人教版九年级上册九年级数学圆心角圆周角专项练习题

合集下载

部编数学九年级上册专题08垂径定理、圆心角、圆周角之六大题型(解析版)含答案

部编数学九年级上册专题08垂径定理、圆心角、圆周角之六大题型(解析版)含答案

专题08垂径定理、圆心角、圆周角之六大题型利用垂径定理求值【答案】2【分析】根据垂径定理和勾股定理列方程求解即可.【详解】解:设OC=△中,由勾股定理得,在Rt COE【变式训练】【答案】45cm/4【分析】连接BO,延长22=,即可求解.BC OB OC-【详解】解:如图,连接=,由折叠得:CD CEQ D是OC的中点,\=,CD OD\==,CE CD OD2\==,4OC OE【答案】310【分析】由题意易得【详解】解:连接OD∵AB 是O e 的直径,AB ∴152OD OB AB ===,∵CD AB ^,6CD =,∴13,2DE CD DEO ==Ð∴22OE OD DE =-=垂径定理的实际应用【点睛】本题考查了勾股定理和垂径定理,灵活运用所学知识,掌握垂直于弦的直径平分弦,且平分弦所对的弧,是解决本题的关键.【变式训练】1.(2023上·福建龙岩·九年级统考期末)筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧.如图1,点M 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O (O 在水面上方)为圆心的圆,且圆O 被水面截得的弦AB 长为8米.若筒车工作时,盛水桶在水面以下的最大深度为2米,则这个圆的半径为( )A .2米B .3米C .4米D .5米【答案】D 【分析】过圆O 作OD AB ^于E ,如图所示,由垂径定理可知4AE BE ==,设圆的半径为r ,再利用勾股定理列方程求解即可得到答案.【详解】解:过圆O 作OD AB ^于E ,如图所示:Q 弦AB 长为8米,\4AE BE ==,Q 盛水桶在水面以下的最大深度为2米,设圆的半径为r ,在Rt AOE △中,90AEO Ð=°,OA r =,4AE =,2OE OD ED r =-=-,则由勾【答案】26【分析】连接AO ,依题意,得出222AO AC CO =+,解方程即可求解.【详解】解:如图所示,连接∵1CD =,10AB =,AB ∴5AC =,设半径为r ,则AO r =在Rt AOC V 中,2AO =利用弧、弦、圆心角的关系求解A.AB OC=C.12ABC BOC Ð+Ð=【答案】D 【变式训练】【答案】80°/80度【分析】利用等腰三角形的性质和三角形内角和计算出即可求出答案.Ð【详解】解:∵OBC半圆(直径)所对的圆周角是直角A.43【答案】B【分析】如图:连接AQ QB=,最后根据勾股定理即可解答.【点睛】本题主要考查了圆周角定理、等腰三角形的判定与性质、勾股定理等知识点,灵活运用勾股定理成为解答本题的关键.【变式训练】【答案】13【分析】连接BD ,先由三角形内角和定理求出求出30ABD Ð=°,即有【详解】解:连接BD∵在ABC V 中,55B Ð=∴60A Ð=°,∵AB 为O e 的直径,∴90ADB CDB Ð=Ð=°Ð的度数;(1)求BAC(2)若点E为OB中点,CE 【答案】(1)45°(2)3590°的圆周角所对的弦是直径例题:(2023上·广东汕头DA DC =,2AB BC ==【答案】32【分析】连接AC ,过点角三角形,勾股定理求得∵90ADC Ð=°,∴AC 是直径,∴90ABC Ð=°【变式训练】1.(2023上·山东济南·九年级统考期末)如图,正方形ABCD 中,4AB =,E 点沿线段AD 由A 向D【答案】2p【分析】连接BD 交EF 于点1222OB OD BD ===,再由∵四边形ABCD 是正方形,∴4BC AB AD ===,EDO Ð∴242BD AB ==,【答案】90°Ð【分析】(1)由ABP (2)首先证明点P理求出OC即可得到则OP OA OB ==,\点P 在以AB 为直径的O e 在Rt BCO V 中,90OBC Ð=225OC BO BC \=+=,532PC OC OP =-=-=,已知圆内接四边形求角度【答案】102°【分析】根据圆内接四边形的性质得出【详解】解:∵四边形∴180A DCB Ð+Ð=°,又180DCE DCB Ð+Ð=°,∴102DCE A ÐÐ==°,故答案为102°.【点睛】本题主要考查了圆内接四边形的性质,熟知圆内接四边形的对角互补是解决此题的关键.【变式训练】【答案】40【分析】根据已知可得»»BCBD =56DAC BAC BAD Ð=Ð+Ð=°,再利用圆内接四边形对角互补以及平角的定义可得56DBE DAC Ð=Ð=°,继而利用角平分线定义及三角形内角和定理即可求解.(1)求证:A AEBÐ=Ð(2)若90Ð=°,点CEDC【答案】(1)见解析e的半径为25 (2)O一、单选题1.(2023上·河北张家口·九年级统考期末)O e 中的一段劣弧»AB 的度数为80o ,则AOB Ð=( )A .10oB .80oC .170oD .180o【答案】B 【分析】根据圆心角、弧、弦之间的关系得出答案即可.【详解】解:Q O e 中的一段劣弧»AB 的度数为80°,80AOB \Ð=°,故选:B .A .32°B .42【答案】A 【分析】先根据同弧所对的圆周角相等得到小即可.【详解】解:∵50A Ð=°,∴50D A Ð=Ð=°,A .10【答案】D∴12AH BH AB===在Rt BOHV中,OH∴线段OP长的最小值为A.105°B.110【答案】D【分析】先根据圆内接四边形的性质和平角的定义求出求解.A .1米B .()35+米C .3米【答案】D 【分析】连接OC 交AB 于D ,根据圆的性质和垂径定理可知理求得OD 的长,由CD OC OD =-即可求解.则OC AB ^,12AD BD AB ==在Rt OAD △中,3OA =,AD ∴225OD AO AD =-=,【点睛】本题考查圆的性质、垂径定理、勾股定理,熟练掌握垂径定理是解答的关键.【答案】120【分析】过O 点作OD AC ^AD CD =,根据三角形中位线定理可得由折叠可得:12OD OE ==∵AB 是直径,∴90ACB Ð=°,12OD BC =【答案】64°/64度【分析】根据在同圆中,Ð=Ð可推出AOC BOD【详解】解:Q»AE=【答案】3【分析】由圆的性质可得OA后根据中位线的性质即可解答.【答案】45【分析】连接AC ,如图所示,由直径所对的圆周角为直角可知及勾股定理求出AC 【详解】解:连接Q OC AB ^,AB =12AD BD AB \==在Rt AOD V 中,OA 420r \=,解得r【答案】4【分析】如图,连接CD直角三角形斜边上的中线等于斜边的一半可得【点睛】本题考查直径所对的圆周角为直角,直角三角形斜边上的中线等于斜边的一半,勾股定理.掌握直径所对的圆周角为直角是解题的关键.三、解答题e的直径AB垂直于弦CD,垂足为E,11.(2023上·安徽合肥·九年级统考期末)如图,O,.==28AE CD(1)求O e 的半径长;(2)连接 BC ,作OF BC ^【答案】(1)5(2)5在Rt OCE V 中,2OE ∴()22224R R -+=,解得5R =,∴O e 的半径长为5;(1)若这个输水管道有水部分的水面宽半径;OE AB ^Q ,11168cm 22BD AB \==´=(1)连接AD,求证:(2)若52,==CD AB 【答案】(1)详见解析;(2)6Ð相等吗?为什么?(1)BAFÐ和CAD^,垂足为(2)过圆心O作OH AB【答案】(1)相等,理由见解析(2)10【详解】(1)解:连接BF ,Q AF 是O e 的直径,90F BAF \Ð+Ð=°Q AC BD ^,\90CAD BDA Ð+Ð=°,Q F BDA Ð=Ð,\BAF CAD Ð=Ð.(2)解:OH AB ^Q ,AH BH \=,OA OF =Q ,210BF OH \==,BAF CAD Ð=ÐQ ,10CD BF \==.【点睛】本题考查的是圆周角定理,等角的余角相等,圆心角、弦的关系,三角形的中位线性质,垂径定理,掌握圆心角、弦的关系,三角形的中位线性质以及垂径定理是解题的关键.15.(2023上·山东威海·九年级统考期末)【初识模型】如图1,在ABC V 中,,90AB AC BAC =Ð=°.点D 为BC 边上一点,以AD 为边作ADE V ,使=90DAE а,AE AD =,连接CE ,则CE 与BD 的数量关系是__________;【构建模型】如图2,ABC V 内接于,O BC e 为O e 的直径,AB AC =,点E 为弧AC 上一点,连接,,AE BE CE .若3,9CE BE ==,求AE 的长;【运用模型】如图3,等边ABC V 内接于O e ,点E 为弧AC 上一点,连接,,AE BE CE .若6,10CE BE ==,求AE 的长.【答案】(1)BD CE =;(2)32;(3)4【分析】(1)只需要利用SAS 证明BAD CAE V V ≌,即可证明BD CE =(2)如图所示,过点A 作AD AE ^交BE 于D ,由BC 是直径,得到明BAD CAE Ð=Ð,再证明45ADE AED Ð=Ð=°,得到AD AE =,即可证明2(3)如图所示,在BE 上取一点∵ABC V 是等边三角形,∴60AB AC ACB ==°,∠,∴60AEB ACB Ð=Ð=°,∴ADE V 是等边三角形,∴60AE DE DAE ==°=,∠∠∴BAC CAD DAE Ð-Ð=Ð-Ð【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,圆周角定理,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.。

初三数学圆周角和圆心角的关系试题

初三数学圆周角和圆心角的关系试题

初三数学圆周角和圆心角的关系试题1.已知,如图,∠BAC的对角∠BAD=100°,则∠BOC=_______度.【答案】160°【解析】由∠BAD=100°可得∠BAC的度数,再根据圆周角定理即可求得结果.∵∠BAD=100°∴∠BAC=80°∴∠BOC=160°.【考点】邻补角定理,圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.2.如图,AB是⊙O的直径, ,∠A=25°,则∠BOD的度数为________.【答案】50°【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵,∠A=25°∴∠BOD=50°.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.3.如图,AB是半圆O的直径,AC="AD,OC=2,∠CAB=30°," 则点O到CD的距离OE=____.【答案】【解析】由AC=AD,∠CAB=30°可得∠CDO的度数,即可得到∠EOD、∠COE的度数,判断出△COE的形状再结合勾股定理即可求得结果.∵AC=AD,∠CAB=30°,OA=OC∴∠CDO=75°,∠COD=60°∴∠EOD=15°∴∠COE=45°∴△COE为等腰直角三角形∵OC=2∴OE=.【考点】三角形内角和定理,勾股定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.4.如图,A、B、C、D四个点在同一个圆上,四边形ABCD的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对【答案】C【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.相等的角有∠ADB=∠ACB,∠BAC=∠BDC,∠CAD=∠CBD,∠ACD=∠ABC4对,故选C.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.5.如图,D是弧AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵D是弧AC的中点∴∠ABD=∠ACD=∠CBD=∠CAD故选B.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.6.如图, ,则∠A+∠B等于( )A.100°B.80°C.50°D.40°【答案】C【解析】连接CO并延长交圆于点D,根据圆周角定理即可得到结果.连接CO并延长交圆于点D由图可得∠A+∠B=∠AOD+∠BOD=∠AOB=50°故选C.【考点】圆周角定理点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.7.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°【答案】B【解析】根据圆的性质可得这条弦与半径围成的三角形为等边三角形,再根据圆周角定理即可求得结果.由题意得这条弦与半径围成的三角形为等边三角形则该弦所对的圆周角的度数是30°或150°故选B.【考点】圆周角定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.【答案】4cm【解析】连接OC、OD,根据圆周角定理可得∠COD=60°,即可得到△COD是等边三角形,根据等边三角形的性质即可求得结果.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD=4cm.【考点】圆周角定理,等边三角形的判定和性质点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.9.如图,AB为半圆O的直径,弦AD、BC相交于点P,若CD=3,AB=4,求tan∠BPD的值【答案】【解析】连接BD, 根据圆周角定理可得∠ADB=90°,证得△PCD ∽△PAB,根据相似三角形的性质结合余弦的定义可得∠BPD的余弦值,再结合勾股定理即可求得结果.连接BD,∵AB是直径,∴∠ADB=90°.∵∠C=∠A,∠D=∠B,∴△PCD ∽△PAB,∴.在Rt△PBD中,cos∠BPD==,设PD=3x,PB=4x,则BD=,∴tan∠BPD=.【考点】圆周角定理,相似三角形的判定和性质,勾股定理,三角函数点评:本题综合性强,知识点较多,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.10.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,乙随后冲到B点,如图所示,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素)【答案】让乙射门较好【解析】根据圆周角定理结合三角形外角的性质分析即可得到结论.迅速回传乙,让乙射门较好,在不考虑其他因素的情况下, 如果两个点到球门的距离相差不大,要确定较好的射门位置,关键看这两个点各自对球门MN的张角的大小,当张角越大时,射中的机会就越大,如图所示,则∠A<MCN=∠B,即∠B>∠A, 从而B处对MN的张角较大,在B处射门射中的机会大些.【考点】圆周角定理,三角形外角的性质点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.。

人教版九年级上册九年级数学圆心角圆周角专项练习题

人教版九年级上册九年级数学圆心角圆周角专项练习题

九年级数学圆心角圆周角专项练习题一、单选题1.如图,⊙O中,半径OC⊙弦AB于点D,点E在⊙O上,⊙E=22.5°⊙AB=4,则半径OB等于()AB.2C.D.32.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()A.25°B.50°C.65°D.75°3.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.在半径为1的弦所对的弧的度数为()A.90B.145C.90或270D.270或145 5.如图,ABC是O的内接三角形,,30AB BC BAC=∠=︒,AD是直径,8AD=,则AC的长为()A.4B.CD.6.下列说法正确的有()①不在同一条直线上的三点确定一个圆;②平分弦的直径垂直于弦;③在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等;④圆内接平行四边形是矩形.A.1个B.2个C.3个D.4个二、填空题7.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O 的半径为2,则CD的长为_____8.如图,已知点C是⊙O的直径AB上的一点,过点C作弦DE,使CD=CO.若AD 的度数为35°,则BE的度数是_____.9.如图,AB是⊙O的直径,CD是弦,若∠ABC=63°,则∠D的度数是__.10.如图,在⊙O中,AB=2CD,那么AB________2CD(填“>,<或=”)三、解答题11.如图,已知A⊙B⊙C⊙D是⊙O上的四点,延长DC⊙AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.12.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若AB=24,CD=8,求⊙O的半径长.13.如图,在ABC中,AC BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作//DF BC,交⊙O于点F,求证:(1)四边形DBCF是平行四边形(2)AF EF15.如图,是一个高速公路的隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=12米,拱高CD=9米,求圆的半。

圆周角+同步练习++2024—2025学年人教版数学九年级上册

圆周角+同步练习++2024—2025学年人教版数学九年级上册

24.1.4 圆周角学习目标1. 理解圆周角的概念.2. 掌握圆周角定理及其推论.3. 理解圆内接四边形的性质,探究四点共圆时的性质.课堂学习检测一、填空题1. 在圆上,并且角的两边都的角叫做圆周角.2. 一条弧所对的圆周角等于圆心角的 .3. 所对的圆周角 .4. 所对的圆周角是直角;90°的圆周角所对的弦是 .5. 圆内接四边形的对角 .̂的中点,则图中与∠BAC相等的角有6. 如图, 在⊙O中, 若点 C 是BD.二、选择题7. 如图, OA是⊙O的半径, 弦BC⊥OA, D 是⊙O上一点, 且点 D 在优弧BC 上. 若∠ADB =28°, 则∠AOC的度数为 ( ).(A) 14° (B) 28° (C) 56° (D) 84°综合·运用·诊断一、填空题8. 如图, AB是⊙O的直径, CD是弦. 若∠ACD =65°, 则∠BAD的度数为9. 如图, 点 B, C, D 在⊙O 上. 若∠BCD =130°, 则∠BOD 的度数为 .10. 如图, A, B, C是⊙O上的三点, 且四边形OABC是菱形. 若点 D 是圆上异于A, B, C 的另一点, 则∠ADC的度数是 .二、选择题11. 如图, 点A, B, C, D, E均在⊙O上, 且AC为⊙O的直径, 则∠A+∠B+∠C的度数为( ).(A) 30° (B) 45° (C) 60° (D) 90°̂分成相等的三段弧,点P 在AĈ上. 若点Q在12. 如图, AB是⊙O的直径, 点C, D将ABAB̂上且∠APQ=115°,则点 Q所在的弧是 ( ).̂(B)PĈ(C)CD̂(D)DB̂(A)AP三、解答题.13. 如图, A, B, C, D四个点都在⊙O上, AD是⊙O的直径且AD=6cm,∠ABC=∠CAD.(1) 求弦AC的长;(2) 求∠CAD的度数.14. 如图, ⊙O为△ABC的外接圆,CE是⊙O的直径,CD⊥AB于点 D.求证:∠ACD=∠BCE.拓展·探究·思考15. 如图,四边形ABCD 是圆的内接四边形,∠A=60°,∠B=90°,AB=2,CD=1,求AD的长.16. 如图, AB是⊙O的直径, 弦(CD⊥AB,E是⌢AC上一点, AE, DC的延长线交于点 F.求证:∠AED=∠CEF.。

初三数学《圆心角与圆周角》综合练习题

初三数学《圆心角与圆周角》综合练习题

初三数学《圆心角与圆周角》综合练习题圆心角与圆周角:
圆心角是指顶点在圆心的角,而圆周角则指顶点在圆上的角,二者注意区分。

重要结论:
①同弧(同弦)所对的圆周角是圆心角的一半(即?)
②直径所对的圆周角是直角,即90o
解题思路:
结合垂径定理、圆心角和圆周角的转化关系,加上以前学过的直角三角形性质、三角形的外角性质和角平分线的性质,去解决具体题目,注意分析过程中灵活运用相关知识点。

练习题:
注意:先分析题目条件,然后找出角与角之间的关系,标注在图上,逐个分析,结合相关知识点,很容易解答。

要多联系,才能熟练运用。

精品 2014年九年级数学圆的基本性质 圆周角圆心角讲义+同步练习题

精品 2014年九年级数学圆的基本性质 圆周角圆心角讲义+同步练习题
0

A.16
0
B.32
0
C.48
0
D.64
0
4.如图,⊙O 是△ABC 的外接圆,已知∠AB0=50 ,则∠ACB 的大小为( A.400 B.300 C.450
0
) D.500
5.在同圆中,下列四个命题:(1)圆心角是顶点在圆心的角;(2)两个圆心角相等,它们所对的弦也相等; (3)两条弦相等,它们所对的弧也相等;(4)等弧所对的圆心角相等.其中真命题有( A.4 个 B.3 个 C.2 个 D.1 个 )
19.如图, AB 是⊙O 的直径,点 C 在⊙O 上,∠BAC=30 ,点 P 在线段 OB 上运动.设∠ACP=x,则 x 的取值 范围是 20.如图,CD 是圆的直径,O 是圆心,E 是圆上一点且∠EOD=45 ,A 是 DC 延长线上一点,AE 交圆于 B,如果 AB=OC,则∠EAD=______ 21.弦心距是弦的一半时,弦与直径的比是____________,弦所对的圆心角是__________
29.如图,AB 为⊙O 的弦,P 是 AB 上一点,AB=10cm,OP=5cm,PA=4cm,求⊙O 的半径.
30.⊙O 的直径为 50 cm,弦 AB∥CD,且 AB=40 cm,CD=48 cm,求弦 AB 和 CD 之间的距离.
第 6 页 共 8 页
九年级数学上册同步讲义
圆周角 圆心角同步练习题
C D
C O
A
B
A
)
B
7.如图,∠AOB=100°,则∠A+∠B 等于( A.100° B.80°
C.50°
D.40° )
8.如图,A、B、C 三点都在⊙O 上,点 D 是 AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( A.40° B.50° C.70° ) D.110°

【2020九年级数学上】圆周角和圆心角的关系习题含答案

【2020九年级数学上】圆周角和圆心角的关系习题含答案

圆周角和圆心角的关系同步习题一.选择题1.如图,四边形ABCD内接于⊙O,连接OA,OC,若∠AOC:∠ADC=2:3,则∠ABC 的度数为()A.30°B.40°C.45°D.50°2.已知:如图,⊙O的两条弦AE、BC相交于点D,连接AC、BE,若∠ACB=50°,则下列结论中正确的是()A.∠AOB=50°B.∠ADB=50°C.∠AEB=30°D.∠AEB=50°3.如图,A、B、C是⊙O上的点,且∠ACB=140°.在这个图中,画出下列度数的圆周角:40°,50°,90°,140°,仅用无刻度的直尺能画出的有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,AD=,下列说法错误的是()A.∠B=30°B.∠BAD=60°C.BD=2D.AB=25.如图,AB为半圆O的直径,C是的中点,D是的中点,在上取一点M,上取一点N,使得∠AMN=110°,则下列说法正确的是()A.点N在上,且NC>ND B.点N在上,且NC<NDC.点N在上,且ND>NB D.点N在上,且ND<NB6.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=25°,则∠BOC的度数为()A.30°B.40°C.50°D.60°7.如图,⊙O的直径AB⊥CD弦,∠1=2∠2,则tan D=()A.B.C.2D.8.如图,在△ABC中,以BC为直径的⊙O,交AB的延长线于点D,交AC于点E,连结OD,OE,若∠DOE=α,则∠A的度数为()A.αB.90°﹣αC.D.90°﹣9.如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则AB的长为()A.10B.12C.16D.2010.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠OFE的度数是()A.30°B.20°C.40°D.35°二.填空题11.四边形ABCD是⊙O的内接四边形,∠A:∠C=4:1,则∠A=°.12.如图,已知点E为圆外的一点,EA交圆于点B,EC交圆于点D,若=80°,=30°,则∠BED=度.13.如图,在扇形AOB中,点C、D在上,连接AD、BC交于点E,若∠AOB=120°,的度数为50°,则∠AEB=°.14.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=10,BC=4,则DP=.15.如图,点A、B、C在⊙O上,D是的中点,CD交OB于点E.若∠AOB=120°,∠OBC=50°,则∠OEC的度数为°.三.解答题16.如图,AB是⊙O的直径,C、D、E是⊙O上的点,AD=CD,∠E=68°,求∠ABC 的度数.17.如图,⊙O的半径为2,点A为⊙O上一点,OD⊥弦BC于D,如果∠BAC=60°.求OD的长和∠OCB度数.18.已知AB是⊙O的直径.(Ⅰ)如图①,==,∠MON=35°,求∠AON的大小;(Ⅱ)如图②,E,F是⊙O上的两个点,AD⊥EF于点D,若∠DAE=20°,求∠BAF 的大小.参考答案一.选择题1.解:设∠AOC=2x°,∠ADC=3x°,∵圆心角∠AOC和圆周角∠ABC都对着,∴∠ABC=AOC=x°,∵四边形ABCD是⊙O的内接四边形,∴∠ADC+∠ABC=180°,∴3x+x=180,解得:x=45,即∠ABC=45°,故选:C.2.解:∵∠ACB=50°,∴∠AEB=∠ACB=50°,∠AOB=2∠ACB=100°,∠ADB=∠ACB+∠CAD>∠ACB=50°,故选项A、B、C不正确,只有选项D正确,故选:D.3.解:作直径AD,连接BD、AB,如图,∵∠ACB+∠D=180°,∴∠D=180°﹣140°=40°,∵AD为直径,∴∠ABD=90°,∴∠BAD=90°﹣∠D=50°;在上取一点E,连接AE、BE,∴∠AEB=∠ACB=140°.故选:D.4.解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°﹣∠B=90°﹣30°=60°,故选项A、B不符合题意,在Rt△ADB中,BD=AD=3,AB=2AD=2,故选项C符合题意,选项D不符合题意,故选:C.5.解:连接MD,OD、ON、BD,如图,∵C是的中点,D是的中点,∴∠BOD=×90°=45°,∵OB=OD,∴∠OBD=∠ODB=(180°﹣45°)=67.5°,∴∠AMD=180°﹣∠ABD=180°﹣67.5°=112.5°,∵∠AMN=110°,∴点N在上,∵∠DMN=∠AMD﹣∠AMN=2.5°,∴∠DON=2∠DMN=2×2.5°=5°,∴∠BON=40°,∴>,∴BN>DN.故选:D.6.解:∵OC⊥AB,∴,∴∠AOC=∠BOC,∵∠ADC=25°,∴∠AOC=50°,∴∠BOC=50°,故选:C.7.解:设CD交AB于H.∵OB=OC,∴∠2=∠3,∵AB⊥CD,∴∠1+∠2+∠3=90°,CH=HD,∵∠1=2∠2,∴4∠3=90°,∴∠3=22.5°,∴∠1=45°,∴CH=OH,设DH=CH=a,则a,BH=a+a,∴tan D===1+,故选:D.8.解:连接CD,∵BC为⊙O的直径,∴∠BDC=90°,∴∠A+∠ACD=90°,∵∠DOE=α,∴∠DCE=α,∴∠A=90°﹣α.故选:D.9.解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=F A=5,在Rt△AEF中,∵sin∠CAB=,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20.故选:D.10.解:如图,连接BF,OE.∵EF=EB,OE=OE,OF=OB,∴△OEF≌△OEB(SSS),∴∠OFE=∠OBE,∵OE=OB=0F,∴∠OEF=∠OFE=∠OEB=∠OBE,∠OFB=∠OBF,∵∠ABF=∠AOF=20°,∴∠OFB=∠OBE=20°,∵∠OFB+∠OBF+∠OFE+∠OBE+∠BEF=180°,∴4∠EFO+40°=180°,∴∠OFE=35°,故选:D.二.填空题11.解:设∠A=4x°,∠C=x°,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∴4x+x=180,解得:x=36,即∠A=144°,故答案为:144.12.解:连接AD、OA、OC、OB、OD,如图所示:∵=80°,=30°,∴∠AOC=80°,∠BOD=30°,∴∠BAD=∠BOD=15°,∠ADC=∠AOC=40°,∴∠BED=∠ADC﹣∠BAD=40°﹣15°=25°,故答案为:25.13.解:作所对的圆周角∠APB,连接OC、OD、BD,如图,∵∠APB=∠AOB=×120°=60°,∴∠ADB=180°﹣∠APB=180°﹣60°=120°,∵的度数为50°,∴∠COD=50°,∴∠CBD=∠COD=25°,∵∠AEB=∠EDB+∠EBD,∴∠AEB=120°+25°=145°.故答案为145.14.解:∵AB是⊙O的直径,AB=10,∴∠C=90°,OA=OD=5,∴AC===2,∵DE⊥AC,∴AP=CP=AC=,∴OP===2,∴DP=OD+OP=5+2=7,故答案为:7.15.解:连接OD,∵D是的中点,∠AOB=120°,∴∠BOD=∠AOD=∠AOB=60°,由圆周角定理得,∠BCD=∠BOD=30°,∴∠OEC=∠BCD+∠OBC=80°,故答案为:80.三.解答题16.解:连接DB,如图所示:∵∠E=68°,∴∠A=68°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°﹣∠A=90°﹣68°=22°,∵AD=CD,∴,∴∠DBC=∠DBA=22°,∴∠ABC=∠DBC+∠DBA=22°+22°=44°.17.解:∵∠BAC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣120°)=30°,∵OD⊥弦BC,∴∠BDO=90°,∴OD=OB=1.18.解:(I)∵==,∠MON=35°,∴∠MON=∠MOC=∠BOC=35°,∴∠AON=180°﹣∠MON﹣∠MOC﹣∠BOC=180°﹣35°﹣35°﹣35°=75°;(II)连接BF,∵AD⊥直线l,∴∠ADE=90°,∵∠DAE=20°,∴∠AEF=∠ADE+∠DAE=110°,∵A、E、F、B四点共圆,∴∠ABF+∠AEF=180°,∴∠ABF=70°,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=180°﹣∠AFB﹣∠ABF=20°.。

新人教版数学九年级上册24.1.4圆周角课时练习(解析版)

新人教版数学九年级上册24.1.4圆周角课时练习(解析版)

新人教版数学九年级上册24.1.4圆周角课时练习一、选择题1、在⊙O中,同弦所对的圆周角()A、相等B、互补C、相等或互补D、都不对2、如图,在⊙O中,弦AD=弦DC ,则图中相等的圆周角的对数是()A、5对B、6对C、7对D、8对3、下列说法正确的是()A、顶点在圆上的角是圆周角B、两边都和圆相交的角是圆周角C、圆心角是圆周角的2倍D、圆周角度数等于它所对圆心角度数的一半4、下列说法错误的是()A、等弧所对圆周角相等B、同弧所对圆周角相等C、同圆中,相等的圆周角所对弧也相等D、同圆中,等弦所对的圆周角相等5、如图,AB和CD都是⊙O的直径,∠AOC=50°,则∠C的度数是()A、20°B、25°C、30°D、50°6、如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA ,若∠D的度数是50°,则∠C的度数是()A、25°B、40°C、30°D、50°7、在⊙O中,同弦所对的圆周角( )A、相等B、互补C、相等或互补D、都不对8、下列说法正确的是( )A、顶点在圆上的角是圆周角B、两边都和圆相交的角是圆周角C、圆心角是圆周角的2倍D、圆周角度数等于它所对圆心角度数的一半9、如图,把一个量角器放在∠BAC的上面,请你根据量角器的读数判断∠BAC的度数是( )A、30°B、60°C、15°D、20°10、如图,A、B、C是⊙O上的三点,∠ACB=30°,则∠AOB等于( )A、75°B、60°C、45°D、30°11、用直角钢尺检查某一工件是否恰好是半圆环形,根据图所表示的情形,四个工件哪一个肯定是半圆环形?( )A、B、C、D、12、已知A、C、B是⊙O上三点,若∠AOC=40°,则∠ABC的度数是( )A、10°B、20°C、40°D、80°13、如图24-1-4-17所示,AB为⊙O的直径,P、Q、R、S为圆上相异四点,下列叙述正确的是( )A、为锐角B、为直角C、为钝角D、二、填空题14、如图,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径,则∠A+∠B+∠C=________度.15、如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.16、在半径为1的⊙O中,弦AB、AC分别是和,则∠BAC的度数是________.17、如图24-1-4-16所示,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=________.18、如图,在⊙O中,△ABC是等边三角形,AD是直径,则∠ADB=________°,∠ABD=________°19、如图,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF ,那么________(只需写一个正确的结论).20、圆周角是24度,那么它所对的弧是________度.三、解答题21、如图,已知⊙O中,AB为直径,AB=10 cm,弦AC=6 cm,∠ACB的平分线交⊙O于D ,求BC、AD 和BD的长.22、如图(1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.求证:(1)△DOE是等边三角形.(2)如图(2),若∠A=60°,AB≠AC ,则(1)中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.23、四边形ABCD中,AB∥DC ,BC=b,AB=AC=AD=a,如图24-1-4-11,求BD的长.图24-1-4-1124、在足球比赛中,甲、乙两名队员互相配合向对方球门MN进攻,当甲带球冲到A点时,乙已跟随冲到B点,如图24-1-4-12.此时,甲自己直接射门好,还是迅速将球传给乙,让乙射门好?25、如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC ,交AC于D ,BC=4 cm.(1)求证:AC⊥OD;(2)求OD的长;答案解析部分一、选择题1、【答案】C【考点】圆周角定理【解析】【解答】同弦所对的圆周角有两个不同的度数,它们互补.因此同弦所对的圆周角相等或互补. 【分析】此题考查了圆周角定理,要考虑全面.2、【答案】D【考点】圆周角定理【解析】【解答】先找同弧所对的圆周角:弧AD所对的∠1=∠3;弧DC所对的∠2= ∠4;弧BC所对的∠5=∠6;弧AB所对的∠7=∠8.找等弧所对的圆周角,因为弧AC=弧DC ,所以∠1=∠4,∠1=∠2,∠4=∠3,∠2=∠3.由上可知,相等的圆周角有8对.【分析】在同圆或等圆中,判断两个圆周角是否相等,即看它们所对的弧是否相等,因等角对等弧,等弧对等角.3、【答案】D【考点】圆周角定理【解析】【解答】本题考查圆周角和圆心角的联系,解决本题的关键为在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.【分析】此题考查了圆周角定理.4、【答案】D【考点】圆周角定理【解析】【解答】同圆或是等圆中才存在等弦所对的圆周角相等或互补.【分析】此题考查了原周角定义,本题为常考题,容易弄错的是在同圆中等弦所对的圆周角相等,而忽略还有互补.5、【答案】B【考点】圆周角定理【解析】【解答】同弧所对的圆心角等于所对圆周角的二倍,∠AOC的对顶角∠BOD也为50度,弧BD所对的圆周角为∠C,所对的圆心角为∠BOD,∠BOD为∠C的二倍,故选B选项.【分析】此题考查了圆周角和圆心角的相互联系.6、【答案】A【考点】平行线的性质,圆周角定理【解析】【解答】根据两直线平行内错角相等和同弧所对的圆心角等于所对圆周角的二倍,可以得到∠C 的度数是25度.【分析】此题考查了圆周角定义.7、【答案】C【考点】圆周角定理【解析】【解答】同圆或是等圆中等弦所对的圆周角相等或互补.【分析】此题考查了圆周角定义,要考虑全面.8、【答案】D【考点】圆周角定理【解析】【解答】根据圆周角的定义做题,考察圆周角和圆心角的联系,记住圆周角的度数等于它所对圆心角的一半.【分析】此题考查了圆周角定义,审题一定要仔细,结合基础知识做题.9、【答案】C【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,根据量角器我们可以读出∠BOC的度数为30度,∠BOC为圆心角,∠BAC为圆周角,他们是二倍的关系,故选择C选项.【分析】此题考查了圆周角定义,利用圆心角去推出圆周角的度数.10、【答案】B【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,弧AB所对的圆心角和圆周角分别为∠AOB和∠ACB,圆心角为圆周角的二倍,故本题选择B选项.【分析】此题考查了圆周角和圆心角的联系,做题时要注意利用所给的条件结合图像去发现所求问题和所给条件之间的相互联系.11、【答案】B【考点】圆周角定理【解析】【解答】A和C中的直角显然不是圆周角,因此不正确,D中的直角只满足圆周角的一个特征,也不是圆周角,因而不能判断是否为半圆形.选B.【分析】本题考查圆周角定理的推论及圆周角定义在实际生产中的应用.认真观察图形,可得只有B符合定理的推论.实际问题应读懂题意,看懂图形.12、【答案】B【考点】圆周角定理【解析】【解答】根据圆周角和圆心角的关系解决问题,由“一条弧所对的圆周角等于它所对的圆心角的一半”解答.【分析】此题考查了原周角和圆心角的联系.13、【答案】B【考点】圆周角定理【解析】【解答】AB为直径,根据直径所对的圆周角是直角,所以∠APB、∠AQB、∠ARB、∠ASB都是直角,由于四个角都是直角,所以∠ASB=∠ARB=90°.【分析】直径所对的圆周角等于90度.二、填空题14、【答案】90【考点】圆周角定理【解析】【解答】所求的弧等于半圆周的一半,即90度,∠A随对的弧加上∠B所对的弧加上∠C所对的弧等于弧AC ,弧AC所对的圆心角为180度,所以所对的圆周角为90度.【分析】根据圆周角的定义做题,注意圆心角和圆周角之间的相互联系.15、【答案】50°【考点】圆周角定理【解析】【解答】连结AO ,则AO=OB ,OA=OC ,所以∠A=∠B+∠C=20°+30°=50°.【分析】根据圆周角的定义做题,注意作好辅助线,利用半径相等构造等腰三角形,然后转化角度. 16、【答案】15°或75°【考点】勾股定理,圆周角定理【解析】【解答】图(1)和图(2),分两种情况,作直径AD ,连结BD ,易知∠BAD=30°,∠CAO=45°,∴∠BAC=15°或75°.图1 图2【分析】根据圆周角的定义做题,要考虑全面.17、【答案】90°【考点】等边三角形的性质,圆周角定理【解析】【解答】∠1所对的弧是弧AE,∠2所对的弧是弧BE ,而弧AE+弧BE=弧AB是半圆,因此连结AD ,∠ADB的度数是90°,所以∠ADB=∠1+∠2.本题也可以连结EO ,得到圆心角∠EOA和∠EOB,而∠EOA+∠EOB=180°,所以∠1+∠2=90°.【分析】根据圆周角的定义做题.18、【答案】60;90【考点】圆周角定理【解析】【解答】同弧所对的圆周角相等,所以∠ADB=60度,直径所对的圆周角等于90度.【分析】根据圆周角的定义做题,要注意所给条件中等边三角形个内角的度数,及圆周角所对半圆弧的度数.19、【答案】AB=CD【考点】圆心角、弧、弦的关系【解析】【解答】在同圆或是等圆中,等弦的弦心距相等.【分析】根据弦心距做题,在同圆或是等圆中,等弦的弦心距相等.20、【答案】48【考点】圆周角定理【解析】【解答】弧的度数等于它所对的圆心角的度数,圆心角与圆周角为2倍的关系.【分析】根据圆周角和圆心角的联系做题.三、解答题21、【答案】解:∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,BC= = =8.∵CD平分∠ACB ,∴弧AD=弧BD.∴AD=BD.在Rt△ADB中,AD=BD= AB=5 (cm).【考点】勾股定理,圆周角定理【解析】【解答】∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,BC= = =8.∵CD平分∠ACB,∴弧AD=弧BD.∴AD=BD.在Rt△ADB中,AD=BD= AB=5 (cm).【分析】已知条件中若有直径,则利用圆周角定理的推论得到直角三角形,然后利用直角三角形的性质解题.22、【答案】(1)证明:∵△ABC为等边三角形,∴∠B=∠C=60°.∵OB=OC=OE=OD ,∴△OBD和△OEC都为等边三角形.∴∠BOD=∠EOC=60°.∴∠DOE=60°.∴△DOE为等边三角形.(2)解:当∠A=60°,AB≠AC时,(1)中的结论仍然成立.证明:连结CD.∵BC为⊙O的直径,∴∠BDC=90°.∴∠ADC=90°.∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.∵OD=OE ,∴△DOE为等边三角形.【考点】等边三角形的性质,圆周角定理【解析】【解答】(1)证明:∵△ABC为等边三角形,∴∠B=∠C=60°.∵OB=OC=OE=OD,∴△OBD和△OEC都为等边三角形.∴∠BOD=∠EOC=60°.∴∠DOE=60°.∴△DOE为等边三角形.(2)当∠A=60°,AB≠AC时,(1)中的结论仍然成立.证明:连结CD.∵BC为⊙O的直径,∴∠BDC=90°.∴∠ADC=90°.∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.∵OD=OE,∴△DOE为等边三角形.【分析】△ABC是等边三角形,所以∠B、∠C均为60°,利用60°的圆周角定理,可知△DOB、△EOC均为等边三角形.第二种情形类似.23、【答案】解:∵AB=AC=AD=a,∴点B、C、D到A点距离相等.故以A为圆心,以a为半径作⊙A ,并延长BA交⊙A于E ,连结DE.∵AB∥CD ,∴弧BC=弧DE.∴BC=DE=b.∵BE为⊙A的直径,∴∠EDB=90°.在Rt△EDB中,BD= = ,∴BD的长为.【考点】勾股定理,圆周角定理【解析】【解答】∵AB=AC=AD=a,∴点B、C、D到A点距离相等.故以A为圆心,以a为半径作⊙A,并延长BA交⊙A于E,连结DE.∵AB∥CD,∴弧 BC=弧DE.∴BC=DE=b.∵BE为⊙A的直径,∴∠EDB=90°.在Rt△EDB中,BD= = ,∴BD的长为 .【分析】由AB=AC=AD=a可以得到点B、C、D在以A为圆心,以a为半径的圆上,因而可以作出该圆,利用圆的知识解决该题.本题考查圆的定义和圆周角定理及其推论.24、【答案】考虑过M、N及A、B中任一点作圆,这里不妨过M、N、B作圆,则A点在圆外,设MA交⊙O于C,则∠MAN<∠MCN,而∠MCN=∠MBN,所以∠MAN<∠MBN.因此在B点射门为好.【考点】圆周角定理【解析】【解答】考虑过M、N及A、B中任一点作圆,这里不妨过M、N、B作圆,则A点在圆外,设MA交⊙O于C ,则∠MAN<∠MCN ,而∠MCN=∠MBN ,所以∠MAN<∠MBN.因此在B点射门为好..【分析】在真正的足球比赛中情况比较复杂,这里仅用数学方法从两点的静止状态来考虑,如果两个点到球门的距离相差不大,要确定较好的射门位置,关键是看这两点各自对球门MN的张角大小,当张角较小时,则容易被对方守门员拦截.25、【答案】(1)证明:∵AB是⊙O的直径,∴∠C=90°.∵OD∥BC ,∴∠ADO=∠C=90°.∴AC⊥OD.(2)解:∵OD∥BC ,又∵O是AB的中点,∴OD是△ABC的中位线.∴OD= BC= ×4=2(cm).【考点】三角形中位线定理,圆周角定理【解析】【解答】(1)证明:∵AB是⊙O的直径,∴∠C=90°.∵OD∥BC,∴∠ADO=∠C=90°.∴AC⊥OD.(2)∵OD∥BC,又∵O是AB的中点,∴OD是△ABC的中位线.∴OD= BC= ×4=2(cm).【分析】根据圆周角定理的推论以及三角形中位线定理计算.。

人教版九年级上册数学第24章 圆 圆周角——圆周角和圆心角、弧的关系

人教版九年级上册数学第24章 圆 圆周角——圆周角和圆心角、弧的关系

*9.(2019·威海)如图,⊙P 与 x 轴交于点 A(-5,0),B(1,0),与
y 轴的正半轴交于点 C,若∠ACB=60°,则点 C 的纵坐标为
()
A. 13+ 3
B.2 2+ 3
C.4 2
D.2 2+2
【点拨】如图,连接 PA,PB,PC,过点 P 作 PD⊥AB 于点 D, PE⊥OC 于点 E. ∵∠ACB=60°,∴∠APB=120°. ∵PA=PB,∴∠PAB=∠PBA=30°. ∵A(-5,0),B(1,0),∴AB=6. ∴AD=BD=3.
在⊙O 上,∠E=22.5°,AB=4,则半径 OB 等于( C )
A. 2
B.2
C.2 2
D.3
13.(2019·南京)如图,⊙O 的弦 AB,CD 的延长线相交于点 P, 且 AB=CD.求证:PA=PC. 证明:连接 AC. ∵AB=CD,∴A︵B=C︵D. ∴A︵B+B︵D=C︵D+B︵D,即A︵D=C︵B. ∴∠C=∠A. ∴PA=PC.
14.如图,△ABC 内接于⊙O,直径 DE⊥AB 于点 F,交 BC 于 点 M,DE 的延长线与 AC 的延长线交于点 N,连接 AM.
(1)求证:AM=BM;
证明:∵直径 DE⊥AB 于点 F, ∴AF=BF. ∴AM=BM.
(2)若 AM⊥BM,DE=8,∠N=15°,求 BC 的长. 解:连接 AO,BO. 由(1)可得 AM=BM. ∵AM⊥BM,∴∠MAF=∠MBF=45°. ∴∠CMN=∠BMF=45°. ∵AO=BO,DE⊥AB,∴∠AOF=∠BOF=12∠AOB. ∵∠N=15°,∴∠ACM=∠CMN+∠N=60°,即∠ACB=60°.
10.圆周角定理的推论:__同_弧_____或__等__弧____所对的圆周角相等; 相等的圆周角所对的弧__相_等_____.

人教版九年级数学上册《圆周角》题组训练(含答案解析)

人教版九年级数学上册《圆周角》题组训练(含答案解析)

提技能·题组训练圆周角定理及其推论1.( 滨州中考 ) 如图 , 在☉ O中, 圆心角∠ BOC=78°, 则圆周角∠ BAC的大小为 ()A.156°B.78 °C.39°【解析】选C.∠BOC是所对的圆心角D.12°, ∠ BAC是所对的圆周角,∴∠ BAC=∠ BOC=39°.2.( 海南中考 ) 如图 , 在☉ O中 , 弦 BC=1,点 A 是圆上一点 , 且∠ BAC=30°, 则☉ O的半径是 ()A.1B.2C.D.【解析】选A. 方法一 : 连接OB,OC.∵∠ BAC=30°, ∴∠ BOC=2∠ BAC=60° ,∵OB=OC,∴△ OBC是等边三角形 ,∴OB=OC=BC =1.方法二 : 作直径 CD,连接 BD.则∠ CBD=90°, ∵∠ BDC=∠ BAC=30°, ∴CD=2BC=2,∴OC=CD=1.3.( 长春中考 ) 如图 , △ABC内接于☉ O,∠ABC=71° , ∠ CAB=53° , 点 D 在上,则∠ ADB的大小为()A.45°B.53 °C.56 °D.71 °【解析】选 C.在△ ABC中, ∵∠ ABC=71° , ∠ CAB=53°,∴∠ C=180°-71 °-53 °=56° , ∴∠ ADB=∠C=56°.D,则∠ BOD=. 4.( 佛山中考 ) 图中圆心角∠ AOB=30° , 弦 CA∥ OB,延长CO与圆交于点【解析】因为圆心角∠ AOB=30°, 弦 CA∥OB,所以∠ AOB=∠CAO=30°,又 OA=OC,所以∠ CAO=∠ ACO=30° , 所以∠ AOD=∠ CAO+∠ ACO=60° =∠ AOB+∠ BOD,所以∠BOD=30°.答案 : 30°5.( 贵阳中考 ) 如图 ,AD,AC 分别为☉ O的直径和弦 , ∠CAD=30°,B 是 AC上一点 ,BO⊥AD,垂足为【解析】在Rt△AOB中 , ∠A=30° ,BO=5cm,∴AO=5cm,∵AD是直径 ,∴AD=10cm,∠C=90°, 在 Rt△ ADC中,∠A=30°,AD=10cm,∴CD=5cm.答案: 56. 如图 , 正方形ABCD的顶点都在☉O上 ,P是弧DC上的一点 , 则∠ BPC=.【解析】连接 BD,则 BD是直径 ,∴△ BCD是等腰直角三角形 ,∴∠ BDC=45°, ∴∠ BPC=∠ BDC=45°.答案 : 45°【知识归纳】圆周角与直径1.当题目中出现了直径时 , 常作辅助线 , 利用直径所对的圆周角是直角解决问题 .2.当出现 90°的圆周角时 , 常连接该圆周角所对的弦 , 则该弦为直径 .7. 如图 , 在☉ O中, 直径 AB与弦 CD相交于点 P, ∠CAB=40°, ∠APD=65° .(1)求∠B 的大小 .(2)已知 AD=6,求圆心 O到 BD的距离 .【解析】 (1) ∵∠ APD=∠C+∠CAB,∴∠ C=65°-40 °=25° .∴∠ B=∠C=25° .(2) 过点 O作 OE⊥ BD于 E, 则 DE=BE.又∵ AO=BO,∴OE= AD= ×6=3.∴圆心 O到 BD的距离为 3.圆内接四边形1. 如图 , 四边形 ABCD内接于☉ O,如果∠ BOD=130°, 则∠ BCD的度数是 ()A.115°B.130°C.65°D.50°【解析】选 A. ∵∠ BOD=130°, ∴∠ A= ∠BOD=65°, ∵∠2.( 莱芜中考 ) 如图 , 在☉ O中 , 已知∠ OAB=22.5°, 则∠C 的度数为 ()A. 135 °B.122.5 °C.115.5°D.112.5 °【解析】选 D.如图, 作所对的圆周角 .∵OA=OB,∴∠ OBA=∠ OAB=22.5° . ∴∠ AOB=180 ° - ∠ OAB-∠ OBA =180° -22.5 ° -22.5 °=135° .∴∠ D= ∠ AOB=×135°=67.5 °.∵四边形 ACBD是圆内接四边形 ,∴∠ C+∠D=180° .∴∠ C=112.5 °.【方法技巧】1. 在圆中 , 求角的度数时 , 常利用圆周角定理和圆内接四边形的对角互补来完成.2.有时需要自己作出与已知角互补的圆周角 , 才能运用圆内接四边形的性质 .3. 四边形 ABCD内接于☉ O,AD∥BC,∠ B=75° , 则∠ C=.【解析】∵AD∥ BC,∴∠ A+∠B=180° ,∴∠ A=180°-75 °=105°,答案 : 75°【变式训练】已知 , 四边形 ABCD内接于☉ O, 且∠ A∶∠ C=1∶2, 则∠ BOD= ° .【解析】∵四边形 ABCD内接于☉ O,∴∠ A+∠C=180°.又∠ A∶∠ C=1∶ 2, 得∠ A=60° .∴∠ BOD=2∠A=120°.答案 : 1204.如图 , △ ABC内接于☉ O,AD为△ ABC的外角平分线 , 交☉ O 于点 D, 连接 BD,CD,判断△DBC的形状 , 并说明理由 .【解析】△DBC为等腰三角形 . 理由如下 :∵四边形 ABCD为☉ O的内接四边形 ,∴∠ DCB+∠DAB=180°,又∠ EAD+∠DAB=180°,∴∠ EAD=∠DCB.又∠ DAC=∠DBC,∠EAD=∠DAC,∴∠ DBC=∠DCB,∴DB=DC,即△ DBC为等腰三角形 .【错在哪?】作业错例课堂实拍A,B 为☉ O上的两点 , ∠ AOB=100° , 若点 C 也在☉ O上, 且点 C不与 A,B 重合 , 求∠ACB的度数 .(1)错因 :____________________________________.(2)纠错 :____________________________________________________________ _________________________________.答案: (1) 点 C也可能在劣弧AB上,需要分情况讨论(2)当 C在优弧AB上时,∠ ACB=1∠AOB=50°,当 C 在劣弧AB上时,∠ ACB=2 180°-50 °=130°。

初中数学精品试题: 圆心角圆周角专题

初中数学精品试题:  圆心角圆周角专题

第5卷 圆心角、圆周角专题一、选择题1.如图,AC 是⊙O 的直径,点B 、D 在⊙O 上,那么图中(不再添辅助线)等于21∠BOC 的角有( ) (A )1个(B )2个(C )3个(D )4个(第1题图)(第2题图)(第3题图)2.如图,A ,B ,C ,D 是⊙O 上的四个点,B 是AC 的中点,M 是半径OD 上任意一点.若∠BDC =40°,则∠AMB 的度数不可能是( ) (A )45°(B )60°(C )75°(D )85°3.如图,在扇形OAB 中,∠AOB =110°,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在AB 上的点D 处,折痕交OA 于点C ,则AD 的度数为( )(A )40°(B )50° (C )60° (D )70°4.如图,⊙O 中,AB 、AC 是弦,O 在∠BAC 的内部,∠ABO =α,∠ACO =β,∠BOC =θ,则下列关系式中,正确的是( ) (A )θ=α+β(B )θ=2α+2β (C )θ+α+β=180° (D )θ+α+β=360°5.如图,E ,B ,A ,F 四点共线,点D 是正三角形ABC 的边AC 的中点,点P 是直线AB 上异于A ,B 的一个动点,且满足∠CPD =30°,则( )(A )点P 一定在射线BE 上 (B )点P 可以在射线AF 上,也可以在线段AB 上(C )点P 一定在线段AB 上 (D )点P 可以在射线BE 上,也可以在线段(第4题图)(第5题图)(((6.如图,AB 是⊙O 的直径,点C 是半径OA 的中点,过点C 作DE ⊥AB ,交⊙O 于D ,E 两点,过点D 作直径DF ,连结AF ,则∠DF A = .7.如图,已知⊙O 的半径是R .C ,D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则PC +PD 的最小值为 . 8.已知,AB 是⊙O 直径,半径OC ⊥AB ,点D 在⊙O 上,且点D 与点C 在直径AB 的两侧,连结CD ,BD .若∠OCD =22°,则∠ABD 的度数是 .9.如图,AB 是⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =45°,给出下列五个结论:①∠EBC =22.5°;②BD =DC ;③AE =2EC ;④劣弧AE 是劣弧DE 的2倍;⑤AE =BC .其中正确结论的序号是 .10.如图,已知EF 是⊙O 的直径,把∠A 为60°的直角三角板ABC 的一条直角边BC 放在直线EF 上,斜边AB 与⊙O 交于点P ,点B 与点O 重合;将三角形ABC 沿OE 方向平移,使得点B 与点E 重合为止.设∠POF =x °,则x 的取值范围是 . 11.如图,已知AB 为⊙O 的直径,点C 为半圆上的四等分点,在直径AB 所在的直线上找一点P ,连接CP 交⊙O 于点Q (异于点P ),使PQ =OQ ,则∠CPO = . 12.如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB =45°,则四边形MANB 面积的最大值是 .(第6题图)(第7题图)(第9题图)(第10题图)(第11题图)(第12题图)((13.如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,∠CDB =15°,OE =32. (1)求⊙O 的半径;(2)将△OBD 绕O 点旋转,使弦BD 的一个端点与弦AC 的一个端点重合,则弦BD与弦AC 的夹角为 .14.已知:如图,在⊙O 中,AB =2AC ,AD ⊥OC 于D .求证:AB =2AD .15.已知:如图,已知AB 是⊙O 的直径,D 是⊙O 上一点,弦DE ⊥AB 于C ,弦EF 交线段CB 于G . 求证:BD 平分∠FDG .(第13题图)(第15题图) (第14题图) ((16.如图,△ABC 内接于⊙O ,∠BAC =60°,点D 是BC 的中点.BC ,AB 边上的高AE ,CF 相交于点H .试证明: (1)∠F AH =∠CAO ; (2)四边形AHDO 是菱形.17.已知:AB 、AC 是⊙O 的两条弦,AB =AC ,BG ⊥AC 于点G ,∠ABG 的平分线交AC 点D 交⊙O 于点E ,连接AE 、BC .(1)如图①,求∠EBC 的度数;(2)如图②,F 为BG 上一点,连接DF ,当∠BAC =2∠FDG 时,求证:DC =BF ; (3)如图③,在(2)的条件下,当BE 为⊙O 的直径时,经过点G 的弦MN 交AB 于点H ,若MH =GN ,△BDF 的面积为4,求线段AE 的长.(第16题图)(第17题图③)(第17题图②)(第17题图①)(九上第5卷 圆心角、圆周角专题参考答案一.选择题 1.C提示∵OA =OB ,∴∠OAB =∠OBA ,由圆周角定理知,∠BAC =∠CDB =21∠BOC , 故∠OBA =∠BAC =∠CDB =21∠BOC . 2.D提示∵B 是AC 的中点,∴∠AOB =2∠BDC =80°, 又∵M 是OD 上一点,∴∠AMB ≤∠AOB =80°. 则不符合条件的只有85°. 3.B提示:连结OD ,如图,∵扇形OAB 沿过点B 的直线折叠,点O 恰好落在AB 上的点D 处,折痕交OA 于点C ,∴BC 垂直平分OD , ∴BD =BO , ∵OB =OD ,∴△OBD 为等边三角形, ∴∠DOB =60°,∴∠AOD =∠AOB -∠DOB =110°-60°=50°, ∴AD 的度数为为50°. 4.B提示:过A 作⊙O 的直径,交⊙O 于D ;△OAB 中,OA =OB ,则∠BOD =∠OBA +∠OAB =2α; 同理可得:∠COD =∠OCA +∠OAC =2β; ∵∠BOC =∠BOD +∠COD ,∴θ=2α+2β. 5.C提示:连接BD 、PC 、PD ,如图,∵△ABC 等边三角形, ∴∠CBD =30°,又∠CPD =30°,∴∠CBD =∠CPD , ∴B 、C 、D 、P 四点共圆,又∠BDC =90°,∴点P 在以BC 为直径的圆上,∴点P 一定在线段AB 上. 二.填空题 6.30°(第3题图)(第4题图)(第5题图)(((7.R 3提示:将C 点对称,连接DC ’,根据题意以及垂径定理,得弧C ’D 的度数是120°, 则∠C ’OD =120°.作OE ⊥C ’D 于E , 则∠DOE =60°,则DE =R 23,C ’D =R 3.8.23°或67°①当点D 在直线OC 左侧时,如图所示. 连接OD ,则∠1=∠2=22°, ∴∠COD =180°-∠1-∠2=136°,∴∠AOD =∠COD -∠AOC =136°-90°=46°, ∴∠ABD =21∠AOD =23°; ②当点D 在直线OC 右侧时,如图所示. 连接OD ,则∠1=∠2=22°; 并延长CO ,则∠3=∠1+∠2=44°. ∴∠AOD =90°+∠3=90°+44°=134°, ∴∠ABD =21∠AOD =67°. 9.①②④.提示:连接AD ,AB 是⊙O 的直径,则∠AEB =∠ADB =90°,∵AB =AC ,∠BAC =45°,∴∠ABE =45°, ∠C =∠ABC =67.5°,AD 平分∠BAC , ∴AE =BE ,∠EBC =90°-67.5°=22.5°, DB =CD ,故②正确,∵∠ABE =45°,∠EBC =22.5°,故①正确, ∵AE =BE ,∴AE =BE ,又AD 平分∠BAC , 所以,即劣弧AE 是劣弧DE 的2倍,④正确.∵∠EBC =22.5°,BE ⊥CE ,∴BE >2EC ,∴AE >2EC ,故③错误. ∵∠BEC =90°,∴BC >BE ,又∵AE =BE ,∴BC >AE ,故⑤错误. 10.30≤x ≤60.提示:当O 、B 重合时,∠POF 的度数最小,此时∠POF =∠PBF =30°; 当B 、E 重合时,∠POF 的度数最大,∠POF =2∠PBF =60°;(第7题图)(第8题图①)(第8题图②)(第9题图)((故x 的取值范围是30≤x ≤60. 11. 15°或30°或45°或105°.提示:当P 在直线AB 延长线上时,如图所示: 连接OC , 设∠CPO =x °, ∵PQ =OQ ,∴∠QOP =∠CPO =x °, ∴∠CQO =2x °, ∵OQ =OC ,∴∠OCQ =∠CQO =2x °, ∵点C 为半圆上的四等分点,∴∠AOC =45°或∠AOC =90°(此时点C 亦为半圆的二等分点), ∴x +2x =45或x +2x =90, ∴x =15或x =30,∴∠CPO =15°或∠CPO =30°,当P 在直线BA 延长线上,PC 是切线时,点C 与点Q 重合,此时∠CPO =45°. 同理可得,当P 在线段AB 上时,∠CPO =105°. 12.24提示:过点O 作OC ⊥AB 于C ,交⊙O 于D 、E 两点,连结OA 、OB 、DA 、DB 、EA 、EB ,∵∠AMB =45°,∴∠AOB =2∠AMB =90°,∴△OAB 为等腰直角三角形, ∴AB =2OA =22,∵S 四边形MANB =S △MAB +S △NAB ,∴当M 点到AB 的距离最大,△MAB 的面积最大;当N 点到AB 的距离最大时,△NAB 的面积最大,此时,MN 过圆心是直径.此时四边形MANB 面积的最大值=21AB (CM +CN )=21AB •MN =21×22×4=42. 三.解答题13.(1)∵AB 为⊙O 的直径,弦CD ⊥AB 于E ,∴弧BC =弧BD ,∴∠BDC =21∠BOD , 而∠CDB =15°,∴∠BOD =2×15°=30°,在Rt △ODE 中,∠DOE =30°,OE =23,∴OE =3DE ,OD =2DE ,∴DE =332=2;∴OD =4,即⊙O 的半径为4;(第11题图)(2)有4种情况:如图:(第13题图①)(第13题图②)(第13题图③)①如图①所示:∵OA =OB ,∠AOB =30°, ∴∠OAB =∠OBA =75°, ∵CD ⊥AB ,AB 是直径, ∴弧BC =弧BD , ∴∠CAB =21∠BOD =15°, ∴∠CAB =∠BAO +∠CAB =15°+75°=90°; ②如图②所示,∠CAD =75°-15°=60°; ③如图③所示:∠ACB =90°; ④如图④所示:∠ACB =60°; 故答案为:60°或90°. 14.证明:延长AD 交⊙O 于E , ∵OC ⊥AD ,∴AE =2AC ,AE =2AD , ∵AB =2AC ,∴AE =AB ,,∴AB =AE ,∴AB =2AD .15.证明:连接BD 、BE ,如图所示: ∵AB 为直径,DE ⊥AB , ∴AB 垂直平分DE , ∴BD =BE ,CD =CE , ∴△BDG ≌△BEG (SSS ), ∴∠BDG =∠BEG , ∵∠BDF =∠BEF , ∴∠BDG =∠BDF , 即:BD 平分∠FDG .(第14题图)(第13题图④)(第14题图)(第15题图) (( ((( (16.证明:(1)连接AD ,∵点D 是BC 的中点, ∴∠BAD =∠CAD ,OD ⊥BC , ∵AE ⊥BC , ∴AE ∥OD , ∴∠DAH =∠ODA , ∵OA =OD , ∴∠DAO =∠ODA ,∴∠BAD -∠DAH =∠CAD -∠DAO , ∴∠F AH =∠CAO ;(2)过点O 作OM ⊥AC 于M ,∴AC =2AM , ∵CF ⊥AB ,∠BAC =60°,∴AC =2AF ,∴AF =AM , 在△AFH 与△AMO 中,∵∠F AH =∠CAO ,AF =AM ,∠AFH =∠AMO , ∴△AFH ≌△AMO ,∴AH =OA , ∵OA =OD ,∴AH 平行且等于OD .∴四边形AHDO 是平行四边形(一组对边平行且相等的四边形是平行四边形), 又∵OA =OD ,∴平行四边形AHDO 是菱形(邻边相等的平行四边形是菱形) 17.解:(1)设∠GBC =α, ∵BG ⊥AC , ∴∠BGC =90°, ∴∠C =90°-α, ∵AB =AC ,∴∠ABC =∠C =90°-α,∴∠BAC =180°-(∠ABC +∠C )=180°-(90°-α+90°-α)=2α, ∴∠ABG =90°-2α, ∵BE 平分∠ABG , ∴∠DBG =45°-α,∴∠EBC =∠DBG +∠GBC =45°-α+α=45°; (2)延长DF 交BC 于点P ,如图① 由(1)∠BAC =2α=2∠GBC(第16题图)(∵∠BAC =2∠FDG ,∴∠FDG =∠GBC , ∵∠BFP =∠DFG ,∴∠BPF =∠DGF =90°, ∴∠BDF =∠DBC =45°,∴DP =BP , ∴△DPC ≌△BPF (ASA ), ∴DC =BF ;(3)∵当BE 为⊙O 的直径, ∴∠BAE =90°=∠AGB ∵∠EAC =∠EBC =45°, ∴∠BAC =∠ABG =45°, ∵BE 平分∠ABG ,∴∠ABE =∠DBG =∠CBG =22.5°, ∴∠BDG =∠BCG =67.5°, ∴BD =BC ,∴设DG =CG =a , ∴BF =CD =2a ,S △BDF =21BF •DG =21×2a •a =4, ∴a =2,BF =CD =4过点O 作OK ⊥MN 于点K ,连接OH 、OG ,∴MK =NK , ∵MH =GN ,∴HK =GK ,∴OH =OG ,连接OA 、OC ,延长GO 交AB 于T ,过O 作OQ ⊥AC 于Q (图②), ∵BC=BC ,∴∠BOC =2∠BAC =90°, ∵G 为CD 的中点,∴OG =21CD =2, ∵AG =BG ,AO =BO ,∴TG ⊥AB ,AT =BT , ∴∠AGT =45°,∴OQ =2, ∵AB =AC =2BT =2CQ ,BO =CO , ∴Rt △BOT ≌Rt △COQ (HL ), ∴OT =OQ =2,∵Rt △OTH ≌Rt △OQG (HL ), ∴TH =QG ,∴AH =CG =2,∵AT =BT ,EO =BO ,∴AE =2TO =22.(第17题图②)(第17题图①)((。

九年级数学上册《圆周角》练习题及答案解析

九年级数学上册《圆周角》练习题及答案解析

九年级数学上册《圆周角》练习题及答案解析学校:___________姓名:___________班级:______________一、单选题1.如图,在⊙O中,AB=AC,⊙AOB=40°,则⊙ADC的度数是()A.40°B.30°C.20°D.15°2.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等3.如图,⊙O的两条弦AB⊙CD,已知⊙ADC=35°,则⊙BAD的度数为()A.55°B.70°C.110°D.130°4.如图,在⊙O中,点A是BC的中点,⊙ADC=24°,则⊙AOB的度数是()A.24°B.26°C.48°D.66°5.如图,正五边形ABCDE 和正三角形AMN 都是O 的内接多边形,则BOM ∠的度数是( )A .36︒B .45︒C .48︒D .60︒6.如图,AB 是⊙O 的直径,P A 与⊙O 相切于点A ,⊙ABC =25°,OC 的延长线交P A 于点P ,则⊙P 的度数是( )A .25°B .35°C .40°D .50°7.如图,AB 是O 的直径,C ,D 是O 上的两点,若54ABD ∠=︒,则BCD ∠的度数是( )A .36°B .40°C .46°D .65°8.下列说法正确的是( )A .顶点在圆上的角是圆周角B .两边都和圆相交的角是圆周角C .圆心角是圆周角的2倍D .圆周角度数等于它所对圆心角度数的一半9.下列命题是真命题的是( )A .相等的两个角是对顶角B .相等的圆周角所对的弧相等C .若a b <,则22ac bc <D .在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是1310.如图,⊙O 是ABC 的外接圆,AC 是⊙O 的直径,点P 在⊙O 上,若40ACB ∠=︒,则BPC ∠的度数是( )A .40︒B .45︒C .50︒D .55︒11.如图,O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交O 于点E ,连接EB .若4AB =,1CD =,则EB 的长为( )A .5B .4C .3D .2.512.如图,点A ,B ,C 是O 上的点,连接,,AB AC BC ,且15ACB ∠=︒,过点O 作OD AB ∥交O 于点D .连接,AD BD ,已知O 半径为2,则图中阴影面积为( )A .2πB .3πC .4πD .23π 13.如图,ABC ∆中,AB 是O 的直径,AC 交O 于点E ,BC 交O 于点D ,点D 是BC 中点,O 的切线DF 交AC 于点F ,则下列结论中⊙A ABE ∠=∠;⊙BD DE =;⊙AB AC =;⊙F 是EC 中点,正确的个数是( )A .1B .2C .3D .4二、填空题14.如图,点A 、B 、C 、D 、E 在O 上,且弧AB 为50︒,则E C ∠+∠=________.15.如图,A 、B 、C 是⊙O 上的三点,AB =2,∠ACB =30°,那么⊙O 的半径等于_____.16.如图,AB 是⊙O 的直径,CD 为弦,AB ⊙CD ,若CD =CB =2,则阴影部分的面积是______.17.如图,在半径为1的O 上顺次取点A ,B ,C ,D ,E ,连接AB ,AE ,OB ,OC ,OD ,OE .若65BAE ∠=︒,70COD ∠=︒,则BC 与DE 的长度之和为__________.(结果保留π).18.如图,ABC内接于⊙O,AB=BC,⊙BAC=30°,AD为⊙O的直径,AD=2,则BD=________.19.如图,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF,那么________(只需写一个正确的结论).20.如图,AB是⊙O的直径,C、D是⊙O上的两点,⊙AOC=120°,则⊙CDB=_____°.三、解答题21.如图.AB是⊙O的直径,点C,D在⊙O上,C是BD的中点,连接BD交AC于点E,延长AC至F,使CE=CF.(1)求证:BF 是⊙O 的切线.(2)若BF =3,1sin 3A =,求BD 的长. 22.如图,在⊙AOB 和⊙COD 中,OA =OB ,OC =OD ,若⊙AOB =⊙COD =60°.(1)求证:AC =BD .(2)求⊙APB 的度数.23.如图,已知ABCD 是某圆的内接四边形,AB BD =,BM AC ⊥于M ,求证:AM DC CM =+.24.已知AB 是⊙O 的直径,点C 在AB 的延长线上,AB =4,BC =2,P 是⊙O 上半部分的一个动点,连接OP ,CP .(1)如图⊙,⊙OPC 的最大面积是________;(2)如图⊙,延长PO 交⊙O 于点D ,连接DB ,当CP =DB 时,求证:CP 是⊙O 的切线.25.如图,,,//,//AD DB AE EC FG AB AG BC ==.利用平移或旋转的方法研究图中的线段,,DE BF FC 之间的位置关系和数量关系.参考答案及解析:1.C【详解】先由圆心角、弧、弦的关系求出⊙AOC=⊙AOB=50°,再由圆周角定理即可得出结论.解:⊙在⊙O 中,= ,⊙⊙AOC=⊙AOB ,⊙⊙AOB=40°,⊙⊙AOC=40°, ⊙⊙ADC=12⊙AOC=20°, 故选C .2.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.3.A【分析】根据垂直定义和三角形的两锐角互余进行解答即可.【详解】解:⊙AB ⊙CD ,⊙⊙ADC +⊙BAD =90°,⊙⊙ADC =35°,⊙⊙BAD =90°﹣35°=55°,故选:A .【点睛】本题考查垂直定义、直角三角形的两锐角互余,熟练掌握直角三角形的两锐角互余是解答的关键.4.C【分析】直接利用圆周角求解.【详解】解:⊙点A 是BC 的中点,⊙AC AB =,⊙⊙AOB =2⊙ADC =2×24°=48°.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.C【分析】如图,连接AO .利用正多边形的性质求出AOM ∠,AOB ∠,可得结论.【详解】解:如图,连接AO .AMN △是等边三角形,60ANM ∠∴=︒,2120AOM ANM ∠∠∴==︒, ABCDE 是正五边形,360725AOB ∠︒∴==︒,1207248BOM ∠∴=︒-︒=︒.故选:C .【点睛】本题考查正多边形与圆,等边三角形的性质,圆周角定理等知识,解题的关键是熟练掌握正多边形的性质,属于中考常考题型.6.C【分析】根据圆周角定理可得50AOC ∠=︒,根据切线的性质可得90PAO ∠=︒,根据直角三角形两个锐角互余即可求解.【详解】AC AC =,⊙ABC =25°,250AOC ABC ∴∠=∠=︒,AB 是⊙O 的直径,∴90PAO ∠=︒,9040P AOC ∴∠=︒-∠=︒.故选C .【点睛】本题考查了圆周角定理,切线的性质,掌握圆周角定理与切线的性质是解题的关键.7.A【分析】连接AD ,如图,根据圆周角定理得到⊙ADB =90°,⊙C =⊙A ,然后利用余角的性质计算出⊙A ,从而得到⊙C 的度数.【详解】解:如图,连接AD ,⊙AB 为⊙O 的直径,⊙⊙ADB =90°,⊙⊙A =90°−⊙ABD =90°−54°=36°,⊙⊙C =⊙A =36°.故选:A .【点睛】本题主要考查了同弦所对的圆周角相等,直径所对的圆周角是直角,解题的关键在于能够熟练掌握相关知识进行求解.8.D【详解】解:顶点在圆上,且与圆有相交的角是圆周角,则A 和B 是错误的;同弧所对的圆周角的度数等于圆心角度数的一半,故选D .9.D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A 选项错误,不符合题意; 在同圆或等圆中,相等的圆周角所对的弧相等,故B 选项错误,不符合题意;若a b <,则22ac bc ≤,故C 选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D 选项正确,符合题意; 故选:D .【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.10.C【分析】根据圆周角定理得到90ABC ∠=︒,BPC A ∠=∠,然后利用互余计算出⊙A 的度数,从而得到BPC ∠的度数.【详解】解:⊙AB 是⊙O 的直径,⊙90ABC ∠=︒,⊙90904050A ACB ∠=︒-∠=︒-︒=︒,⊙50BPC A ∠=∠=︒,故选:C .【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.C【分析】设圆O 的半径为r ,则OC =OD -CD =r -1,AE =2OA =2r ,先利用垂径定理得到AC =2,即可利用勾股定理求出半径,从而求出AE 的长,再利用勾股定理即可求出BE .【详解】解:设圆O 的半径为r ,则OC =OD -CD =r -1,AE =2OA =2r , 由垂径定理得122AC BC AB ===,在Rt ⊙OAC 中,222OA OC AC =+,⊙()22221r r =+-, ⊙52r =, ⊙AE =5,⊙AE 是圆O 的直径,⊙⊙B =90°,⊙在Rt ⊙ABE 中,3BE ,故选:C .【点睛】本题主要考查了垂径定理,勾股定理,直径所对的圆周角是直角等等,熟知垂径定理是解题的关键.12.B【分析】根据圆周角定理可得⊙AOB =30°,再由OD AB ∥,可得AOB ADB SS =,从而得到阴影面积等于扇形AOB 的面积,即可求解.【详解】解:⊙15ACB ∠=︒,⊙⊙AOB =30°, ⊙23023603AOB S ππ⨯==扇形, ⊙OD AB ∥,⊙AOB ADB S S =,⊙阴影面积等于扇形AOB 的面积,⊙阴影面积等于3π. 故选:B【点睛】本题考查了圆周角定理、扇形面积公式和同底等高的两个三角形的面积相等等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.13.C【分析】连接连接OD ,AD 、DE ,根据直径所对的圆周角是直角以及等腰三角形的性质可判断结论⊙;根据同圆或等圆中,同弧所对的弦相等可得结论⊙;根据切线的性质以及三角形中位线定理可得结论⊙;因为只有ABE △是等腰直角三角形时,才能满足结论⊙.【详解】解:连接OD,AD、DE.AB是O的直径,∴∠=︒(直径所对的圆周角是直角),ADB90∴⊥,AD BC点D是BC中点,=,故⊙正确;∴∠=∠,AB ACBAD CAD∴BD DE=,∴=,故⊙正确;BD DEDF是O的切线,∴⊥,OD DF=,BD DCAO BO=,∴,OD AC//∴⊥,DF AF∴,DF BE//⊙点D是BC的中点,∴点F是EC的中点,故⊙正确;只有当ABE△是等腰直角三角形时,45∠=∠=︒,BAC ABE故⊙错误,正确的有⊙⊙⊙共3个,故选:C.【点睛】本题考查了圆周角定理,圆切线的性质,等腰三角形的性质,三角形中位线定理的应用,题目难度适中,熟练掌握相关图形的性质定理是解本题的关键.14.155︒【分析】先根据弧的度数与它所对应的圆心角的度数的关系,求得弧AB对应的圆心角的度数,再根据圆周角与圆心角的关系,则可求得E C ∠+∠.【详解】弧的度数等于它所对应的圆心角的度数,由于弧AB 为50︒,所以3=50∠︒ .顶点在圆上且两边都和圆相交的角叫做圆周角,而一条弧所对的圆周角等于它所对的圆心角的一半,所以:112E ∠=∠ ,122C ∠=∠ , ()()()11112360336050155222E C ∠+∠=∠+∠=︒-∠=︒-︒=︒.【点睛】本题考查弧、圆周角、圆心角的概念,及它们之间的关系.15.2【分析】根据题意和圆周角定理得∠O =60°,则△OAB 是等边三角形,根据AB =2即可得.【详解】解:∵OA =OB ,∠ACB =30°,OA =OB ,∴∠O =60°,∴△OAB 是等边三角形,∵AB =2,∴OA =AB =2,故答案为:2.【点睛】本题考查了等边三角形的判定与性质,圆周角定理,解题的关键是掌握这些知识点.16.23π【分析】连接OC ,设CD 与AB 的交点为E ,利用垂径定理、勾股定理判定△OBC 是等边三角形,运用扇形的面积减去△OBC 的面积即可.【详解】连接OC ,设CD 与AB 的交点为E ,⊙AB 是⊙O 的直径,AB ⊙CD ,CD =CB =2,⊙CE 1BE ==,⊙⊙ECB =30°,⊙CBE =60°,⊙CO =BO ,⊙△OBC 是等边三角形,⊙⊙BOC =60°,OC =OB =2,⊙2602123602S =π⨯⨯-⨯阴影=23π故答案为:23π 【点睛】本题考查了垂径定理,勾股定理,扇形的面积公式,等边三角形的判定和性质,熟练掌握垂径定理,扇形的面积公式是解题的关键.17.13π##3π 【分析】由圆周角定理得2130BOE BAE ∠=∠=︒,根据弧长公式分别计算出BE 与DC 的长度,相减即可得到答案.【详解】解:⊙65BAE ∠=︒,⊙2130BOE BAE ∠=∠=︒又O 的半径为1,BE 的长度=130113=18018ππ⨯,又70COD ∠=︒,⊙DC 的长度=7017=18018ππ⨯, ⊙BC 与DE 的长度之和=13761-==1818183ππππ,故答案为:13π. 【点睛】本题主要考查了计算弧长,圆周角定理,熟练掌握弧长计算公式是解答本题的关键.18【分析】根据AB =BC ,可得⊙C =⊙BAC =30°,再由圆周角定理,可得⊙D =30°,然后利用锐角三角函数,即可求解.【详解】解:⊙AB =BC ,⊙⊙C =⊙BAC =30°,⊙⊙C =⊙D ,⊙⊙D =30°,⊙AD 为⊙O 的直径,⊙⊙ABD =90°,在Rt ABD △ 中,AD =2,⊙D =30°,⊙cos302BD AD =⋅︒==.【点睛】本题主要考查了圆周角定理,锐角三角函数等知识,熟练掌握相关知识点是解题的关键.19.AB =CD (答案不唯一)【分析】根据圆心角、弧、弦、弦心距之间的关系定理的推论可以直接得到所求的结论.【详解】解:⊙OE =OF ,OE 、OF 分别为⊙O 的弦AB 、CD 的弦心距,⊙AB =CD .故答案为:AB =CD (答案不唯一)【点睛】本题主要考查了圆心角、弧、弦的关系.熟练掌握在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等是解题的关键. 20.30.【分析】先利用邻补角计算出BOC ∠,然后根据圆心周角定理得到CDB ∠的度数.【详解】⊙⊙BOC =180°﹣⊙AOC =180°﹣120°=60°,⊙⊙CDB =12⊙BOC =30°. 故答案为30.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.21.(1)见详解(2)BD=16 3【分析】(1)根据直径所对圆周角得出⊙ACB=90°,根据C是BD的中点,得出DC BC=,利用等弧所对圆周角得出⊙CAB=⊙CBD即可(2)连结OC,交BD于G,根据垂径定理得出OC⊙BD,DG=BG=12BD,由三角函数求出AF=9,利用勾股定理求出ABAB BFBCAF⋅===(1)证明:⊙AB是⊙O的直径,⊙⊙ACB=90°,⊙C是BD的中点,⊙DC BC=,⊙⊙CAB=⊙CBD,⊙CE=CF,BC⊙EF,⊙BE=BF,⊙⊙FBC=⊙CBE,⊙⊙FBC=⊙CBE=⊙CAB,⊙⊙CAB+⊙CBA=90°,⊙⊙FBC+⊙CBA=90°,⊙FB⊙AB,AB为直径,⊙BF为⊙O的切线;,(2)解:连结OC,交BD于G,⊙DC BC=,OC为半径,⊙OC⊙BD,DG=BG=12 BD,⊙BF=3,1 sin3A=,⊙31sin 3BF A AF AF ===, ⊙AF =9,在Rt △ABF 中AB⊙S △ABF =12BC ·AF =12AB ·BF ,⊙AB BF BC AF ⋅=== ⊙sin A =sin⊙CBG =13CG BC ==,⊙3CG =,在Rt ⊙BCG 中83BG ==, ⊙BD =2BG =163.【点睛】本题考查圆的切线判定,等弧所对圆周角性质,线段线段垂直平分线性质,等腰三角形等腰三角形三线合一性质,勾股定理锐角三角函数,面积等积式,本题难度不大,是中考常考试题,掌握好相关知识是解题关键.22.(1)见解析(2)60°【分析】(1)通过证明⊙AOC ⊙⊙BOD ,即可求证;(2)由(1)可得⊙OAC =⊙OBD ,从而得到⊙P AB +⊙PBA =⊙OAB +⊙OBA ,利用三角形内角和的性质即可求解.(1)证明:⊙⊙AOB =⊙COD ,⊙AOB BOC COD BOC ∠+∠∠+∠=,即⊙AOC =⊙BOD ,在⊙AOC 和⊙BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,⊙⊙AOC ⊙⊙BOD (SAS ),⊙AC =BD .(2)解:⊙⊙AOC ⊙⊙BOD ,⊙⊙OAC =⊙OBD ,⊙⊙PBA =⊙ABO +⊙OBD ,⊙OAB =⊙P AB +⊙OAC ,⊙⊙P AB +⊙PBA =⊙P AB +⊙ABO +⊙OBD =⊙P AB +⊙OAC +⊙ABO =⊙OAB +⊙OBA ,⊙OA =OB ,⊙AOB =60°,⊙⊙AOB 是等边三角形,⊙⊙OAB +⊙OBA =120°⊙⊙P AB +⊙PBA =120°,⊙()180********APB PAB PBA ∠︒-∠+∠︒-︒︒===. 【点睛】此题考查了全等三角形的判定与性质,三角形内角和定理,等边三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质.23.见解析【分析】在MA 上截取ME MC =,连接BE ,利用圆周角定理易得()ABE DBC AAS ≅,利用三角形的性质得到AE CD =即可求解.【详解】证明:在MA 上截取ME MC =,连接BE ,BM AC ⊥,BE BC ∴=,BEC BCE ∴∠=∠.AB BD =,∴AB BD =,ADB BAD ∴∠=∠,而ADB BCE ∠=∠,BCE BAD ∴∠=∠.又180BCD BAD ∠+∠=︒,180BEA BCE ∠+∠=︒,BEA BCD ∴∠=∠.BAE BDC ∠=∠,()ABE DBC AAS ∴∆≅∆,AE CD ∴=,AM AE EM DC CM ∴=+=+.【点睛】本题主要考查了圆周角定理,全等三角形的判定和性质,作出辅助线构建三角形全等是解答关键.24.(1)4(2)见解析【分析】(1)因为OC 长度确定,所以当点P 到OC 的距离最大时⊙OPC 的面积最大,当OP ⊙OC 时,当点P 到OC 的距离最大,等于圆O 的半径,求出此时的⊙OPC 的面积即可;(2)连接AP ,BP ,利用同圆中,相等的圆心角所对的弦相等,可得AP =DB ,因为CP =DB ,所以AP =CP ,可证⊙APB ⊙⊙CPO (SAS ),得到⊙OPC =90°,即可证明CP 是切线.(1)解:⊙AB =4,⊙OB =2,OC =OB +BC =4.在⊙OPC 中,设OC 边上的高为h ,⊙S △OPC 12=OC •h =2h , ⊙当h 最大时,S △OPC 取得最大值.作PH ⊙OC ,如图⊙,则PO PH >,当OP ⊙OC 时,PO PH =,此时h 最大,如答图1所示:此时h =半径=2,14242OPC S ⨯⨯==.⊙⊙OPC 的最大面积为4, 故答案为:4.(2)证明:如答图⊙,连接AP ,BP .⊙⊙AOP =⊙BOD ,⊙AP =BD ,⊙CP =DB ,⊙AP =CP ,⊙⊙A =⊙C ,在⊙APB 与⊙CPO 中, AP CPA C AB CO=⎧⎪∠=∠⎨⎪=⎩,⊙⊙APB ⊙⊙CPO (SAS ), ⊙⊙APB =⊙OPC ,⊙AB 是直径,⊙⊙APB =90°,⊙⊙OPC=90°,⊙DP⊙PC,⊙DP经过圆心,⊙PC是⊙O的切线.【点睛】本题考查了圆,熟练掌握圆的半径、切线、弦与圆心角的关系等知识是解题的关键.25.DE与BF平行且相等,DE与FC平行且相等,BF与FC相等且在一条直线上【分析】易知DE是△ABC的中位线,则DE∥BC∥AG;由此可知四边形ADEG和四边形DBFE都是平行四边形,故AG=DE=BF;由全等三角形可得AG=FC,故DE=BF=FC.【详解】解:线段DE,BF,FC之间的位置关系是DE∥BF,DE∥FC,数量关系是DE=BF=FC,∵AG∥BC(已知)∴∠G=∠EFC(两直线平行,内错角相等)∵∠AEG=∠FEC(对顶角相等),又AE=EC(已知)∴△AGE≌△CFE(AAS);∴AG=FC,FE=EG(全等三角形的对应边相等),可以看做△AGE绕点E旋转180°得到△CFE,又∵AD=DB(已知)∴DE为三角形ABC的中位线,BC,∴DE∥BC,DE=12即DE∥BF,DE∥FC,∵FG∥AB,AG∥BC(已知)∴四边形ABFG是平行四边形∴AG=BF,BC,∴BF=FC=12∴DE=BF=FC,可以看做⊙ADE沿直线AE平移得到△EFC,故线段DE,BF,FC之间的位置关系是DE∥BF,DE∥FC,BF与FC在一条直线上,数量关系是DE=BF=FC.【点睛】题考查的是三角形中位线定理、平行四边形及全等三角形的判定和性质.三角形的中位线的性质定理,为证明线段相等和平行提供了依据.第21页共21页。

九年级数学上册圆心角与圆周角练习题

九年级数学上册圆心角与圆周角练习题

九年级数学上册圆⼼⾓与圆周⾓练习题 九年级数学上册圆⼼⾓与圆周⾓的练习积累越多,掌握越熟练。

下⾯是店铺为⼤家带来的关于九年级数学上册圆⼼⾓与圆周⾓的练习题,希望会给⼤家带来帮助。

九年级数学上册圆⼼⾓与圆周⾓练习题⽬ ⼀、选择题 1.在同圆中,同弦所对的圆周⾓ ( )A.相等 B.互补 C.相等或互补 D.互余 2.3-63所⽰,A,B,C,D在同⼀个圆上,四边形ABCD的两条对⾓线把四个内⾓分成的8个⾓中,相等的⾓共有 ( )A.2对 B.3对 C.4对 D.5对 3.3-64所⽰,⊙O的半径为5,弦AB,C是圆上⼀点,则∠ACB的度数是. 4.四边形 ABCD内接于⊙O,若∠BOD=100°,则∠DAB的度数为( )A.50°B.80°C.100°D.130° 5.是中国共产主义青年团团旗上的案,点A、B、C、D、E五等分圆,则∠A+∠B+∠C+∠D+∠E的度数是( )A.180°B.15 0°C.135°D.120° 6.下列命题中,正确的命题个数是( ) ①顶点在圆周上的⾓是圆周⾓; ②圆周⾓度数等于圆⼼⾓度数的⼀半; ③900的圆周⾓所对的弦是直径; ④圆周⾓相等,则它们所对的弧也相等。

A、1个B、2个C、3个D、4个 ⼆、填空题 7.3-65所⽰,在⊙O中,∠AOB=100°,C为优弧ACB的中点,则∠CAB= 8.3-66所⽰,AB为⊙O的直径,AB=6,∠CAD=30°,则弦DC= . 9.3-67所⽰,AB是⊙O的直径,∠BOC=120°,CD⊥AB,求∠ABD的度数. 10.已知AB是⊙O的直径,AD ∥ OC弧AD的度数为80°,则∠BOC=_________ 11.⊙O内接四边形ABCD中,AB=CD则中和∠1相等的⾓有______。

12.弦AB的长等于⊙O的半径,点C在AB上,则∠C的度数是________-. 三、解答题 13.3-68所⽰,在△ABC中,AB=AC,∠C=70°,以AB为直径的半圆分别交AC,BC于D,E,O为圆⼼,求∠DOE的度数. 14.(2014年天津市,第21题10分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D. (Ⅰ)①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长; (Ⅱ)②,若∠CAB=60°,求BD的长. 15.3-70所⽰,在⊙O中,AB是直径,弦AC=12 cm,BC=16 cm,∠ACB的平分线交⊙O于点D,求AD的长. 16.3-71所⽰,AB是半圆O的直径,C是半圆上⼀点,D是 AC的中点,DH⊥AB,H是垂⾜,AC分别交BD,DH于E,F,试说明DF=EF. 九年级数学上册圆⼼⾓与圆周⾓练习题答案 1.C 2.C 3.60°[提⽰:3-72所⽰,作OD⊥AB,垂⾜为D,则BD sin∠BOD BOD=60°,∴∠BOA=120°,∴∠BCA BOA=60°.故填60°.] 4.分析:因为∠BOD=100°,所以∠C=50°,所以∠A=130°,因为圆内接四边形的对⾓互补。

人教版九年级数学上册24.1.4圆周角 练习题(含答案)

人教版九年级数学上册24.1.4圆周角 练习题(含答案)

人教版九年级数学上册24.1.4圆周角 练习题(含答案)一、填空题:1.如图1,等边三角形ABC 的三个顶点都在⊙O 上,D 是AC 上任一点(不与A 、C 重合),则∠ADC 的度数是__120o ______.DDCB AO(1) (2) (3)2.如图2,四边形ABCD 的四个顶点都在⊙O 上,且AD ∥BC,对角线AC 与BC 相交于点E,那么图中有____5_____对相等的角。

3.已知,如图3,∠BAC 的对角∠BAD=100°,则∠BOC=___160____度.4.如图4,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=___23____度.BAA(4) (5) (6)5.如图5,AB 是⊙O 的直径, BC BD ,∠A=25°,则∠BOD 的度数为__50o ______.6.如图6,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O到CD 的距离___.二、选择题:7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是( A ) A.50° B.100° C.130° D.200°DDCBA(7) (8) (9) (10)8.如图8,A、B、C、D四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对9.如图9,D是AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个10.如图10,∠AOB=100°,则∠A+∠B等于( )A.100°B.80°C.50°D.40°11.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°12.如图,A、B、C三点都在⊙O上,点D是AB延长线上一点,∠AOC=140°, ∠CBD 的度数是( )A.40°B.50°C.70°D.110°三、解答题:13.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.解:连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD= 4cm.14.如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC的长.解:连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD是直径,∴∠ACD=90°, ∴AC2+CD2=AD2,即2AC2=36,AC2.B A15.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.15.(1)相等.理由如下:连接OD,∵AB⊥CD,AB是直径,,∴∠COB= ∠DOB.∴BC BD∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.(2)∠CP′D+∠COB=180°.理由如下:连接P′P,则∠P′CD=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,从而∠CP′D+∠COB=180°.16.钳工车间用圆钢做方形螺母,现要做边长为a的方形螺母, 问下料时至少要用直径多大的圆钢?答案:1.120°2.3 13.160°4.44°5.50°7.A 8.C 9.B 10.C 11.B 12.C13.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD= 4cm.14.连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD是直径,∴∠ACD=90°, ∴AC2+CD2=AD2,即2AC2=36,AC2. 15.(1)相等.理由如下:连接OD,∵AB⊥CD,AB是直径,,∴∠COB= ∠DOB.∴BC BD∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.(2)∠CP′D+∠COB=180°.理由如下:连接P′P,则∠P′C D=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,从而∠CP′D+∠COB=180°.。

人教版数学九年级上学期课时练习-弧、弦、圆心角(巩固篇)(人教版)

人教版数学九年级上学期课时练习-弧、弦、圆心角(巩固篇)(人教版)

专题24.9 弧、弦、圆心角(巩固篇)(专项练习)一、单选题类型一、圆心角概念1.已知下列命题:①长度相等的两条弧所对的圆心角相等. ①直径是圆的最长的弦,也是圆的对称轴. ①平分弦的直径垂直于这条弦.①在同圆或等圆中,相等的弦所对的圆周角相等. 其中错误命题的个数为( ) A .1个B .2个C .3个D .4个2.已知①ABC 内接于①O ,若①AOB =120°,则①C 的度数是( ) A .60°B .120°C .60°或120°D .30°或150°3.如图, AB 为①O 的直径,弦CD ①AB 于点E ,连接AC ,OC ,OD ,若①A =20°,则①COD 的度数为( )A .40°B .60°C .80°D .100°类型二、圆心角与它所对弧的度数4.如图,已知△ABC 是圆O 的内接三角形,AB =AC ,①ACB =65°,点C 是弧BD 的中点,连接CD ,则①ACD 的度数是( )A .12°B .15°C .18°D .20°5.如图,扇形AOB 中,90AOB ∠=︒,半径6,OA C =是AB 的中点,//CD OA ,交AB 于点D ,则CD 的长为( )A.2B C.2D.66.如图,已知O的半径为5,弦AB,CD所对的圆心角分别是AOB∠,COD∠∠,若AOB AB=,则弦CD的长为()与COD∠互补,弦8A.6B.8C.D.5类型三、用弧、弦、圆心角关系求解⊥于点7.如图,在以AB为直径的①O中,点C为圆上的一点,2=,弦CD ABBC ACE,弦AF交CE于点H,交BC于点G,若点H是AG的中点,则CBF∠的度数为()A.18°B.21°C.22.5°D.30°8.如图,在①O中,AB是①O的直径,AB=10,AC=CD=DB,点E是点D关于AB 的对称点,M是AB上的一动点,下列结论:①①BOE=30°;①①DOB=2①CED;①DM①CE;①CM+DM的最小值是10,上述结论中正确的个数是()A .1B .2C .3D .49.如图,①O 的半径为9cm ,AB 是弦,OC ①AB 于点C ,将劣弧AB 沿弦AB 折叠交于OC 的中点D ,则AB 的长为( )A .B .C .D .类型四、用弧、弦、圆心角关系证明10.有一直径为AB 的圆,且圆上有C 、D 、E 、F 四点,其位置如图所示.若6AC =,8AD =,5AE =,9AF =,10AB =,则下列弧长关系何者正确?( )A .AC AD AB +=,AE AF AB += B .AC AD AB +=,AE AF AB +≠ C .AC AD AB +≠,AE AF AB +=D .AC AD AB +≠,AE AF AB +≠11.在锐角ABC 中,60ACB ∠=︒,①BAC 、①ABC 的角平分线AD 、BE 交于点M ,则下列结论中错误的是( )A .120AMB ∠=︒ B .ME MD =C .AE BD AB += D .点M 关于AC 的对称点一定在ABC 的外接圆上 12.如图,AB 、CD 分别是①O 的直径,连接BC 、BD ,如果弦DE AB ∥,且①CDE =62°,则下列结论错误的是( )A .CB ①BD B .①CBA =31°C .AC AE =D .BD =DE二、填空题类型一、圆心角概念13.在①O 中,AB 是直径,AB =2,C 是AB 上一点,D 、E 分别是AC 、BC 的中点,M 是弦DE 的中点,则CM 的取值范围是__________________.14.把一个圆分成4个扇形,它们分别占整个圆的10%,20%,30%,40%,那么这四个扇形的圆心角分别是_______.15.已知点A 、B 、C 、D 在圆O 上,且FD 切圆O 于点D ,OE CD ⊥于点E ,对于下列说法:①圆上AbB 是优弧;①圆上AbD 是优弧;①线段AC 是弦;①CAD ∠和ADF ∠都是圆周角;①COA ∠是圆心角,其中正确的说法是________.类型二、圆心角与它所对弧的度数16.如图,在以AB 为直径的半圆中,AD =EB ,CD①AB ,EF①AB ,CD=CF=1,则以AC 和BC 的长为两根的一元二次方程是________.17.已知半径为2的①O 中,弦AC=2,弦AD =①AOD =________,①COD =_________.18.如图,AB 是O 的直径,弦,CD AB ⊥连接CO 并延长交O 于点,E 连接BD 交CE于点,F 若32,DBE ∠=︒则DFE ∠的度数是________________.类型三、用弧、弦、圆心角关系求解19.如图,点A 、B 、C 、D 均在O 上,若65AOD ∠=︒,AO DC ∥,则①B 的度数为______.20.如图,点A 、B 、C 、D 、E 都是圆O 上的点,AC AE =,①B =116°,则①D 的度数为______度.21.如图,①O 的直径AB 过CD 的中点A ,若①C =30°,AB 、CD 交于点E ,连接AC 、BD ,则AEBE=________________.类型四、用弧、弦、圆心角关系证明22.如图,AB、CE是圆O的直径,且AB=4,弧BD=弧CD=弧AC,点M是AB上一动点,下列结论:正确的数是___(写出所有正确结论的序号)①BOD;①①CED=12①DM①CE;①CM+DM的最小值为4;①设OM为x,则S△OMC.23.在同一个圆中, 当圆心角不超过180°时, 圆心角越大, 所对的弧______;所对的弦__________, 所对弦的弦心距____________.24.如图,AB是①O的直径,CD是弦,若①ABC=63°,则①D的度数是__.三、解答题25.如图是半径为2的圆,(1)在其中画两个不重叠的扇形AOB和扇形BOC,使扇形AOB的圆心角为120度,扇形BOC的圆心角为90度,(2)求第三个扇形AOC的面积.26.如图,AB是①O的一条弦,OD①AB,垂足为C,交①O于点D,点E在①O上.(1)若①AOD=52°,求①DEB的度数;(2)若AB=24,CD=8,求①O的半径长.27.阅读与应用请阅读下列材料,完成相应的任务:托勒密是“地心说”的集大成者,著名的天文学家、地理学家、占星学家和光学家.后人从托勒密的书中发现一个命题:圆内接四边形对边乘积的和等于对角线的乘积.下面是对这个命题的证明过程.如图1,四边形ABCD内接于O.⋅+⋅=⋅.求证:AB DC AD BC AC BD∠=∠交BD于点E.证明:如图2,作BAE CAD①AD AD =,①ABE ACD ∠=∠.(依据) ①ABE ACD ∽△△.①AB BEAC CD=.AB DC AC BE ⋅=⋅. …①ABC AED ∽△△. ①AC BCAD ED=.①AD BC AC ED ⋅=⋅. ①AB DC AC BE ⋅=⋅,①()AB DC AD BC AC BE AC ED AC BE ED AC BD ⋅+⋅=⋅+⋅=+=⋅. ①AB DC AD BC AC BD ⋅+⋅=⋅. 任务:(1)证明过程中的“依据”是______; (2)补全证明过程;(3)如图3,O 的内接五边形ABCDE 的边长都为2,求对角线BD 的长.28.如图,在①O 中,弦AB ,CD 互相垂直,垂足为M ,F 是BD 上的一点,且BF BC =,AF分别与CD,BD相交于点E,N,连接FD,MN.(1)求证:DE=DF;(2)若①O的半径为8,①BAF=22.5°,求线段MN的长.参考答案1.D【分析】根据圆心角定理、直径的性质、垂径定理、圆周角定理逐个判断即可.解:等弧所对的圆心角相等,但长度相等的两条弧不一定是等弧,则命题①错误直径是圆的最长的弦,但不是圆的对称轴,圆的对称轴是直径所在直线,则命题①错误平分弦(非直径)的直径垂直于这条弦,则命题①错误在同圆或等圆中,相等的弦所对的圆周角相等或互补,则命题①错误综上,错误命题的个数为4个故选:D.【点拨】本题考查了圆心角定理、直径的性质、垂径定理、圆周角定理,熟记各定理是解题关键.2.C【分析】根据圆周角定理可以得出同弧所对的圆周角等于圆心角的一半,此时分两种情况进一步分析讨论即可.解:①当点C与线段AB位于圆心的两侧时,①C=12①AOB=60°;①当点C与线段AB位于同侧时,与上一种情况所得的度数互补;即此时的①C=120°.故选:C.【点拨】本题主要考查了圆周角定理的应用,熟练掌握相关概念是解题关键.3.C【分析】利用圆周角与圆心角的关系得出①COB=40°,再根据垂径定理进一步可得出①DOB=①COB,最后即可得出答案.解:①①A=20°,①①COB=2①A=40°,①CD①AB,OC=OD,①①DOB=①COB=40°,①①COD=①DOB+①COB=80°.故选:C.【点拨】本题主要考查了圆周角、圆心角与垂径定理的综合运用,熟练掌握相关概念是解题关键.4.B【分析】如图,连接AO,BO,CO,DO,由等腰三角形的性质可求①ABC=①ACB=65°,①BAC =50°,由圆周角定理可求①AOC=2①ABC=130°,①BOC=2①BAC=100°,可求①AOD=30°,即可求解.解:如图,连接AO,BO,CO,DO,①AB=AC,①ACB=65°,①①ABC=①ACB=65°,①①BAC=50°,①①AOC=2①ABC=130°,①BOC=2①BAC=100°,①点C是弧BD的中点,①BC CD,①①BOC=①COD=100°,①①AOD=30°,①①AOD=2①ACD,①①ACD=15°,故选:B.【点拨】本题主要考查了圆周角定理,熟练掌握圆周角、圆心角、弧的关系是解题的关键.5.D【分析】连接OC,延长CD交OB于点E,如图,易得①AOB、①COE、①BDE都是等腰直角三角形,然后根据等腰直角三角形的性质求出CE与DE的长,从而可得答案.解:连接OC,延长CD交OB于点E,如图,①90∠=︒,C是AB的中点,AOB①①COE=45°,①//∠=︒,AOBCD OA,90①CE①OB,①①OCE=①COE=45°,==6①BE=OB-OE=6-,①OA=OB,90AOB∠=︒,①①ABO=45°,①①BDE=①ABO=45°,①EB=ED=6--=.①CD=CE-DE=(66故选:D.【点拨】本题考查了圆心角和弧的关系、等腰直角三角形的判定和性质等知识,属于常考题型,熟练掌握等腰直角三角形的判定和性质是解此题的关键.6.A【分析】延长AO交①O于点E,连接BE,由①AOB+①BOE=①AOB+①COD知①BOE=①COD,据此可得BE=CD,在Rt①ABE中利用勾股定理求解可得.解:如图,延长AO交①O于点E,连接BE,则①AOB+①BOE=180°,又①①AOB+①COD=180°,①①BOE=①COD,①BE=CD,①AE为①O的直径,则AE=10,①①ABE=90°,;故选择:A.【点拨】本题主要考查圆心角定理,解题的关键是掌握圆心角定理和圆周角定理.7.D【分析】由圆周角定理可求①ACB=90°,由弧的关系得出角的关系,进而可求①ABC=30°,①CAB=60°,由直角三角形的性质可求①CAH=①ACE=30°,即可求解.解:①AB是直径,①①ACB=90°,①①ABC+①CAB=90°,①2=,BC AC①①CAB=2①ABC,①①ABC=30°,①CAB=60°,①CD①AB,①①AEC=90°,①①ACE=30°,①点H是AG的中点,①ACB=90°,①AH=CH=HG,①①CAH=①ACE=30°,①①CAF=①CBF,①①CBF=30°,故选:D.【点拨】本题考查了圆周角定理,圆心角、弧、弦的关系,直角三角形的性质,求出①CAB 的度数是本题的关键.8.B【分析】根据AC=CD=DB和点E是点D关于AB的对称点,求出①DOB=①COD=①BOE=60°,求出①CED,即可判断①①;根据圆周角定理求出当M和A重合时①MDE=60°即可判断①;求出M点的位置,根据圆周角定理得出此时DF是直径,即可求出DF长,即可判断①.解:①AC=CD=DB,点E是点D关于AB的对称点,①BD=BE,①①DOB=①BOE=①COD=13×180°=60°,①①错误;①CED=12①COD=12×60°=30°=12①DOB,即①DOB=2①CED;①①正确;①BE的度数是60°,①AE的度数是120°,①只有当M和A重合时,①MDE=60°,①①CED=30°,①只有M和A重合时,DM①CE,①①错误;作C关于AB的对称点F,连接CF,交AB于N,连接DF交AB于M,此时CM+DM 的值最短,等于DF长,连接CD,①AC=CD=DB=AF,并且弧的度数都是60°,①①D=12×120°=60°,①CFD=12×60°=30°,①①FCD=180°-60°-30°=90°,①DF是①O的直径,即DF=AB=10,①CM+DM的最小值是10,①①正确;综上所述,正确的个数是2个.故选:B.【点拨】本题考查了圆周角定理,轴对称-最短问题等知识点,能灵活运用圆周角定理求出各个角的度数和求出M的位置是解此题的关键.9.D【分析】圆周角定理;翻折变换(折叠问题);勾股定理;垂径定理;圆心角、弧、弦的关系;连接OA,求出OC,根据勾股定理求出AC,可得结论.解:连接OA,①将劣弧AB沿弦AB折叠交于OC的中点D,①OC23=r=6(cm),OC①AB,①AC=CB=cm),①AB=2AC=cm),故选:D.【点拨】本题主要考查了圆的基本性质,垂径定理,勾股定理,关键是学会添加常用辅助线,构造直角三角形解决问题.10.B【分析】连接BD ,BF ,先求解6AC BD ==, 可得AC BD =,AC AD AB +=,再求解19,BF可得AE BF ≠, AE AF AB +≠,从而可得答案.解:连接BD ,BF ,AB 直径,10AB =,8AD =,90,6ADB BD ∴∠=︒=,6AC =,AC BD ∴=,∴AC BD =,∴AC AD AB +=,AB 直径,10AB =,9AF =,90,AFB BF ∴∠=︒=5AE =,∴AE BF ≠,∴AE AF AB +≠,所以B 符合题意,故选:B .【点拨】本题主要考查了圆中弧、弦的关系和直径所对的圆周角是直角,熟练掌握相关定理是解答本题的关键.11.D【分析】利用三角形内角和定理以及角平分线的定义求出①MAB +①MBA =60°,推出①AMB =120°,可判断A ,证明C ,E ,M ,D 四点共圆,利用圆周角定理可判断B ;在AB 上取一点T ,使得AT =AE ,利用全等三角形的性质证明BD =BT ,可判断C ;无法判断M 与①ABC 互补,可判断D.解:如图,①①ACB=60°,①①CAB+①CBA=120°,①AD,BE分别是①CAB,①CBA的角平分线,①①MAB+①MBA=12(①CAB+①CBA)=60°,①①AMB=180°-(①MAB+①MBA)=120°,故A符合题意,①①EMD=①AMB=120°,①①EMD+①ECD=180°,①C,E,M,D四点共圆,①①MCE=①MCD,① EM DM,①EM=DM,故B符合题意,四边形CEMD是O的内接四边形,60,AME ACB BMD在AB上取一点T,使得AT=AE,在①AME和①AMT中,AE ATMAE MAT AM AM,①①AME①①AMT(SAS),①①AME=①AMT=60°,EM=MT,①①BMD=①BMT=60°,MT=MD,在①BMD和①BMT中,MD MTBMD BMT BM BM,①①BMD①①BMT,①BD=BT,①AB=AT+TB=AE+BD,故C符合题意,①M,M'关于AC对称,①M=①AMC,①11802AMC CAB ACB11801802ABC=90°+12①ABC,①M与①ABC不一定互补,①点M'不一定在①ABC的外接圆上,故D不符合题意,故选D.【点拨】本题考查三角形的外接圆,四点共圆,圆周角定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.12.D【分析】根据直径所对的圆周角是直角,即可判断A,根据圆周角定理可判断B选项,根据圆周角与弧的关系可判断C,根据CDE CDB∠≠∠判断D选项.解:①AB、CD分别是①O的直径,90CBD∴∠=︒,①CB①BD,故A选项正确,如图,连接BE,DE AB∥,且①CDE=62°,62BOD CDE∴∠=∠=︒,1312BCD BOD ∴∠=∠=︒, OC OB =,31CBO BCO ∴∠=∠=︒,62AOC ∴∠=︒,62CBE CDE ∠=∠=︒,31ABC ABE ∴∠=∠=︒,∴AC AE =,故B ,C 选项正确,31,90BCD CBD ∠=︒∠=︒,59BDC ∴∠=︒,62CDE ∠=︒,CDE CDB ∴∠≠∠,∴BD ≠DE ,故D 选项不正确,故选D .【点拨】本题考查了圆周角定理,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.13.1CM 【分析】如图,连接OD 、OC 、OE ,先计算出①DOC +①COE =90°,则可判断①ODE 为等腰直角三角形,所以DE OD 则OM =12DE 由C 点在弧DE 上,则0≤①COM <45°,根据三角形的性质,①COM 越大,CM 越长,当O 、M 、C 共线时CM 最小,C 在点A 或点B 时CM 最长,即OC -OM ≤CM <ME ;解:如图,连接OD 、OC ,①AB 为直径,①①AOC+①BOC=180°,①D、E分别是AC、BC的中点,①①AOD=①COD,①COE=①BOE,①①DOC+①COE=1(①AOC+①BOC)=90°,2①①ODE为等腰直角三角形,OD①DE①M是弦DE的中点,DE①OM=12①C点在弧DE上,①0≤①COM<45°,①OMC中,OM,OC的长度确定,①①COM越大,CM越长,①O、C、M共线时CM最小,C在点A或点B时CM最长;①CM≥1﹣,2当C点在A点或B点时,CM①CM的取值范围是1≤CM.【点拨】本题考查了圆心角的概念,三角形的三边关系;根据三角形的性质判断CM的长度是解题关键.14.36°,72°,108°,144°【分析】根据扇形所占的百分比乘以360°进行解答即可.解:四个扇形的圆心角分别是360°×10%=36°;360°×20%=72°;360°×30%=108°;360°×40%=144°.故答案为36°,72°,108°,144°.【点拨】考查了扇形圆心角的度数问题,注意周角的度数是360°.15.①①①①【分析】根据优弧的定义,弦的定义,圆周角的定义,圆心角的定义逐项分析判断即可解:AbB ,AbD 都是大于半圆的弧,故①①正确,,A C 在圆上,则线段AC 是弦;故①正确;,,C A D 都在圆上,∴CAD ∠是圆周角而F 点不在圆上,则ADF ∠不是圆周角故①不正确;O 是圆心,,C A 在圆上∴COA ∠是圆心角故①正确故正确的有:①①①①故答案为:①①①①【点拨】本题考查了优弧的定义,弦的定义,圆周角的定义,圆心角的定义,理解定义是解题的关键.优弧是大于半圆的弧,任意圆上两点的连线是弦,顶点在圆上,并且两边都和圆相交的角叫做圆周角,顶点在圆心,并且两边都和圆相交的角叫做圆心角.16.0152=+-x x【分析】连接OD ,OE ,因为AD =EB ,根据等弧所对的圆心角相等可得①DOC=①EOF ,因为CD①AB ,EF①AB ,所以①DCO=①EFO=90°,又因为DO==EO ,所以Rt①DOC①Rt①EOF ,所以CO=OF=12,在Rt①DOC 中,,所以,,BC=AB -,所以以AC 和BC 的长为两根的一元二次方程是(x )(x )=0,整理,得0152=+-x x . 解:连接OE ,OD ,①AD =EB ,①①DOC=①EOF ,①CD①AB ,EF①AB ,①①DCO=①EFO=90°,又①DO=EO ,①Rt①DOC①Rt①EOF , ①CO=OF=12,①在Rt①DOC 中,,AC=AO -,BC=AB - =,①以AC 和BC 的长为两根的一元二次方程是(x )(x )=0,整理,得0152=+-x x .故答案为:x 2.【点拨】本题考查圆心角定理及其推论,全等三角形的判定与性质以及根与系数的关系.此题属于开放题,注意数形结合与方程思想的应用.17. 90° 150°或30°【分析】如图,在①AOD 中,根据勾股定理的逆定理即可求出①AOD 的度数;连接OC ,易得△AOC 是等边三角形,从而可得∠AOC =60°,进一步利用角的和差即可求出①COD 的度数.解:如图,在①AOD 中,∵2222228OA OD +=+=,(228AD ==,①222OA OD AD +=,∴①AOD =90°;连接OC ,∵OA =OC =AC =2,∴△AOC 是等边三角形,∴∠AOC =60°.∴∠COD =∠AOC +∠AOD =60°+90°=150°或∠COD =∠AOD ﹣∠AOC =90°-60°=30°.故答案为:90°;150°或30°.【点拨】本题考查了圆心角、勾股定理的逆定理、等边三角形的判定与性质以及分类的数学思想,依照题意画出图形、熟练掌握相关知识是解题的关键.18.93【分析】根据圆周角定理的推论,得①DCE=32°,由CD AB⊥结合三角形外角的性质,得①BOC 的度数,从而得①BDC的度数,进而即可求解.解:①①DCE和①DBE是同弧所对的圆周角,①①DCE=①DBE=32°,①CD AB⊥,①①BOC=90°+①DCE=90°+32°=122°,①①BDC=12①BOC=12×122°=61°,①DFE∠=①DCE+①BDC=32°+61°=93°.故答案是:93°.【点拨】本题主要考查圆周角定理及其推论,三角形外角的性质,掌握“同弧或等弧所对的圆周角相等”,“同弧或等弧所对的圆周角等于圆心角的一半”,是解题的关键.19.57.5°【分析】根据平行线的性质得出①ODC=①AOD=65°,根据等腰三角形的性质和三角形内角和定理求出①ODA=①OAD=12(180°-①AOD)=57.5°,求出①ADC的度数,根据圆内接四边形的性质得出①B+①ADC=180°,再求出答案即可.解:连接AD,①①AOD=68°,AO①DC,①①ODC=①AOD=65°,①①AOD=65°,OA=OD,①①ODA=①OAD=1(180°-①AOD)=57.5°,2①①ADC=①ODA+①ODC=57.5°+65°=122.5°,①四边形ABCD是①O的内接四边形,①①B+①ADC=180°,①①B=57.5°,故答案为:57.5°.【点拨】本题考查了圆内接四边形的性质,圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质等知识点,能求出①ADC的度数是解此题的关键.20.128【分析】连接AD.首先证明①ADC=①ADE,再利用圆内接四边形的性质求出①ADC即可解决问题.解:连接AD.①AC AE,①①ADC=①ADE,①①B+①ADC=180°,①①ADC=180°-116°=64°,①①CDE=2×64°=128°,故选:128.【点拨】本题考查圆心角,弧,弦的关系,圆周角定理,圆内接四边形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.1 3【分析】根据已知条件得出①DCA=①DBA=30°,设DE=EC=x,由在直角三角形中,30°所对的直角边等于斜边的一半可以得出AE和BE的长,然后代入要求的式子进行计算即可得出答案.解:①①O的直径AB过CD的中点A,①AC=AD,①DE=EC,①AB是①O的直径,①①BED=①CEA=90°,①①C=30°,①①DCA=①DBA=30°,设DE=EC=x,①①C=30°,①AE,①①DBA=30°,①BE,①AEBE13;故答案为:13.【点拨】本题主要考查了圆心角、弧、弦的关系以及圆周角定理,掌握在直角三角形中,30°所对的直角边等于斜边的一半是解题的关键.22.①①【分析】①由BD CD =,可得①COD =①BOD ,据此根据圆周角定理即可得结论;①由点M 是直径AB 上一动点,而CE 的位置是确定的,因此DM ①CE 不一定成立,可得结论;①由题意可得点D 和点E 关于AB 对称,因此CM +DM 的最小值是在点M 和点O 重合时取到,即CE 的长;①过点C 作CN ①AO 于点N ,利用解直角三角形可求得CN ,利用三角形面积公式求解即可.解:①BD CD =,COD BOD ∴∠=∠,12CED COD ∠=∠, 12CED BOD ∴∠=∠,故①正确; ①点M 是直径AB 上一动点,而CE 确定,∴DM ①CE 不一定成立,故①错误;①BD CD AC ==,60BOE AOC COD BOD ∠=∠=∠=∠=∴︒,①CED =30°,∴DE ①AB ,∴点D 和点E 关于AB 对称,∴CM +DM 的最小值是在点M 和点O 重合时取到,即CE 的长,AB =4,∴CE =AB =4,故①正确;①连接AC ,BD CD AC ==,∴①COA =60°,则①AOC 为等边三角形,边长为2,过点C 作CN ①AO 于N ,则sin 602CN OC =⋅︒==,在①COM 中,以OM 为底,OM 边上的高为CN ,1122COM S OM CN x ∴=⋅==△,故①错误; 综上,①①正确,故答案为:①①.【点拨】本题考查了圆周角定理,最小值问题,等边三角形判定和性质,三角形面积等知识,解题的关键是灵活运用所学知识解决问题.23. 越长 越长 越短【分析】根据圆心角定理解答即可.解:在同一个圆中, 当圆心角不超过180°时, 圆心角越大, 所对的弧越长,所对的弦越长,所对弦的弦心距越短.故答案为越长;越长;越短.【点拨】本题考查了圆心角定理及其推理,解此题的关键在于熟练掌握其知识点. 24.27°【分析】根据题意易得①ACB =90°,然后根据圆的性质及直角三角形的两个锐角互余可求解. 解:①AB 是①O 的直径,①①ACB =90°,①①A =90°﹣①ABC =90°﹣63°=27°,①①D =①A =27°.故答案为27°.【点拨】本题主要考查圆的基本性质,熟练掌握圆的性质是解题的关键.25.(1)作图见分析;(2)53π 试题分析:(1)根据扇形定义及题目要求画出即可;(2)根据扇形的面积公式S=2360n rπ计算即可.解:(1)如图所示:(2)①①AOB=120°,①BOC=90°,①①AOC=150°,故S扇形AOC=2150253603ππ⨯⨯=.26.(1)26;(2)13【分析】(1)连接OB,结合OD①AB,根据垂径定理,推导得①AOD;再根据圆心角、圆周角的性质,即可得到答案;(2)结合题意,根据垂径定理性质,计算得AC;再结合OD①AB,通过勾股定理即可计算得①O的半径.解:(1)连接OB①⊥OD AB①AD BD=①52AOC BOD∠=∠=①12DEB BOD ∠=∠①26DEB∠=(2)①⊥OD AB①112412 22AC AB==⨯=设OA x =,则8OC x =-在Rt ACO 中,()222128x x =+-①13x =①O 的半径长为13.【点拨】本题考查了圆的知识;解题的关键是熟练掌握垂径定理、圆心角、圆周角、勾股定理的性质,从而完成求解.27.(1)同弧所对的圆周角相等;(2)见分析;1;【分析】(1)根据同弧所对的圆周角相等可得ABE ACD ∠=∠;(2)由BAE CAD ∠=∠可得BAC EAD ∠=∠,再由ACB ADE ∠=∠可得ABC AED ∽△△; (3)连接AD ,BE ,由2AB BC CD DE EA =====可得AB BC CD DE BA ====,进而BE AD BD ==,BE =AD =BD ,再由AB DE AE BD BE AD ⋅+⋅=⋅解方程即可;(1)解:①同弧所对的圆周角相等,AD AD =,①ABE ACD ∠=∠;故答案为:同弧所对的圆周角相等;(2)解:①BAE CAD ∠=∠,①BAE EAC CAD EAC ∠+∠=∠+∠,①BAC EAD ∠=∠,①AB AB =,①ACB ADE ∠=∠;(3)解:如图,连接AD ,BE ,①2AB BC CD DE EA =====,①AB BC CD DE BA ====,①AB AE AE ED CD CB +=+=+,①BE AD BD ==,①BE =AD =BD ,①四边形ABDE 是O 的内接四边形,①AB DE AE BD BE AD ⋅+⋅=⋅,①2AB DE EA ===,①2222BD BD ⨯+=,解得:1BD =或1BD =,①对角线BD 1;【点拨】本题考查了圆内接多边形,圆心角、弧、弦关系,相似三角形的判定和性质,一元二次方程等知识;掌握在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解题关键.28.(1)见分析(2)【分析】(1)根据AB CD ⊥得,90AME DMB ∠=∠=︒,根据等弧或同弧所对的圆周角相等可得BDC BAF ∠=∠,DBA DFA ∠=∠,根据等角的余角相等可得AEM DBM ∠=∠,进而可得DFA DEF ∠=∠,根据等角对等边即可得证;(2)连接,,,OF OC CF AC ,根据①BAF =22.5°,证明COF 是直角三角形,勾股定理求得CF ,进而证明MN 是ECF △的中位线,即可求解.解:(1)BF BC =,BDC BAF ∴∠=∠,AB CD ⊥,90AME DMB ∴∠=∠=︒,90,90BAF AEM CDB DBM ∴∠+∠=︒∠+∠=︒,AEM DBM ∴∠=∠,AD AD =,DBA DFA ∴∠=∠,AEM DEN ∠=∠,DFA DEF ∴∠=∠,DE DF ∴=;(2)如图,连接,,,OF OC CF AC ,BF BC =,22.5CDB BDF BAF ∠=∠=∠=∴︒, 45CDF CDB BDF ∴∠=∠+∠=︒, CF CF =,290COF CDF ∴∠=∠=︒,在Rt COF △中,CF == 由(1)得,DE DF =,DEF ∴是等腰三角形, CDB BDF ∠=∠,EN FN ∴=,N ∴是EF 的中点,BF BC =,BAF BAC ∴∠=∠,AB CD ⊥,AM EC ∴⊥,EM MC ∴= ,∴12MN CF == 【点拨】本题考查了圆周角定理,同弧所对的圆周角相等,等腰三角形的性质与判定,勾股定理,三角形中位线的性质与判定,掌握以上知识是解题的关键.。

人教数学九年级上册-圆周角巩固篇人教版

人教数学九年级上册-圆周角巩固篇人教版

专题24.12 圆周角(巩固篇)(专项练习)一、单选题1.下列说法正确的是( )A .等弧所对的圆周角相等B .平分弦的直径垂直于弦C .相等的圆心角所对的弧相等D .过弦的中点的直线必过圆心2.如图,四边形ABCD 的顶点A ,B ,C 在圆上,且边CD 与该圆交于点E ,AC ,BE 交于点F.下列角中,弧AE 所对的圆周角是( )A .∠ADEB .∠AFEC .∠ABED .∠ABC3.如图,菱形OABC 的顶点A 、B 、C 在圆O 上,且,若点P 是圆周上60OAB ∠=︒任意一点且不与A 、B 、C 重合,则∠APC 的度数为( )A .60°B .120°C .60°或120°D .30°或150°4.如图,内接于,AD 是的直径,若,则的度数是ABC A O A O A 20B ∠=︒CAD ∠( )A .60°B .65°C .70°D .75°5.如图,是的外接圆,,于点D ,O A ABC A 60B ∠=︒OD AC ⊥OD =的直径为( )O AA .B .8C .D .126.是的外接圆,若长等于半径,则的度数为( )O A ABC A BC A ∠A .B .C .或D .或60︒120︒30°150︒60︒30°7.如图,四边形ABCD 的外接圆为⊙O ,BC =CD ,∠DAC =36°,∠ACD =44°,则∠ADB 的度数为( )A .55°B .64°C .65°D .70°8.如图,C ,D 是上直径AB 两侧的两点,若,则的度数是O A 20ABC ∠=︒BDC ∠( )A .50°B .60°C .80°D .70°9.已知锐角,如图,AOB ∠(1)在射线上取一点,以点为圆心,长为半径作弧,交射线于点OA C O OC PQ OB ,连接;D CD(2)分别以点,为圆心,长为半径作弧,交弧于点,;C D CD PQ M N (3)连接,.根据以上作图过程及所作图形,下列结论中错误的( )OM MNA .B .若.则COM COD∠=∠OM MN =80OCD ∠=︒C .D .MN CD ∥3MN CD=10.如图,AB 、CD 分别是⊙O 的直径,连接BC 、BD ,如果弦,且DE AB ∥∠CDE =62°,则下列结论错误的是( )A .CB ⊥BD B .∠CBA =31°C .D .BD =DEA A AC AE =11.如图,已知AB 是的直径,弦CD 与AB 交于点E ,设,O A ABC α∠=,,则( )ABD β∠=AEC γ∠=A .B .90αβγ+-=︒90βγα+-=︒C .D .90αγβ+-=︒180αβγ++=︒二、填空题12.如图,为的直径,点,,在上,且,,则AB O A C D E O A AD CD =A A80E ∠=︒的度数为______.ABC ∠13.如图,在菱形ABCD 中,,,点E 是射线CD 上一点,连接6BC =120C ∠=︒BE ,点P 在BE 上,连接AP ,若,则面积的最大值为__________.BAP CBE ∠=∠ABP △14.如图,是的外接圆,,的平分线交于点D ,O A Rt ABC △90BAC ∠=︒BAC ∠O A的平分线交AD 于点E ,连接BD ,若DE 的长为_______.ABC ∠O A15.如图,在平面直角坐标系中,点的坐标分别为.若点的,,A B P (12),(14),(21)-,,,C 横坐标和纵坐标均为整数,且,则点的坐标为________.(写出一个正12ACB APB ∠=∠C 确的坐标即可)16.如图,半圆的直径,弦,把沿直线对折,且恰好5cm AB =3cm AC =AC AD AC 落在上,则的长为__________.AB AD17.如图,内接于⊙O ,,外角的平分线交⊙O 于点ABC A 25BAC ∠=︒ABC A ABE ∠D ,若,则的度数为______.BC BD =C ∠18.如图,△ABC 中,∠ABC =90°,AB =4,BC =8,将△ABC 终点A 逆时针旋转(B 与D 为对应点)至△ADE ,旋转过程中直线BD ,CE 相交于F ,当AD 从第一次与BC 平行旋转到第二次与BC 平行时,点F 运动的路径长为 _____.19.如图,线段,以线段为斜边作,,的平分线4AB =AB Rt ABC A AC BC >C ∠与线段的垂直平分线交于点,则线段的取值范围为_________.CN AB M CM20.如图,动点M 在边长为4的正方形ABCD 内,且AM ⊥BM ,P 是CD 边上的一个动点,E 是AD 边的中点,则线段PE +PM 的最小值为_______.21.如图,在中,半径为4,将三角板的60°、90°角顶点A ,B 放在圆上,O A AC ,BC 两边分别与交于D ,E 两点,,则△ABC 的面积为______.O A BE DE22.如图,在平面直角坐标系中,⊙M 经过原点,且与x 轴交于点A (4,0),与y 轴交于点B ,点C 在第四象限的⊙M 上,且∠AOC =60°,OC =3,则点B 的坐标是___________.三、解答题23.如图,CD 是⊙O 的直径,∠EOD =84°,AE 交⊙O 于点B ,且AB =OC ,求的度数A BE24.如图,D 是的边上一点,连结,作的外接圆O ,将ABC A BC AD ABD △沿直线折叠,点C 的对应点E 落在上.ADC A AD O A (1)若,如图1.30ABC ∠=︒①求的度数.ACB ∠②若,求的度数.AD DE =EAB ∠(2)若,如图2.求的长.A A ,4,2AD BE AC CD ===BC25.如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,∠D =60°且AB =6,过O 点作OE ⊥AC ,垂足为E .(1)填空:∠CAB =__________度;(2)求OE 的长;(3)若OE 的延长线交⊙O 于点F ,求弦AF ,AC 和FC 围成的图形(阴影部分)的面积S .26.如图,⊙O 是以△ABC 的边AC 为直径的外接圆,∠ACB =54°,如图所示,D 为⊙O 上与点B 关于AC 的对称点,F 为劣弧BC 上的一点,DF 交AC 于N 点,BD 交AC 于M 点.(1)求∠DBC 的度数;(2)若F 为弧BC 的中点,求.MNON27.如图,CD 与EF 是⊙O 的直径,连接CE 、CF ,延长CE 到A ,连接AD 并延长,交CF 的延长线于点B ,过点F 作⊙O 的切线交AB 于点G ,点D 是AB 的中点.(1)求证:;EF AB ∥(2)若,,求FG 的长.3AC = 2.5CD =28.已知P 是上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别O A 有动点A 、B (不与P ,Q 重合),连接AP 、BP .若.APQ BPQ ∠=∠(1)如图1,当,,时,求的半径;45APQ ∠=︒1AP =BP =C A (2)在(1)的条件下,求四边形APBQ 的面积(3)如图2,连接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若,探究直线AB 与ON 的位置关系,并说明理由.290NOP OPN ∠+∠=︒参考答案1.A【分析】根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可.解:A . 同弧或等弧所对的圆周角相等,所以A 选项正确;B .平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B 选项错误;C 、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以C 选项错误;D .圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D 选项错误.故选A.【点拨】本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点.灵活运用相关知识成为解答本题的关键.2.C【分析】直接运用圆周角的定义进行判断即可.解:弧AE 所对的圆周角是:∠ABE 或∠ACE故选:C【点拨】本题考查了圆周角的定义,掌握圆周角的定义是解题的关键.3.C【分析】分两种情况,由圆周角定理分别求解即可.解: 菱形OABC 的顶点A 、B 、C 在圆O 上,且,60OAB ∠=︒,120,AB OC AOC \Ð=°∥如图,分两种情况:①当点P 在优弧APC 上时, 由圆周角定理得:∠APC =∠AOC =×120°=60°; 1212②当点P 在劣弧AC 上时, 由圆周角定理得:∠APC ==120°;18060︒-︒综上所述,∠APC 为60°或120°,故选:C .【点拨】本题考查了菱形的性质,圆周角定理的应用,圆的内接四边形的性质,熟练掌握圆周角定理是解题的关键.4.C【分析】首先连接CD ,由AD 是的直径,根据直径所对的圆周角是直角,可求得O A ,又由圆周角定理,可得,再用三角形内角和定理求得答案.90ACD ∠=︒20D B ∠=∠=︒解:连接CD ,∵AD 是的直径,O A ∴.90ACD ∠=︒∵,20D B ∠=∠=︒∴.18090108902070CAD D ∠=︒-︒-∠=︒-︒-︒=︒故选:C .【点拨】本题考查了圆周角定理、三角形的内角和定理.熟练掌握圆周角定理是解此题的关键.5.C【分析】根据圆周角定理求出,再根据垂径定理和30°所对直角边是斜边的一半120AOC ∠=︒计算即可.解:连接AO 、CO∵是的外接圆,,O A ABC A 60B ∠=︒∴,120AOC ∠=︒又∵,,OA OC =OD AC ⊥∴,60AOD ∠=︒∴,30OAD ∠=︒∵OD =∴;OA =∴⊙O 的直径为故选:C .【点拨】本题主要考查了圆周角定理和垂径定理的应用,解题的关键是结合所对30°直角边是斜边的一半计算.6.C【分析】利用等边三角形的判定与性质得出,再利用圆周角定理得出答案.60BOC ∠=︒解:如图,连接BO ,CO ,∵的边BC 等于圆的半径,ABC A ∴是等边三角形,BOC A∴,60BOC ∠=︒∴,30A ∠=︒若点在劣弧BC 上,则,A '150A '∠=︒∴或;A ∠=30°150︒故选C .【点拨】本题主要考查了三角形的外接圆与外心以及等边三角形的判定与性质和圆周角定理,得出是等边三角形是解题的关键.BOC A 7.B【分析】利用圆心角、弧、弦的关系得到,再利用圆周角定理得到A A DC BC =∠BAC =∠DAC =36°,∠ABD =∠ACD =44°,然后根据三角形内角和计算∠ADB 的度数.解:∵BC =CD ,∴,A A DC BC =∵∠ABD 和∠ACD 所对的弧都是,A AD ∴∠BAC =∠DAC =36°,,72BAD BAC DAC ∴∠=∠+∠=︒∵∠ABD =∠ACD =44°,∴∠ADB =180°−∠BAD −∠ABD =180°−72°−44°=64°,故选:B .【点拨】本题考查了圆周角定理和圆心角、弧、弦的关系,熟练掌握圆周角定理是解决问题的关键.8.D【分析】由AB 是直径可得∠ACB =90°,由∠ABC =20°可知∠CAB =70°,再根据圆周角定理可得∠BDC 的度数,即可得出答案.解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠ABC =20°,∴∠CAB =70°,∴∠BDC =∠CAB =70°,故选:D .【点拨】本题考查了圆周角定理,由AB 是直径求出∠ACB =90°是解题的关键.9.D【分析】连接、,根据作法可得,即可得到,MD ON A A A CM CD DN ==COM COD DON ∠=∠=∠则可判断A 选项;若,可得,推出即可求出的OM MN =60NOM ∠=︒20COD ∠=︒OCD ∠度数,则可判断B 选项;根据得到即可判断C 选项;根据A A CM DN =CDM DMN =∠∠即可判断D 选项.CM CD DN MN ++>解:连接、,如图所示MD ON∵以点为圆心,长为半径作弧,交射线于点,分别以点,为O OC PQ OB D C D 圆心,长为半径作弧,交弧于点,CD PQ M N∴A A A CM CD DN==∴COM COD DON∠=∠=∠∴A 选项说法正确,不符合题意若OM MN=∵OM ON=∴MN OM ON==∴60NOM ∠=︒∵COM COD DON∠=∠=∠∴20COD ∠=︒又∵OC OD=∴18020802OCD ODC ︒-︒===︒∠∠∴B 选项说法正确,不符合题意∵A A CM DN=∴CDM DMN=∠∠∴MN CD∥∴C 选项说法正确,不符合题意∵CM CD DN MN++>∴3MN CD<∴D 选项说法错误,符合题意故选D .【点拨】本题考查了作图、等边三角形的判定与性质、等腰三角形的判定与性质、圆周角定理、弧、弦和圆心角的关系等知识点,解决此题的关键是熟悉几何图形的性质,结合几何图形的性质将复杂作图拆解成基本作图,逐步操作.10.D【分析】根据直径所对的圆周角是直角,即可判断A ,根据圆周角定理可判断B 选项,根据圆周角与弧的关系可判断C ,根据判断D 选项.CDE CDB ∠≠∠解:∵AB 、CD 分别是⊙O 的直径,,90CBD ∴∠=︒∴CB ⊥BD ,故A 选项正确,如图,连接,BE,且∠CDE =62°,DE AB ∥,62BOD CDE ∴∠=∠=︒,1312BCD BOD ∴∠=∠=︒,OC OB =Q ,31CBO BCO ∴∠=∠=︒,62AOC ∴∠=︒,62CBE CDE ∠=∠=︒ ,31ABC ABE ∴∠=∠=︒,∴AA AC AE =故B ,C 选项正确,,31,90BCD CBD ∠=︒∠=︒ ,59BDC ∴∠=︒,62CDE ∠=︒ ,CDE CDB ∴∠≠∠BD DE ,故D 选项不正确,∴≠故选D .【点拨】本题考查了圆周角定理,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.11.B【分析】连接AC ,根据同弧所对的圆周角相等,将转化为,再根据直径所对的βγα+-ACB ∠圆周角是直角即可得到.90βγα+-=︒解:连接AC ,令,如图所示:BCD θ∠=在△BCE 中,(三角形一个外角等于与它不相邻的两个内角的和),γαθ=+∵(同弧或等弧所对的圆周角相等),ACD ABD β∠=∠=,ACD ACD ACB βγααθαθ∴+-=∠++-=∠+=∠又∵AB 是直径,∴(直径所对的圆周角是直角),90ACB ∠=︒,90βγα∴+-=︒故选:B .【点拨】本题考查了三角形外角的性质,圆周角定理,正确作出辅助线,将转化为是解题的关键.βγα+-ACB ∠12.20︒【分析】连接、,由圆周角定理得出,进而结合题意得出,由AE BD 90AEB =︒∠10AED ∠=︒圆心角、弧、弦的关系定理,即可求出的度数.10CBD DBA AED ∠∠∠===︒ABC ∠解:如图,连接、,AE BD为的直径,AB Q O A ,90AEB ∠∴=︒,80DEB ∠=︒ ,10AED AEB DEB ∠∠∠∴=-=︒,AD CD =A A,10CBD DBA AED ∠∠∠∴===︒,101020ABC ABD CBD ∠∠∠∴=+=︒+︒=︒故答案为:.20︒【点拨】本题考查了圆周角定理,圆心角、弧、弦的关系,熟练掌握圆周角定理,圆心角、弧、弦的关系定理是解决问题的关键.13.【分析】若要使的面积最大,底AB 固定,故只要AB 边上的高最大时,即三角形面积ABP △最大;可证,故可知点P 在△APB 的外接圆的劣弧上,当点P 在劣弧120APB ∠=︒A AB 的中点处,△APB 的面积最大,求出AB 边上的高即可求解.A AB 解:∵四边形ABCD 是菱形,∴AB =BC =6,AB //CD ,∴180,ABC BCD ∠+∠=︒∵,120C ∠=︒∴ 即,60,ABC ∠=︒60ABP PBC ︒∠+∠=∵,BAP CBE ∠=∠∴,60ABP BAP ∠+∠=︒∵,180()18060120APB ABP BAP ∠=︒-∠+∠=︒-︒=︒∴点P 在在△APB 的外接圆上,若要使的面积最大,底AB 固定,,故只要AB 边上的高最大ABP △120APB ∠=︒时,即三角形面积最大;此时点P 在劣弧的中点处,如图,A AB设点O 为△APB 的外接圆的圆心,OP ⊥AB 于点F ,∴,,132AF AB ==1602APF APB ∠=∠=︒∴30,PAF ∠=︒∴2AP PF =由勾股定理得,222AF PF AP +=∴22234PF PF+=∴PF∴11622APB S AB PF ∆==⨯=A即面积的最大值为ABP △故答案为:【点拨】本题考查了菱形的性质,三角形的面积公式,解直角三角形,垂径定理等知识,正确作出辅助圆,熟练掌握知识点是解题的关键.14.1【分析】连接CD ,根据AD 、BE 分别平分∠BAC 和∠ABC ,结合圆周角定理和三角形外角性质,得出,根据直径所对的圆周角为90°,结合BD =CD ,DBE BED ∠=∠BC =定理,求出,即可求出.21BD =1DE BD ==解:连接CD ,如图所示:∵AD 平分∠BAC ,∴∠BAD =∠CAD ,∴,A A BD CD =∴,,BD CD =CBD CAD BAD ∠=∠=∠∵为直径,且BC BC =∴∠BDC =90°,∴,22222BD DC BC +===∴,21BD =∴,1BD =∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∵,,DBE CBD CBE ∠=∠+∠BED ABE BAD ∠=∠+∠∴,DBE BED ∠=∠∴.1DE BD ==故答案为:1.【点拨】本题主要考查了角平分线的定义,圆周角定理,三角形外角的性质,等腰三角形的判定,勾股定理,作出辅助线,根据题意证明,是解题的关键.DBE BED ∠=∠15.或或或或或 写出其中一个就可以(答案不唯(52),(3,4)(5,0)(1,2)-(3,2)-(1,0)-一)【分析】直接利用圆周角定理,以P 为圆心,PA 为半径画圆,圆上的格点即可作为C 点.解:由联想到同弧所对的圆周角等于圆心角的一半,12ACB APB ∠=∠所以点在以点为圆心,为半径的圆上,进而得到满足横、纵坐标为整数的六个C P PA 点:、、、、、C (3,4)(52),(5,0)(3,2)-(1,2)-(1,0)-【点拨】本题考查了圆周角定理,解题关键是理解题意,能利用圆找出符合条件的点.16.【分析】连接OD ,作DE ⊥AB 于E ,OF ⊥AC 于F ,运用圆周角定理,可证得∠DOB =∠OAC ,即证△AOF ≌△ODE ,所以OE =AF =cm ,根据勾股定理,得DE =4cm ,在直角三角形ADE 32中,根据勾股定理,可求AD 的长.解:连接OD ,AD ,作DE ⊥AB 于E ,OF ⊥AC 于F .根据题意知,∠CAD =∠BAD ,∴,A ACD BD =∴点D 是弧BC 的中点.∴∠DOB =∠OAC =2∠BAD ,∴△AOF ≌△ODE ,∴OE =AF =cm ,32∴DE =2cm ,又∵AE ==4cm ,5322+∴AD cm .==【点拨】在圆的有关计算中,作弦的弦心距是常见的辅助线之一.熟练运用垂径定理、圆周角定理和勾股定理.17.75°【分析】先求出∠DAC 的度数,再根据圆内接四边形的性质求出∠DBE 的度数,再通过角平分线求出∠ABE 的度数,最后通过三角形外角性质求出∠C 的度数.解:∵BC =BD ,,25BAC ∠=︒∴∠BAD =∠BAC =25°,∴∠DAC =50°,∵四边形ADBC 是圆内接四边形,∴∠DAC +∠DBC =180°,∵∠DBE +∠DBC =180°,∴∠DBE =∠DAC =50°,∵BD 平分,ABE ∠∴∠ABE =2∠DBE =100°,∴∠C =∠ABE -∠BAC =100°-25°=75°,故答案为:75°【点拨】本题考查了三角形外角的性质、圆周角定理及圆内接四边形的性质,解决本题的关键是熟练掌握圆内接四边形的性质.18.【分析】由题意和旋转的性质可知:,可知、、、四点共圆.随45ABD ACE ∠=∠=︒A B C F 着的旋转可知,点运动的路径是 以、、、四点共圆的圆上,当AD 从第ABC A F A B C F 一次与BC 平行旋转到第二次与BC 平行时,点运动的轨迹是以为直径的半圆,求出F AC 的长就可以求出点的路径长.AC F 解:如图所示:连接, 由旋转的性质可知:和是等腰直角三角形.AF ABD △ACE A∴,45ABD ACF ∠=∠=︒∴、、、四点共圆.A B C F ∵,90ABC ∠=︒∴该圆是以为直径圆.AC ∴随着的旋转可知:点运动的轨迹是以为直径的圆上.ABC A F AC ∴当AD 从第一次与BC 平行旋转到第二次与BC 平行时,点运动的轨迹是以F 为直径的圆的周长的一半.AC由勾股定理可知:AC ==∴当AD 从第一次与BC 平行旋转到第二次与BC 平行时,点F 运动的路径长为:,12AC π⨯∴点F 运动的路径长为:.12π⨯=故答案为:.【点拨】本题考查了圆周角定理的推论、勾股定理等知识.通过圆周角定理的推论找到四点共圆是解决本题的关键.19.4CM <【分析】因为AB 是直角三角形的斜边,可以看成是点C 在以AB 为直径的圆上,通过可以判断点C 在圆弧EB 之间,而在点E 、点B 位置是极限位置,求出在这两点AC BC >时CM 的值即可.解:∵AB 是直角三角形ABC 的斜边,∴点C 在以AB 为直径的圆上,∵,DM 是AB 的垂直平分线,AC BC >∴点C 在圆弧ECB 之间的圆弧上,∵CN 是∠ACB 的平分线,∴CN 与圆弧AB 相交于的中点,A AB ∵DM 是AB 的垂直平分线,∴DM 与圆弧AB 相交于的中点,A AB 所以CN 、DM 、交于一点,即M 点,A AB ∵AB =4,∴BD =DM =2,如图1,当B ,重合时,CM 最小,CCM ===因为此时三角形不存在(成为线段),所以应取CM >如图2,当点C 在E 点时,CM 最大,为圆D 的直径,∴,4CM =因为此时AC =BC ,不符题意,所以应取,4CM <所以CM 的范围为,4CM <故答案为:.4CM <<【点拨】本题考查了圆直角三角形,熟练运用直径所对的圆周角为直角、等弧对等角、垂径定理是解题关键.20.2【分析】作点E 关于DC 的对称点E ',设AB 的中点为点O ,连接OE ',交DC 于点P ,连接PE ,由轴对称的性质及90°的圆周角所对的弦是直径,可知线段PE +PM 的最小值为OE '的值减去以AB 为直径的圆的半径OM ,根据正方形的性质及勾股定理计算即可.解:作点E 关于DC 的对称点E ',设AB 的中点为点O ,连接OE ',交DC 于点P ,连接PE ,如图所示:∵动点M 在边长为4的正方形ABCD 内,且AM ⊥BM ,∴点M 在以AB 为直径的圆上,OM =AB =2,12∵正方形ABCD 的边长为4,∴AD =AB =4,∠DAB =90°,∵E 是AD 的中点,∴DE =AD =×4=2,1212∵点E 与点E '关于DC 对称,∴DE '=DE =2,PE =PE ',∴AE '=AD +DE '=4+2=6,在Rt △AOE '中,OE '===∴线段PE +PM 的最小值为:PE +PM =PE '+PM =ME '=OE '-OM =.2-故答案为:.2-【点拨】本题主要考查了轴对称-最短路线问题、圆周角定理的推论、正方形的性质及勾股定理等知识点,作出辅助线,熟练掌握相关性质及定理,是解题的关键.21.【分析】连结AE ,根据∠CBA =90°所对的弦得出AE 为的直径,得出AE =8,根据BE =DE ,O A 得出∠BAE =∠DAE ,可求∠BAE =∠DAE =30°,利用30°直角三角形性质求出BE =DE =,利用勾股定理求出AB 142AE ===质求出BC =BE +CE =12即可.解:连结AE ,∵∠CBA =90°,∴AE 为的直径,O A ∴AE =8,∵BE =DE ,∴,A A BE DE =∴∠BAE =∠DAE ,∵∠BAC =60°,∴∠BAE =∠DAE =30°,∴BE =DE =,AB 142AE ===∵AE 为直径,∴∠EDA =90°,∵∠A =180°-∠ABC -∠BAC =180°-90°-60°=30°,∴EC =2ED =8,∴BC =BE +CE =12,∴S △ABC =.111222AB BC ⋅=⨯=故答案为【点拨】本题考查直角所对弦和直径所对圆周角性质,30°直角三角形性质,勾股定理,三角形面积,掌握直角所对弦和直径所对圆周角性质,30°直角三角形性质,勾股定理,三角形面积是解题关键.22.(,)##(,)00【分析】连接AC ,AB ,BC ,过点C 作CH ⊥OA 于H ,利用含30度角的直角三角形的性质及勾股定理在Rt △OCH 中,先后求得OH ,CH ,AH ,再在Rt △ACH 中,求得AC ,在Rt △ABC 中,利用勾股定理构建方程求得BC ,AB ,再在Rt △AOB 中,利用勾股定理即可解决问题.解:连接AC ,AB ,BC ,过点C 作CH ⊥OA 于H ,∵∠AOC =60°,则∠OCH =30°,且OC =3,∴OH =OC =,CH =,1232==∵点A (4,0),∴AO =4,∴AH = AO - OH =,52在Rt △ACH 中,AC =,==∵∠BOA =90°,∴AB 为⊙M 的直径,∴∠BCA =90°,∵∠AOC =60°,∴∠ABC =60°,则∠BAC =30°,在Rt △ABC 中,BC =AB ,12AB 2=AC 2+BC 2,即AB 22+(AB )2,12∴AB 2=,523在Rt △AOB 中,OB 2=AB 2- AO 2=,43∴OB点B 的坐标是:(.0.【点拨】本题考查了圆周角定理,勾股定理,含30度角的直角三角形的性质等知识,解题的关键是学会利用参数构建方程解决问题.23.68°【分析】连接OB ,如图,利用等腰三角形的性质和三角形的外角性质得到∠EBO =2∠A ,则∠E =2∠A ,再利用∠EOD =84°得到2∠A +∠A =84°,解得∠A =28°,接着计算出∠BOE 的度数,从而得到的度数.A BE 解:连接OB ,如图,∵OB =OC ,OC =AB ,∴OB =AB ,∴∠A =∠BOA ,∴∠EBO =∠A +∠BOA =2∠A ,∵OB =OE ,∴∠E =∠EBO =2∠A ,∵∠EOD =∠E +∠A ,∴2∠A +∠A =84°,解得∠A =28°,∴∠E =∠EBO =56°,∴∠BOE =180°-∠E -∠EBO =180°-56°-56°=68°,∴的度数为68°.A BE 【点拨】本题考查了圆的基本性质,等腰三角形的性质以及三角形外角的性质,添加辅助线,构造等腰三角形,是解题的关键.24.(1)①30,②60;(2)︒︒6BC =【分析】(1)①根据折叠的性质可得,根据等弧所对的圆周角即可求解;ACD AED ∠=∠②根据等边对等角可得,根据(1)的结论可得,进而DAE DEA ∠=∠∠=∠ACB ABC 根据折叠的性质求得,进而根据即可求得,60CAE ∠=︒CAB CAE ∠-∠BAE ∠(2)根据,可得,,根据折叠的性质可得A A A A AD DE BE DE +=+A A AE DB =AE BE =,进而即可求解.4DB AE ==(1)①,,A A AD AD = 30ABC ∠=︒,30AED ABD ∴∠=∠=︒将沿直线折叠,点C 的对应点E 落在上,ADC A AD O A ;30ACB AED ∴∠=∠=︒②,AD DE =,DAE DEA ∴∠=∠,DEA DBA ∠=∠ ,30DAE ∴∠=︒将沿直线折叠,点C 的对应点E 落在上,ADC A AD O A ,30DAE DAC ∴∠=∠=︒中,,则,ABC A 30ABC ACB ∠=∠=︒180120CAB ABC ACB ∠=︒-∠-∠=︒,60CAE CAD EAD ∠=∠+∠=︒ ,1206060EAB CAB CAE ∴∠=∠-∠=︒-︒=︒,60EAB ∴∠=︒(2) A A AD BE=A A A A AD DEBE DE +=+∴A A AE DB∴=AE BE∴=折叠AC AE∴=4DB AE ∴==2CD = 426BC CD DB ∴=+=+=【点拨】本题考查了折叠的性质,同弧或等弧所对的圆周角相等,弧与弦的关系,三角形内角和定理的应用,综合运用以上知识是解题的关键.25.(1)30(2)(3)3232π【分析】(1)利用圆周角定理解得,由直径所对的圆周角是90°,得到60B D ∠=∠=︒,最后根据三角形内角和180°解答即可;90ACB ∠=︒(2)证明是等边三角形,得到BC =3,再证明是的中位线,由中位COB △OE ABC A线的性质解答;(3)连接OC ,证明,将阴影部分的面积转化为扇形FOC 的面()AFE COE ASA ≅V V 积,再结合扇形面积公式解答.(1)解:∠D =60°60B ∴∠=︒AB 是⊙O 的直径,90ACB ∴∠=︒906030CAB ∴∠=︒-︒=︒故答案为:30;(2)∠D =60°60B ∴∠=︒OC OB=Q 是等边三角形COB ∴A 1632BC OB ∴==⨯=AB 是⊙O 的直径,90ACB ∴∠=︒OE AC⊥ OE BC∴∥是AB 中点O 是的中位线OE ∴ABC A 1322OE BC ∴==(3)连接OC ,∠CAB =30°,AO OC =Q 30ECO ∴∠=︒1111120302224FAC FOC AOC ∠=∠=⨯∠=⨯︒=︒Q FAE ECO∴∠=∠AC OF⊥Q 90,FEA OEC AE CE ∴∠=∠=︒=()AFE COE ASA ∴≅V V AFE COES S ∴=V V .26033===3602FOC S S ππ⨯∴阴影扇形【点拨】本题考查扇形的面积计算、含30°角的直角三角形、圆周角定理、垂径定理等知识,是重要考点,掌握相关知识是解题关键.26.(1)36°;(2).12【分析】(1)利用对称的性质证明BD ⊥AC ,所以∠DBC 与∠ACB 互余,即可求出∠DBC ;(2)利用等弧所对的圆周角等于圆心角的一半和三角形内角和为180°,求出∠BDF 、∠OBM 的度数并证明其相等,再根据证明△BOM ≌△DNM (ASA ),从而得到OM =NM ,即可求出.12MN ON =解:(1)∵点B 、点D 关于AC 对称,∴BD ⊥AC ,∴∠DBC +∠ACB =90°,∵∠ACB =54°,∴∠DBC =90°-54°=36°,故∠DBC 的度数为36°.(2)连接OF ,∵点F 是的中点,A BC ∴∠BOF =∠COF =2∠BDF ,∵OC =OB ,∴∠OBC =∠OCB =54°,∴∠OBM =∠OBC -∠DBC =54°-36°=18°,∠BOC =180°-2×54°=72°,∴∠BOF =∠BOC ==36°,121722⨯︒∴∠BDF ===18°,12BOF ∠1362⨯︒∴∠BDF =∠OBM ,∵点B 、点D 关于AC 对称,∴DM =BM ,∴在△BOM 和△DNM 中,OBM NDM BM DMOMB NMD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOM ≌△DNM ,∴NM =OM ,∴.12MN MN ON OM NM ==+【点拨】本题考查了轴对称、圆和全等三角形,熟练利用对称点连线与对称轴垂直,圆心角与圆周角的关系以及全等三角形的判定能有效帮助解此题.27.(1)见分析;(2)65【分析】(1)连接DE ,根据CD 和EF 都是⊙O 的直径得到∠DEA =∠ECF =90°,根据直角三角形的性质得到CD =AD =BD ,利用等腰三角形三线合一的性质推出∠ADE =∠CDE ,进而得到∠ADE =∠OED ,即可得到;EF AB ∥(2)根据直角三角形斜边上的中线求得,勾股定理求得,由(1)25AB CD ==4BC =可得,根据切线的性质可得,根据,代入数值,即可12EF AB =FG AB ⊥sin FG AC B BF AB ==得到FC .解:(1)证明:连接DE ,∵CD 和EF 都是⊙O 的直径,∴∠DEA =∠ECF =90°,∵D 是AB 的中点,∴CD =AD =BD ,∴∠ADE =∠CDE ,∵OD =OE ,∴∠OED =∠CDE ,∴∠ADE =∠OED ,∴;EF AB ∥(2)连接DF ,∵CD 是⊙O 的直径,∴∠DFC =90°,∴∠DFC =∠FCE =∠CED =90°,∴四边形CEDF 是矩形,∴FC =DE ,DE ∥BC ,∴,1AE AD EC DB ==∴AE =CE ,∴DE 是△ABC 的中位线,∴,12DE BC =∵AB =2CD =5,AC =3,∴,4BC ===∴FC =2.422BF BC FC ∴=-=-=是的切线,FG O A GF EF∴⊥ EF AB∥FG AB∴⊥90BGF BCA ∴∠=∠=︒∴sin FG AC B BF AB==∴325FG =65FG ∴=【点拨】此题考查了圆周角定理,矩形的判定定理及性质定理,勾股定理,三角形中位线的性质,熟记圆周角定理是解题的关键.28.(1);(2;(3);见分析3294//AB ON 【分析】(1)连接AB ,由已知得到∠APB =∠APQ +∠BPQ =90°,根据圆周角定理证得AB 是⊙O 的直径,然后根据勾股定理求得直径,即可求得半径;(2)证明是等腰直角三角形,得出ABQ △AQ BQ ==可得结论;ABP ABQ APBQ S S S ∆∆=+四边形(3)连接OA 、OB 、OQ ,由∠APQ =∠BPQ 证得,即可证得OQ ⊥AB ,然后»»AQ BQ =根据三角形内角和定理证得∠NOQ =90°,即NO ⊥OQ ,即可证得AB ∥ON .解:(1)连接AB ,如图1,∵,45APQ BPQ ∠=∠=︒∴,90APB APQ BPQ ∠=∠+∠=︒∴AB 是的直径,O A∴,3AB ===∴的半径为;O A 32(2)连接AQ ,BQ ,如图2,∵90APB ∠=︒∴18090AQB APB ∠=︒-∠=︒∵45APQ BPQ ∠=∠=︒∴45ABQ BAQ ∠=∠=︒∴是等腰直角三角形ABQ △∵,3AB =∴3AQ BQ AB ====∴1191224ABP ABQ APBQ S S S ∆∆=+=⨯⨯=四边形(3),理由如下:连接OQ ,如图3,//AB ON∵,APQ BPQ ∠=∠∴,»»AQ BQ =∴OQ AB⊥∵,OP OQ =∴,OPN OQP ∠=∠∵,180OPN OQP PON NOQ ∠+∠+∠+∠=︒∴,2180OPN PON NOQ ∠+∠+∠=︒∵,290NOP OPN ∠+∠=︒∴,90NOQ ∠=︒∴NO OQ⊥∴//AB ON【点拨】本题考查了圆周角定理,垂径定理,熟练掌握性质定理是解题的关键.。

2020年人教版九年级数学上册期末专题《圆心角圆周角》(含答案)

2020年人教版九年级数学上册期末专题《圆心角圆周角》(含答案)

A.2
B.4
C.2
D.4.8
3.如图,四边形 ABCD 是半圆内接四边形,AB 是直径, = .若∠C=110°,则∠ABC 度数等 于( )
A.55°
B.60°
C.65°
D.70°
4.如图,⊙P 与 x 轴交于点 A(﹣5,0),B(1,0),与 y 轴的正半轴交于点 C.若∠ACB=60 °,则点 C 的纵坐标为( )
19.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD. (1)求证:AD=AN; (2)若AB=4 ,ON=1,求⊙O的半径.
20.在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD. (1)如图 1,若点D与圆心O重合,AC=2,求⊙O的半径r。 (2)如图 2,若点D与圆心O不重合,∠BAC=25°,求∠DCA的度数.
18.【解答】(1)证明:∵四边形 ABCD 内接于圆 O,
13.如图,已知 AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD 的度数为

14.如图,四边形 ABCD 内接于⊙O,∠DAB=130°,连接 OC,点 P 是半径 OC 上任意一点,连接 DP,
BP,则∠BPD 可能为
度(写出一个即可).
15.如图,B、C、D 依次为一直线上 4 个点,BC=3,△BCE 为等边三角形,⊙O 过 A、D、E 三
A.AP=2OP
B.CD=2OP
C.OB⊥AC
D.AC 平分 OB
二、填空题 11.如图,AB 是半圆 O 的直径,AC=AD,OC=2,∠CAB=30°,则点 O 到 CD 的距离 OE
为 .
12.如图,AB 是⊙O 的弦,OC⊥AB,交⊙O 于点 C,连接 OA,OB,BC,若∠ABCห้องสมุดไป่ตู้20°, 则∠AOB 的度数是 .

初三上册圆的圆周角练习题

初三上册圆的圆周角练习题

初三上册圆的圆周角练习题在初三数学的课程中,圆的相关概念和性质是学生们需要掌握的重要内容之一。

其中,圆周角作为圆的一个重要性质,在解题过程中起着至关重要的作用。

本文将为大家提供一些圆周角练习题,帮助大家巩固和提升对圆周角的理解和运用。

1.已知半径为r的圆上有两条弧AB和CD,弧AB对应的圆心角为α,弧CD对应的圆心角为β。

如果α+β=90°,求证:弧AB和弧CD的长度相等。

解答:由于α+β=90°,根据圆周角和的性质可知,弧AB和弧CD所对应的弧度和为π/2,即AB+CD=π/2。

又由于AB和CD是同一圆上的两条弧,因此它们的弧长相等,即AB=CD。

2.已知圆心角θ对应的圆弧长度为s,圆的半径为r。

求证:θ的度数等于s/r的弧度数。

解答:根据圆周等分的原理,360°对应于2π的弧度数。

假设θ对应的弧度数为x,那么x/2π=θ/360°。

根据题目已知条件,s/r=x/2π,两边乘以360°得到s/r=θ。

3.已知直径为d的圆上的两条弧AB和CD,弧AB对应圆心角为α,弧CD对应圆心角为β。

如果α和β的度数之和等于180°,求证:弧AB和弧CD的长度之和等于圆周长的一半。

解答:由题意可知,α+β=180°,根据圆周角和的性质可得,AB+CD=π,即弧AB和弧CD的长度之和等于圆周长的一半。

通过以上的练习题,我们可以更深入地了解和应用圆的圆周角的性质。

在解题过程中,需要灵活运用和转化弧度和度数的关系、圆周角和的性质等概念。

只有真正理解并掌握这些概念,才能在数学问题中正确地运用它们。

圆周角作为圆的一个重要性质,不仅存在于初三数学中,也在实际生活中有着广泛的应用。

比如,在建筑中,为了保证圆形构件的连接稳定,需要正确地计算和设计圆周角。

因此,对圆周角的学习不仅仅是应试的需要,更是培养学生逻辑思维和数学运算能力的重要一环。

通过不断练习和巩固,相信大家在初三数学中的圆的圆周角问题上将能够得心应手,取得良好的成绩。

人教版九年级上册:圆心角、圆周角复习题

人教版九年级上册:圆心角、圆周角复习题

人教版九年级上册:圆心角、圆周角复习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.同圆中两弦长分别为x 1和x 2它们所对的圆心角相等,那么( )A .x 1 >x 2B .x 1 <x 2C .x 1 =x 2D .不能确定2.下列说法正确的有( )①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③在同圆中,相等的弦所对的圆心角相等;④经过圆心的每一条直线都是圆的对称轴A .1个B .2个C .3个D .4个3.在⊙O 中,同弦所对的圆周角( )A .相等B .互补C .相等或互补D .都不对4.如图所示,如果的⊙O 半径为2弦AB= 那么圆心到AB 的距离OE 为( )A .1BC .12D 5.如图所示,⊙O 的半径为5,弧AB 所对的圆心角为120°,则弦AB 的长为( )A B C .8 D . 6.如图所示,正方形ABCD 内接于⊙O 中,P 是弧AD 上任意一点,则∠ABP+∠DCP 等于( )A.90°B.45 °C.60°D.30°二、填空题7.一条弦恰好等于圆的半径,则这条弦所对的圆心角为________8.如图所示,已知AB、CD是⊙O的两条直径,弦DE∥AB,∠DOE=70°则∠BOD=___________9.如图所示,在△ABC中,∠ACB=90°,∠B=25°,以C为圆心,CA为半径的圆交AB于点D,则∠ACD=___________10.D、C是以AB为直径的半圆弧上两点,若弧BC所对的圆周角为25°弧AD所对的圆周角为35°,则弧DC所对的圆周角为_____ .11.如图所示,在⊙O中,A、B、C三点在圆上,且∠CBD=60,那么∠AOC=__________12.如图所示,CD是圆的直径,O是圆心,E是圆上一点且∠EOD=45°,A是DC延长线上一点,AE交圆于B,如果AB=OC,则∠EAD=____________三、解答题13.如图,已知OA、OB、OC是⊙O的三条半径,点C是弧AB的中点,M、N分别是OA、OB的中点.求证:MC=NC.14.如图所示,已知:AB和DE是⊙O的直径,弦AC∥DE,求证:CE=BE15.如图所示,△ABC为圆内接三角形,AB>AC,∠A的平分线AD交圆于D,作DE⊥AB于E,DF⊥AC于F,求证:BE=CF16.如图所示,在△ABC中,∠BAC与∠ABC的平分线AE、BE相交于点E,延长AE 交△ABC的外接圆于D点,连接BD、CD、CE,且∠BDA=60°.(1)求证△BDE是等边三角形;(2)若∠BDC=120°,猜想BDCE是怎样的四边形,并证明你的猜想.参考答案1.C【解析】同圆中两弦长分别为x 1和x 2,它们所对的圆心角相等,那么x 1 =x 2.所以选C. 2.B【解析】①同圆或者等圆中相等的圆心角所对的弧相等,错误;②平分弦(不是直径)的直径垂直于弦,错误;③在同圆中,相等的弦所对的圆心角相等,正确;④经过圆心的每一条直线都是圆的对称轴,正确.选B.3.C【解析】试题分析:在同圆或等圆中,同弧所对的圆周角相等或互补,故选择C .4.A【解析】AB =由垂径定理知BE OB =2,由勾股定理知,222OE EB OB +=,2222OE ∴+=,∴OE =1,5.D【解析】过O ,作OH ,AB ⊥∠AOB=120°,∴∠HOB=60°,∴sin60°=HB OB ,5HB =,∴HE =2,AB ∴=点睛:垂径定理垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧 .推论一:平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧 .推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧 .推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 .推论四:在同圆或者等圆中,两条平行弦所夹的弧相等 .垂径定理计算,一般要构造直角三角形,例如(图中Rt△OEB)利用勾股定理或者三角函数的关系求各边的长度.6.B【解析】连接CA,OD,因为ABCD是正方形,∴∠AOD=90°,∴∠ACP=∠ABP,∴∠ABP+∠DCP=∠ACD,∴∠ACD=12∠AOD,∴∠ABP+∠DCP=45°.7.60°【解析】设半径为r,则弦长为r,由两半径,弦可构成一个等边三角形,其内角为60°,则这条弦所对圆心角的弧度数为60︒.8.125【解析】DE∥AB,∴∠E=∠BOE,∴∠DOE+2∠D=180°,∠DOE=70°,∴∠D=55°.∴∠BOD=70°+55°=125°.9.50°【解析】连接CD,AC=CD,∴∠B=25°,∴∠A=65°,∴∠ADC=65°,∴∠ACD=50°.10.30°或80°【解析】C,D同侧,弧BC所对的圆周角为25°弧AD所对的圆周角为35°,所以∠BOC=50°,∠AOD=70°,所以∠DOC=60°,所以,DC所对的圆周角是30°.C,D’异侧,∠DOB=110°,所以∠D’OC=160°,所以D’C圆周角是80°.11.120°【解析】弧AC上任取一点P,连接AP,CP,所以∠APC=60°,所以∠AOC=120°.12.15°【解析】∵AB=OC,OB=OC,∴AB=BO,∴∠EAD=∠2,∴∠1=∠EAD+∠2=2∠EAD,又∵OE=OB,∴∠1=∠E,又∵∠1=∠2+∠EAD=2∠EAD,∴∠E=2∠EAD,∴∠EOD=3∠EAD=45°,所以∠A=15°.点睛:圆周角定理熟练记忆并掌握圆周角定理的三种形式,∠A=12BOC .13.证明见解析.【解析】试题分析:根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB 的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.试题解析:∵弧AC和弧BC相等,∴∠AOC=∠BOC,又∵OA="OB" M、N分别是OA、OB的中点∴OM=ON,{OM=ON ∠AOC=∠BOC OC=OC在△MOC和△NOC中,,∴△MOC≌△NOC(SAS),∴MC=NC.考点:1.圆心角、弧、弦的关系;2.全等三角形的判定与性质.14.详见解析.【解析】试题分析:利用同弧所对圆周角相等,所对弧也相等.试题解析:证明:∵AC∥DE,∴弧AD=弧CE,∠AOD=∠BOE,弧AD=弧BE,故而弧CE=弧BE,∴CE=BE.15.详见解析.【解析】试题分析:连接BD、DC,通过证明角平分线到两边相等,同弧所对弦相等,利用斜边直角边,证明Rt△BOE≌Rt△DFC.试题解析:证明:连接BD、DC,∵AD平分∠BAF,DE⊥AB,DF⊥AF∴∠BAD=∠F AD,DE=CD,∴BD=CD,∴Rt△BOE≌Rt△DFC,∴BE=CF.16.(1)详见解析;(2)详见解析.【解析】试题分析:(1)先证明利用角平分线证明∠EBD=∠BED,∠BDA=60°,所以三角形是等边三角形.(2)∠BDC=120°,利用(1)△BDE等边三角形,所以BE=BD=DC=EC,四边形是菱形. 试题解析:(1)证明:∵AE平分∠BAC,BE平分∠ABC,∴∠BAE=∠CAE, ∠ABE=∠CBE,又∠BED=∠BAE+∠ABE, ∠DBC=∠CAE,∠EBD=∠CBE+∠DBC,∴∠BED=∠EBD,又.∵∠BDA=60°,∴△BDE是等边三角形.(2)四边形BDCE是菱形.∵∠BDA=60°,∠BDC=120°,∴∠EDC=60°.由(1)得△DEC是等边三角形, 而△BDE是等边三角形, 从而有BE=BD=DC=EC,所以四边形BDCE是菱形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学圆心角圆周角专项练习题
一、单选题
1.如图,⊙O中,半径OC⊙弦AB于点D,点E在⊙O上,⊙E=22.5°⊙AB=4,则半径OB等于()
A
B.2C.
D.3
2.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()
A.25°B.50°C.65°D.75°
3.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 4.在半径为1
的弦所对的弧的度数为()
A.90B.145C.90或270D.270或145 5.如图,ABC是O的内接三角形,,30
AB BC BAC
=∠=︒,AD是直径,8
AD=,则AC的长为()
A.4B
.C
D

6.下列说法正确的有()
①不在同一条直线上的三点确定一个圆;②平分弦的直径垂直于弦;③在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等;④圆内接平行四边形是矩形.A.1个B.2个C.3个D.4个
二、填空题
7.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O 的半径为2,则CD的长为_____
8.如图,已知点C是⊙O的直径AB上的一点,过点C作弦DE,使CD=CO.若AD 的度数为35°,则BE的度数是_____.
9.如图,AB是⊙O的直径,CD是弦,若∠ABC=63°,则∠D的度数是__.10.如图,在⊙O中,AB=2CD,那么AB________2CD(填“>,<或=”)
三、解答题
11.如图,已知A⊙B⊙C⊙D是⊙O上的四点,延长DC⊙AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.
12.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;
(2)若AB=24,CD=8,求⊙O的半径长.
13.如图,在ABC中,AC BC
,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作//
DF BC,交⊙O于点F,求证:
(1)四边形DBCF是平行四边形
(2)AF EF
15.如图,是一个高速公路的隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=12米,拱高CD=9米,求圆的半。

相关文档
最新文档