七年级数学_第四章《图形的初步认识》期末复习教案_人教新课标版
人教版-数学-七年级上册-第四章 图形认识初步 期末复习课学案
第四章图形认识初步一、知识梳理立体图形与平面图形的互相转化,及一些重要的概念、性质等是本章的重点。
建立和发展空间观念是空间与图形学习的核心目标之一,能由实物形状想象出几何图形,由几何图形想象出实物形状,进行几何体与其三视图、展开图之间的相互转化是培养空间观念的重要方面。
另外,对图形的表示方法,对几何语言的认识与运用,都要有一个熟悉的过程。
等等这些,对于今后的学习都很重要,同时也是本章的难点。
三、知识要点:本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。
通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。
在此基础上,认识一些简单的平面图形——直线、射线、线段和角。
1.多姿多彩的图形:通过多姿多彩的图形引入几何图形,使我们认识立体图形、平面图形,通过三视图我们可以把立体图形转化为平面图形来研究和处理,也可以把立体图形展开为平面图形;几何体也简称为体,包围体的是面,面面相交为线,线线相交为点;点动成线,线动成面,面动成体,几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。
如广场礼花在夜空中留下的图形,你是否看到了点动成线?在电视中看到收割机在麦田中收割小麦,你是否看到了线动成面?2.直线、射线、线段的区别与联系:从图形上看,直线、射线可以看做是线段向两边或一边无限延伸得到的,或者也可以看做射线、线段是直线的一部分;线段有两个端点,射线有一个端点,直线没有端点;线段可以度量,直线、射线不能度量。
3.直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;两点的所有连线中,线段最短;简单说:两点之间,线段最短。
4.线段中点:把一条线段分成两条相等的线段的点叫线段中点,如图:若点C是线段AB的中点,则有(1)AC=BC=21AB或(2)AB=2AC=2BC,反之,若有(1)式或(2)式成立,亦能说明点C是线段AB的中点。
人教版七年级数学上册总复习说课稿:第四章《图形初步认识》
3.实践活动:组织学生进行图形变换的实践操作,如利用剪纸、画图等方式,亲身体验图形变换的魅力;
4.生活应用:鼓励学生从生活中寻找图形变换的例子,将所学知识应用到实际情境中。
(四)总结反馈
在总结反馈阶段,我将采取以下方式引导学生自我评价,并提供有效的反馈和建议:
(二)媒体资源
在教学过程中,我将使用以下教具和多媒体资源:
1.教具:图形模型、直尺、量角器等,让学生通过实际操作,加深对图形的认识和变换的理解;
2.多媒体资源:PPT、教学视频、几何画板软件等,通过图文并茂、动画演示等方式,直观展示图形变换过程,帮助学生克服理解难点;
3.技术工具:互动白板、网络资源等,实现师生实时互动,提高课堂趣味性。
3.观察学生的课堂表现,评估参与度和合作能力。
反思和改进措施包括:
1.根据学生的反馈调整教学方法,提高教学内容的趣味性和实用性;
2.对学生的共性问题进行针对性的讲解和辅导;
3.不断更新教学资源,提升自身的教学水平,以更好地满足学生的学习需求。
(三)学习动机
为了激发学生的学习兴趣和动机,我采取以下策略或活动:
1.创设情境:结合生活实例,让学生感受数学在生活中的广泛应用,提高他们的学习兴趣;
2.互动教学:设计小组讨论、问答等环节,鼓励学生积极参与,培养他们的合作交流能力;
3.实践探究:引导学生动手操作,通过实际操作感受图形变换的魅力,提高空间想象能力;
3.创设情境:利用多媒体展示一些美丽的图案,让学生在欣赏的过程中,思考这些图案是如何通过简单的图形变换得到的。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
数学人教版七年级上册第四章 图形认识初步单元复习教案(第一课时)
第四章图形认识初步单元复习教案(第一课时)教学目标:1.知识与技能直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;2.过程与方法经历相关内容的归纳、总结,巩固对图形的直观认识,了解图形的分割和组合,探索学习空间与图形的方法;通过实验、操作,提高对图形的认识和动手能力.3.情感、态度与价值观在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.教学重点:立体图形与平面图形的互相转化,及一些重要的概念、性质等.解决方法:通过观察、测量、折叠、模型制作与团队合作等活动,发展空间观念.教学难点:建立和发展空间观念;对图形的认识与运用.解决办法:通过实践操作;加强对图形的认识与运用.教学方法:引导式.教具准备:投影仪.教学过程设计:例2 如图,从正面看A、B、C、D四个立体图形,分别得到a、b、c、d四个平面图形,把上下两行相对应立体图形与平面图形用线连接起来.作业:1.圆锥是由个面围成,其中个平面,个曲面.2.如图中的几何体有个面,面面相交成线.3.把一块学生用的三角板以一条直角边为轴旋转一周形成的图形是.4.薄薄的硬币在桌面上转动时,看上去像球,这说明了_________.5.六棱柱有个顶点,个面.七棱锥有个顶点,个面.6.圆柱的侧面是,侧面展开图是.7.下列平面图形中不能围成正方体的是()A. B. C. D.8.如图是正方体的平面展开图,每一个面标有一个汉字,与“和”相对的面上的字是()A.构B.建C.郑D.州9、如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的小正方体有()A. 4个B. 5个C. 6 个D. 7个主视图左视图俯视图10、如图,是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最少是________个.州郑谐和建构主视图 左视图 112221111121主视图 俯视图11、用4个棱长为1的正方体搭成一个几何体模型,其主视图与左视图如图所示,则该立方体的俯视图不可能...是: ( )主视图 左视图 A . B . C . D .12、 如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为________个.13、已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为8cm ,俯视图中圆的半径为3cm ,求这个几何体的表面积和体积.(π取3)俯视图:圆左视图:长方形主视图:长方形答案:1、两、一、一;2、3,曲;3. 圆锥;4. 面动成体;5. 12,8,8,8;6. 曲面,长方形;7、A ;8、D ;9、B ;10、9;11、D ;12、7; 13、(1)圆柱 (2)略 (3)表面积2198cm ,体积3216cm。
七年级数学上册 第四章 几何图形初步复习教案 (新版)新人教版
几何图形初步一、教学目标1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识3.掌握本章的全部定理和公理;4.理解本章的数学思想方法;5.了解本章的题目类型.二、教学重点与难点重点:理解本章的知识结构,掌握本章的全部定理和公理;难点:理解本章的数学思想方法;三、教学方法启发式教学,结合多媒体和学案实施教学.四、学法指导引导——活动——讨论五、教学准备教师:多媒体课件、学案等;六、教学过程1、温故知新【多媒体展示】回顾课本,思考以下问题:1.本章学习了哪些内容?2.它们之间的联系是什么?请列出知识结构图.学生独立完成,最后交流知识结构图,点明知识要点和其中联系。
2、问题探究【多媒体展示】问题1:在本章中,从哪些方面反映了立体图形与平面图形的关系?学生小组讨论、交流,得到结论,教师补充:展开图、三视图、运动问题等。
3、典例分析【多媒体展示】例1:在下列图形中(每个小四边形皆为相同的正方形),可以是一个正方体表面展开图的是()例2:如图,从正面看A、B、C、D四个立体图形,可以得到a、b、c、d四个平面图形,把上下两行相对应的立体图形与平面图形用线连接起来.学生自主作答,教师个别提问,检查知识掌握情况。
4、问题探究【多媒体展示】问题2:与以前相比,你对直线、射线、线段和角有什么新的认识?在解决有关线段和角的问题中,常用到哪些数学思想方法?学生小组讨论、交流,得到结论,教师补充:分类讨论,转化等思想.5、典例分析【多媒体展示】例3:点A,B,C 在同一条直线上,AB=3 cm,BC=1 cm.求AC的长.例4:已知∠α和∠β互为补角,并且∠β的一半比∠α小30°,求∠α、∠β.学生自主作答,教师个别提问,检查知识掌握情况。
6、能力拓展【多媒体展示】例:如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN,求∠NEM的度数.学生小组内交流解答过程,教师做好指导工作.7、收获小结:1.本节课学到哪些知识?2.本节课有哪些疑惑?8、布置作业:课本练习题;七、板书设计:几何图形初步1.几何图形:(1)分类:立体图形和平面图形;(2)展开图和三视图;2.直线、射线和线段:(1)表示方法:(2)性质:3.角:(1)定义:(2)表示方法:(3)度量:4.余角和补角:(1)定义;(2)性质;。
人教版数学七年级上册第四章《图形认识初步》复习优秀教学案例
3.在学生解答问题的过程中,给予适当的提示和指导,帮助学生克服困难,引导他们找到解决问题的方法。
(三)小组合作
小组合作是培养学生的合作意识和团队精神的重要途径。在本节课中,我将通过以下方式进行小组合作:
1.将学生分成小组,每组成员共同探究和解决问题;
本节课的教学目标主要包括:一是使学生巩固和加深对平面图形的基本概念、性质和判定方法的理解;二是提高学生的空间想象能力和逻辑思维能力;三是培养学生的创新意识和解决问题的能力。
针对这些目标,我设计了以下教学内容和活动:首先,通过复习平面图形的基本概念,如线段、角、平行线等,帮助学生巩固基础知识;其次,通过讲解和示例,使学生掌握图形的性质和判定方法,如三角形的稳定性、四边形的分类等;然后,通过开展小组合作活动,让学生自主探究和发现图形的性质,培养学生的合作意识和探究能力;最后,通过设计具有挑战性的课后习题,激发学生的思考,提高学生解决问题的能力。
2.设计一些需要团队合作的活动,如一起设计一个图形,并解释其性质和应用;
3.鼓励学生之间相互交流和讨论,培养他们的合作意识和团队精神。
(四)反思与评价
反思与评价是提高学生思维能力和自我认知的重要环节。在本节课中,我将通过以下方式进行反思与评价:
1.在课堂结束前,引导学生对自己的学习进行反思,思考自己在本节课中学到了什么,还有什么需要改进的地方;
(三)情感态度与价值观
在情感态度与价值观方面,本节课的主要目标是使学生能够:
1.培养对数学学科的兴趣和热情,树立自信心;
2.培养良好的学习习惯和团队合作精神;
3.学会欣赏和尊重他人的想法,培养公正客观的评价态度;
4.认识到数学与实际生活的紧密联系,提高学习的积极性。
七年级数学上册第四章几何图形初步章末复习导学案人教版.doc
章末复习一、复习导入1.导入课题:同学们,通过对本章的学习后,你对本章的知识结构和知识要点、知识应用等方面是否有个清醒的认识呢?为了加强同学们对本章的知识的理解和应用,下面我们一起来对本章进行小结复习.2.三维目标:(1)知识与技能①认识一些简单的几何体的平面展开图及会画从不同方向看立体图形的平面图形.②掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法,会进行线段、角的基本运算.(2)过程与方法①通过引导学生共同回顾本章知识点,建立知识间联系.②结合图形,指导学生进行线段与角的计算,形成识图和解题能力.(3)情感态度逐步培养学生读图能力,体会数形结合的数学思想.3.学习重、难点:重点:知识要点及简单应用.难点:运用几何知识进行简单推理和计算.二、分层复习1.复习指导:(1)复习内容:教材第146页至第147页第二行.(2)复习时间:5~8分钟.(3)复习方法:边看书、边回顾、边交流总结归纳,将知识结构和概念性质、解题方法技巧、简单的几何应用,整理记录笔记并相互展示交流.(4)复习参考提纲:①②点、线、面之间有什么联系?直线、线段、射线之间有什么联系和区别?点动成线,线动成面.联系:射线、线段都是直线的一部分,线段是直线的有限部分.区别:直线无端点,长度无限,向两方无限延伸.射线只有一个端点,长度无限,向一方无限延伸.线段有两个端点,长度有限.③线段、角的大小如何度量?角度单位间如何换算?线段的长度用刻度尺来度量,角的大小用量角器度量.1°=60′,1′=60″.④如果∠α与∠β互余,那么∠α+∠β=90°,反过来成立吗?成立⑤如果∠α与∠β互补,那么∠α+∠β=180°,反过来成立吗?成立⑥如图,点M、N分别是AC、BC的中点,AB=10 cm,求MN的长.由题意,MC=12AC,CN=12CB,所以MN=MC+CN=12AC+12CB=12AB=5 cm⑦如图,∠AOB=90°,∠BOC=30°,OM、ON分别平分∠AOB和∠BOC,求∠MON的度数.由题意:∠MOB=12∠AOB,∠BON=12∠BOC,所以∠MON=∠MOB+∠BON=12∠AOB+12∠BOC=60°⑧在本章知识中,直线、线段和角有哪些重要结论?相互交流一下.2.自主复习:学生可参照复习指导进行复习.3.互助复习:(1)师助生:①明了学情:教师深入课堂巡视,了解学生对本章知识的掌握情况,倾听交流学习中的问题以及学生们反馈的疑难信息.②差异指导:教师对学习中的共性问题或突出的个性问题适时点拨引导.(2)生助生:学生进行小组内的交流,疑点在生与生之间交流互助解决.4.强化复习:(1)知识结构.(2)知识要点.(3)重要结论.(4)研究问题的方法.(5)知识运用.1.复习指导:(1)复习内容:典例剖析.(2)复习时间:8分钟.(3)复习方法:按例题的分析引领,积极思考,并予以解答.(4)复习参考提纲:例1:如图,是一个建筑材料从三个不同方向看的图形,根据图中提供的数据(单位:cm),请你求出这个几何体的体积.分析:根据三个不同方向看的图形想象出几何体的形状,再依据它的体积计算方法和图中数据进行计算.这个几何体的体积为2×1×1=2 (cm 3).例2:①如图,已知点C 在线段AB 上,且AC=6 cm ,BC=14 cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度.②在①中,如果AC=a cm ,BC=b cm ,你能猜测出MN 的长度吗?请用一个代数式表述你发现的结果,并说明理由.③如果第①题叙述改为:“已知线段AC=6 cm ,BC=14 cm ,点C 在直线AB 上,点M 、N 分别是AC 、BC 的中点,求MN 的长度.结果会有变化吗?如果有,求出结果.分析:①根据中点的概念易求出MN 的长;②按①中的思路写出含a 、b 的代数式;③分析“点C 在直线AB 上”和“点C 在线段AB 上”的区别,想一想,点C 与点A 、B 的位置关系确定吗?若不确定,该如何考虑解决?③ MN=10 cm ;②2a b +; ③Ⅰ.C 在AB 中间,此时MN=AC+BC2=10 cm;Ⅱ.C 在A 左边,此时MN=2BC AC +=4 cm. 2.自主复习:同学们在复习指导下进行复习,力求独立求解,若有困难,可请教他人或相互协作完成.3.互助复习:(1)师助生:①明了学情:教师深入课堂了解学生的学习进度,遇到的困难和出现的问题,尤其关注例2的第③小题.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流研讨,互帮互学.4.强化复习:(1)各小组展示学习成果,得出例题的规范解答.(2)练习:①一个角的补角与这个角的余角的和比平角少10°,求这个角的度数.②已知∠AOC=86°,∠BOC=42°,射线OD、OE分别是∠AOC、∠BOC的平分线,求∠DOE 的度数.解:①50°;②第一种情况:,∠DOE=64°;第二种情况:,∠DOE=22°三、评价1.学生的自我评价:让各组学生代表交流自己在本节课中如何复习,如何交流探讨,有哪些新收获、新发现和悬而未决的问题.2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的态度,方法和成效进行归纳点评.(2)纸笔评价:课堂检测题.3.教师的自我评价(教学反思):本课时的复习目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合应用数学知识,灵活地分析和解决问题的能力.本章关键是要抓住基本概念,并通过图形将全章知识串联起来,利用知识间的联系加强理解,便于实际应用,提高计算能力.一、基础巩固1.(10分)下列图形不是立体图形的是(C)A.圆柱体B.球C.圆D.三棱锥2.(10分)若∠1=35°12′,∠2=35.1°,∠3=35.2°,则下列结论正确的是(B)A.∠1=∠2B.∠1=∠3C.∠2=∠3D.∠1=∠2=∠33.(10分)下列用几何语言叙述图形的含义正确的有(D)点A在直线l外直线l经过点O 直线a、b交于点O 点A,B,C在直线l上A.1个B.2个C.3个D.4个4.(10分)如图所示,点C是线段AB上的一点,且AC=2BC,下列说法中正确的是(C)A.BC=12AB B.AC=12ABC.BC=13AB D.BC=13AC5.(10分)如图是一个立体图形从下列不同方向看到的平面图形,则这个立体图形是圆锥.A.从正面看B.从左面看C.从上向下看6.(10分)时钟显示为7:30时,时针与分针所夹的角是45°.7.(10分)如图所示,已知点O是直线AB上一点,∠AOC=90°,∠EOD=90°,那么图中互余的角的对数有4对.二、综合应用8.(10分)设∠α,∠β度数分别为(2n-1)°和(68-n)°,且∠α,∠β都是∠ν的补角.(1)试求n的值;(2)∠α与∠β能否互为余角,为什么?解:(1)n=23;(2)能,当n=23时,∠α=∠β=45°,此时∠α+∠β=90°,所以∠α与∠β互余.9.(10分)计算:(1)133°15′16″×4(2)31°42′÷5(精确到1″)解:133°15′16″×4=532°60′64″=533°1′4″解:31°42′÷5=6°+1°42′÷5=6°+102′÷5=6°+20′+2′÷5=6°20′+120″÷5=6°20′24″三、拓展延伸10.(10分)如图,∠AOB=90°,在∠AOB外部作锐角∠AOC,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠AOC=β(β为锐角),其他条件不变,求∠MON的度数.从(1)、(2)、(3)中的结果,你能得出什么规律?解:(1)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=45°.(2)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=2α.(3)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=45°得出规律:∠MON的度数与∠AOC的度数无关,与∠BOA的度数有关,且等于∠BOA度数的一半.。
七年级数学上册_第四章图形认识初步教案_人教新课标版
第四章图形的认识4.1.1 几何图形第1课时教学目标:(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力(1)积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感重、难点与关键1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点.2.难点:立体图形与平面图形之间的转化是难点教具准备长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒教学过程一、引入新课在同学们所观看的电视片中,有哪些是我们熟悉的几何图形?二、新授1.学生在回顾刚才所看的电视片后,充分发表自己的意见,•并通过小组交流,补充自己的意见,积累小组活动经验.2.指定一名学生回答问题,并能正确说出这些几何图形的名称.3.立体图形的概念.(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.(2)学生活动:看课本图4-2后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)(3)用幻灯机放映课本4-3的幻灯片(或用教学挂图).(4)提出问题:在这个幻灯片中,包含哪些简单的平面图形?(5)探索解决问题的方法.①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.5.立体图形和平面图形的转化.(1)从不同方向看:出示课本图4-4中所示工件模型,•让学生从不同方向看.从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?(3)探索解决问题的方法.①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.②进行小组交流,评价各自获得的结论,得出正确结论.6.操作试验.(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,•并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:许多立体图形都能展开成平面图形.(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?•再把展开的纸板复原为包装,体会立体图形与平面图形的关系.三、课堂小结1.本节课认识了一些常见的立体图形和平面图形.2.一个立体图形从不同方向看,可以是一个平面图形;•可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换.四、作业布置1.课本第115页习题4.1第1~3题.4.2 线段、直线、射线(1)第2课时教学目标(1)能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,•能用几何语言描述直线性质.(2)会用字母表示直线、射线、线段,会根据语言描述画出图形(3)经历画图的数学活动过程,提高学生的动手操作与实践能力.体验通过实验获得数学猜想,得到直线性质的过程.重、难点与关键1.重点:理解并掌握直线性质,•会用字母表示图形和根据语言描述画出图形.2.难点:根据语言描述画出图形.3.关键:理解画图语言,建立图形与语言之间的联系.教具准备一把直尺、木工墨盒.教学过程一、引入新课1.出示墨盒,请一个同学演示使用墨盒弹出一条直线的过程.2.提出问题:为什么这样拉出线是直的?其关键是什么?二、新授学生活动:学生经过小组交流后,总结出结论:两点确定一条直线.其关键在于先固定墨盒中墨线上两个点.教师活动:参与学生活动,并请学生思考:这个现象符合数学上的什么原理?1.探究直线性质.学生活动:学生动手按要求画图,•并进行小组交流,总结出课题结论.教师活动:巡视小组活动情况,并给出课题:板书直线、射线、线段的性质.2.寻找生活中直线性质应用的例子.想一想:日常生活中有哪些现象是应用的直线的性质?学生回答(只要答案合理,教师都给以肯定的评价).3.直线、射线、线段的表示方法.学生活动:阅读课本第117页有关内容.教师活动:讲解直线、射线、线段的表示方法.三、巩固练习1.提出问题:下图中,有几条直线?几条射线?几条线段?•说出它们的名称.DC BA注:此题在学生完成后,教师再行讲评,并对学生的完成情况作出适当、肯定的评价. 2.根据语句画出图形.例:读下列语句,并按照语句画出图形:(1)直线L经过A、B两点,点B在点A的左边.(2)直线AB、CD都经过点O,点E不在直线AB上,但在直线CD上.注:此例让学生独立完成后在小组中交流和自我评价,然后教师进行讲评.3.完成课本第119页练习.注:此练习请四个同学进行板书,教师巡视学生完成的情况给予评价,•并请学生作出自我评价.四、课堂小结1.提问:直线的性质是什么?如何表示直线、射线、线段?2.本节课还学习了根据语句画图,•知道了每一个语句都对应着一个几何图形.五、作业布置1.课本第122页习题4.2第1、2、3题.2.选用课时作业设计.4.2 线段、射线、直线(2)第3课时教学目标1.知识与技能(1)会用尺规画一条线段等于已知线段,会比较两条线段的长短.(2)理解线段等分点的意义,理解两点间距离的意义,借助现实的情境,•了解“两点之间,线段最短”的线段性质.2. 培养学生的动手操作能力,提高学生的抽象概括能力,能从实际问题中抽象出数学问题,初步学会数学的建模方法.3.积极参与实验数学活动中,体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.重、难点1.重点:画一条线段等于已知线段,比较两条线段的长短是一个重点,•在现实情境中,了解线段的性质“两点之间,线段最短”是另一个重点.2.难点:画一条线段等于已知线段的尺规作图方法,•正确比较两条线段长短是难点.教具准备直尺、圆规、刻度尺、三根木棒(两根等长)、多媒体设备.教学过程一、引入新课1.提出问题:有一根长木棒,如何从它上面截下一段,•使截下的木棒等于另一根木棒的长?学生活动:小组讨论,探索方法,总结出问题的解决方法.2.提出数学问题:上面的问题,可以转化为如下一个数学问题:已知线段a,画一条线段等于已知线段a.二、新授学生活动:独立思考,动手画图,小组讨论交流,总结出问题的解决方法. 教师活动:参与学生小组讨论,指导学生探索问题的解决方法.1.用刻度尺量出已知线段长,•在画出的射线(或直线)上量出相同长度的一条线段.2.用尺规截取.(按课本第119页所讲方法)板书:画一条线段等于已知线段.3.探索比较两条线段长短的方法:学生活动:小组交流,总结出比较方法.教师活动:评价学生总结出的比较方法,并用教具请一个学生进行演示,板书:比较线段的长短.(1)用刻度尺分别测量出它们的长度进行比较.(2)用把一条线段移到另一条线段上,端点对齐的方法进行比较.4.线段长短的比较结果.学生活动:通过上面的讨论,总结出线段比较结果.教师活动:用教具(三根木棒)演示线段比较方法,评价学生得出的比较结果,再用多媒体演示两条线段的比较方法和比较结果. 板书:(1)AB<CD (2)AB>CD (3)AB=CD (D)(C)B A B A (C)A5.线段的等分点.(1)线段的中点:教师活动:用多媒体演示,取线段AB 上一点M ,移动线段AM 到线段MB 上,当AM•与MB 完全重合时,线段AM=MB ,此时点M 就叫做线段AB 的中点.板书: AM=MB=12AB (2)线段的等分点:通过类比线段的中点,可得出线段的三等分点、四等分点.板书:AM=MN=NB=13AB AM=MN=NP=PB=14AB7.探索线段的性质.(1)提出问题:由这个思考题,你能得出线段的性质?学生活动:联想以前所学知识及生活常识,经过小组讨论,得出直线的性质:两点之间,线段最短.教师活动:板书:线段的性质,并用几何语言完整归纳出线段性质.(2)举例说明线段的性质在生活中的应用.(3)在直线L上顺次取三点A、B、C,使得AB=4cm,BC=3cm,如果O是线段AC的中点,求线段OB的长度.注:这两个问题先请学生在小组中独立完成后进行交流,教师再作评价.8.两点的距离.教师活动:讲解两点的距离定义.三、课堂小结1.本节课学会了画一条线段等于已知线段,学会了比较线段的长短.2.本节课学习了线段的性质和两点间距离的定义.3.懂得了知识来源于生活并用于生活的道理.四、作业布置1.课本第122页习题4.2第4、5、6、7题.2.选用课时作业设计.4.3.2 角的度量与计算(1)第5课时教学目标1.(1)理解角的概念,•学会角的表示方法.(2)认识角的度量单位度、分、秒,会进行简单的换算和角度计算.2. 提高学生的识图能力,学会用运动变化的观点看问题.3. 经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲.重、难点与关键1.重点:会用不同的方法表示一个角,会进行角度的换算是重点.2.难点:角的表示、角度的换算是难点.教具准备量角器、时钟、四棱锥.教学过程一、引入新课1.观察时钟2.提出问题:时钟的时针与分针,给我们什么样的平面图形的形象?请把它画出来.教师活动:演示角的形成过程:一条射线OA绕端点O旋转到OB的位置,得到的平面图形──角.板书:角.二、新授1.角的概念.(1)提出问题:从上面活动过程中,你能知道角是由什么图形组成的吗?学生回答:两条射线.(2)角的定义:有公共端点的两条射线组成的图形叫做角,•这个公共端点是角的顶点,这两条射线是角的两条边.(如下图)2.角的表示.学生活动:阅读课本有关内容,了解角的表示方法.教师活动:讲解角的不同表示方法,着重讲解一个顶点有多个角的表示方法.请用适当的方法表示下图中的每个角.学生活动:请一个学生板书练习,其余学生独立练习.3.角的度量.教师活动:指导学生阅读课本P126页内容,讲解角的度量方法及度、分、秒的换算.板书:1周角=_____°,1平角=_____°,1°=____′,1′=____″.学生活动:思考并完成上面的填空.例:把一个周角7等分,每一份是多少度的角(精确到分)?三、巩固练习1.课本第127页练习.2.计算:(1)48°39′+67°41′;(2)90°-78°19′40″;(3)22°30′×8;(4)176°52′÷3.此:此练习由学生独立完成,在练习过程中充分地进行小组交流以解决练习过程中的疑难,教师巡视过程中对个别学习困难的学生及时给以答疑解惑,并请学生板书后再讲评. 3.想一想:时钟在5点15分时,时钟的时针与分针所成的角是多少度?师生互动:观察时钟在5点15分时,时针与分针所处位置,教师引导、启发学生先从时针在分针转动到15分时,分针转过的角度与时针转过的角度的关系,并请学生在小组中进行交流,得出答案..四、课堂小结师生互动,完成本节课的小结:1.什么是角?组成角的图形是什么?如何表示一个角? 2.本节课还复习了平面、周角?怎样得到这两种角? 3.角的度量单位是什么?它们是如何换算的?五、作业布置1.课本习题4.3第4、5题.4.3.2 角的度量与计算(2)第6课时教学目标1.能借助三角板画出30°,45°,60°,90•°等特殊角及用量角器画出一个给定度数的角,会用尺规作图画一个角等于已知角,熟悉并理解画法语言.2. 经历画一个角等于已知角,测量角的大小数学活动,提高学生的动手操作能力. 3.尝试从不同角度寻求解决问题的方法,体会不同方法间的差异重、难点与关键1.重点:会用量角器测量角的大小,会用尺规画一个角等于已知角.2.难点:用尺规画一个角等于已知角.教具准备一副三角板、量角器教学过程一、引入新课1.投影一个五角星的图案,请学生观察图形.(如右图)2.提出问题:你知道五角星的五个角是多少度吗?你是怎样知道的?二、新授学生活动:在小组中交流测量角的大小方法教师活动:请学生说明不同方法得出的结论有何不同,对学生的活动给予积极评价.结论:每个角均为36°.1.画一个角等于已知角.(1)提出问题:你能用量角器画一个角等于36°吗?能画一个角等于108°吗?学生活动:两个学生板书演示画图过程,其余同学独立完成.教师活动:巡视并指导学生画图.(2)提出问题:你能用三角板画出30°,45°,60°,90°等特殊角吗?学生活动:动手画图.教师活动:指导个别学生画图,评价学生的画图结果.2.用尺规画一个角等于已知角.探究:已知∠AOB,画一个角等于这个角.学生活动:先进行独立思考,根据教师的演示,进行自我评价.教师活动:启发引导学生画图,并巡视指导学生画图,然后板书演示画图过程(画图过程中指导学生阅读课本中的画法)师生互动:教师在黑板上画钝角∠AOB,•请一个学生板书画图教师巡视指导其余学生画图.请同学们用三角板画出(1)15°;(2)75°;(3)105°;(4)120°;(5)135°角.教师活动:在学生活动过程中,教师对学生进行必要的指导,如15°看成45•°~30°,用两块三角板画出15°的角.四、课堂小结本节课我们通过测量角的度数,复习了角的度量方法,学会了用不同的工具画角.提出问题:请同学们说出你所知道的测量角的大小的仪器.(同学互相补充)教师活动:打开多媒体播放有关用仪器测量角的活动片子,让学生认识测量角的仪器.五、作业布置1.基础训练2.选用课时作业设计.C BA 4.3.1 角与角的大小比较第4课时教学目标(1)学会比较两个角的大小,会分析图中角的和差关系.学会借助三角板拼出不同度数的角,•认识角的平分线及角的等分线,会画角的平分线.(2)进一步培养和提高学生的识图能力和动手操作的能力,认识类比的数学思想方法.(3)能在动手操作画图、拼图的数学活动过程中发挥积极作用,体验数学活动的成功经验,激发学生的学习热情.重、难点1.重点:比较角的大小,认识角的大小关系,分析角的和差关系,•认识角平分线及画角平分线是本节课的重点.2.难点:认识复杂图形中角的和差关系,比较两个角的大小是难点. 教具准备量角器、三角板、圆规、剪刀、透明纸教学过程一、引入新课教师活动:在黑板上画出一个三角形.(如右图所示)1.提出问题:比较图中线段AB 、BC 、CD 的长短.学生活动:回顾线段长短的比较方法.小组交流,得出适当的比较线段长短的方法. 教师活动:归纳学生的讨论结果,并演示用圆规比较AB 、BC 、CD 三条线段长短的过程,并写出结论:AB>AC>BC .2.提出问题:怎样比较图中∠A 、∠B 、∠C 的大小?学生活动:小组交流比较方法,得出结论:可用量角器先量出角的度数,然后比较它们的大小.教师活动:(1)肯定评价学生提出的方法,并动手测量度数,•比较它们的大小,板书结论:∠C>∠B>∠A.(2)启发引导学生,类比线段长短的比较方法,•也可以把它们叠合在一起比较大小.二、新授1.提出问题:如何用叠合的方法比较角的大小?学生活动:进行小组交流讨论,动手操作:每个学生都在透明纸上画一个角,然后剪下这个角,并与小组中其它同学所画的角进行比较后归纳出比较方法和比较结果注:讲解过程应强调操作过程,让学生掌握角的比较的操作过程.2.认识角的和差.教师活动:讲解观察中的问题,给出图中各角之间的和差关系.(如下图)∠AOC=∠AOB+∠BOC,∠AOB=∠AOC-∠BOC.提出问题:∠AOC-∠AOB=________.3.动手操作:用三角板拼出特殊角学生活动:每个学生都用三角板进行尝试拼出15°、75°的角,并讲出其中的理由.提出问题:利用一副三角板还能拼出多少度的角?4.认识角的平分线.教师活动:在透明纸上画一个角,沿着顶点对折,使角的两边重合.学生活动:观察老师演示过程,并思考下面问题.(如下图)提出问题:∠AOC被折痕OB分成的两个角有什么关系?在图中,射线OB把∠AOC分成相等的两个角,即∠AOB=∠BOC,∠AOC与∠AOC•和∠BOC有什么关系?这个关系怎样用式子来表示?射线OB叫做什么?学生活动:阅读课本有关内容,回答上面问题.教师活动:讲解角平分线定义,板书:角的平分线.在纸上画一个角,设法画出这个角的平分线.学生活动:思考并进行小组交流,总结出角平分线的画法并画图.教师活动:对学生总结出的画法进行评价,并演示画图过程.(1)借助量角器画图:以已知角顶点为顶点,已知角的一边为边,在已知线的内部画一个度数等于已知角度数一半的角,则这个角的另一边就是已知角的平分线.(2)用折叠方法:把角沿顶点对折,使角的两边重合,沿折痕在角的内部画一条射线即为已知角的平分线.三、课堂小结师生互动,共同总结本节课的学习内容:1.角的大小比较方法和角的大小关系有哪些?认识了角的哪些运算.2.本节课学习了用三角板拼出哪些角?3.角平分线的定义是什么?四、作业布置1.课本第130页习题4.31、2、34.3.2 余角和补角第7课时教学目标1.在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质. 2.进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想.3.体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用重、难点1.重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点.2.难点:通过简单的推理,归纳出余角、补角的性质,•规范的语言描述性质是难点.教具准备三角板、量角器教学过程一、引入新课1.提出问题:(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?学生活动:独立思考,小组交流,得出结论:都是90°.二、新授1.余角与补角.教师活动:指导学生阅读课本第128页有关内容,并讲解余角与补角的定义.注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角).2.巩固反思.(1)填空:①47°18′的余角是______,补角是_______.②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.(2)已知一个角是它补角的3倍,求这个角.注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.(3)课本第129页练习.3.余角与补角的性质.(1)提出问题:观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?学生活动:观察图形,小组交流观察:∠1=∠3,∠1+∠2=180°,∠3+•∠4=180°.学生活动:观察思考后得出∠2=∠4.(2)说明理由:注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?教师活动:指导学生分析题意,并写出说理过程,归纳性质.板书:等角的补角相等.等角的余角相等.三、巩固练习1.如右图,∠EDC=∠CDF=90°,∠1=∠2.(1)图中哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE有什么关系?为什么?2.认识方位角.如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.教师活动:(1),讲解方位角和表示方位的射线,•在学生完成题中的问题后操作多媒体演示画图过程.注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.学生活动:在教师指导下画出问题中的每一条射线.3.知识拓展提出问题:小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A•地多少米?在A地的北偏西多少度?画出图形(用1cm表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价.教师活动:指导学生画图和测量,并对学生完成的情况进行评价.四、课堂小结1.本节课学习了余角和补角,并通过简单的推理,得出余角和补角的性质.2.了解方位角,学会确定物体运动的方向五、作业布置1.基础训练2.选用课时作业设计.4.4 课题学习设计制作长方体形状的包装纸盒第8课时教学任务分析教学流程安排教学过程设计一、提出问题,指明活动的主要内容活动名称:设计制作长方体形状的纸盒.方法:观察、讨论、动手制作.材料:厚(硬)纸板、直尺、裁纸刀、剪刀、胶水、彩笔等.准备:收集一些长方体形状的包装盒,如墨水瓶盒、粉笔盒、饼干盒、牛奶包装盒、牙膏盒等.二、提出活动步骤、分组活动活动步骤:1.观察、讨论以5~6人为一组,各组确定所要设计制作的包装盒的类别,明确分工.(1)观察作为参考物的包装盒,分析其各面、各棱的大小与位置关系.(2)拆开盒子,把它铺平,得到表面展开图;观察它的形状,找出对应长方体各面的相应部分;度量各部分的尺寸,找出其中的相等关系.(3)把表面展开图复原为包装盒,观察它是如何折叠并粘到一起的.(4)多拆、装几个包装盒,注意它们的共同特征.(5)经过讨论,确定本组的设计方案.2.设计制作(1)先在一张软纸上画出包装盒表面展开图的草图,简单设计一下,裁纸、折叠,观察效果.如果发生问题,调整原来的设计,知道达到满意的初步设计.(2)在硬纸板上,按照初步设计,画好包装盒的表面展开图,注意要预留出粘合处,并要减去适当的棱角.在表面展开图上进行图案与文字的美术设计.(3)裁下表面展开图、折叠并粘好粘合处,得到长方体包装盒3.交流、比较各组展示本组的作品,并介绍设计思想和制作过程.讨论本组的作品,重点探究以下问题:(1)制成的包装盒是否是长方体?若不是,是哪个地方出项了问题?如何改正?(2)从使用性上看,包装盒形状、尺寸是否合理?用料是否节省?是否需要改进?(3)包装盒的外观设计是否美观?(4)对平面图形与立体图形的联系有哪些新认识?4.评价、小结评价各组的活动情况,小结活动的主要收获.三、小结与作业小结:制作立体图形――先转化为平面图形(平面展开图),再转化为立体图形作业:(1)自己设计制作一个正六棱柱形状的包装盒;(2)自己设计制作一个圆柱形的包装纸盒.。
人教版数学七年级上册 第四章 几何图形初步-复习教案设计
图形的初步认识复习(2)(角)【课时】:第13课时【课题】:图形认识初步复习(2)【设计与执教者】:【学情分析】:面向特色班的学生。
面向特色班的学生。
已经学完整章内容,对各个知识点掌握较好,但还没有形成完整的知识体系。
对各个知识点间的联系还不够清楚。
【教学目标】:1、复习4.3角的内容,使学生系统的掌握本单元所学的知识,查漏补缺,理清知识及其联系。
2、能熟练应用所学知识解决问题。
【教学重点】:4.3角的知识及应用所学知识解决问题。
【教学难点】:灵活运用所学知识解决相关问题。
【教学突破点】:通过练习复习知识,通过易错题查漏补缺。
【教法、学法设计】:让学生通过做题回顾知识点并查漏补缺,老师通过点评学生的答案来帮助学生复习、总结、归纳知识点,再通过做练习进一步巩固【课前准备】:多媒体课件【教学过程设计】教学环节教学活动设计意图知识回顾一、角的相关知识(一)、试一试1:1、判断A、直线是一个平角,射线是一个周角B、平角是一条直线,周角是一条射线C、若将角的两边均延长至原来的两倍,则角的大小也扩大两倍通过做题回顾知识点并查漏补缺,老师通过点评学生的答案来帮助学生复习、总结、归纳知识点(二)想一想2:1、角的度量2、角的数量关系二、应用巩固周游数学世界基础知识:1、图中以O为顶点的角有几个?以D为顶点的角有几个?用适当的方式表示这些角。
(1)∠APO (2)∠AOP (3)∠OPC(4)∠OCP (5)∠O (6)∠PAO BD C2、已知∠A=36018’, 则∠ A的余角是 ,∠ A的补角是 .升级提高:1、如图所示,在三角形ABC中,BD、CD为∠ABC、∠ACB的平分线且交于点D, 已知∠BDC的度数为120°。
求∠BAC的度数.3、如图所示,将一张长方形的纸斜折过去,使角顶点A落在A′处,BC为折痕,然后把BE边折过去,使之与A′B边重合,折痕为BD,那么两折痕BC、BD间的夹角是多少度?练习巩固:让学生自己选择题目来“打擂”,增强学生的积极性。
2023-2024人教部编版初中数学七年级上册第四单元教案几何图形的初步认识
几何图形的初步认识
----点、线、面、体课题:《几何图形的初步认识----点、线、面、体》
三维目标知识与技能学会认识和识别基本的点、线、面、体
过程与方法观察生活中的点、线、面、体并进行概念抽象情感态度与价值观培养学生的观察能力和抽象思维能力
教学重点:点、线、面、体的相互关系
教学难点:点、线、面、体的相互关系
教学方法与手段:讲练结合,借助于ppt。
教学过程:
一.体:
象上面学过的长方体、正方体、圆柱、球、圆锥等这些立体图形,我们称之为几何体,简称为体。
生活中有很多事物都给我们以体的形象。
二.面:
面 : 包围着体的是面。
生活中有很多事物都给我们以面的形象。
三.线:
面和面相交的地方是线。
几何中的线没有粗细。
生活中有很多事物都给我们以线的形象。
四.点:
线和线相交的地方是点。
生活中有很多事物都给我们以点的形象。
教师小结:
今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
板书设计:点动成线,线动成面,面动成体。
七年级数学上册_第四章图形认识初步教案_人教新课标版.doc
第四章图形认识初步单元要点分析教学内容本章主要内容有多姿多彩的图形,直线、射线、线段,角的度量,角的比较与运算.教材从生活中常见的立体与平面图形入手,通过实例,在丰富的现实情境中,使学生经历对几何体的研究的数学活动过程,认识一些常见的几何体及点、线、面的一些特征和性质;通过裁剪、展开、制作及从不同方向看等活动,在几何体与平面图形的转换过程中发展学生的空间观念; 通过实例,在丰富的现实情境中,使学纶经历对简单的平而图形总线、射线、线段与角的研究的数学活动过程,通过动手画图、线段的人小比较及角的度量、比较与运算等活动过程,理解并掌握这些图形的一些简单性质,感受丰富多彩的图形世界,并为今后进一步学习平面几何知识奠定基础.三维目标1.知识与技能(1)经历探究物体的形状与几何体的关系过程,能从现实物体屮抽象得出立体图形.(2)经历立体图形与平面图形的转换过程,掌握一些简单的立体图形与平面图形的互相转化的技能.(3)经历对点、线、而、体关系的研究的数学活动过程,建立平而图形与立体图形的联系.(4)经历画图等数学活动过程,掌握直线和角的一些简单性质;掌握直线、射线、线段和角的表示方法:掌握角的度量方法.(5)在现实情境中,探索两条线段、两个角的比较方法及比较的结果,探索线段与线段Z 间、角与角Z间的数量关系.(6)认识线段的等分点,角的平分线、角角和补角的概念.2.过程与方法(1)会用掌握的几何体知识描述现实物体的形状,在探索立体图形与平面图形的关系中,发展空间观念.(2)通过对木章的学习,学会在具体的现实情境中,抽象概括出数学原理.(3)学会在解决问题的过程小,进行合理的想象,进行简单的、有条理的思考.(4)能在现实物体中,发现立体图形和平面图形.(5)能在具体的现实情境中,发现并提出一些数学问题.(6)通过小组合作、动手操作、实验验证的方法解决数学问题.3.情感态度与价值观.(1)积极参与数学活动的过程,敢于面对数学活动屮的困难,并能独立地或通过小组合作的方法,运用数学知识克服I木I难,解决问题.(2)通过对本章的学习,培养和提高抽彖概括能力和空间想彖能力,体验数学活动中探索性和创造性,感受丰富多彩的图形世界.重、难点与关键1.重点:(1)掌握立体图形与平而图形的关系,学会它们之间的相互转化;初步建立空间观念.(2)掌握两点确定一条直线的性质,掌握两点Z间线段最短的性质,会用符号表示直线、射线和线段,会比较线段的人小,会画一条线段等于已知线段,了解两点距离的定义.(3)会用符号表示一个角,学会度量一个角,掌握余角和补角的性质,理解角的平分线的定义,会比较两个角的大小,确定几个角的运算关系.2.难点:(1)立体图形与平而图形之间的互相转化.(2)从现实情境屮,抽象概括出图形的性质,用数学语言对这些性质进行描述.3.关键:(1)从实际岀发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣.(2)结合具体问题,让学生感受到学习空间与图形知识的重要性和必要性.课时划分4.1多姿多彩的图形2课时4.2直线、射线、线段2课时4.3角4课吋数学活动1课时I叫顾与思考2课时4. 1. 1几何图形教学目标:1.知识与技能(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形Z间的关系.2.过程与方法(1)经历探索平面图形与立体图形ZI'可的关系,发展空I'可观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力.(2)经历问题解决的过程,提高解决问题的能力.3.情感态度与价值观(1)积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于而对学习I木I难的梢神, 感受几何图形的美感:(2)倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的垂要性.重、难点与关键1.重点:从现实物体中抽象出儿何图形,把立体图形转化为平而图形是重点.2.难点:立体图形与平面图形之间的转化是难点.3.关键:从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键.教具准备长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4. 1-5的教学幻灯片.教学过程一、引入新课1.打开多媒体,播放一个城市的现代化建筑,学生认真观看.2.提出问题:在同学们所观看的电视片中,有哪些是我们熟悉的儿何图形?二、新授1.学生在回顾刚才所看的电视片后,充分发表白己的意见,并通过小组交流,补充H己的意见,积累小组活动经验.2.指定一名学生回答问题,并能正确说出这些几何图形的名称.学生回答:有圆柱、长方体、正方体等等.教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.3.立体图形的概念.(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.(2)学生活动:看课木图4. 1-3后学生思、考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)(3)用幻灯机放映课木4. 1-4的幻灯片(或用教学挂图).(4)捉岀问题:在这个幻灯片屮,包含哪些简单的平面图形?(5)探索解决问题的方法.①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.②学生冋答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.注:对立体图形和平而图形的概念,不耍求给出完整的定义,只耍求学生能够匸确区分立体图形和平而图形.5.立体图形和平面图形的转化.(1)从不同方向看:出示课木图4. 1-7 (1)屮所示工件模型,让学生从不同方向看.(2)提出问题.从正而看,从左面看,从上面看,你们会得岀什么样的平而图形?能把看到的平面图形画出来吗?(3)探索解决问题的方法.①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.②进行小组交流,评价各自获得的结论,得岀止确结论.③指定三名学生,板书画出的图形.6.思考并动手操作.(1)学牛活动:在小组小独立完成课本第119页的探究课题,然后进行小组交流,评价.(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,并对学生给予鼓励,激发学生的探索热情.7.操作试验.(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,并在小组中进行交流,得出一•个长方体它的平面展开图具有的一个特征:多样性.许多立体图形都能展开成平而图形.(2)学牛•活动:观察展开图,看看它的展开图山哪些平面图形组成?再把展开的纸板复原为包装,体会立体图形与平面图形的关系.三、课堂小结1.本节课认识了一些常见的立体图形和平面图形.2.一个立体图形从不同方向看,可以是一个平面图形;可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形町以互相转换.注:小结可采収师生互动的方式进行,山学生归纳,教师进行评价、补充.四、作业布置1.课本第123页至第124页习题4. 1第1〜6题.五、板书设计:4.1. 1几何图形一、问题导入二、例题三、课堂练习六、课后反思:4.1.2点、线、面、体教学目标1.知识与技能(1)了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面;(2)了解几何图形构成的基木元素是点、线、面、体及其关系,能正确判定由点、线、面、体经过运动变化形成的简单的几何图形.2.过程与方法经历探索点、线、面、体的关系的数学活动过程,提高空间想像能力和抽象思维能力,发展运动变化的观念.3 .情感态度与价值观经历本节课的数学活动过程,养成主动探索、求知的学习态度,激发学生对数学的好奇心和求知欲,体验数学活动中小组合作的重要性.重、难点与关键1.重点:正确判定围成立体图形的面是平而述是曲而,探索点、线、面、体Z间的关系是重点.2.难点:探索点、线、面、体运动变化后形成的图形是难点.3.关键:让学生在现实情境中,进行探究学习是本节课的关键.教具准备长方体、圆柱体模型,投彫机和幻灯片.教学过程一、引入新课1.出示一个长方体模型,请同学们认真观察.2.提出问题:这个长方体有几个而?面和面相交成了几条线?线和线相交成几个点?二、新授1.经过学生的独立思考,然后在小组屮进行交流,在小组讨论屮,评价并修正白己的结论.2.各小组学牛公布自己小组讨论后的结论.教师活动:在探索问题解决方法和小组讨论过程中,教师进行巡视,及时给予指导,教师对学生分和的答案作鼓励性评价.3.儿何体的概念.(1)长方体是一个几何体,我们学过的正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体.(2)提出问题:观察长方体和圆柱体,说出围成这两个几何体的而有哪些?这些面有什么区别?4.给出面的分类.通过对上面问题的解决,给出面的分类:平面和111!血.教师活动:板书:平面和曲面.提出问题:(1)用幻灯机放映图片,让学牛观察.(2)提出问题:通过观察,你得出什么结论?(3)进行小组讨论中,综合小组中每个同学意见,得出观察图片发现的结论.(4)在小组活动中,教师指导学生看课木笫121〜122页内容,得出观察图片能发现的结论.师生互动:请学生给出观察结论:点动成线,线动成而,而动成体.教师对学牛的回答给出正面评价,并把学生观察结论板书.注:在探索问题解决的方法活动过程屮,教师应充分调动学生的想像能力,鼓励学生进行深入探究.思考课后思考题,让学生进行小组讨论,教师给以必要的指导,然后得出合理的解释.5.点、线、面、体与儿何图形关系.指导学生阅读课本第122页内容,总结出点、线、面、体与儿何图形的关系.三、课堂小结1.本节课我们主耍探究了几何体的形成:由平而和曲成围成一个几何体.2.点、线、而、体之间的关系.3.体验了在数学活动过程小小组合作的重要性.四、作业布置1.课本第125〜126页习题4. 1第7〜12、13、14题.2.选用课时作业设计.五、板书设计:4.2直线、射线、线段(1)教学目标1.知识与技能(1)能在现实情境中,经历画图的数学活动过程,理解并掌握肓线的性质,能用几何语言描述直线性质.(2)会用字母表示肓线、射线、线段,会根据语言描述画出图形.2.过程少方法(1)能在现实情境屮,进行抽象的数学思考,提高抽象概括能力.(2)经历画图的数学活动过程,提高学生的动手操作与实践能力.3.情感态度与价值观体验通过实验获得数学猜想,得到直线性质的过程.重、难点与关键1.重点:理解并学握直线性质,会用字母表示图形和根据语言描述画出图形.2.难点:根据语言描述画出图形.3.关键:理解画图语言,建立图形与语言Z间的联系.教具准备一把直尺、木工墨盒.教学过程一、引入新课1.出示墨盒,请一个同学演示使用墨盒弹出一条直线的过程.2.提出问题:为什么这样拉出线是直的?其关键是什么?二、新授学生活动:学生经过小组交流后,总结出结论:两点确定一条在线.其关键在于先固定墨盒屮墨线上两个点.教师活动:参与学生活动,并请学生思考:这个现彖符合数学上的什么原理?1.探究直线性质.学生活动:完成课本第128页探究课题,学生动手按要求画图,并进行小组交流,总结出课题结论.教师活动:巡视小组活动情况,并给出课题:板书直线、射线、线段,直线的性质.2.寻找生活中直线性质应用的例子.想一•想:FI常生活中有哪些现象是应用的岂线的性质?学生冋答(只要答案合理,教师都给以肯定的评价).3.氏线、射线、线段的表示方法.学生活动:阅读课木第129页有关内容.教师活动:讲解直线、射线、线段的表示方法.三、巩固练习1.提出问题:下图屮,有几条在线?几条射线?几条线段?说出它们的名称.AC D B注:此题在学生完成后,教师再行讲评,并对学牛的完成情况作出适当、肯定的评价.2.根据语句画出图形.例:读下列语句,并按照语句画岀图形:(1)直线L经过A、B两点,点B在点A的左边.(2)直线AB、CD都经过点0,点E不在直线AB上,但在直线CD上.注:此例让学牛独立完成后在小组屮交流和白我评价,然后教师进行讲评.3.完成课木第129页练习.注:此练习请四个同学进行板书,教师巡视学牛完成的情况给予评价,并请学牛作出白我评价.四、课堂小结1.提问:直线的性质是什么?如何表示直线、射线、线段?2.本节课还学习了根据语句画图,知道了每一个语句都对应着一个几何图形.五、作业布置1.课本第132页至第134页习题3. 2第1、2、3、4、10题.2.选用课时作业设计.六、板书设计:4.2直线、射线、线段(2)教学目标1.知识与技能(1)会用尺规画一条线段等于已知线段,会比较两条线段的长短.(2)理解线段等分点的意义,理解两点间距离的意义,借助现实的情境,了解“两点之间, 线段最短”的线段性质.2.过程与方法培养学生的动手操作能力,提高学生的抽彖概括能力,能从实际问题中抽彖出数学问题,初步学会数学的建模方法.3.情感态度与价值观积极参与实验数学活动中,体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.重、难点与关键1.重点:画一条线段等于已知线段,比较两条线段的长短是一个重点,在现实情境中,了解线段的性质“两点之间,线段最短”是另一个垂点.2.难点:画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点.3.关键:学牛积极参与画图等动于•操作的数学活动中,通过小组交流,获取数学信息是学好本节课知识的关键.教具准备直尺、圆规、刻度尺、三根木棒(两根等长)、多媒体设备.教学过程一、引入新课1.捉出问题:有一根长木棒,如何从它上面截卜•一段,使截卜•的木棒等于另一根木棒的长?教师活动:出示长短不同的两根木棒.学生活动:小组讨论,探索方法,总结出问题的解决方法.注:教师对学生给出的解决方法,应进行可操作性评价,对好的方法给了鼓励和肯定,以激发学生的学习兴趣.2. 提出数学问题:上面的问题,可以转化为如下一个数学问题: 已知线段a,画一•条线段等于已知线段a.二、新授学生活动:独立思考,动手画图,小组讨论交流,总结出问题的解决方法.教师活动:参与学生小组讨论,指导学生探索问题的解决方法.1. 用刻度尺量出已知线段长,在画出的射线(或直线)上量出相同长度的一条线段.2. 用尺规截取.(按课本第130页所讲方法)教师活动:打开电脑,演示尺规作图过程.板书:画一条线段等于已知线段.3. 思考课木第130页的问题,从屮得岀数学问题:如何比较两条线段的长短?4. 探索比较两条线段长短的方法:学生活动:小组交流,总结出比较方法.教师活动:评价学生总结出的比较方法,并用教具请一个学生进行演示,板书:比较线段的 长短.(1) 用刻度尺分别测量出它们的长度进行比较.(2) 用把一•条线段移到另一条线段上,端点对齐的方法进行比较.5. 线段长短的比较结果.学生活动:通过上面的讨论,总结出线段比较结果.教师活动:用教具(三根木棒)演示线段比较方法,评价学生得出的比较结果,再用多媒体 演示两条线段的比较方法和比较结果.板书:(1) AB<CD (2) AB>CD (3) AB 二CD6. 线段的等分点.(1) 线段的中点:教师活动:用多媒体演示,取线段AB 上一点M,移动线段AM 到线段冊上,当AM 与MB 完 全重合时,线段AM 二MB,此时点M 就叫做线段AB 的中点.板书: AM 二MB 二丄AB 2(2) 线段的等分点:通过类比线段的屮点,可得出线段的三等分点、四等分点.1 1 (C)(D) • • • A B (C) (D) • • (C) (D) ABAM 二MN 二NB 二-AB AM=MN=NP=PB= 一AB3 47.探索线段的性质.(1)完成课木第132页思考题.(2)提出问题:由这个思考题,你能得出线段的性质?学生活动:联想以前所学知识及生活常识,经过小组讨论,得出直线的性质:两点Z间,线段最短.教师活动:板书:线段的性质,并用儿何语言完整归纳出线段性质.(3)举例说明线段的性质在生活中的应用.(4)在直线L上顺次取三点A、B、C,使得AB=4cm, BC=3cm,如果0是线段AC的中点,求线段0B的长度.注:这两个问题先请学生在小组中独立完成后进行交流,教师再作评价.8.两点的距离.教师活动:讲解两点的距离定义.三、课堂小结1.本节课学会了画一条线段等于已知线段,学会了比较线段的长短.2.本节课学习了线段的性质和两点间距离的定义.3.懂得了知识来源于生活并用于生活的道理.四、作业布置1.课本第133页至第114页习题4. 2第5、6、7、8、9、11题.2.选用课时作业设计.五、板书设计:4.3.1角的度量(1)教学目标1.知识与技能(1)在现实情境中,认识角是一种基木的几何图形,理解角的概念,学会角的表示方法.(2)认识角的度量单位度、分、秒,会进行简单的换算和角度计算.2.过程与方法提高学生的识图能力,学会用运动变化的观点看问题.3.情感态度与价值观经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲.重、难点与关键1.重点:会用不同的方法表示一个角,会进行角度的换算是重点.2.难点:角的表示、角度的换算是难点.3.关键:学会观察图形是止确表示一个角的关键.教具准备多媒体设备、量角器、时钟、四棱锥.教学过程一、引入新课1.观察时钟、四棱锥.2.提出问题:时钟的吋针与分针,棱锥相交的两条棱,都给我们什么样的平而图形的形象?请把它画出來.学生活动:进行独立思考、画图,然后观看教师的演示过程.教师活动:用多媒体演示角的形成过程:一条射线0A绕端点0旋转到0B的位置,得到的平面图形——角.板书:角.一曲城一.新役1.角的概念.(1) 提出问题:从上面活动过程中,你能知道角是由什么图形组成的吗?学生回答:两条射线.(2) 角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这 两条射线是角的两条边.(如下图)2. 角的表示.学生活动:阅读课本第137页有关内容,了解角的表示方法.教师活动:讲解角的不同表示方法,着重讲解一个顶点冇多个角的表示方法.请用适当的方法表示下图屮的每个角・学生活动:谙一个学生板书练习,其余学生独立练习.教师活动:巡视学生练习情况,给了评价,对多数同学作出肯定评价.学生活动:阅读课本第138页思考题,进行小组交流,获得问题结论.教师活动:参与学生交流,并用多媒体演示平和、周和的形成过程,启发引导学生对问题进 行探索,并对学生讨论结果进行评价.答案:分别形成平角、周角.3. 角的度量.教师活动:指导学生阅读课本P138页内容,讲解角的度量方法及度、分、秒的换算.板书:1 周角二 ____ ° , 1 平角二 ___ ° , 1° =—' ,1’ =—〃 .学生活动:思考并完成上面的填空.例:把一个周角7等分,每一份是多少度的角(精确到分)?三、 巩固练习1. 课本第139页练习.2. 计算:(1) 48° 39' +67° 41’ ;(2) 90° -78° 19’ 40";(3) 22° 30’ X& (4) 176° 52' 4-3.此:此练习由学生独立完成,在练习过程中充分地进行小组交流以解决练习过程中的疑难, 教师巡视过程中对个別学习困难的学生及时给以答疑解惑,并请学生板书后再讲评.3. 想一想:时钟在5点15分时,时钟的时针与分针所成的角是多少度?师生互动:观察时钟在5点15分时,时针与分针所处位置,教师引导、启发学主先从时针在分A针转动到15分时,分针转过的角度与时针转过的角度的关系,并请学生在小组中进行交流, 得出答案…四、课堂小结师生互动,完成本节课的小结:1.什么是角?组成角的图形是什么?如何表示一个角?2.本节课还复习了平而、周角?怎样得到这两种角?3.角的度量单位是什么?它们是如何换算的?五、作业布置1.课木第144页习题4. 3第1、2、3、4题.六、板书设计:4.3.1角的度量(2)教学目标1.知识与技能会用量角器测一个角的人小,能借助—角板画出30。
人教版数学七年级上册第四章图形初步认识复习 教学案
课题第四章图形初步认识复习第周第课时导学目标1.知道基本几何体的平面展开图及其三视图。
2.知道直线、射线、线段的区别和联系,直到两点之间的距离和线段中点的含义3.会度、分、秒之间的互化,及其角平分线、余角和补角性质的应用重点角分线、余角、补角概念、性质难点角分线、余角、补角性质的运用课型复习课课时1课时设计人审核人教学过程环节教学内容任务设计教师活动学生活动预见性问题及策略备习直线、射线、线段概念及性质角的比较与运算余角、补角概念性质观察学生的看图梳理情况,并对学生的错误加以纠正小组内交流互助完成,如有疑问请教专家组然后小组代表汇报预见性问题:可能部分学总结不准确策略:指派学生予以纠正知识运用1.正方体展开图、余角、补角的考查1.如图,每个图片都是6个相同的正方形组成的,不能折成正方形的是()2.如果∠α=26°,那么∠α余角的补角等于() A、20° B、70 ° C、110 ° D、116°:巡视学生的完成情况,对于学困生进行指导,纠正出现的错误学生先独立完成,然后小对子互查,再组内交流互助,统一答案,代表汇报预见性问题:展开图形式不熟策略:教师引导2.线段、角的运算的考查3.余角定义的运用4.角分线性质、补角的运用3.如果线段MN=6cm,NP=2cm,那么M、P两点的距离是().A.8cm B.4cm C.8cm或4cm D.无法确定4.如图∠AOD-∠AOC=()A、∠ADCB、∠BOCC、∠BODD、∠COD5. 如图,∠AOD=∠BOC=90°,∠COD=42°,求∠AOC、∠AOB的度数.OCADB6.如图,∠AOB是直角,OD平分∠BOC,OE平分∠AOC,求∠EOD的度数。
7.一个角的补角加上10o等于这个角的余角的3倍,求这个角。
引导学生分析题意,并进行计算,纠正解题错误指导学生完成各题,规范学生的解题过程,对学困生进行讲解巡视学生的完成情况,纠正计算出现的错误及书写格式根据教师指导进行计算,小对子相互纠正,代表汇报独立完成,小组交流,统一答案后,代表板演汇报,其他同学纠错小组内独立根据教师的引导进行解题,然后小组内交流,统一答案,代表板演讲解汇报预见性问题:只考虑一种情况策略:教师讲解另一种情况预见性问题:学困生解题不规范策略:教师予以纠正预见性问题:学困生不会分析题意策略:教师进行精讲时习整理学案板书设计第四章复习课知识梳理 6: 7:反思。
人教版数学七年级上册第四章 图形认识初步复习 教学设计
课题:第四章图形认识初步复习教案(人教版数学七年级第四章)二、基础知识回顾(夯实根基,打好基础)1、几何图形包括图形和图形。
图中的一些物体与我们学过的哪些图形相类似?把相应的物体和图形连接起来2、如图,这是一幅电热水壶的正面看的图,则从上面看的图是()(第3题图) A. B. C. D.3、一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.微D.山4、直线、射线、线段的比较名称直线射线线段图形表示方法延伸性端点个数作图叙述5、经过两点有条直线,并且只有。
在墙上钉一根木条需_______个钉子,其根据是________.6、线段上的一点把线段分成的线段,这点叫做线段的中点。
7、两点的所有连线中,最短,即为,最短。
如右图,把河道由弯曲改直,根据__________说明1、指导学生完成任务,并在学生回答完之后,总结一下常见的柱体和椎体2、3、提醒学生三视图的看法,让学生自主完成4、让学生独立完成,在学生回答后,注意对学生的辅导。
1、学生连线2、学生思考并根据从不同的方向看,可以很容易地完成选择3、学生观察,判断,并回答自己的答案。
4、学生可以讨论完成5、6、7、8、9、 10、学生自主完成二、通过生活中的现象发现数学问题可以激发学生的求知欲和兴趣。
2、让学生进一步感受体和形的关系,图形是从物体中抽象出来的。
3、复习正方体的表面展开图的形式4、复习“三线”,正确认识它们的区别和联系。
主要是复习直建设和谐微山第3题图这六个展开图的特点是这三个展开图的特点是这两个展开图的特点是2、如图、线段AB=28cm,C是AB上一点,且AC=18cm,O是AB的中点,求线段OC的长度。
3、如图,已知∠AOB=90°,∠AOC是60°,OD平分∠BOC,OE平分∠AOC。
求∠DOE。
师与学生共同探讨。
规律为:141型231型阶梯型教师让学生先自主思考,可以到学生中知道完成。
人教版数学七年级上册第四章图形认识初步复习优秀教学案例
(三)学生小组讨论
1.将学生分成若干小组,每组提供一些实际问题或图形,让学生讨论并尝试解决。
2.引导学生运用所学知识进行分析、讨论和交流,培养他们的团队协作能力和沟通能力。
3.教师巡回指导,解答学生的疑问,给予个别化的帮助和指导。
(四)总结归纳
1.邀请学生代表汇报小组讨论的结果,总结他们在解决问题过程中遇到的主要问题和解决方法。
3.小组合作学习:我将学生分成若干小组,鼓励他们相互讨论、交流和合作,共同解决问题。这种教学方式不仅能够培养学生的团队协作能力和沟通能力,还能够激发他们的学习动力和自信心。
4.反思与评价:在教学过程中,我引导学生对自己的学习过程进行反思,总结学习经验和方法,提高自我认知能力。同时,组织学生进行互评和自评,培养他们的评价能力和批判性思维。这种教学方式能够帮助学生更好地掌握知识,提高他们的学习效果。
3.教师对学生的学习情况进行全面评价,关注他们的进步和优点,激发他们的学习动力和自信心。
四、教学内容与过程
(一)导入新课
1.利用图片或实物模型展示各种几何图形,如线段、射线、直线、角等,引导学生观察和描述这些图形的特征。
2.提出问题:“你们已经学习了哪些几何概念和性质?它们之间有什么联系?”让学生回顾已学知识,为新课的学习做好铺垫。
3.通过本章节的学习,使学生能够形成积极的情感态度,树立自信心,培养良好的学习习惯和团队合作精神。
三、教学策略
(一)情景创设
1.利用实物模型、图片等教学资源,为学生提供丰富的几何图形实例,激他们的学习兴趣和空间想象力。
数学:第4章《图形的初步认识》复习教案(人教新课标七年级上)
第4章图形的初步认识复习课(1)知识技能目标1.直观认识立体图形,理解和掌握平面图形的基本知识;2.会画出简单立体图形的三视图及平面展开图,能根据三视图画出一些简单的实物图;3.能进行线段的简单计算,正确区分线段、射线、直线.过程性目标1.经历相关内容的归纳、总结,使学生巩固对图形的直观认识,了解图形的分割和组合,探索学习空间与图形的方法;2.通过实验、操作,提高学生对图形的认识和动手能力.教学设计一.创设情境师:请同学们拿出课前准备好的工具,自己设计,制作一个正方体形状的包装盒.做完以后请学生根据这一情境,编一个跟这一章内容有关的数学问题.二.实验总结由学生自己总结:其中主要是以下几个类型的题目.1.已知一个正方体纸盒,请同学画出它的三视图.2.已知一个正方体的三视图,请同学设想一下,我们制作的正方体纸盒是怎么样的?3.几个同学制作的相同的正方体叠放在一起请学生画出它的三视图.4.已知一个正方体纸盒,请学生画出它的展开图.(正方体的展开图是多种形状的,我们可以让学生去剪开正方体纸盒,然后把不同形状的展开图拿出来进行对比).5.下面是我们制作的正方体的展开图,每个平面内都标注了字母,请根据要求回答问题:(1)和面A所对的会是哪一面?(2)和B面所对的会是哪一面?(3)面E会和哪些面相交?三.拓展提高例我们将多边形中不相邻的两个顶点的连线称为对角线.请同学数一数图中共有几条对角线.生:由图可知.四边形有2条对角线.生:由图可知.五边形有5条对角线.师:请同学们画出一个六边形,并画出所有的对角线,数一数总共有多少条,你能根据图形找出其中的规律吗?生:六边形共有9条对角线.n边形对角线条数共n(n-3)条的一半.四.归纳探究师:先请同学画出下列相应的图形,并回答问题.a) 两条直线相交有几个交点?b) 三条直线两两相交有几个交点?c) 四条直线两两相交有几个交点?生:两条直线相交有一个交点,三条直线相交有一个或三个交点,四条直线相交有一个交点、四个交点、六个交点.课后思考:n条直线两两相交有几个交点?五.反馈练习1.已知平面内有四个点A 、B 、C 、D ,过其中任意两点画直线,最少可画多少条直线,最多可画多少条直线?画出图来并说明理由.2.已知点C 是线段AB 的中点,点D 是线段BC 的中点,CD =2.5厘米,请你求出线段AB 、AC 、AD 、BD 的长各为多少?3.已知线段AB =4厘米,延长AB 到C ,使BC =2AB ,取AC 的中点P ,求PB 的长.“图形的初步认识复习(1)”过关练习选择题1.下列说法正确的是( ).(A)射线AB 和射线BA 是同一条 (B)若点P 到点A 、B 的距离相等,则P 是AB 的中点(C)直线有两个端点(D)线段有两个端点2.平面上的四条直线相交可以有( )个交点.(A)1 (B)2 (C)4 (D)1或43.球体的三视图是( )(A)三个圆 (B)三个圆且中间一个圆包括圆心(C)两个圆和一个半圆4.已知点 C 、D 、E 为线段AB 上的点,且AC =CD =DE =EB ,图中有( )个点是线段的中点.(A)2 (B)3 (C)4 (D)55.下列是正方体展开图的是( )(A) (B)(C) (D)。
最新人教版七年级数学上册《图形的初步认识总复习》教学设计(精品教案)
⎧⎨⎩第四章《图形初步认识》总复习教学目标1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;3.掌握本章的全部定理和公理;4.理解本章的数学思想方法;5.了解本章的题目类型.教学重点和难点重点是理解本章的知识结构,掌握本章的全部定理和公理;难点是理解本章的数学思想方法.教学手段引导——活动——讨论教学方法启发式教学教学过程(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。
⎧⎨⎩1、几何图形平面图形:三角形、四边形、圆等。
主视图--------从正面看2、几何体的三视图 左视图--------从左边看俯视图--------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
4、点、线、面、体 (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
(二)直线、射线、线段 1、基本概念直线射线线段图形端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB;作直线a作射线AB作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线。
简单地:两点确定一条直线。
3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点。
人教版七年级数学上册《 第四章 几何图形初步 》教案
人教版七年级数学上册《第四章几何图形初步》教案一. 教材分析《第四章几何图形初步》是人教版七年级数学上册的一章重要内容,主要介绍了平面几何图形的性质和分类,包括线段、角、三角形、四边形等基本几何图形的性质和判定。
本章内容是学生进一步学习几何的基础,对于培养学生的空间观念和逻辑思维能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于图形的认知也有一定的了解。
但是,学生对于几何图形的性质和分类还不够清晰,对于证明和推理的能力还有待提高。
因此,在教学过程中,需要注重引导学生从直观到抽象的思维过程,培养学生的空间想象能力和逻辑推理能力。
三. 教学目标1.了解和掌握基本几何图形的性质和分类。
2.能够运用几何知识解决一些实际问题。
3.培养学生的空间观念和逻辑思维能力。
四. 教学重难点1.重点:基本几何图形的性质和分类。
2.难点:对于几何图形的证明和推理。
五. 教学方法1.情境教学法:通过实际问题,引导学生思考和探索,激发学生的学习兴趣。
2.直观教学法:通过实物模型和图形,帮助学生直观地理解几何图形的性质。
3.推理教学法:引导学生运用逻辑推理的方法,证明几何图形的性质。
六. 教学准备1.准备相关的实物模型和图形,如线段、角、三角形等。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如测量线段长度、计算角度等,引导学生思考和探索,激发学生的学习兴趣。
2.呈现(10分钟)教师通过实物模型和图形,向学生介绍线段、角、三角形等基本几何图形的性质。
引导学生通过观察和操作,发现和总结几何图形的性质。
3.操练(10分钟)教师给出一些练习题,让学生运用所学的几何知识进行解答。
教师可以通过多媒体教学设备,展示学生的解答过程,并进行讲解和指导。
4.巩固(10分钟)教师通过一些实际问题,让学生运用所学的几何知识进行解决。
教师可以引导学生进行小组讨论和交流,帮助学生巩固所学的知识。
人教版数学七年级上册第四章《几何图形初步》复习教学设计
1.教学内容:回顾并巩固点、线、面的基本概念,讲解三角形、四边形、圆等基本图形的分类和性质。在此基础上,引入几何图形的绘制方法和计算技巧。
2.教学方法:采用直观演示法、启发式教学法和讲解法,结合多媒体课件和实物模型,帮助学生理解几何图形的性质和特点。
3.目标:使学生掌握几何图形的基本知识和操作方法,为解决实际问题奠定基础。
(2)运用直观演示法,通过实物、教具等展示几何图形的性质和特点,增强学生的直观感知。
(3)实施启发式教学,引导学生主动探究几何图形的性质和规律,培养学生的逻辑思维能力。
(4)开展小组合作学习,促进学生之间的交流与分享,提高学生的团队协作能力。
2.教学策略:
(1)注重分层教学,针对不同学生的学习需求,设计不同难度的教学任务和练习题。
3.强化几何图形在实际生活中的应用,帮助学生建立几何知识与现实生活的联系,提高学生的几何应用能力。
4.通过小组合作、讨论交流等形式,培养学生的团队协作能力和沟通能力。
5.注重情感教育,关注学生的心理需求,营造轻松愉快的学习氛围,使学生在愉悦的情感体验中学习几何知识。
三、教学重难点和教学设想
(一)教学重难点
1.重点:掌握几何图形的基本概念、性质和判定方法,以及几何图形的绘制和计算。
2.难点:
(1)空间想象能力的培养和提高;
(2)几何图形性质与判定方法的灵活运用;
(3)解决实际问题时,将几何知识与生活情境相结合的能力。
(二)教学设想
1.教学方法:
(1)采用情境教学法,创设生活情境,让学生在情境中感受几何图形的美,激发学习兴趣。
4.理解并运用几何图形的性质和判定方法,提高解决问题的能力。
(二)过程与方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎧
⎨
⎩⎧
⎨⎩第四章《图形初步认识》总复习
教学目标
1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识; 2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识; 3.掌握本章的全部定理和公理; 4.理解本章的数学思想方法; 5.了解本章的题目类型. 教学重点和难点
重点是理解本章的知识结构,掌握本章的全部定理和公理; 难点是理解本章的数学思想方法. 教学手段
引导——活动——讨论 教学方法
启发式教学 教学过程
(一)多姿多彩的图形
立体图形:棱柱、棱锥、圆柱、圆锥、球等。
1、几何图形 平面图形:三角形、四边形、圆等。
主视图--------从正面看 2、几何体的三视图 左视图--------从左边看
俯视图--------从上面看
(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
3、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
4、点、线、面、体 (1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
(二)直线、射线、线段 1、基本概念
2、直线的性质
经过两点有一条直线,并且只有一条直线。
简单地:两点确定一条直线。
3、画一条线段等于已知线段
(1)度量法
(2)用尺规作图法
4、线段的大小比较方法
(1)度量法
(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等
定义:把一条线段平均分成两条相等线段的点。
图形:
A M B
符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM。
6、线段的性质
两点的所有连线中,线段最短。
简单地:两点之间,线段最短。
7、两点的距离
连接两点的线段长度叫做两点的距离。
8、点与直线的位置关系
(1)点在直线上(2)点在直线外。
(三)角
1、角:由公共端点的两条射线所组成的图形叫做角。
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
(1)度量法
(2)叠合法
6、角的和、差、倍、分及其近似值
7、画一个角等于已知角
(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。
(2)借助量角器能画出给定度数的角。
(3)用尺规作图法。
8、角的平线线
定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线。
图形:
符号:
9、互余、互补
(1)若∠1+∠2=90°,则∠1与∠2互为余角。
其中∠1是∠2的余角,∠2是∠1的余角。
(2)若∠1+∠2=180°,则∠1与∠2互为补角。
其中∠1是∠2的补角,∠2是∠1的补角。
(3)余(补)角的性质:等角的补(余)角相等。
10、方向角
(1)正方向
(2)北(南)偏东(西)方向
(3)东(西)北(南)方向
四、课堂练习与作业(一)
1、下列说法中正确的是()
A、延长射线OP
B、延长直线CD
C、延长线段CD
D、反向延长直线CD
2、下面是我们制作的正方体的展开图,每个平面内都标注了字母,请根据要求回答问
题:
(1)和面A所对的会是哪一面?
(2)和B面所对的会是哪一面?
(3)面E会和哪些面相交?
3、两条直线相交有几个交点?
三条直线两两相交有几个交点?
四条直线两两相交有几个交点?
思考:n条直线两两相交有几个交点?
4、已知平面内有四个点A、B、C、D,过其中任意两点画直线,最少可画多少条直线,
最多可画多少条直线?画出图来.
5、已知点C是线段AB的中点,点D是线段BC的中点,CD=2.5厘米,请你求出线段AB、AC、
AD、BD的长各为多少?
6、已知线段AB =4厘米,延长AB 到C ,使B C =2AB ,取AC 的中点P ,求PB 的长.
课堂练习与作业(二) 一、填空(54分)
1、 计算:30.26°=____ °____′____″; 18°15′36″ =____ __ °;
36°56′+18°14′=____ ; 108°- 56°23′ =________; 27°17′×5 =____ ; 15°20′÷6 =____ (精确到分) 2、 60°=____平角 ;
32直角=______度;6
5
周角=______度。
3、 如图,∠ACB = 90°,∠CDA = 90°,写出图中
(1)所有的线段:_______________; (2)所有的锐角:________________
(3)与∠CDA 互补的角:_______________ 4、如图:∠AOC= +
∠ BOC=∠BOD -∠
=∠AOC -∠
(第4题)
5、如图, BC=4cm ,BD=7cm ,且D 是AC 的中点,则AC=________
6.已知点A 、B 、C 三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________ 7、一个角与它的余角相等,则这个角是______,它的补角是_______ 8、三点半时,时针和分针之间所形的成的(小于平角)角的度数是_______
9、若∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,四个角的和为180°,则∠2=______;∠3=______;∠1与∠4互为
角。
10、如图:直线AB 和CD 相交于点O ,若
∠AOD=5∠AOC ,则∠BOC= 度。
11、如图,射线OA 的方向是:_______________;
射线OB 的方向是:_______________; 射线OC 的方向是:_______________;
(第10题)
(第11题)
A
D
B
C
(第3题)
. . . . A D C B (第4题)
二、选择题(21分)
1、下列说法中,正确的是( )
A 、棱柱的侧面可以是三角形
B 、由六个大小一样的正方形所组成的图形是正方体的展开图
C 、正方体的各条棱都相等
D 、棱柱的各条棱都相等 2、下面是一个长方体的展开图,其中错误的是( )
3、下面说法错误的是( ) A 、M 是AB 的中点,则AB=2AM
B 、直线上的两点和它们之间的部分叫做线段
C 、一条射线把一个角分成两个角,这条射线叫做这个角的平分线
D 、同角的补角相等
4、从点O 出发有五条射线,可以组成的角的个数是( )
A 4个
B 5个
C 7个
D 10个
5、海面上,灯塔位于一艘船的北偏东50°,则这艘船位于这个灯塔的( )
A 南偏西50°
B 南偏西40°
C 北偏东50°
D 北偏东40°
6、 平面内两两相交的6条直线,其交点个数最少为m 个,最多为n 个,则m+n 等于( ) A 、12 B 、16 C 、20 D 、以上都不对
7、用一副三角板画角,下面的角不能画出的是( )
A .15°的角
B .135°的角
C .145°的角
D .150°的角 三、解答题(25分)
1、一个角的补角比它的余角的4倍还多15°,求这个角的度数。
(5分)
2、如图,∠AOB 是直角,OD 平分∠BOC ,OE 平分∠AOC ,求∠EOD
3、线段4 AB cm ,延长线段AB 到C ,使BC = 1cm ,再反向延长AB 到D ,使AD =3 cm ,E 是AD 中点,F 是CD 的中点,求EF 的长度。
(10分)
B O A. A
C E D。