二次曲线指数平滑法

合集下载

二次曲线、指数曲线、季节指数

二次曲线、指数曲线、季节指数

(三)季节变动预测法
季节变动预测法是根据历史数据中所 包含的季节变动规律性,对预测目标的 未来状况作出预测的方法。
1、季节变动的特点和衡量指标
(1)季节变动及其特点
季节变动的循环周期为一年,而且在 一年中随着季节的更替呈现有规律的变 动。
(2)衡量指标
季节指数(%)=历年同季平均数/全时期总 平均数×100%
合计 1849.87 2058.17 1302.25 2008.20 7218.49 1804.62
全年比率平均法:
例:某商店2000-2004年分季销售资料, 用全年比率平均法测算季节指数。
历年各季的比率(%)=各季的数值 / 相应 度 年份
一季 度
二季 度

年度
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
合计
某企业近年营业额不同α值的指数平滑法对照表
α=0.3
α=0.5
营业额 指数平滑值 绝对误差 指数平滑值 绝对误差
(260)
262
260.60
257
259.52
252
季度 一季度 二季度 三季度 四季度 合计
年份
(1) (2) (3) (4) (5) (6)
2000 25.55 26.64 22.46 25.35 100.00
2001 22.48 30.35 17.86 29.31 100.00
2002 26.78 24.65 19.66 28.91 100.00
1992
(262)
1993 262 262.00
1994 257 258.50

二次指数平滑 数理统计法 定量分析 综合评价模型

二次指数平滑    数理统计法   定量分析   综合评价模型

摘要本文通过对数据建立数学建模竞赛的预测模型和定量评估模型,并对夏季运动会进行了评价。

通过历届夏季奥运会的运动员人数等相关数据,运用二次指数平滑预测法建立了人数预测的数学模型;另外,竞赛项目的普及程度、流行程度和财政收入情况,能够在一定程度上反映各竞赛项目的全球影响力水平,即采用数理统计法进行研究,选取此3项一级指标和14项二级指标进行统计学分析,对夏季奥运会竞赛项目的全球影响力进行综合评估、对比和档次的划分,并作合理化建议。

针对问题一,运用二次指数平滑预测法建立了预测函数:212121ˆ156093360T ya b T T +=+=+对函数进行合理的运算和证明,所得到的结果为18969人,误差预测结果为0.3178,说明模型的拟程度很好。

对于问题二,运用综合评价的思想,定义指标函数:12341nii PP P P P ==+++∑根据全球影响力总分的百分位数划分出4个档次,对各档次项目的全球影响力进行定量评估,并提出合理化建议。

关键字:二次指数平滑 数理统计法 定量分析 综合评价模型一、问题重述奥林匹克运动是人类社会的一个罕见的杰作,它将体育运动的多种功能发挥得淋漓尽致,影响力远远超出了体育的范畴。

请搜集参加历届夏季奥运会的运动员人数等数据,试着探讨以下问题:(1)建立数学模型,预测2012年第30届伦敦奥运会参赛运动员人数。

(2)定量评价夏季奥运会,并提出合理化建议。

二、问题分析本题目主要研究奥运会参赛运动员的人数,以及通过已有的数据对夏季奥运会竞赛项目全球影响力进行定量分析,进而对其影响力和发展前景提出合理化建议。

问题一:是建立模型预测2012年第30届伦敦奥运会参赛运动员人数,属于预测分析的问题,并通过简单的分析可知,每届参赛的数量呈明显上升趋势,所以该问题可采用时间序列预测中的二次指数平滑预测法建立模型,以参赛人数为研究对象,对数据整理后,运用二次多项式对数据进行拟合预测。

问题二:是对夏季奥运会进行定量评估,主要采用数理统计法进行研究,选取国际奥委会项目委员会上所作报告中的3项一级指标(竞赛项目普及度、流行度、财政收入),14项二级指标作为各竞赛项目全球影响力评估分析的依据。

二次曲线模型和三次指数平滑模型

二次曲线模型和三次指数平滑模型

二次曲线模型简介二次曲线模型的一般形式为:^2012t y b b t b t =++ (20b ≠) (3-1)用阶差法识别二次曲线模型,如表(3-1)表(3-1) 二次曲线模型的阶差计算表由表(2-1)可知,二次曲线模型的特点是二阶差分为一个常数。

因此,当一个时间序列{}t y 的二阶分差近似为一个常数时,都可以选择二次曲线模型进行预测。

二次曲线模型的参数估计可以采用最小二乘法。

首先,将二次曲线模型线性化,令1t t = ,22t t = ,这样将二次曲线模型转化为二元线性模型:^01122t y b b t b t =++ (3-2)然后,根据最小二乘法原理:使误差平方和^220112211()()nnt t t t t Q y y y b b t b t ===-=---∑∑ (3-3)达到最小,从而得到参数0b 、1b 和2b 的估计值。

根据极值原理,Q 在其偏导数为0时取得极值。

因此,令01122001122110112222202()02()0t t t Qy b b t b t b Qy b b t b t t b Qy b b t b t t b ⎧∂=----=⎪∂⎪⎪∂=----=⎨∂⎪⎪∂=----=⎪∂⎩∑∑∑ (3-4) 整理后即的正规方程组:01122210111212220211222t t ty nb b t b t t y b t b t b t t t y bt b t t b t ⎧=++⎪=++⎨⎪=++⎩∑∑∑∑∑∑∑∑∑∑∑ (3-5)即:2012230122234012t t t y nb b t b t ty b t b t b t t y b t b t b t ⎧=++⎪=++⎨⎪=++⎩∑∑∑∑∑∑∑∑∑∑∑ (3-6)最后,求解三元一次线性方程组式(3-6),即可得到参数0b 、1b 和2b 的估计值,从而得到二次曲线模型。

三次指数平滑法简介2.1.1 指数平滑公式如果时间序列的变化呈现二次曲线趋势时,可用三次指数平滑法进行预测。

二次指数平滑法-myOM

二次指数平滑法-myOM
亿元29282726252423222125亿奇数22925227亿2252122333delphi法应遵循的几个原则1向专家充分解释说明delphi法避免专家不了解或者曲解delphi法问题要集中问题要集中并有针对性不要过于分散避免组合事件如果一个事件中的部分是专家同意的而另一部分是不同意的则很难答复避免含糊不清的用语使用准确的专业术语避免普遍正常等模糊用语34delphi法应遵循的几个原则2领导意见不应强加于调查表中领导小组不要提前下结论调查表要简化问题的数量要限制适当支付报酬考虑对结果处理的工作量考虑轮间时间间隔35delphi法的适用范围难以借助精确的分析技术处理但建立在集体基础上的直观判断可以给出某些有用的结果面对一个庞大复杂的问题专家们以往没有交流思想的历史因为他们的经验与专业代表着不同的背景专家之间分歧隔阂严重或出于其他原因不宜面对面交换思想362
15
预测方法分类图
德尔菲法 定性预 测方法 预测 方法 定量预 测方法 时间序列 模型 部门主管集体讨论法
用户调查法
销售人员意见汇集法 因果模型 移动平均法 时间序列 平滑模型 时间序列 分解模型 指数平滑法 乘法模型 加法模型
16
两类需求预测方法的应用场合
定性预测方法: 1. 模糊和已知数据很少的场合(如新产品、新技术的发展) 2. 与直觉或经验有关的场合(如产品通过网络的销售量) 定量预测方法: 1. 稳定和已知很多历史数据的场合(如现有产品、当前技 术的发展) 2. 与数学技巧有关(如彩电的销售量)
12
2、预测的种类(宏观)
科学预测:对科学发展情况的预计与推测。如门捷列夫元 素周期表 技术预测:对技术进步情况的预计与推测。如能源技术 经济预测:对经济发展情况的预计与推测。 社会预测:对社会未来发展状况的预计与推测。如人口预 测、环境预测、社会制度等 需求预测:需求预测不仅为企业给出了其产品在未来的一 段时间里的需求期望水平,而且为企业的计划与控制决 策提供依据。

java二次指数平滑法预测未来的值

java二次指数平滑法预测未来的值

java⼆次指数平滑法预测未来的值指数平滑法是⼀种特殊的加权平均法,加权的特点是对离预测值较近的历史数据给予较⼤的权数,对离预测期较远的历史数据给予较⼩的权数,权数由近到远按指数规律递减,所以,这种预测⽅法被称为指数平滑法。

它可分为⼀次指数平滑法、⼆次指数平滑法及更⾼次指数平滑法。

⼀次指数平滑的局限性:像⼀次移动平均法⼀样,⼀次指数平滑法只适⽤于⽔平型历史数据的预测,⽽不适⽤于斜坡型线性趋势历史数据的预测。

⽽⼆次指数平滑法就是以斜坡型为模型来预测未来数据。

除了⼆次指数平滑法外,还有更⾼次的多次指数平滑法,由于它们在实际预测中并不常⽤,因此忽略。

所以就以⼆次指数平滑法为例: /*** ⼆次指数平滑法求预测值* @param list 基础数据集合* @param year 未来第⼏期* @param modulus 平滑系数* @return预测值*/private static Double getExpect(List<Double> list, int year, Double modulus ) {if (list.size() < 10 || modulus <= 0 || modulus >= 1) {return null;}Double modulusLeft = 1 - modulus;Double lastIndex = list.get(0);Double lastSecIndex = list.get(0);for (Double data :list) {lastIndex = modulus * data + modulusLeft * lastIndex;lastSecIndex = modulus * lastIndex + modulusLeft * lastSecIndex;}Double a = 2 * lastIndex - lastSecIndex;Double b = (modulus / modulusLeft) * (lastIndex - lastSecIndex);return a + b * year;}测试代码:public static void main(String[] args) {List<Double> list = new LinkedList<Double>();list.add(253993d);list.add(289665d);list.add(342785d);list.add(384763d);list.add(428964d);list.add(470614d);list.add(530217d);list.add(620206d);list.add(688212d);list.add(746422d);list.add(809592d);list.add(791376d);list.add(772682d);list.add(806048d);list.add(860855d);list.add(996633d);list.add(1092883d);list.add(1172596d);list.add(1245356d);list.add(1326094d);list.add(1378717d);list.add(1394413d);list.add(1478573d);list.add(1534122d);list.add(1608150d);Double value = getExpect(list, 1, 0.6);System.out.println(value);}。

二次指数平滑预测模型回归系数计算方法探讨

二次指数平滑预测模型回归系数计算方法探讨

二次指数平滑预测模型回归系数计算方法概述二次指数平滑预测模型是一种比较常用的时间序列预测模型,它用来对时间序列数据进行预测,其中回归系数是确定模型的关键参数,计算回归系数的方法是非常重要的,本文将探讨二次指数平滑预测模型回归系数计算方法。

一、原理二次指数平滑预测模型是一种比较常用的时间序列预测模型,它用来对时间序列数据进行预测,其中回归系数是确定模型的关键参数,计算回归系数的方法是非常重要的。

二次指数平滑预测模型的回归系数计算方法是:首先,计算最小二乘估计值,即:$$ \hat{\beta} = (X^T X)^{-1} X^T Y $$其中,$X$是自变量矩阵,$Y$是因变量向量,$\hat{\beta}$是回归系数估计值。

然后,计算二次指数平滑预测模型的回归系数,即:$$ \beta = \alpha \hat{\beta} + (1 - \alpha) \beta_{t-1} $$其中,$\alpha$是模型参数,$\beta_{t-1}$是上一时刻的回归系数。

二、实例下面以一个实例来说明二次指数平滑预测模型的回归系数计算方法。

假设有一个时间序列数据,其自变量矩阵为:$$ X = \left[ \begin{matrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{matrix} \right] $$而因变量向量为:$$ Y = \left[ \begin{matrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{matrix} \right]首先,计算最小二乘估计值,即:$$ \hat{\beta} = (X^T X)^{-1} X^T Y $$其中,$X^T X$为$3 \times 3$矩阵,$X^T Y$为$3 \times 1$矩阵,因此,$\hat{\beta}$为$3 \times 1$矩阵,其中有三个回归系数。

二次指数平滑法Microsoft Word 文档

二次指数平滑法Microsoft Word 文档

二次指数平滑法二次指数平滑法(Second exponential smoothing method)[编辑]什么是二次指数平滑法二次指数平滑法是对一次指数平滑值作再一次指数平滑的方法。

它不能单独地进行预测,必须与一次指数平滑法配合,建立预测的数学模型,然后运用数学模型确定预测值。

一次移动平均法的两个限制因素在线性二次移动平均法中也才存在,线性二次指数,平滑法只利用三个数据和一个α值就可进行计算;在大多数情况下,一般更喜欢用线性二次指数平滑法作为预测方法。

[编辑]二次指数平滑法的优点[1]二次指数平滑法实质上是将历史数据进行加权平均作为未来时刻的预测结果。

它具有计算简单、样本要求量较少、适应性较强、结果较稳定。

[编辑]二次指数平滑法的计算线性二次指数平滑法的公式为:(1)式中:分别为t期和t–1期的二次指数平滑值;a为平滑系数。

在和已知的条件下,二次指数平滑法的预测模型为:(2)(3)T为预测超前期数例5:某地1983年至1993年财政入的资料如下,试用指数平滑法求解趋势直线方程并预测1996年的财政收入。

计算过程及结果如下:由上表可知:;;;,a=0.9 则所求模型为:[编辑]二次指数平滑法实例分析[2]表中第③栏是我国1978-2002年全社会客运量的资料,据期绘制散点图,见下图,可以看出,各年的客运量资料基本呈线性趋势,但在几个不同的时期直线有不同的斜率,因此考虑用变参数线性趋势模型进行预测。

具体步骤如下:表 我国1978-2002年全社会客运量及预测值 单位:万人年份 时间t 全社会客运量y 各期的一次指数平滑值 各期的二次指数平滑值a tb t① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 253993.0 253993.0 1978 1 253993 253993.0 253993.0 253993.0 0.0 1979 2 289665 275396.2 266834.9 283957.5 12841.9 253993.0 1980 3 341785 315229.5 295871.7 334587.3 29036.7 296799.4 1981 4 384763 356949.6 332518.4 381380.8 36646.8 363624.0 1982 5 428964 400158.2 373102.3 427214.2 40583.9 418027.5 1983 6 470614 442431.7 414699.9 470163.4 41597.6 467798.1 1984 7 530217 495102.9 462941.7 527264.1 48241.8 511761.1 1985 8 620206 570164.8 527275.5 613054.0 64333.8 575505.81986 9 688212 640993.1 595506.1 686480.1 68230.5 677387.8 1987 10 746422 704250.4 660752.7 747748.2 65246.6 754710.7 1988 11 809592 767455.4 724774.3 810136.4 64021.6 812994.8 1989 12 791376 781807.8 758994.4 804621.1 34220.1 874158.1 1990 13 772682 776332.3 769397.1 783267.5 10402.8 838841.2 1991 14 806048 794161.7 784255.9 804067.6 14858.8 793670.2 1992 15 860855 834177.7 814209.0 854146.4 29953.1 818926.3 1993 16 99663 931651.5 884674.5 978628.5 70465.5 884099.5 1994 17 1092883 1028390.4 970904.0 1085876.8 86229.6 1049094.0 1995 18 1172596 1114913.8 1057309.9 1172517.6 86405.8 1172106.3 1996 19 1245356 1193179.1 1138831.4 1247526.8 81521.5 1258923.5 1997 20 1326094 1272928.0 1219289.4 1326566.7 80458.0 1329048.3 1998 21 1378717 1336401.4 1289556.6 1383246.2 70267.2 1407024.7 1999 22 1394413 1371208.4 1338547.7 1403869.1 48991.1 1453513.4 2000 23 1478573 1435627.1 1396795.4 1474458.9 58247.7 1452860.1第一步,计算一次指数平滑值。

指数平滑法

指数平滑法

实验二:时间序列平滑预测法一、实验目的根据所给的数据,采用适当的时间序列平滑预测法,来实现对原序列的趋势进行平滑,从而对未来某现象做出预测二、实验内容利用时间序列平滑预测法对某商品销售进行预测或商品的供应量进行预测三、实验步骤下表为某市自来水历年供应量,请选择合适的方法对下一期的自来水供应量进行预测,并说明选择该方法的理由。

一:根据上表数据做出散点图如下:根据上图可以看出:从1993后时间序列具有明显的线性变化趋势,为了避免利用移动平均法预测有趋势的数据时产生的误差,所以不宜采用一次移动平均法及一次指数线性二次指数平滑法才能满足预测模型的要求二次曲线指数平滑法的计算过程如下: (1)计算t 时期的单指数平滑值)1(t s :)1(1)1()1(--+=t t tS x S αα(2)计算t 时期的双指数平滑值)2(t s :)2(1)1()2()1(--+=t ttS S S αα(3)计算t 时期的三重指数平滑值)3(t s :)3(1)2()3()1(--+=t ttS S S αα(4)计算t 时期的水平值t A :)3()2()1(33t ttt S S S A +-=(5)计算t 时期的线性增量t B :])34()810()56[()1()3()2()1(22t t t t S S S B ααααα-+----= (6)计算t 时期的抛物线增量t C :)2()1()3()2()1(22tt t t S S S C +--=αα (7)预测m 时期以后,即(t+m )时期的数值m t F +:221m C m B A F t t t m t ++=+其中,m 是正整数,1≥m 。

二次曲线指数平滑法的初始值依赖于两个时期的观测值21x x 和。

已知21x x 和,假设:1)3(1)2(1)1(1x S S S ===。

根据表中的数据可知:各个时期的供水量变化很大,所以的值要选择大一些,本题选择的 5.0=α和8.0=α同时把第一期的值作为预测一次二次的初始预测值,所以其计算结果如下根据所给的数据,选取了三个不同的α值对该模型进行预测,具体计算数值通过计算机计算如下:(1)取二次曲线指数平滑法预测某市的供水量5.0=α时序 年份 供水量(10万吨))1(t s)2(t s)3(t st At Bt C )1(=+m F m t1 1990 19.98 19.98 19.98 19.982 1991 29.56 24.77 22.38 21.18 28.363 5.39 1.2 3 1992 20.96 22.865 22.62 21.9 22.634 -0.9 -0.5 34.35 4 1993 12.94 17.903 20.26 21.08 14.004 -6.2 -1.5 21.45 5 1994 31.95 24.926 22.59 21.84 28.834 6.27 1.58 7.025 6 1995 36.16 30.543 26.57 24.2 36.127 8 1.61 35.89 7199643.76 37.152 31.86 28.03 43.906 8.95 1.4644.938 1997 56.86 47.006 39.43 33.73 56.451 12.3 1.87 53.599 1998 75.06 61.033 50.23 41.98 74.383 17.2 2.55 69.6410 1999 82.12 71.576 60.9 51.44 83.459 13.7 1.21 92.8311 2000 96.04 83.808 72.36 61.9 96.255 13.9 1 97.7612 2001 99.93 91.869 82.11 72.01 101.28 8.88 -0.4 110.713 2002 115.5 103.68 92.9 82.45 114.81 11.6 0.34 11014 2003 124.3 113.99 103.4 92.95 124.59 10.7 0.05 126.615 2004 119.29 116.64 110 101.5 121.29 1.72 -1.9 135.316 2005 138.13 127.39 118.7 110.1 136.12 8.83 0.06 12217 2006 1451-3(2)取8.0=α二次曲线指数平滑法预测某市的供水量8.0=α时序年份供水量(10万吨))1(ts)2(ts)3(tstAtBtC)1(=+mFmt1 1990 19.98 19.98 19.98 19.982 1991 29.56 27.64 26.11 24.88 29.48 17.66 4.9053 1992 20.96 22.3 23.06 23.42 21.14 -15.1 -6.37 49.594 1993 12.94 14.81 16.46 17.85 12.9 -17.1 -4.11 2.8875 1994 31.95 28.52 26.11 24.46 31.7 34.92 12.18 -6.296 1995 36.16 34.63 32.93 31.23 36.35 11.18 0.17 72.77 1996 43.76 41.93 40.13 38.35 43.76 12.08 0.344 47.618 1997 56.86 53.87 51.13 48.57 56.82 22.55 3.099 56.019 1998 75.06 70.82 66.88 63.22 75.04 32.3 4.431 80.9110 1999 82.12 79.86 77.27 74.46 82.24 11.15 -3.41 109.611 2000 96.04 92.8 89.7 86.65 95.97 21.42 0.957 91.6812 2001 99.93 98.5 96.74 94.72 100 4.689 -4.12 117.913 2002 115.5 112.1 109 106.2 115.4 25.05 3.368 102.614 2003 124.3 121.9 119.3 116.7 124.4 14.91 -0.94 142.115 2004 119.29 119.8 119.7 119.1 119.4 -12.3 -8.07 138.816 2005 138.13 134.5 131.5 129 137.9 30.91 7.507 103.117 2006 172.51-4通过比较图1-2、1-3和1-4,我们可以看出当5.0α,预测线拟=合的数值更接近真实的观测值,而当8.0α时,预测值与实际观测值=偏差较大,故选取平滑常数5.0α,来对某市的自来水供水量进行逐=年预测。

二次指数平滑法预测我国连锁餐饮业营业额

二次指数平滑法预测我国连锁餐饮业营业额

二次指数平滑法预测我国连锁餐饮业营业额1147622 金珊【目的】"民以食为天",中国餐饮业连续12年来两位数迅猛增长,2002年的营业额首次突破5000亿元,占到了GDP的5.1%。

餐饮业的发展被认为有四大因素:个人消费兴起、餐饮业差异化增强、产品创新、经营模式连锁化。

连锁经营对营业额的提升作用是最为显著的,仔细分析数字就会发现,中国的连锁餐饮业还有巨大的发展空间。

连锁经营对营业额的提升作用原因在于中国餐饮业的连锁程度还很低。

据统计,前100强餐饮业企业的营业额不到270亿元,只占6.5%。

例如北京现有各类餐饮企业超过3万,常常是今天这家餐馆开张,明天另一家餐馆就关门。

频频发生的重迭更张,正是中餐企业发展水平低的具体体现。

在中餐企业长期在低水平发展阶段停滞不前的同时,以麦当劳、肯德基为代表的洋快餐,以及日本料理、韩国烧烤等外来餐饮却在我国市场遍地开花。

有关资料显示,目前麦当劳的单店平均营业额竟是中式快餐单店的160倍,肯德基在中国市场一年的销售额已超过20亿元。

随着更多投资者被市场发展吸引加入,以及理性消费时代的来临,未来餐饮业竞争将更多的表现为品牌的竞争。

是否拥有著名的品牌,将直接决定餐饮企业的生存和发展。

综观国外餐饮企业的发展,无一不是依靠其雄厚的品牌实力开展全球化经营的。

反观我们的餐饮企业,大都缺乏品牌,消费者大多跟风,新开的餐厅就蜂拥而至,过了热度期就相对萧条,形不成固定的客流量。

即便是我们认为的知名企业,无论是经营规模、市场占有额,还是品牌知名度等方面,和国际知名品牌都有较大差距。

面对全球经济一体化的机遇和挑战,我们的餐饮要想参与国际竞争,品牌就显得尤为重要了。

综合以上原因,本文结合统计学原理作业需要的条件下采用二次指数平滑法预测我国接下来几年的连锁营业额,旨在了解我国目前连锁餐饮市场发展动态,把握连锁餐饮行业消费现状与趋势,为企业制定市场策略提供一些参考。

【数据】本文所采用分析数据均来自《中国统计年鉴—2012》我国连锁餐饮业营业额年份营业额(亿元)2005 454.362006 563.752007 640.002008 860.912009 879.322010 955.422011 1120.39【方法】指数平滑法是在移动平均法基础上发展起来的一种时间序列分析预测法,它是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测。

二次指数平滑法-myOM

二次指数平滑法-myOM
Demand Forecasting
1
内容提要
一、预测的基本概念 二、定性预测方法 三、定量预测方法
本讲提纲
2
一、预测的基本概念
导入案例——陈锡康因成功预测粮食产量获首届 “复旦管理学杰出贡献奖”
多年来,中国科学院数学与系统科学研究院陈锡康 研究员利用投入占用产出技术和考虑报酬递减的非线性 预测方程等进行全国粮食产量预测获得了显著成绩,于 2006年9月荣获首届“复旦管理学杰出贡献奖” 复旦管理学奖励基金会由复旦校友、原中共中央政 治局常委、国务院副总理李岚清同志发起, 成立于2005 年9月。基金会的宗旨是奖励我国在管理学领域作出杰出 贡献的工作者,倡导管理学理论符合中国国情,并密切 与实践相结合,推动我国管理学的长远发展,促进我国 管理学人才的成长,提高我国管理学在国际上的学术地 3 位和影响力。
7
1、什么是预测?
Forecast, Predict, Prophesy
预测是对未来可能发生的情况的预计与推测。
8
“A forecast is an objective estimate of future demand attained by projecting a pattern of events of the past into the future.”* “A prediction is a subjective estimate of what events will happen in the future, based on extrapolating or interpreting data that occurred in the past.” * David F. Ross, Distribution Planning and Control, Chapman & Hall, New York, 1995, p.212.

二次指数平滑法的应用

二次指数平滑法的应用

二次指数平滑法的应用庄赟二次指数平滑法也称布朗指数平滑法。

二次指数平滑值记为)2(tS ,它是对一次指数平滑值)1(t S 计算的平滑值,即)2(1)1()2()1(--+=t ttS αS αS (1)二次指数平滑法主要用于变参数线性趋势时间序列的预测。

变参数线性趋势预测模型的表达式为:Tb a y t t T t +=+^(2)(2)式的预测模型与一般的线性趋势模型的区别在于,式中t a 、t b 是参数变量,随着时间自变量t 的变化而变化,即直线在各时期的截距和斜率是可能不同的; T 是从t 期开始的预测期数。

运用二次指数平滑法求解(2)式可得参数变量的表达式,即(1)(2)(1)(2)2()1t t t t t ta S Sb S S αα⎧=-⎪⎨=-⎪-⎩ (3)根据(3)求出各期参数变量的取值,代入(2)式,则具有无限期的预测能力,当仅作一期预测时,有^(1)(2)(1)(2)1(1)(2)2()12111t t t tttt tty a b S S S S S S ααααα+=+=-+---=--- (4)表1中第③栏是我国1978-2002年全社会客运量的资料,据期绘制散点图,见图1,可以看出,各年的客运量资料基本呈线性趋势,但在几个不同的时期直线有不同的斜率,因此考虑用变参数线性趋势模型进行预测。

具体步骤如下:第一步,计算一次指数平滑值。

取6.0=α, 2539931)1(0)2(0===y S S ,根据一次指数平滑公式)1(1)1()1(--+=t t t S αy αS ,可计算各期的一次指数平滑预测值: 1978年:2539932539934.02539936.04.06.0)1(01)1(1=⨯+⨯=⨯+⨯=S y S1979年:2.2753962539934.02896656.04.06.0)1(12)1(2=⨯+⨯=⨯+⨯=S y S同理可得各年的一次指数平滑预测值,见表1中第④栏。

二次指数平滑法

二次指数平滑法
1demandforecasting2一预测的基本概念二定性预测方法三定量预测方法内容提要本讲提纲3导入案例陈锡康因成功预测粮食产量获首届复旦管理学杰出贡献奖多年来中国科学院数学与系统科学研究院陈锡康研究员利用投入占用产出技术和考虑报酬递减的非线性预测方程等进行全国粮食产量预测获得了显著成绩于2006年9月荣获首届复旦管理学杰出贡献奖复旦管理学奖励基金会由复旦校友原中共中央政治局常委国务院副总理李岚清同志发起成立于2005年9月
17
I.定性方法 主观性:判断性。基于估计与评价
由一组专家分别对问卷作答。由组织者汇集调 德尔菲法 查结果,并形成新的调查问卷,再由该组专家 (Delphi Method) 重新问答。由于接受了新的信息,对这组专家
而言也是一个学习过程。
市场调研 (Market analyze)
历史类比
通过各种不同方法(问卷调查、上门访谈等) 收集顾客数据,检验市场假设是否正确。这种 方法通常用于长期预测和新产品销售预测。
5
理由之一是2004年全国粮食获得大丰收,粮食产 量比2003年增加776亿斤,增长幅度为我国建国以来最 大的一年。根据历史经验,大丰收后一年的粮食产量 往往下降。理由之二是,2004年天气条件特别好, 2005年天气可能不如2004年。陈锡康等经过实际调查 、详细分析和利用预测模型反复计算,得到2005年我 国粮食产量将继续增产,但增长幅度小于2004年,棉 花将大幅度减产的结果。
所含数据点个数。各数据点可以取相同的权重,
averages) 也可以取不同的权重,根据经验而定。
指数平滑法 (Exponential
smoothing)
最新数据的权重高于早期数据,此权重因子随 着数据的老化依指数下降。
线性回归分析 (Linear

指数平滑法计算过程

指数平滑法计算过程

指数平滑法计算过程:St=aYt-1+(1-a)St-1
知识拓展:
指数平滑法是趋势预测法的一种,利用事先确定的平滑指数预测未来销售量或销售额
平滑指数的取值范围一般是0.3-0.7
公式:计划期销售预测值=(平滑指数*上期实际销售数)+(1-平滑指数)*上期销售预测数二次指数平滑预测
二次指数平滑是对一次指数平滑的再平滑。

它适用于具线性趋势的时间数列,其预测公式为:yt+m=(2+am/(1-a))yt'-(1+am/(1-a))yt=(2yt'-yt)+m(yt'-yt) a/(1-a)式中,yt= ayt-1' +(1-a)yt-1 显然,二次指数平滑是一直线方程,其截距为:(2yt'-yt),斜率为:(yt'-yt) a/ (1-a),自变量为预测天数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.225576
24.64799
17
1999
25.93
24.44553
22.99798
21.68169
26.02432
1.775674
0.131251
26.68459
18
2000
28.04
26.24276
24.62037
23.15103
28.0182
2.005012
0.153048
27.86562
19
2001
29.45
27.84638
26.23338
24.6922
29.53122
1.792582
0.071831
30.09974
20
2002
31.47
29.65819
27.94578
26.31899
31.45621
1.926448
0.085617
31.35971
21
2003
33.99
31.8241
29.88494
一次移动平均法 一次指数平滑法 线性二次移动平均法 线性二次指数平滑法 二次曲线指数平滑法
销售额 预测值
销售额 预测值
一次移动平均法
一次指数平滑法
图表标题 1 2 3 4 5 6 7 8 9 10 11 12 13
有明显的线性变化趋势时 用线性二次移动平均法
线性二次指数平滑法
应用背景:
有的时间序列虽然有增加或减少趋势,但不一定 是线性的,可能按二次曲线的形状增加而减少。
20.76097
1.146825
0.120052
20.34774
15
1997
22.87
21.33211
20.13982
19.18035
22.75723
1.774355
0.232825
21.96782
16
1998
24.59
22.96105
21.55044
20.36539
24.59725
1.974558
修正的St2 St2 St2 St3 修正的 St1 St1 St1 St2
St1 At 3St1 3St2 St3
Bt
Bt
2
1
2
6
5
St1
10
8
St2
4 3
St3
St1 St2 St2 St3 5 1 St1 St2 3 1 St2 St3
10
1992
18.26
17.20752
16.41536
15.82459
18.20107
1.295637
0.201392
17.78855
11
1993
17.4
17.30376
16.85956
16.34208
17.67468
0.26099
-0.07328
19.5974
12
1994
18.71
18.00688
1.130625
0.25125
3
1985
15.96
14.9325
14.1675
13.65938
15.95438
1.407188
0.256875
15.915
4
1986
14.41
14.67125
14.41938
14.03938
14.795
-0.06844
-0.12813
17.49
5
1987
14.57
14.62063
年度
销售额
对于这种非线性增长的时间序列,采用二 次曲线指数平滑法可能要比线性指数平滑法 更为有效。它的特点是不但考虑了线性增长 的因素,而且也考虑了二次抛物线的增长因 素。二次曲线指数平滑法的计算过程共分七 个步骤。
1.计算t时期的单指数平滑值 St1
St1 xt 1 St11
2.计算t时期的双指数平滑值 St2
28.10197
33.91943
2.329612
0.156183
33.42547
22
2004
39.56
35.69205
32.78849
30.44523
39.15589
4.30428
0.560291
36.32714
23
2005
48.08
41.88602
37.33726
17.43322
16.88765
18.60863
0.643881
0.028088
17.89902
13
1995
19.53
18.76844
18.10083
17.49424
19.49707
0.820158
0.061019
19.26655
14
1996
20.82
19.79422
18.94753
18.22088
Bt 3.5St1 6St2 2.5St3
Ct St1 2St2 St3
Ft m
At
Bt m
1 2
Ct
m2
t
年度
观测值(x)
St1
St2
St3
At
Bt
Ct
Ft m
1
1983
12.9
12.9
12.9
12.9
2
1984
14.91
13.905
13.4025
13.15125
14.65875
Ct 1 2
St1 2St2 St3
7.预测m时期以后,即 (t m) 时期的数值 Ftm
Ft m
At
Btm
1 2
Ct
m2
虽然二次曲线指数平滑法的计算方法比前几种指数 平滑法复杂,但对非平稳时间序列的预测相当有 效,它能随着时间序列呈抛物线增长而调整预测 值。
t 修正的 St3 St3 St1 St2
0.288457
0.032383
14.31031
8
1990
15.84
15.41008
15.09137
14.84445
15.80059
0.498203
0.071797
15.52469
9
1991
16.9
16.15504
15.6232
15.23383
16.82934
0.887988
0.142461
16.33469
14.52
14.27969
14.58156
-0.24859
-0.13969
14.6625
6
1988
14.6
14.61031
14.56516
14.42242
14.55789
-0.19879
-0.09758
14.26313
7
1989
15.35
14.98016
14.77266
14.59754
15.22004
St2 St1 1 St21
3.计算t时期的三重指数平滑值 St3
St3 St2 1 St31
4.计算t时期的水平值 At
At 3St1 3St2 St3
5.计算t时期的线性增量 Bt
Bt
2
1
2
6
5
St1
10
8
St2
4
ห้องสมุดไป่ตู้
3
St3
6.计算t时期 的抛物线增量 Ct
2
某地区统计了从1983~2006年每年的 消费品销售总额,数据如下表,通过 计算机求解平滑常数最佳值为0.5,此 时对应均方差最小,逐年预测, m=1,计算结果如下。
St1 0.5xt 0.5St11
St2 0.5St1 0.5St21
St3 0.5St2 0.5St31 At 3St1 3St2 St3
相关文档
最新文档