小学奥数:抽屉原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽屉原理
一、用“数的分组法”构造抽屉
例1:从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定有:(1)2个数互质;(2)2个数的差为50;(3)8个数,它们的最大公约数大于1。
随堂练习1:从1,2,3,…,49,50这,50个数中,取出若干个数使其中任意两个数的和都不能被7整除,最多可取个数。
例2:问在1,3,5,7,…,97,99这50个奇数中,最多能取出多少个数,使其中任何一个数都不是另一个数的倍数。
随堂练习2:从1,2,3,4,…,1988,1989这些自然数中,最多可以取个数,其中每两个数的差不等于4。
二、用“图形分割法”构造抽屉
例3:在一个边长为1的正方形内(含边界),任意给定9个点(其中没有三点共线),证明:在以这些点为顶点的各个三角形中,必有一个三角形,它的面积。
不大于1
8
随堂练习3:在一个边长为1的等边三角形内随意放置10个点。试说明:至少
。
有两个点之间的距离不超过1
3
三、用“染色法”分类
例4:如图是一个3行10列共30个小正方形的长方形,现在把每个小方格涂上红色或黄色,请证明无论怎么涂法一定能找到两列,它们的涂色方式完全相同。
随堂练习4:给出一个3行9列共27个小方格的长方形,将每个小方格随意涂上白色或红色。求证:无论如何涂色,其中至少有两列涂色方式相同。
四、用“剩下类法”构造抽屉
例5:一副扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?
例6:将全体自然数按照它们的个位数字,分为10类:个位数字是1的为第1类,个位数字为2的为第2类……个位数字为9的为第9类,个位数字为0的为第10类。
(1)任意取出6个互不同类的自然数,其中一定有2个数的和是10的倍数吗?(2)任意取出7个互不同类的自然数,其中一定有2个数的和是10的倍数吗?如果一定,请简要说明理由;如果不一定请举出一个反例。
随堂练习5:现有64个乒乓球,18个乒乓球盒,每个盒子最多可以放6个乒乓球,如果把这些球全部装入盒内,不许有空盒。那么,至少有个乒乓球盒里的乒乓球数目相同。