材料合成与制备—韩惠敏版

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、共沉淀法

沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合液中加人适当的沉淀剂制备前驱体沉淀物,再将沉淀物进行干燥或锻烧,从而制得相应的粉体颗粒。

共沉淀法是指在溶液中含有两种或多种阳离子,它们以均相存在于溶液中,加入沉淀剂,经沉淀反应后,可得到各种成分的均一的沉淀,它是制备含有两种或两种以上金属元素的复合氧化物超细粉体的重要方法。

2、水热合成法

水热与溶剂热合成:在一定温度(100~1000℃)和压力(1~100MPa)条件下,利用溶液中物质化学反应所进行的合成。

水热合成:在水体系中进行。即在一定温度(100~1000℃)和压力(1~100MPa)条件下,利用水溶液中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反

应处于分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。又

由于水热反应的均相成核及非均相成核机理与固相反应的扩散机制不同,

因而可以创造出其它方法无法制备的新化合物和新材料。它的优点:所的

产物纯度高,分散性好、粒度易控制。

3、化学气相沉积(CVD)

气相沉积:利用气态或蒸气态的物质在气相或气固界面上反应生成固态沉积物的一类技术化学气相沉积:热CVD,等离子体CVD,激光CVD

一种或数种反应气体在热、激光、等离子体等作用下发生化学反应析出超微粉的方法,称作化学气相沉积法(是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程)。

4、Ostwald Ripening

Ostwald ripening是一种材料生长的机理,简单点说就是材料从分子阶段开始,首先形成一定尺寸的晶核,然后所有的分子都依附于晶核生长,这个阶段不会再形成新的晶核了,只是晶核生长的越来越大。最经典的一种,就是“从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶”。

5、Oriented attachment ripening

多个取向不一致的单晶纳米颗粒,通过粒子的旋转,使得晶格取向一致,然后通过定向附着生长(oreinted attachment)使这些小单晶生长成为一个大单晶。(Banfiled又提出了一种新的晶体生长机制也能形成单晶结构,oriented ttachment, 多个取向不一致的单晶纳米颗,通过粒子的旋转,使得晶格取向一致,向后通过定向附着生长(oreinted attachment)使这些小单晶生长成为一个大单晶,当然定向附着的过程出难免会出现一些位错和缺陷,这种生长机理形成的单晶的特点同Ostwald ripening不同,OR形成的单晶大多是规则的,给材料本身晶体结构相关,而OA形成的单晶结构在形貌上则没有限制,任何形状和结构的单晶材料都能通过此机理形成)

6、介电常数

介电常数 :描述分子被电场极化的能力,也可以认为是样品阻止微波能通过能力的量度(或介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一

个系数,以字母ε表示,单位为法/米(F/m) 定义为电位移D和电场强度E

之比,ε=D/Ε)。

7、烧结

烧结末或压坯粉在低于主要组分熔点温度下加热,使颗粒间产生连接,以提高制品性能的方法。

宏观定义:在高温下(低于熔点),陶瓷生坯固体颗粒的相互键联,晶粒长大,空隙(气孔)和晶界渐趋减少,通过物质的传递,其总体积收缩,密度增加,最

后成为具有某种显微结构的致密多晶烧结体,这种现象称为烧结。

微观定义:固态中分子(或原子)间存在互相吸引,通过加热使质点获得足够的能量进行迁移,使粉末体产生颗粒黏结,产生强度并导致致密化和再结晶的过

程称为烧结。

粉体材料成型后,用热、微波等方式将其烧结成固体材料。对陶瓷生坯进行高温焙烧,使之发生质变成为陶瓷产品的过程,也称烧结。目的是去除坯体内所含溶剂、粘结剂、增塑剂等,并减少坯体中的气孔,增强颗粒间的结合强度。

8、物理气相沉积

物理气相沉积(Physical Vapor Deposition ,简称PVD):物理气相沉积是通过蒸发,电离或溅射等过程,产生金属粒子并与反应气体反应形成化合物沉积在工件表面。物理气相沉积方法有真空镀,真空溅射和离子镀三种,目前应用较广的是离子镀。如真空蒸发法、溅射法、离子镀等

“物理气相沉积” 通常指满足下面三个步骤的一类薄膜生长技术:

1.所生长的材料以物理的方式由固体转化为气体

2.生长材料的蒸汽经过一个低压区域到达衬底

3.蒸汽在衬底表明上凝结,形成薄膜

9、真空

“真空”是指在指定的空间内压力低于101325Pa的气体状态

“真空度”用来表示真空状态下气体的稀薄程度,通常用压力表示。

10、Langmuir-Blodgett制膜法

LB法建立的一种单分子膜制备技术:在水-气界面上将不溶解的成膜材料分子加以紧密有序排列,形成单分子膜,然后再转移到固体衬底上的制膜技术。

11、功能材料

功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。

12、材料的纳米效应

纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点。其特有的效应:表面与界面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应。

(1)小尺寸效应:由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。在熔点,磁

相关文档
最新文档