+-=x x C xy d )1(12=21ln 1C x C x ++, 因此,原方程的通解为 y =21ln 1C x C x++ (21,C C 为任意常数). 7.求微分方程 )1()(22-''='y y y 满足初始条件21==x y ,11-='=x y 的特解.解:方程不显含x ,令 P y =',y P Py d d ='',则方程可化为 )1(d d 22-=y yP PP , 当 0≠P 时y y P P d 12d -=,于是 21)1(-=y C P . 根据 21==x y,11-='=x y ,知12-='=y y 代入上式,得 11-=C ,从而得到x y yd )1(d 2-=-,积分得211C x y +=-,再由21==x y ,求得 02=C ,于是当0≠P 时,原方程满足所给初始条件的特解为x y =-11, 当0=P 时,得C y =(常数),显然这个解也满足方程,这个解可包含在解x y =-11中. 故原方程满足所给初始条件的特解为x y =-11,即 xy 11+=. 8.求方程0)'(''2=-y yy 的通解.解:方程不显含自变量x , 令)('y p y =原方程可变为0d d 2=-⋅⋅p ypp y , 即0=p 或p ypy=d d , 由0'==p y 得C y =.由p y p y=d d 分离变量,得yy p p d d =, 两边积分得⎰⎰=y yp p d d ,求积分得 1ln ln ln C y p +=, 即y C p 1=, 解y C y 1'= 得xC C y 1e 2=,因C y =包含于xC C y 1e2=中, 故原方程通解为 xC C y 1e2=.9.写出下列微分方程的通解:(1)0'2''=+-y y y , (2)08'=+y y . 解:(1)特征方程0122=+-r r , 特征根121==r r , 通解为xx C C y e )(21+=.(2)特征方程08=+r , 特征根8-=r , 通解为xC y 81e-=.10.求下列微分方程满足所给初始条件的特解:(1)xy y y 3e6'2''-=-+, 1)0(',1)0(==y y ,(2) x y y sin 2''=+,1)0(',1)0(==y y . 解:(1)先解06'2''=-+y y y ,其特征方程为0622=-+r r , 特征根为711+-=r , 712--=r ,故通解 xxC C y )71(2)71(1e e --+-+=.因x3e-中3-=λ不是特征方程的根,且1)(=x P m , 故设原方程特解xp A y 3e-=,代入原方程化简,得31-=A ,从而原方程通解为x x C C y )71(2)71(1e e --+-+=x 3e 31--.由0)0(=y ,得03121=-+C C , 由0)0('=y ,得11)71()71(21=++-+-C C ,解得42771+=C , 42772-=C , 故所求特解x xxp y 3)71()71(e 31e 4277e 4277---+---++=. (2)先解02=+''y y ,其特征方程为022=+r ,特征根为i 2,i 221-==r r ,故通解x C x C y C 2sin 2cos 21+=.设原方程特解x b x a y s i n c o s *+=,代入原方程,化简得1,0==b a ,故原方程通解x x C x C y sin 2sin 2cos 21++=,由00)0(1==C y 得,由1)0(='y ,得02=C ,故所求特解为x y sin =.11. 求微分方程 xx y y e 4=-''满足初始条件00==x y,10='=x y 的特解.解:对应齐次方程的特征方程为 012=-r ,特征根 12,1±=r .故对应齐次微分方程的通解为 xx c C C y -+=e e 21.因为1=λ是特征方程的单根,所以设特解为 xP b x b x y e )(10+=,代入原方程得 x x b b b 4422010=++,比较同类项系数得 10=b ,11-=b ,从而原方程的特解为 xP x x y e )1(-=, 故原方程的通解为 =y xxC C -+ee 21x x x e )1(-+,由初始条件 0=x 时,0='=y y ,得 ⎩⎨⎧=-=+,2,02121C C C C从而11=C ,12-=C .因此满足初始条件的特解为 =y xx--ee x x x e )1(-+.12.求微分方程 x y y y x2sin e 842=+'-''的通解.解:对应的齐次微分方程的特征方程 0842=+-r r ,特征根 i 222,1±=r .于是所对应的齐次微分方程通解为)2sin 2cos (e 212x C x C y x c +=.为了求原方程x y y y x2sin e842=+'-''的一个特解,先求x y y y )i 22(e 84+=+'-''(*)的特解.由于i 22+=λ是特征方程的单根,且1)(=x P m 是零次多项式。

高等数学复习题附答案)

高等数学复习题附答案)

高等数学复习题一、选择题1、已知函数)2arctan(2)(-+-=x x x f ,则函数)(x f 的定义域为 ( ) ①)2,1(-, ②]3,1(-, ③]2,1[, ④]2,(-∞.2、已知函数)(x f 的定义域为[0,1],则函数)2(x f -的定义域为 ( )①]2,(-∞, ②(1,2), ③[0,1], ④[1,2].3、已知函数|1|arcsin )(-=x x f ,则函数)(x f 的定义域为 ( ) ①]1,1[-, ②]1,1(-, ③)2,0(, ④]2,0[.4、=∞→xx x πsinlim ( )① 1 ② π ③不存在 ④ 0 5、下列函数中为奇函数的是( )①)1(log 2++x x a , ②2x x e e -+, ③x cos , ④x 2.6、下列函数中是相同函数的是( )① 1)(,)(==x g xx x f ② 33341)(,)(-=-=x x x g x x x f ③ 2)()(,)(x x g x x f == ④ x x g x x f lg 2)(,lg )(2== 7、=→xxx 3sin lim( )①1 ② 2 ③ 3 ④ ∞8、()=+→xx x 1021lim( )①2-e , ②2e , ③2, ④+∞. 9、=→xx x arcsin 0lim( )①0, ②1, ③2, ④不存在.10、=⎪⎭⎫⎝⎛+∞→xx x 21lim ( )①2-e , ②2e , ③2, ④+∞. 11、=++--∞→103422lim 22x x x x x ( )①0, ②1, ③2, ④不存在.12、=⎪⎭⎫⎝⎛+∞→xx x x 2lim ( )①2-e , ②2e , ③2, ④+∞. 13、=∞→x x x arctan lim ( )① 0, ② 1, ③ 2, ④不存在. 14、()=+→xx x 1021lim( )①2-e , ②2e , ③2, ④+∞.15、当0→x 时,下列函数为无穷小量的是 ( ) ①x x sin ②x x 1sin 2 ③)1ln(1+x x ④x11+ 16、当xx 2t a n 0时,与→等价的无穷小量是( )①x -, ②x , ③2x , ④2x .17、下列函数在指定变化趋势下是无穷小量的是 ( )①1,ln →x x , ②+→0,ln x x , ③∞→x e x ,, ④+∞→x e x ,.18、下列函数在指定变化趋势下不是无穷小量的是 ( )①1,ln →x x , ②0,cos →x x , ③∞→x x ,sin 1, ④+∞→-x ex,. 19、当x x 2s in 0时,与→等价的无穷小量是( )①x -, ②x , ③2x , ④2x . 20、点0=x 是函数⎩⎨⎧≥-<=0,10,)(x e x x x f x的 ( ) ①连续点 ②可去间断点③第二类间断点 ④第一类间断点,但不是可去间断点 21、函数)(x f y =由参数方程0sin cos ≠⎩⎨⎧==a ta y ta x ,则=dxy d( )①t sin - ② t tan ③ t cot - ④t sec22、设==dy e y x 则,( )①dx e x x, ②dx e x, ③xdx e x 2, ④xdx e x23、设==-dy e y x则,1( )①dx e x1-, ②dx e xx 121--, ③dx e x x 121-, ④dx e x x 11--24、设,sin 2x y = 则=dy ( ) ① x x cos sin 2 ② xdx cos 2 ③ xdx sin 2 ④xdx 2sin 25、设函数||)(x x f = 则在=x 点处( )①不连续, ②连续但左右导数均不存在, ③连续且可导, ④连续但不可导. 26、设函数||cos )(x x f = 则在=x 点处( )①不连续, ②连续但左右导数均不存在, ③连续且可导, ④连续但不可导.27、设函数x x f =)(,则)(x f 在点0=x 处 ( ) ①可导 ②不连续③连续,但不可导 ④可微 28、设21,1,()31,1x x f x x x ⎧+<=⎨-≥⎩,则f (x )在x =1处 ………………………………( )①既可导又连续 ②可导但不连续 ③不连续也不可导 ④连续但不可导 29、函数xy sin =,则=)12(y( )①x cos ② x cos - ③ x sin ④x sin -30、曲线26322-+=x x y 在点(3,1)处的切线的斜率=k ( )①3 ②1 ③15 ④ 0 31、设'0000(2)()()limh f x h f x f x h→+-=存在,则 ………………………..…..( )①'0()f x ②'0()f x h - ③'02()f x h - ④'02()f x 32.设函数3)(x x f = , 则在0=x 是函数的( )① 驻点与极值点; ②不是驻点与极值点; ③极值点; ④驻点. 33、设函数()f x 区间[0,1]满足罗尔定理的是( )①|5.0|)(-=x x f , ②⎩⎨⎧≥-<=5.0225.02)(x x x xx f , ③)sin()(x x f π=, ④ x x f =)(34、设函数()f x 在x 的()00f x '=,则()f x 在0x( )① 一定取极大值 ② 一定 取极小值 ③ 一定 不取极值 ④ 极值情况不确定35、设函数)(x f 在0x 处具有二阶导数,且0)(0='x f ,0)(0<''x f ,则)(0x f 为 ① 最小值 ②极小值 ③最大值 ④极大值 36、⎰='])([dx x F d( )①dx x F )(', ②)(x F , ③dx x F )(, ④. )(x F '37、设x sin 是)(x f 的一个原函数,则⎰=dx x f )( ( ) ①C x +sin ② C x +cos ③C x x ++cos sin ④C x x +sin 38、⎰=-dx xx 212( )①C x +arcsin , ②C x +-21, ③C x +--212, ④C x +2arcsin 21 39、⎰=+dx x x212( )①C x +arctan , ②C x +2arctan 21, ③C x +2, ④C x ++)1ln(2 40、下列函数中,为)(222x x e e y --=的原函数的是………………………….( )① x x e e 22-- ②)(2122x x e e -- ③x x e e 22-+ ④)(2122x x e e -+ 41、dx x x e⎰+1)ln 1(1= ( )① 12ln + ②C +2ln ③2 ④2ln 42、=⎰badad dx x f )(( )① )()(a f b f - ②)(a f - ③ f(b ) ④ 0 43、=⎰21sin xdx x dx d( )① x sin x ②0 ③2 ④3 44、=⎰badbd dx x f )(( )① )()(a f b f -, ② f(b ), ③)(a f -, ④ 0. 二、填空题 1、 若)(x f 的定义域为)0,(-∞,则)(ln x f 的定义域为 ; 2、已知函数291)(xx f -=,则函数)(x f 的定义域为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学现代远程教育课程考试复习题及参考答案高等数学一、填空题1.设2)(xx a a x f -+=,则函数的图形关于 对称。

2.若⎩⎨⎧<≤+<<-=20102sin 2x x x x y ,则=)2(πy .3. 极限limsinsin x x x x→=021。

4.已知22lim 222=--++→x x bax x x ,则=a _____, =b _____。

5.已知0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数a = 6.设)(22y z y z x ϕ=+,其中ϕ可微,则yz∂∂= 。

7.设2e yz u x=,其中),(y x z z =由0=+++xyz z y x 确定的隐函数,则=∂∂)1,0(xu 。

8.设ϕϕ,),()(1f y x y xy f xz ++=具有二阶连续导数,则=∂∂∂y x z 2 。

9.函数y x xy xy y x f 22),(--=的可能极值点为 和 。

10.设||)1(sin ),(22xy x y x y x f -+=则_____________)0,1('=y f . 11.=⎰xdx x 2sin 2.12.之间所围图形的面积为上曲线在区间x y x y sin ,cos ],0[==π .13.若21d e 0=⎰∞+-x kx ,则_________=k 。

14.设D:122≤+y x ,则由估值不等式得 ⎰⎰≤++≤Ddxdy y x )14(2215.设D 由22,2,1,2y x y x y y ====围成(0x ≥),则(),Df x y d σ⎰⎰在直角坐标系下的两种积分次序为_______________和_______________. 16.设D 为01,01y x x ≤≤-≤≤,则Df dxdy ⎰⎰的极坐标形式的二次积分为____. 17.设级数∑∞=+121n pn收敛,则常数p 的最大取值范围是 .18.=+-+-⎰10 642)!3!2!11(dx x x x x Λ . 19. 方程01122=-+-ydy xdx 的通解为20.微分方程025204=+'-''y y 的通解为 .21.当n=_________时,方程ny x q y x p y )()('=+ 为一阶线性微分方程。

22. 若44⨯阶矩阵A 的行列式为*||3,A A =是A 的伴随矩阵,则*||A =__________. 23.设A n n ⨯与B m m ⨯均可逆,则C =00⎛⎫⎪⎝⎭A B 也可逆,且1C -= . 24.设⎥⎦⎤⎢⎣⎡=3213A ,且X E AX 3=-,则X = .25.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--330204212的秩为 .26. 向量(1,0,3,5),(4,2,0,1)αβ=--=-,其内积为____________.27. n 阶方阵A 的列向量组线性无关的充要条件是 . 28. 给定向量组()()(),231,0,111321===αααb a,若321,,ααα线性相关,则a ,b 满足关系式 .29. 已知向量组(I)与由向量组(II)可相互线性表示,则r(I)与r(II)之间向量个数的大小关系是 .30 向量γ=(2,1)T可以用α=(0,1)T与 β=(1,3)T线性表示为 .31. 方程组Ax=0有非零解是非齐次方程组AB=b 有无穷组解的 条件.32. 设A 为m ×n 矩阵,非齐次线性方程组=Ax b 有唯一解的充要条件是r(A)r(A |b )= .33.已知n 元线性方程组AX b =有解,且n A r <)(,则该方程组的一般解中自由未知量的个数为 .34.设0λ是方阵A 的一个特征值,则齐次线性方程组()0x =-A E 0λ的 都是A 的属于0λ的特征向量.35.若3阶矩阵A 的特征值为1,2,-3,则1-A 的特征值为 .36.设A 是n 阶方阵,|A|≠0,*A 为A 的伴随矩阵,E 为n 阶单位矩阵,若A 有特征值0λ,则()E A 23*+必有特征值=λ.37.,分别为实对称矩阵A 的两个不同特征值21,λλ所对应的特征向量,则与 的内积(,)= .38.二次型32414321),,,(x x x x x x x x f +=的秩为 .39. 矩阵4202401A λλ⎛⎫ ⎪= ⎪ ⎪⎝⎭为正定矩阵,则λ的取值范围是_________.40. 二次型2221231231213(,,)2322f x x x x x tx x x x x =++++是正定的,则t 的取值范围是_____.41. A 、B 、C 代表三事件,事件“A 、B 、C 至少有二个发生”可表示为 . 42. 事件A 、B 相互独立,且知()()0.2,0.5P A P B ==则()P A B =U . 43. 若随机事件A 和B 都不发生的概率为p ,则A 和B 至少有一个发生的概率为 . 44. 在相同条件下,对目标独立地进行5次射击,如果每次射击命中率为0.6, 那么击中目标k 次的概率为 (05k ≤≤).45. 设随机变量X 服从泊松分布,且{}{}P =1P =2,X X =则{}P =3X = .46. 设随机变量X 的分布密度为01()120xx f x a xx ≤<⎧⎪=-≤<⎨⎪⎩其它,则a = . 47. 若二维随机变量(X ,Y )的联合分布律为Y X 1 2 1 1/163/16 2ab且X ,Y 相互独立,则常数a = ,b = .48. 设X 的分布密度为()f x ,则3Y X =的分布密度为 .49. 二维随机变量(X ,Y )的联合分布律为则α与β应满足的条件是 ,当X ,Y 相互独立时,α= .50. 设随机变量X 与Y 相互独立,且~(1,2),~(0,1).X N Y N 令Z = -Y + 2X +3,则()D Z = .51. 已知随机变量X 的数学期望2()1,()4E X E X ==.令Y =2X -3,则()D Y = .二、单项选择题1.设1)(+=x x f ,则)1)((+x f f =( ).A . xB .x + 1C .x + 2D .x + 3 2. 下列函数中,( )不是基本初等函数.A . xy )e1(= B . 2ln x y = C . xxy cos sin =D . 35x y = 3. 下列各对函数中,( )中的两个函数相等. A . 2)1ln(xx x y -=与x x g )1ln(-= B . 2ln x y =与x g ln 2= C . x y 2sin 1-=与x g cos = D . )1(-=x x y 与)1(-=x x y4. 设)(x f 在0x x =处间断,则有( ) (A) )(x f 在0x x =处一定没有意义;(B) )0()0(0+≠-x f x f ; (即)(lim )(lim 0x f x f x x x x +-→→≠);(C) )(lim 0x f x x →不存在,或∞=→)(lim 0x f x x ;(D) 若)(x f 在0x x =处有定义,则0x x →时,)()(0x f x f -不是无穷小5.函数⎪⎩⎪⎨⎧=≠+-=0,0,211)(x k x xxx f 在x = 0处连续,则k = ( ).A .-2B .-1C .1D .26.若)1()(--=x x ae xf x ,0=x 为无穷间断点,1=x 为可去间断点,则=a ( ).(A )1 (B )0 (C )e (D )e -17.函数22224)2ln(y x y x z --+-+=的定义域为( ).A .222≠+y xB .422≠+y xC .222≥+y xD .4222≤+<y x 8.二重极限4220lim y x xy y x +→→( ) (A )等于0 (B )等于1 (C) 等于21(D )不存在 9.利用变量替换xyv x u ==,,一定可以把方程z y z yx z x =∂∂+∂∂化为新的方程( ). (A)z u z u=∂∂ (B)z v z v =∂∂ (C)z vzu =∂∂ (D)z uzv=∂∂ 10.若)()(x f x f --=,在),0(+∞内,0)('',0)('>>x f x f 则)(x f 在)0,(-∞内( ). (A ) ;0)('',0)('<<x f x f (B ) ;0)('',0)('><x f x f (C ) ,0)('',0)('<>x f x f (D ) ,0)('',0)('>>x f x f 11.设0)(=x x f 在的某个邻域内连续,且0)0(=f ,12sin 2)(lim2=→xx f x ,则在点0=x 处)(x f ( ).(A )不可导 (B )可导,且0)0(≠'f (C )取得极大值 (D )取得极小值 12.设函数)(),(x g x f 是大于零的可导函数,且0)()()()(<'-'x g x f x g x f , 则当b x a <<时,有( ).(A ))()()()(x g b f b g x f > (B ))()()()(x g a f a g x f > (C ))()()()(b g b f x g x f > (D ))()()()(a g a f x g x f > 13.='=⎰-)(,)()(,)( x F dt t f x F x f xe x则且是连续函数设( ).(A ))()(x f e f e x x----(B ))()(x f e f e x x+---(C ))()(x f e f ex x ---(D ))()(x f e f ex x+--14.设[]2,1)(在x f 上具有连续导数,且1)(,1)2(,1)1(21-===⎰dx x f f f ,则='⎰21)(dx x f x ( ).(A )2 (B )1 (C )-1 (D )-215.设[]b a x f ,)(在上二阶可导,且.0)(,0)(,0)(<''<'>x f x f x f 记⎰=badx x f S 1)( ))((2a b b f S -=, )(2)()(3a b b f a f S -+=,则有( ).(A )321S S S << (B )132S S S << (C )213S S S << (D )231S S S << 16.设幂级数∑∞=-1)1(n n nx a在1-=x 处收敛. 则此级数在2=x 处( ).(A )绝对收敛 (B )条件收敛(C )发散 (D )收敛性不能确定 17.下列命题中,正确的是( ). (A )若级数∑∑∞=∞=11n nn n vu 与的一般项有),2,1(Λ=<n v u n n 则有∑∑∞=∞=<11n n nn vu(B )若正项级数∑∞=1n n u 满足∑∞=+=≥11),,2,1(1n n nn u n u u 则Λ发散 (C )若正项级数∑∞=1n n u 收敛,则1lim1<+∞→nn n u u(D )若幂级数∑∞=1n n n x a 的收敛半径为)0(+∞<<R R ,则R a a n n n =+∞→1lim.18.设级数∑∞=-12)1(n nn na 收敛,则级数∑∞=1n n a ( ).(A )绝对收敛 (B )条件收敛 (C )发散 (D )敛散性不确定19. 微分方程()()dy dx dy dx y x +=-+的通解是( )(A )();ln c y x y x =+++ (B )();ln c y x y x =++- (C )();ln c y x y x =+-+ (D )().ln c y x y x =+--20. 设)(x f y =满足微分方程055=+'-''y y y ,若()()0,000='<x f x f ,则函数()x f 在点0x ( )(A )取极大值; (B )取极小值; (C )附近单调增加; (D )附近单调减少. 21. 函数()x y y =在点x 处的增量满足 ()()012→∆∆++∆=∆x x o x xy y且()π=0y ,则()=1y (D )(A );2π (B );π (C );4πe (D ).4ππe22. 若含有s 个向量的向量组线性相关,且该向量组的秩为r ,则必有( ). (A) r=s (B) r>s (C) r=s+1 (D) r<s23. 已知向量组1234(1,1,1,0),(0,,0,1),(2,2,0,1),(0,0,2,1)k αααα====线性相关,则k =( )(A) 1- (B) 2- (C) 0 (D) 1 24. 向量组12,,,s αααL 线性相关的充分必要条件是( ) (A) 12,,,s αααL 中含有零向量(B) 12,,,s αααL 中有两个向量的对应分量成比例(C) 12,,,s αααL 中每一个向量都可由其余1s -个向量线性表示 (D) 12,,,s αααL 中至少有一个向量可由其余1s -个向量线性表示25.对于向量组12(,,,),r αααL ,因为120000r +++=αααL ,所以12,,,r αααL 是[ ].( A )全为零向量; ( B )线性相关;( C )线性无关; ( D )任意.26. 设A ,B 均为n 阶矩阵,且AB=O ,则必有 ( ) (A) A=O 或B=O (B)|A |=0或|B |=0 ( C) A+B=O (D) |A |+|B |=027.若非齐次线性方程组A m ×n X = b 的( ),那么该方程组无解. A .秩(A ) = n B .秩(A )=mC .秩(A ) 秩 (A )D .秩(A )= 秩(A )28.若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛=41221λA ,则当λ=( )时线性方程组有无穷多解。

相关文档
最新文档