小学奥数:抽屉原理

合集下载

六年级《抽屉原理》奥数课件

六年级《抽屉原理》奥数课件

例题四
11名学生到老师家借书,老师的书房中有A、B、C、D 四类书,每名学生最多可借两本不同类的书,最少借一本。 试证明:必有两个学生所借的书的类型相同。
答:学生所借的书有10种可能:
A、B、C、D、AB、AC、AD、 BC、BD、CD。
11个学生借书必定有两个学生借 的书类型是相同的。
找抽屉
练习四
小结
最不利原则:从最不利条件发生的情况考虑。 原理1:把不少于n+1个的物体放到n个抽屉里,
则至少有一个抽屉里的东西不少于两个。
例题三
任意4个自然数,其中至少有两个数的 差是3的倍数。这是为什么?
n n12 33hh 1(2 整数 )1 答:可任能意:4个0、自1然、数2除,以因3此的至“余少数有”两有个3种
抽屉原理
10
10个苹果放到 9个抽屉(盒子 )里,一定有一 个抽屉(盒子) 至少有2个苹果

例题一
一个小组共有13名同学,其中至少有2 名同学同一个月过生日,为什么?
答:假设12个月都有1名同学过生日, 则多出来的1名同学一定与另1名同 学在同一个月过生日。
一年有12 个月。
练习一
在367个1996年出生的儿童中,至少有
n33h 3 2
自然数的“余数”是相同的。它们的 差定是3的倍数。
任意4个自然数中一定存在除以3的“余数”相同的两个自然数。
这两个自然数减去相同的“余数”后都是3的倍数。
这两个3的倍数的差一定也是3的倍数。
练习三
任取8个自然数,必有两个数的差是7的 倍数。为什么?
答:任意8个自然数除以7的“余数”有7种 可能:0、1、2、3、4、5、6,因此至少 有两个自然数的“余数”是相同的。它们的 差一定是7的倍数。

小学奥数抽屉原理

小学奥数抽屉原理

小学奥数抽屉原理
小学奥数中的抽屉原理是指在一组物品中,如果物品的数量大于抽屉的数量,那么至少会有一个抽屉中放置了两个或以上的物品。

这个原理可以用一个简单的例子来解释。

假设有4只袜子和3
个抽屉,我们要将袜子放入这些抽屉中。

因为袜子的数量大于抽屉的数量,根据抽屉原理,至少有一个抽屉中会放置两只袜子。

我们可以用鸽巢原理(抽屉原理的另一种说法)来帮助我们理解。

想象一下,如果有4只鸽子要放在3个巢里,根据鸽巢原理,至少有一个巢会有两只鸽子。

在小学奥数中,经常会用到抽屉原理来解决问题。

例如,假设有10个苹果,我们要将它们放入9个抽屉中。

我们可以确定
至少有一个抽屉中会放置两个或以上的苹果。

通过理解抽屉原理,我们可以更好地解决一些有关数量关系的问题。

这个简单而重要的数学原理在日常生活中也有很多应用。

例如,在一个大班级中,如果学生的数量超过了座位的数量,必然会有至少两个学生坐在同一个座位上。

总之,小学奥数中的抽屉原理告诉我们,当物品的数量大于抽屉的数量时,一定会有至少一个抽屉中放置了两个或以上的物品。

这个原理可以帮助我们更好地理解数量关系,解决数学问题。

小学奥数抽屉原理习题及答案【三篇】

小学奥数抽屉原理习题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是⽆忧考为⼤家整理的《⼩学奥数抽屉原理习题及答案【三篇】》供您查阅。

【篇⼀】【例 1】向阳⼩学有730个学⽣,问:⾄少有⼏个学⽣的⽣⽇是同⼀天? 【解析】⼀年最多有366天,可看做366个抽屉,730个学⽣看做730个苹果.因为,所以,⾄少有1+1=2(个)学⽣的⽣⽇是同⼀天. 【巩固】试说明400⼈中⾄少有两个⼈的⽣⽇相同. 【解析】将⼀年中的366天或天视为366个或个抽屉,400个⼈看作400个苹果,从最极端的情况考虑,即每个抽屉都放⼀个苹果,还有个或个苹果必然要放到有⼀个苹果的抽屉⾥,所以⾄少有⼀个抽屉有⾄少两个苹果,即⾄少有两⼈的⽣⽇相同.【篇⼆】【例 2】三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩. 【解析】⽅法⼀: 情况⼀:这三个⼩朋友,可能全部是男,那么必有两个⼩朋友都是男孩的说法是正确的; 情况⼆:这三个⼩朋友,可能全部是⼥,那么必有两个⼩朋友都是⼥孩的说法是正确的; 情况三:这三个⼩朋友,可能其中男⼥那么必有两个⼩朋友都是⼥孩说法是正确的; 情况四:这三个⼩朋友,可能其中男⼥,那么必有两个⼩朋友都是男孩的说法是正确的.所以,三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩的说法是正确的; ⽅法⼆:三个⼩朋友只有两种性别,所以⾄少有两个⼈的性别是相同的,所以必有两个⼩朋友都是男孩或者都是⼥孩.【篇三】【例 3】“六⼀”⼉童节,很多⼩朋友到公园游玩,在公园⾥他们各⾃遇到了许多熟⼈.试说明:在游园的⼩朋友中,⾄少有两个⼩朋友遇到的熟⼈数⽬相等. 【解析】假设共有个⼩朋友到公园游玩,我们把他们看作个“苹果”,再把每个⼩朋友遇到的熟⼈数⽬看作“抽屉”,那么,个⼩朋友每⼈遇到的熟⼈数⽬共有以下种可能:0,1,2,……,.其中0的意思是指这位⼩朋友没有遇到熟⼈;⽽每位⼩朋友最多遇见个熟⼈,所以共有个“抽屉”.下⾯分两种情况来讨论: (1)如果在这个⼩朋友中,有⼀些⼩朋友没有遇到任何熟⼈,这时其他⼩朋友最多只能遇上个熟⼈,这样熟⼈数⽬只有种可能:0,1,2,……,.这样,“苹果”数(个⼩朋友)超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. (2)如果在这个⼩朋友中,每位⼩朋友都⾄少遇到⼀个熟⼈,这样熟⼈数⽬只有种可能:1,2,3,……,.这时,“苹果”数(个⼩朋友)仍然超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. 总之,不管这个⼩朋友各遇到多少熟⼈(包括没遇到熟⼈),必有两个⼩朋友遇到的熟⼈数⽬相等.。

小学奥数抽屉原理

小学奥数抽屉原理

小学奥数抽屉原理小学奥数是小学生学习数学的一项重要内容,其中抽屉原理是一个非常有趣且实用的数学概念。

抽屉原理是指如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉中至少有两个物品。

这个简单的原理在解决一些实际问题时非常有用,下面我们就来详细了解一下小学奥数中的抽屉原理。

首先,我们来看一个简单的例子。

假设有5个苹果和4个篮子,我们要把这些苹果放进篮子里,那么根据抽屉原理,至少有一个篮子里会有至少两个苹果。

这是因为5个苹果分别放入4个篮子,必然会有至少一个篮子里有两个或以上的苹果。

抽屉原理在解决实际问题时非常有用。

比如,在一个班级里,学生们的生日是随机分布的,如果班级有31个学生,那么根据抽屉原理,至少有两个学生会有相同的生日。

这是因为一年有365天,而学生的数量只有31个,必然会有至少两个学生生日在同一天。

除了生日问题,抽屉原理还可以应用在许多其它实际问题中。

比如在一副扑克牌中,如果抽出了5张牌,那么根据抽屉原理,至少会有一种花色的牌有两张或以上。

这是因为一副扑克牌只有4种花色,而抽出的牌有5张,必然会有至少一种花色的牌有两张或以上。

在小学奥数中,抽屉原理可以帮助学生更好地理解和解决一些问题。

通过抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力。

同时,抽屉原理也可以帮助学生更好地理解数学知识,为他们打下坚实的数学基础。

总之,抽屉原理是小学奥数中非常重要的一个概念,它不仅能够帮助学生更好地理解数学知识,还能够在解决实际问题时发挥重要作用。

通过学习抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力,为将来的学习打下坚实的基础。

希望学生们能够认真学习抽屉原理,将其运用到实际生活中,发挥出更大的作用。

小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。

它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。

它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。

例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。

一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。

如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。

点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。

点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。

解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。

解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。

(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。

奥数-18抽屉原理+答案

奥数-18抽屉原理+答案
解析:每个人最少交一个朋友,最多可以交 19 个朋友,20 大于 19,所以至少有 两名游客,他们的朋友人数一样多。 练习一 1. 把 9 条金鱼任意放在 8 个鱼缸里面,至少有一个鱼缸放有两条或两条以上金鱼,
请你说明理由。
2. 一个旅行团在北京游玩 5 天,他们想去 6 个景点游玩,导游说你们至少有一天游 玩两个景点,请你说明理由。
二、 解题方法
抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣 的问题,许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使 问题得到解决。
1. 公式 苹果÷抽屉=商……余数 余数:① 余数=0,结论:至少有“商”个苹果在同一个抽屉里。 ② 余数>0,结论:至少有(商+1)个苹果在同一个抽屉里。
抽屉原理
一、 抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,至少有一个抽 屉里面至少放两个苹果。如果把 n+1 个物体放到 n 个抽屉中,那么至少有一个抽屉 中放着 2 个或更多的物体,我们称这种现象为抽屉原理。
抽屉原理可以推广为:如果有 m 个抽屉,有 k×m+r(0<r≤m)个元素那么至 少有一个抽屉中要放(k+1)个或更多的元素。通俗地说,如果元素的个数是抽屉个 数的 k 倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。
6. 四个连续的自然数分别被 3 除后,必有两个余数相同,请说明理由。
2
【例3】 一养鸽户有 10 只鸽笼,每天鸽子回家他都要数一数,并作记录。他发现 每天都会出现 3 只鸽子住同一个鸽笼,请问:他至少养了几只鸽子?
解析:本题需要求“苹果”的数量,需要反用抽屉原理,并结合最“坏”情况。 最坏的情况是每个笼子都有 2 只鸽子,出现 3 只鸽子住同一个鸽笼,是因为比这些 鸽子还至少多 1 只鸽子,所以至少需要养 21 只鸽子。

小学奥数:数学运算之抽屉原理讲解

小学奥数:数学运算之抽屉原理讲解

小学奥数:数学运算之抽屉原理讲解(一)大体概念(1)将多于n件物品任意放到n个抽屉里,那么中欧少有一个抽屉中的物品件数很多于2个。

(2)将多于m*n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数很多于m+1.抽屉原明白得题的关键是营造“最不利情形”。

(二)例题与解析1、在一个口袋里有10个黑球,6个白球,4个红球,至少掏出几个球才能保证其中有白球?()A 14B 15C 17 D18解析:最不利的情形是:前面取球的时候都没有白球。

也确实是将问题转化成为“最多取多少个球仍能知足其中没有白球”。

很显然,前面最多能够取10个黑球+4个红球=14个球。

然后第15个球就必然能取到白球。

因此选B.2、有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒?()A 3B 4C 5D 6解析:营造最不利情形:前面取的珠子都没有相同颜色的。

直到取到相同颜色的为止。

也确实是把问题转化为:最多摸出几粒,仍能知足“最多1粒颜色相同”不难看出,摸出红、黄、蓝、白珠子各一粒以后,再摸一粒,就有重色了。

因此,选C.3、一个袋内有100个球,其中有红球28个,绿球20个,黄球12个,蓝球20个,白球10个,黑球10个,此刻从袋中任意摸球出来,若是要使摸出的球中,至少有15个球的颜色相同,问至少要摸出几个球才能保证知足上述要求?()A 78B 77C 75D 68解析:最不利条件:前面取的球都没有达到15个球颜色相同的状况。

也确实是:黄球,白球,黑球全数都取完了(这些同颜色的都在15个球以下,全数取完也可不能有15个球颜色相同),一共是12+10+10=32个球然后红球,绿球,蓝球各取14个。

14*3=42个。

仍然没有15个球颜色相同。

然后再取任意一个球,就能够达到至少有15个球的颜色相同了因此一共有32+42+1=75个球。

选C4、从一副完整的扑克牌中,至少抽出多少张牌,才能保证至少有6张牌的花色相同。

小学奥数--抽屉原理

小学奥数--抽屉原理

⼩学奥数--抽屉原理⼩学奥数--抽屉原理抽屉原理(⼀)解题要点:要从最不利情况考虑,准确地建⽴抽屉和确定元素的总个数(如果将5个苹果放到3个抽屉中去,那么不管怎么放,⾄少有⼀个抽屉中放的苹果不少于2个。

道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相⽭盾,因此⾄少有⼀个抽屉中放的苹果不少于2个。

同样,有5只鸽⼦飞进4个鸽笼⾥,那么⼀定有⼀个鸽笼⾄少飞进了2只鸽⼦。

以上两个简单的例⼦所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。

抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么⾄少有⼀个抽屉中的物品不少于2件。

说明这个原理是不难的。

假定这n个抽屉中,每⼀个抽屉内的物品都不到2件,那么每⼀个抽屉中的物品或者是⼀件,或者没有。

这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相⽭盾,所以前⾯假定“这n 个抽屉中,每⼀个抽屉内的物品都不到2件”不能成⽴,从⽽抽屉原理1成⽴。

从最不利原则也可以说明抽屉原理1。

为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放⼊1件物品,共放⼊n 件物品,此时再放⼊1件物品,⽆论放⼊哪个抽屉,都⾄少有1个抽屉不少于2件物品。

这就说明了抽屉原理1。

例1 某幼⼉园有367名1996年出⽣的⼩朋友,是否有⽣⽇相同的⼩朋友,分析与解:1996年是闰年,这年应有366天。

把366天看作366个抽屉,将367名⼩朋友看作367个物品。

这样,把367个物品放进366个抽屉⾥,⾄少有⼀个抽屉⾥不⽌放⼀个物品。

因此⾄少有2名⼩朋友的⽣⽇相同。

例2在任意的四个⾃然数中,是否其中必有两个数,它们的差能被3整除, 分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。

我们将余数的这三种情形看成是三个“抽屉”。

⼀个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”⾥。

五年级奥数第12讲:抽屉原理-课件

五年级奥数第12讲:抽屉原理-课件

例题二
芭啦啦综合教育学校五年级有32名同学是在五月份出生 的,那么,其中至少有几名同学的生日在同一天?
抽屉原理1:将多 于n件的物品任意 放到n个抽屉里, 那么至少有一个 抽屉里的物品不 少于2件。
31天
32÷31=1(名)……1 (名) 1+1=2(名)
答:至少有2名同学的生日在同一天。
练习二
答:如果每个抽屉里都放一个苹果,那么6 个抽屉就有6个苹果,实际上有7个苹果, 说明至少有一个抽屉里至少有2个苹果。
练习一
5只鸽子飞进4个鸽笼,那么一定有一个鸽笼里至少飞进 2只鸽子,为什么?
5÷4=1(只)……1(只)
答:每个鸽笼里飞进一只鸽子,4个鸽笼就有4只鸽子, 实际上有5只鸽子,说明至少有1个鸽笼里至少飞 进2只。
共9种
1个足球1个排球、1个足球1个篮球、1个排球1个篮球
66÷9=7(名)……3(名) 7+1=8(名)
答:至少有8名同学所拿的球种类是完全相同的。
练习五(选做)
芭啦啦综合教育学校组织夏令营活动,游览北京颐和园、 故宫和长城三个景点,共有200名同学参加。规定每人至少去 1处,至多去2处,那么至少有几人游览的地方完全相同?




我们,还在路上……
某兴趣小组有13名同学,其中至少有几名同学是同一个 星座的?
12个
13÷12=1(名)……1 (名) 1+1=2(名)
答:至少有2名同学是同一星座的。
小结
抽屉原理1:将多于n件的物品任意放到n个 抽屉里,那么至少有一个抽屉里的物品不少于 2件。
例题三
有红、黄、蓝、白四色小球各10个,混合放在一个暗盒 里,从中摸球,一次至少摸出几个,才能保证有3个小球是同 色的?

六年级奥数思维训练专题9 抽屉原理

六年级奥数思维训练专题9  抽屉原理

第九讲抽屉原理一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把 n+1 或多于 n+1 个苹果放到 n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1,结论:至少有(商+1)个苹果在同一个抽屉里(2)余数= x 1<x <(n-1),结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0,结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法1【例题一】某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?【拓展训练】某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天?【例题二】六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86分以上后就说:“我可以断定,本班至少有4人成绩相同”。

王老师说的对吗?为什么【拓展训练】一次中环杯比赛,满分为100 分,参赛学生中,最高分为83分,最低分为30分(所有的分数都是整数),一共有8000个学生参加,那么至少有几个学生的分数相同。

【例题三】某班共有46名学生,他们都参加了课外兴趣小组。

小学奥数抽屉原理题型及答案解析

小学奥数抽屉原理题型及答案解析

小学奥数抽屉原理题型及答案解析一、抽屉原理解释抽屉原理,也被称为鸽巢原理,是组合数学中的一个重要原理。

这个原理的基本含义是:如果n+1个物体被放到n个抽屉里,那么至少有一个抽屉中会放有2个或更多的物体。

这个原理可以用来解决很多看似复杂的问题。

原理解释:假设有3个抽屉和4个苹果,我们要把这4个苹果放进3个抽屉里。

无论我们怎么放,总会有至少一个抽屉里放了2个或更多的苹果。

这是因为每个抽屉最多只能放1个苹果的话,3个抽屉只能放3个苹果,但我们有4个苹果,所以至少有一个抽屉里会有2个苹果。

同样的,如果有n个抽屉和n+1个物体,无论我们怎么分配这些物体到抽屉里,至少会有一个抽屉里会有2个或更多的物体。

二、抽屉原理应用举例属相问题:中国有12个属相,如果问任意37个人中,至少有几个人属相相同?我们可以把12个属相看作12个抽屉,37个人看作37个物体。

根据抽屉原理,至少有一个抽屉里有4个或更多的物体,也就是说,至少有4个人的属相是相同的。

自然数问题:在任意的100个自然数中,是否可以找到一些数(可以是一个数),它们的和能被100整除?这个问题也可以通过抽屉原理来解决。

如果我们把这100个自然数对100取余,那么余数只能是0到99之间的数,也就是有100个“抽屉”。

根据抽屉原理,至少有一个“抽屉”里有多于一个的数,这两个数的差就是100的倍数,因此它们的和也能被100整除。

三、抽屉原理解题思路和方法首先,需要理解抽屉原理的基本含义,即如果把n+1个物体放在n个抽屉里,那么至少有一个抽屉中至少放有2个物体。

这是解题的基础。

其次,在解题过程中,需要找出隐藏的抽屉数和物体数,并将问题转化为抽屉问题。

这通常需要对问题进行仔细分析,找出其中的规律和特点。

接下来,可以利用平均分的方法来确定每个抽屉中的物体数。

如果物体数不能被抽屉数整除,那么至少有一个抽屉中的物体数会多于平均值。

这有助于确定至少有多少个物体是相同或满足某种条件的。

四年级奥数抽屉原理

四年级奥数抽屉原理

四年级奥数抽屉原理抽屉原理一、知识点介绍抽屉原理,又称鸽笼原理或XXX原则,是德国数学家XXX首先提出的数学原理,用于解决组合数学中的问题。

该原理可以解决许多看似复杂的问题,常常能够起到令人惊奇的作用。

二、抽屉原理的定义1)举例如果将十个苹果放到九个抽屉里,无论怎样放,必定会有至少一个抽屉里面至少放两个苹果。

这种现象被称为抽屉原理,也被称为鸽巢原理。

2)定义将n+1或多于n+1个物品放到n个抽屉里,其中必定至少有一个抽屉里至少有两个物品。

三、抽屉原理的解题方案一)利用公式进行解题将物品数量除以抽屉数量,得到商和余数。

余数为1时,至少有(商+1)个物品在同一个抽屉里;余数为x时,至少有(商+1)个物品在同一个抽屉里;余数为0时,至少有“商”个物品在同一个抽屉里。

二)利用最值原理解题通过极限讨论,将复杂的问题变得简单,利用特殊值方法解决问题。

四、应用抽屉原理解题的具体步骤第一步:分析题意,确定“物品”和“抽屉”。

第二步:构造抽屉,根据题目结论和数学知识,设计和确定解决问题所需的“物品”及其数量。

第三步:运用抽屉原理,结合题设条件,恰当运用原理或综合多个原理,解决问题。

例题精讲例1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子。

解析】将6只鸽子放入5个笼子,至少有一个笼子里有2只鸽子。

因为6只鸽子减去5个笼子最多只能放1只鸽子,所以必定有一个笼子里有2只鸽子。

巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业。

这5名学生中,至少有两个人在做同一科作业。

解析】将5名学生分配到4个科目的作业中,至少有两个人在做同一科作业。

因为5名学生减去4个科目最多只能有1个人没有做作业,所以必定有两个人在做同一科作业。

例2】XXX有730个学生,至少有几个学生的生日是同一天?解析】将730个学生的生日分配到365个天数中,至少有两个学生的生日是同一天。

因为730减去365最多只能有365个不同的生日,所以必定有两个学生的生日是同一天。

小学抽屉原理公式

小学抽屉原理公式

小学奥数抽屉原理公式及经典例题解答分析第一抽屉原理原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。

原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。

证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。

原理1 、2 、3都是第一抽屉原理的表述。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

第二抽屉原理把(mn——1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。

例:①k=[n/m]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

抽屉原理经典例题:1、30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,那么男生至少有______人。

答案:30-(10-1)=30-9,=21(人)。

答:男生至少有21人。

2、一副扑克牌有54张,至少抽取______张扑克牌,方能使其中至少有两张牌有相同的点数。

(大小鬼不相同)答案:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数。

小学六年级奥数-抽屉原理(含答案)

小学六年级奥数-抽屉原理(含答案)

抽屉原理学问要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必定有一个抽屉中至少有2个苹果。

它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

(2)若把3个苹果放入4个抽屉中,则必定有一个抽屉空着。

它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。

例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后反面朝上放。

一次至少抽取张牌,才能保证其中必定有2张牌的点数与颜色都一样。

假如要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。

点拨对于第一问,最不利的状况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都一样。

点拨对于第二问,最不利的状况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。

解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相一样;(2)要保证有5人属相一样,但不保证有6人属相一样,那么人的总数应在什么范围内?点拨可以把12个属相看做12个抽屉,依据第一抽屉原理即可解决。

解(1)因为37÷12=3……1,所以,依据第一抽屉原理,至少有3+1=4(人)属相一样。

(2)要保证有5人的属相一样的最少人数为4×12+1=49(人)不保证有6人属相一样的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。

例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色一样?(2)四种花色都有?点拨首先我们要弄清晰一副扑克牌有2张王牌,四种花色,每种有13张。

小学奥数:抽屉原理

小学奥数:抽屉原理

抽屉原理一、用“数的分组法”构造抽屉例1:从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定有:(1)2个数互质;(2)2个数的差为50;(3)8个数,它们的最大公约数大于1。

随堂练习1:从1,2,3,…,49,50这,50个数中,取出若干个数使其中任意两个数的和都不能被7整除,最多可取个数。

例2:问在1,3,5,7,…,97,99这50个奇数中,最多能取出多少个数,使其中任何一个数都不是另一个数的倍数。

随堂练习2:从1,2,3,4,…,1988,1989这些自然数中,最多可以取个数,其中每两个数的差不等于4。

二、用“图形分割法”构造抽屉例3:在一个边长为1的正方形内(含边界),任意给定9个点(其中没有三点共线),证明:在以这些点为顶点的各个三角形中,必有一个三角形,它的面积不大于18。

随堂练习3:在一个边长为1的等边三角形内随意放置10个点。

试说明:至少有两个点之间的距离不超过13。

三、用“染色法”分类例4:如图是一个3行10列共30个小正方形的长方形,现在把每个小方格涂上随堂练习4:给出一个3行9列共27个小方格的长方形,将每个小方格随意涂四、用“剩下类法”构造抽屉例5:一副扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?例6:将全体自然数按照它们的个位数字,分为10类:个位数字是1的为第1类,个位数字为2的为第2类……个位数字为9的为第9类,个位数字为0的为第10类。

(1)任意取出6个互不同类的自然数,其中一定有2个数的和是10的倍数吗?(2)任意取出7个互不同类的自然数,其中一定有2个数的和是10的倍数吗?如果一定,请简要说明理由;如果不一定请举出一个反例。

随堂练习5:现有64个乒乓球,18个乒乓球盒,每个盒子最多可以放6个乒乓球,如果把这些球全部装入盒内,不许有空盒。

那么,至少有个乒乓球盒里的乒乓球数目相同。

五年级奥数:抽屉原理

五年级奥数:抽屉原理

抽屉原理【鸽巢原理】抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。

”原理1 :把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

原理2:把多于m×n个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1 个的物体。

常用计算公式:A、计算其中一个抽屉至少有几个元素= 总数÷抽屉数+ 1B、计算总数= (其中一个抽屉至少有几个元素- 1)×抽屉数+ 1例1:400人中至少有两个人的生日相同抽屉:366(一年算366天),苹果:400,400 ÷366=1……1+1=2例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同抽屉:6(有6种选玩具的方法),7÷6=1……1+1=2练习:1、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?【4】2、一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?【16】3、11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。

试证明:必有两个学生所借的书的类型相同。

4、有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。

5、体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?【6】6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人数为多少人。

高斯小学奥数六年级下册含答案第05讲抽屉原理

高斯小学奥数六年级下册含答案第05讲抽屉原理

第五讲抽屉原理二本讲学问点汇总:一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉〔最不利〕的状况下,如何能到达目标.二、抽屉原理:形式1:把n +1个苹果放到n 个抽屉中,确定有2 个苹果放在一个抽屉里;形式2:把m⨯n +1 个苹果放到n 个抽屉中,确定有m +1个苹果放在一个抽屉里.例1.中国奥运代表团的173 名运发动到超市买饮料,超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全一样?「分析」此题的“抽屉”是饮料的选法,“苹果”是173名运发动.练习1、中国奥运代表团的83 名运发动到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全一样?例2.国庆嘉年华共有5 项游艺活动,每个学生至多参与2 项,至少参与1 项.那么至少有多少个学生,才能保证至少有4 个人参与的活动完全一样?「分析」此题的“抽屉”是参与活动的方法.练习2、高思运动会共有4 个工程,每个学生至多参与3 项,至少参与1 项.那么至少有多少个学生,才能保证至少有5 个人参与的活动完全一样?例3.从1 到50 这50 个自然数中,至少选出多少个数,才能保证其中确定有两个数的和是50「分析」思考一下:哪两个数的和是50?练习3、从1 到35 这35 个自然数中,至少选出多少个数才能保证其中确定有两个数的和为34?例4.从1 到100 这100 个自然数中,至少选出多少个数才能保证其中确定有两个数的和是7 的倍数?假设要保证是6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪?练习4、从1 至99 这99 个自然数中任意取出一些数,要保证其中确定有两个数的和是5 的倍数,至少要取多少个?例5.至少取出多少个正整数,才能保证其中确定有两个整数的和或差是100 的倍数?「分析」从余数角度思考一下:什么样的两个数的和或差是100?例6.在边长为 2 的正六边形中,放入50 个点,任意三点不共线,请证明:确定能从中选出三个点,以它们为顶点的三角形面积不大于1.「分析」通过把正六边形均分,来构造“抽屉”.四大制造之印刷术印刷术是中国古代的四大制造之一,是中国古代汉族劳动人民经过长期实践和争论才制造的.活字印刷的方法是先制成单字的阳文反文字模,然后依据稿件把单字排列在字盘内涂墨印刷.自从汉朝制造纸以后,书写材料比起过去用的甲骨、简牍、金石和缣帛要轻松、经济多了,但是抄写书籍还是格外费工的,远远不能适应社会的需要.至迟到东汉末年的熹平年间〔公元172~178年〕,消灭了摹印和拓印石碑的方法.大约在公元600年前后的隋朝,人们从刻印章中得到启发,在人类历史上最早制造了雕版印刷术.雕版印刷是在确定厚度的平滑的木板上,粘贴上抄写工整的书稿,薄而近乎透亮的稿纸正面和木板相贴,字就成了反体,笔划清楚可辨.雕刻工人用刻刀把版面没有字迹的局部削去,就成了字体凸出的阳文,和字体凹入的碑石阴文截然不同.印刷的时候,在凸起的字体上涂上墨汁,然后把纸覆在它的上面,轻轻拂拭纸背,字迹就留在纸上了.到了宋朝,雕版印刷事业进展到全盛时期.雕版印刷对文化的传播起了重大作用,但是也存在明显缺点:第一,刻版费时费工费料;其次,大批书版存放不便;第三,有错字不简洁更正.北宋平民制造家毕昇总结了历代雕版印刷的丰富的实践阅历,经过反复试验,在宋仁宗庆历年间〔公元1041~1048〕制成了胶泥活字,实行排版印刷,完成了印刷史上一项重大的革命.毕昇的方法是这样的:用胶泥做成一个个规格全都的毛坯,在一端刻上反体单字,字划突起的高度象铜钱边缘的厚度一样,用火烧硬,成为单个的胶泥活字.为了适应排版的需要,一般常用字都备有几个甚至几十个,以备同一版内重复的时候使用.遇到不常用的冷僻字,假设事前没有预备,可以随制随用.为便于拣字,把胶泥活字按韵分类放在木格子里,贴上纸条标明.排字的时候,用一块带框的铁板作底托,上面敷一层用松脂、蜡和纸灰混合制成的药剂,然后把需要的胶泥活字拣出来一个个排进框内.排满一框就成为一版,再用火烘烤,等药剂略微熔化,用一块平板把字面压平,药剂冷却凝固后,就成为版型.印刷的时候,只要在版型上刷上墨,覆上纸,加确定的压力就行了.为了可以连续印刷,就用两块铁板,一版加刷,另一版排字,两版交替使用.印完以后,用火把药剂烤化,用手轻轻一抖,活字就可以从铁板上脱落下来,再按韵放回原来木格里,以备下次再用.毕昇还试验过木活字印刷,由于木料纹理疏密不匀,刻制困难,木活字沾水后变形,以及和药剂粘在一起不简洁分开等缘由,所以毕昇没有承受.毕昇的胶泥活字版印书方法,假设只印二三本,不算省事,假设印成百上千份,工作效率就极其可观了,不仅能够节约大量的人力物力,而且可以大大提高印刷的速度和质量,比雕版印刷要优越得多.现代的凸版铅印,虽然在设备和技术条件上是宋朝毕昇的活字印刷术所无法比较的,但是根本原理和方法是完全一样的.活字印刷术的制造,为人类文化做出了重大奉献.这中间,中国的平民制造家毕昇的功绩是不行磨灭的.可是关于毕昇的生平事迹,我们却一无所知,幸亏毕昇制造活字印刷术的事迹,比较完整地记录在北宋著名科学家沈括的名著《梦溪笔谈》里.但是除开西夏文字的几本推想为活字印刷的佛经外,中原地区无觉察活字印刷的中文印刷品!作业1.〔1〕一个班有37 个人,那么至少有多少人是同一星座的?〔2〕一副扑克牌,共54 张,那么至少从中摸出多少张牌,才能保证至少有6 张牌的花色一样?2.动物王国进展运动会,共有101 位运发动,有短跑、跳高、跳远、10 米跳台、3 米跳板五个工程,每位运发动最多项选择三个工程,最少选一个工程.那么至少有多少位运发动所选的工程都一样?3. 1 至70 这70 个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?4. 1 至40 这40 个自然数中,最多可以取出多少个数,使得其中每两个数的和都不是4 的倍数?5.在半径为1 的圆内,画13 个点,其中任意3 点不共线.请证明:确定存在3 个点,以它们为顶点的三角形面积小于.6第五讲抽屉原理二例7.答案:12.解答:共有C2 =15 种不同的选择方式,而173 ÷15 =11L 8 ,所以至少有12 个人买的饮料完全一样.6例8.答案:46.解答:共有C2 +C1 =15 种参与方法,所以至少15⨯3 +1 =46 人.5 5例9.答案:27.解答:可构造出26个组数:〔1,49〕、〔2,48〕、…、〔24,26〕、〔25〕、〔50〕.所以至少要取27个数才能保证取到一组和为50 的数.例10.答案:46,37.解答:由题意可知,假设取出的数没有两个数的和是7 的倍数,则:除以7 余1 的数与除以7 余6 的数不能共存,除以7 余2 的数与除以7 余5 的数不能共存,除以7 余3 的数与除以7 余4 的数不能共存.而除以7 余0 的数只能取1 个,且100 =14⨯7L 2 ,所以最不利的状况是取尽余1、余2、余3 和一个余0 的数,共45 个数,所以至少选出46 个数才可满足要求.同理至少选出37 个数才能保证是6 的倍数.〔留意此时除以6余3和余0的数都只能选1个〕例11.答案:52.解答:可构造出51个组数:〔1,8〕、〔2,9〕…〔7,14〕;〔15,22〕、〔16,23〕…〔21,28〕;……〔85,92〕、〔86,93〕…〔91,98〕;〔99〕、〔100〕.每组数中的两数的差为7.只取出每个数组中较小的数明显不能满足要求,所以至少要取出52 个数,这时由抽屉原理知必定能取到某一个数组的两个数.例12.解答:先将正六边形分割成6 个边长为2 的正三角形,再将每个三角形等分成4 个边长为1 的正三角形,这样就把正六边形分割成24 个边长为1 的正三角形,则由抽屉原理知,必有3 点在一个等边三角形中,以它们为顶点的三角形面积明显不大于1.〔边长是1的等边三角形面积小于1〕练习1、答案:14.简答:共有C 2=6 种不同的选择方式,而83 =6 ⨯13 +5 ,所以至少有14个人买的饮料完全一样.4练习2、答案:57.简答:共有C3+C 2+C1=14 种参与方法,所以至少14 ⨯4 +1 =57 人.4 4 4练习3、答案:20.简答:可构造出19个组数:〔1,33〕、〔2,32〕、…、〔16,18〕、〔17〕、〔34〕、〔35〕.所以至少要取20 个数才能保证取到一组和为34 的数.练习4、答案:42.简答:1~99 这99 个数中除以5 余1 的有20 个,余2 的有20 个,余3 的有20 个,余4 的有20 个,余0 的有19 个,选出余 1 和余 2 的数,再选一个余0 的数,再任选一个数确定符合题意,20 +20 +1+1 =42 个.作业6. 答案:〔1〕4 个;〔2〕23 张.简答:〔1〕抽屉原理;〔2〕最不利原则.7. 答案:5 位.简答:首先运发动的工程有C1 +C 2+C3 = 25 种可能,依据抽屉原理,至少有5 位运发动的工程一样.5 5 58. 答案:36 个.简答:每12 个数中最多取出6 个.9. 答案:12 个.简答:将1~40 依据除以4 的余数分为四组:A 组:{1,5,…,37};B 组:{2,6,…,38};C 组:{3,7,…,39};D 组:{4,8,…,40}.首先,B、D 组最多取一个.取了A 组就不能取C 组.所以最多能取12 个.10. 证明:将半径为1 的圆六等分,分为六个扇形,每个扇形的面积是π6.依据抽屉原理,至少有三个点在同一局部中,这三个点组成的三角形不会大于所在的扇形,即π.6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽屉原理
一、用“数的分组法”构造抽屉
例1:从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定有:(1)2个数互质;(2)2个数的差为50;(3)8个数,它们的最大公约数大于1。

随堂练习1:从1,2,3,…,49,50这,50个数中,取出若干个数使其中任意两个数的和都不能被7整除,最多可取个数。

例2:问在1,3,5,7,…,97,99这50个奇数中,最多能取出多少个数,使其中任何一个数都不是另一个数的倍数。

随堂练习2:从1,2,3,4,…,1988,1989这些自然数中,最多可以取个数,其中每两个数的差不等于4。

二、用“图形分割法”构造抽屉
例3:在一个边长为1的正方形内(含边界),任意给定9个点(其中没有三点共线),证明:在以这些点为顶点的各个三角形中,必有一个三角形,它的面积。

不大于1
8
随堂练习3:在一个边长为1的等边三角形内随意放置10个点。

试说明:至少。

有两个点之间的距离不超过1
3
三、用“染色法”分类
例4:如图是一个3行10列共30个小正方形的长方形,现在把每个小方格涂上红色或黄色,请证明无论怎么涂法一定能找到两列,它们的涂色方式完全相同。

随堂练习4:给出一个3行9列共27个小方格的长方形,将每个小方格随意涂上白色或红色。

求证:无论如何涂色,其中至少有两列涂色方式相同。

四、用“剩下类法”构造抽屉
例5:一副扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?
例6:将全体自然数按照它们的个位数字,分为10类:个位数字是1的为第1类,个位数字为2的为第2类……个位数字为9的为第9类,个位数字为0的为第10类。

(1)任意取出6个互不同类的自然数,其中一定有2个数的和是10的倍数吗?(2)任意取出7个互不同类的自然数,其中一定有2个数的和是10的倍数吗?如果一定,请简要说明理由;如果不一定请举出一个反例。

随堂练习5:现有64个乒乓球,18个乒乓球盒,每个盒子最多可以放6个乒乓球,如果把这些球全部装入盒内,不许有空盒。

那么,至少有个乒乓球盒里的乒乓球数目相同。

相关文档
最新文档