七年级上学期数学整式的加减专项复习优质课件ppt
合集下载
人教版七年级上册数学整式的加减复习课精品课件PPT
15
类型3 利用数轴去绝对值符号并化简
8.已知有理数a、b、c在数轴上的对应点如图所示,化 简:|a|+|a+b|+|a-c|-|c-b|=_a_-__2_b____.
人教版七年级上册数学课件:2.2整式 的加减 复习课
人教版七年级上册数学课件:2.2整式 的加减 复习课
16
考点4 由错误结果求正确结果
2、2 整式的加减 复习课
01 知识回顾
找伙伴
找伙伴: 12x2y2 ,-6x3 , -8x2y2, 3x2 , -2, -9x , 2x3 , -14x , 6xy2 , -4x2 , 5, -3x2y 。
-8x2y2和12x2y2 , -2和5 ,3x2和-4x2 ,
-9x和-14x , 2x3 和-6x3
•
2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。
•
3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。
人教版七年级上册数学课件:2.2整式 的加减 复习课
人教版七年级上册数学课件:2.2整式 的加减 复习课
01 知识回顾 03 考点讲练
人教版七年级上册数学课件:2.2整式 的加减 复习课
02 纠错巩固
人教版七年级上册数学课件:2.2整式 的加减 复习课
类型1 整式的加减计算
6、下列计算正确的是(B) A、 2x+4x = 2x2 B、 2x+x = 3x C、 5x2 - 3x2 =2 D、 2x+3y =5xy
第四章 整式的加减 数学活动课件(共19张PPT) 2024-2025学年人教版数学七年级上册
你能猜想出月历中“+”形和“H”形的一般结论吗?请你说明结论成立的理由.
互动新授
探究活动2 “+”形和“H”形
ɑ-7
ɑ-1
ɑ
ɑ+1
ɑ+7
ɑ-8
ɑ-6
ɑ-1
ɑ
ɑ+1
ɑ+6
ɑ+8
ɑ-7+ɑ-1+ɑ+ɑ+1+ɑ+7=5ɑ
ɑ-8+ɑ-6+ɑ-1+ɑ+ɑ+1+ɑ+6+ɑ+8=7a.
规律:(1)“+”形中五数之和=中间数的5 倍 (2)“H"形中七数之和=中间数的7倍
(1)若一个三位数的百位、十位、个位上的数字分别为α,b,c,则通常记
这个三位数为
,于是, =100ɑ+10b+c=99a+9b+(ɑ+b+c).显然99ɑ和9b都能
被3整除,因此,如果a+b+c能被3整除,那么99ɑ+9b+(ɑ+b+c)就能被3整除,即
能被3整除。
(2)若一个四位数的千位、百位、十位、个位上的数字分别为ɑ,b,c,d,则通常记这
个四位数为
,于是 =1000ɑ+100b+10c+d=999ɑ+99b+9c+(a+b+c+d).显然
999ɑ,99b和9c 都能被 3 整除,因此,如果ɑ+b+c+d能被3 整除,那么
999ɑ+99b+9c+(ɑ+b+c+d)就能被3整除,即 能被3整除.
互动新授
探究活动2 “+”形和“H”形
ɑ-7
ɑ-1
ɑ
ɑ+1
ɑ+7
ɑ-8
ɑ-6
ɑ-1
ɑ
ɑ+1
ɑ+6
ɑ+8
ɑ-7+ɑ-1+ɑ+ɑ+1+ɑ+7=5ɑ
ɑ-8+ɑ-6+ɑ-1+ɑ+ɑ+1+ɑ+6+ɑ+8=7a.
规律:(1)“+”形中五数之和=中间数的5 倍 (2)“H"形中七数之和=中间数的7倍
(1)若一个三位数的百位、十位、个位上的数字分别为α,b,c,则通常记
这个三位数为
,于是, =100ɑ+10b+c=99a+9b+(ɑ+b+c).显然99ɑ和9b都能
被3整除,因此,如果a+b+c能被3整除,那么99ɑ+9b+(ɑ+b+c)就能被3整除,即
能被3整除。
(2)若一个四位数的千位、百位、十位、个位上的数字分别为ɑ,b,c,d,则通常记这
个四位数为
,于是 =1000ɑ+100b+10c+d=999ɑ+99b+9c+(a+b+c+d).显然
999ɑ,99b和9c 都能被 3 整除,因此,如果ɑ+b+c+d能被3 整除,那么
999ɑ+99b+9c+(ɑ+b+c+d)就能被3整除,即 能被3整除.
2024年新人教版初中七年级数学上册 第二章 整式的加减《整式(单项式)》优质课教学课件
(1)汽车在主桥上行驶t h的路强是多少千米?
(2)如果汽车通过隧道需要a h,从香港口岸行驶到东人工岛的时问是通过海底隧道时间的
1.25.倍,你能用含a的代数式表示海底隧道和香港口岸到东人工岛的长度吗?
任务二、师生互动,合作探究
92a、72a、96×1.25a
2
结合前面遇到过的 , 0.9p,
1 2
ℎ
3
都只含有一种运
算——乘法运算
上面这些式子有什么特点?
它们都是数与字母的积 或者是字母与字母的积
定义:表示数或字母的积的式子叫做单项式.
注意:单独的一个数或一个字母也是单项式.
过关练习1
1.下列式子中单项式的个数是( C )
2
1
√ 2,-2xy
√ ,√a,-x,
√
√
√3a,1xy
(a+1),x,3000.
最新人教版初中七年级数学上册
第二章 整式的加减Fra bibliotek整式(单项式)
课程导入
课程讲授
习题解析
课堂总结
任务一:创设情境,导入新课
港珠澳大桥是集主桥、海底隧道和人工岛为一体的世界上最长的跨海大桥。一辆汽车
从香港口岸行驶到东人工岛的平均速度为 96km/h,在海底隧道和主桥上行驶的平均速度
分别为72 km/h利92 m/h请根据这些数据回答下列问题:
-n.
对于单独一个
非零的数,规定它
的次数是0。
过关练习2
填表:
单项式
2a
2
1.2h
xy
2
t
2
2 vt
3
系数
2
-1.2
1
-1
2
(2)如果汽车通过隧道需要a h,从香港口岸行驶到东人工岛的时问是通过海底隧道时间的
1.25.倍,你能用含a的代数式表示海底隧道和香港口岸到东人工岛的长度吗?
任务二、师生互动,合作探究
92a、72a、96×1.25a
2
结合前面遇到过的 , 0.9p,
1 2
ℎ
3
都只含有一种运
算——乘法运算
上面这些式子有什么特点?
它们都是数与字母的积 或者是字母与字母的积
定义:表示数或字母的积的式子叫做单项式.
注意:单独的一个数或一个字母也是单项式.
过关练习1
1.下列式子中单项式的个数是( C )
2
1
√ 2,-2xy
√ ,√a,-x,
√
√
√3a,1xy
(a+1),x,3000.
最新人教版初中七年级数学上册
第二章 整式的加减Fra bibliotek整式(单项式)
课程导入
课程讲授
习题解析
课堂总结
任务一:创设情境,导入新课
港珠澳大桥是集主桥、海底隧道和人工岛为一体的世界上最长的跨海大桥。一辆汽车
从香港口岸行驶到东人工岛的平均速度为 96km/h,在海底隧道和主桥上行驶的平均速度
分别为72 km/h利92 m/h请根据这些数据回答下列问题:
-n.
对于单独一个
非零的数,规定它
的次数是0。
过关练习2
填表:
单项式
2a
2
1.2h
xy
2
t
2
2 vt
3
系数
2
-1.2
1
-1
2
《整式的加法与减法》PPT课件 人教版七年级数学上册【2024年秋】
探究新知
学生活动一 【一起探究】 92b+72(b-0.15) ① 92b-72(b-0.15) ②
1.上面的代数式①②要进行加减运算需要先如何做? 需要先去括号
探究新知
学生活动一 【一起探究】 92b+72(b-0.15) ① 92b-72(b-0.15) ②
2.上面的代数式①②应如何去括号进行化简? 可以利用分配律,将括号前的乘数与括号内的各项相乘, 去掉括号,再合并同类项
72a+120a=
(72+120)a=192a
.
探究新知
根据以上探究过程完成下列题目: (1)72a-120a =( 72-120 )a= -48a . (2)3m2+2m2 =( 3+2 )m2= 5m2 . (3)3xy2-4xy2 =( 3-4 )xy2= -xy2 . 思考:上述运算有什么共同特点,你能从中得出 什么规律?
回顾复习
思考:合并同类项和去括号是进行整式加减运算 的基础,同学们还记的合并同类项法则与去括号 法则吗?
回顾复习
合并同类项法则:合并同类项后,所得项的系数是合 并前各同类项的系数的和,字母连同它的指数不变。
去括号法则:一般地,一个数与一个多项式相乘,需 要去括号,去括号就是用括号外的数乘括号内的每一 项,再把所得的积相加。
探究新知
92b 72b 0.15 92b 72b 10.8 164b 10.8 92b 72b 0.15 92b 72b 10.8 20b 10.8
思考:请同学们根据以上探究过程总结一下去括号法则
探究新知
去括号法则:一般地,一个数与一个多项式相乘, 需要去括号,去括号就是用括号外的数乘括号内的 每一项,再把所得的积相加。 特别地,+(x-3)与-(x-3)可以看作1与-1分别相乘, 得:+(x-3)=x-3,-(x-3)=-x+3
人教版七年级数学上册《整式》整式的加减PPT课件
B.系数是1,次数是6; D.系数是-1,次数是6;
2.单项式 -4πr2 的系数及次数分别为( C )
A. -4,2
B.-4,3
C. 4π ,2
D. 4π ,3
当堂训练
3.如果 1 a2b2n1 是五次单项式,则n的值为( B )
2
A.1
B.2
C.3
D.4
课堂小结
单项式
概念:数或字母的积组成的式子 (包括单独的数或字母) 系数:单项式中的数字因数 次数:所有字母的指数的和
第四章 整式的加减
4.1 整式
第2课时 多项式和整式
学习目标
1. 掌握多项式、多项式的项、次数以及常数项 的概念. 2. 会准确迅速的确定一个多项式的项数和次数. 3. 归纳出整式的概念会区别单项式和多项式.
学习重难点
学习重点:理解多项式、多项式的项与次 数概念以及整式的概念.
学习难点:正确的找出多项式的项和次数.
单项式与多项式统称为整式。
巩固练习
用多项式填空,并指出它们的项和次数。
(1)一个长方形相邻两边长分别为a,b,则这个长方形的
周长为 2a+2b . (2)m为一个有理数,m的立方与2的差为 m3-2 .
(3)某公司向某地投放共享单车,前两年每年投放a辆,为环 保和安全起见,从第三年年初起不再投放,且每个月回b辆,第
课堂小结
巩固练习
练一练:判断下列代数式是否是单项式?
4b2
,
π,2+3m
,3xy
,
a 3
,
1 t
答:4b2
,
π,3xy
,
a 3
是单项式.
探究新知
学生活动二 【一起探究】
七年级上册2.2整式的加减(共18张PPT)
例2、根据乘法分配律合并同类项:
(1)-xy2+3xy2, (2)7a+3a2+2a-a2+3
解: (1)原式=(-1+3)xy2 =2xy2
(2)原式=7a 2a 3a2 a2 3
(7a 2a) (3a2 a2 ) 3
合并同类 项的法则
=(7+2)a+(3-1)a2+3 =9a+2a2+3
=(3-5)a+(2-1)b = -2a+b
(二结合) (三合并)
18
(1)同类项与系数无关, 字母的排 列顺序也无关。 (2)几个常数项也是同类项。
化简多项式的一般步骤是什么呢?通过 如下问题进行说明:找出多项式
4x2 2x 7 3x 8x2 2 中同类项,并进行合
并,同时思考下面问题:
每一步运算的依据是什么?注意什么?
(1)找出同类项并做标记; (2)运用交换律、结合律将多项式的同类项结合; (3)合并同类项; (4)按同一个字母的降幂(或升幂排列).
16
合并同类项:
不要忘记哦
(1)a 2a 3a ;
(2)3b 5b -2b ;
(3) 5x2 9x2 4 x 2;
(4) 4xy2 2xy2 6xy2;
17
例3、合并同类项:
(1)3a+2b-5a-b
(2) 4ab 1 b2 9ab 1 b2
3
2
解: (1) 3a + 2b – 5a - b (一找)
100t+120×2.1t=100t+252t
100t+120×2.1t=100t+252t 这个式子的结果是多少? 你是怎样得到的?
二、1.如何表示两种立体图形的体积? b
人教版七年级数学上册第二章 整式的加减全章总复习课件(共36张PPT)
课堂练习
5.求多项式-x3+2x2-3x-1与多项式-2x2+3x-2的差.
分析:先把文字语言转化成数学符号语言,多项式看 成一个整体,要添上括号,再求差. 解:(-x3+2x2-3x-1)-(-2x2+3x-2) =-x3+2x2-3x-1+2x2-3x+2 =-x3+4x2-6x-1
典型例题
课堂练习
1. 先化简,再求值:5x2y-[2x2y-(xy2-2x2y)-4]-2xy2, 其中x=-2,y=1. 解: 5x2y-[2x2y-(xy2-2x2y)-4]-2xy2
= 5x2y-(2x2y-xy2+2x2y-4)-2xy2 = 5x2y-4x2y+xy2+4-2xy2 = x2y-xy2+4 当x=-2,y=-1时,原式= (-2)2╳1-(-2)╳12+4=10
解:(1)第7个等式为 1+2+3+4+5+6+7+6+5+4+3+2+1=82 (2)根据规律,得第n个等式为 1+2+3+ ┅ +n+(n+1)+n+ ┅ +3+2+1=(n+1)2 (n为 正整数)
典型例题 ②.图形的规律. 例7 下图是用棋子摆成的“小屋”,按照这样的方式 摆下去,第6个这样的“小屋”需要 35 枚棋子. 分析:观察图形,发现:摆第1个 “小屋”要5枚棋子,后面的小 屋依次多6枚棋子,可得到第n 个图形中需要的棋子数为6n-1, 所以第6个这样的“小屋”需 要35枚棋子。
知识清单
4.2 整式的加减 课件(共20张PPT) 数学人教版七年级上册
y3
3
2
m
n2
b
x2
a
2.找出下列多项式中的同类项
解:同类项: 5xy与-4yx;-3x2与4x2y2与2y2 ; 3与-1.
5xy-3x2+y2+3-4yx+4x2-2y2-1+x
如图是彩砖广场和篮球场(单位:米)
7a+8a=(7+8)a=15a
通过观察你发现7a和8a在合并时实际是什么在合并?什么没有改变?
几个常数项也是同类项.
同类项,同类项,除了系数都一样
合作交流
例题1:下列的每组式子分别是同类项吗?
不是
不是
是
不是
不是
是
不是
是
总结:同类项与系数无关,几个常数项也是同类项, 与字母的顺序无关.
典例精析
例题2:如果2axb3与-3bya4是同类项,那么x=_____,y=____.
4
3
同步练习
1.填空:(1)-3a 与6b ;(2)-3 y3与2x2 ;(3)2m 与-5n2 .2.x2yn+1与-3xmy4是同类项,则m= ,n= .
B
变式练习
同 类 项
合并同类项
课堂小结
同学们再见!
授课老师:
时间:2024年9月15日
解:4x2-8x+5-3x2+6x-2=(4x2-3x2)+(-8x+6x)+(5-2)= x2 -2x +3
1.找出同类项用不同的线划出各组同类项,注意每一项的符号.2.同类项结合用括号将同类项结合,括号间用加号连接.3.合并同类项简记为:一找,二搬,三合.
注意:合并同类项的步骤
(1)6x-10x2 +12x2-5x+1(2)-2x3+3x2-2x3+2x3-x2(3)x 2y-3xy2+2yx2-y 2x
3
2
m
n2
b
x2
a
2.找出下列多项式中的同类项
解:同类项: 5xy与-4yx;-3x2与4x2y2与2y2 ; 3与-1.
5xy-3x2+y2+3-4yx+4x2-2y2-1+x
如图是彩砖广场和篮球场(单位:米)
7a+8a=(7+8)a=15a
通过观察你发现7a和8a在合并时实际是什么在合并?什么没有改变?
几个常数项也是同类项.
同类项,同类项,除了系数都一样
合作交流
例题1:下列的每组式子分别是同类项吗?
不是
不是
是
不是
不是
是
不是
是
总结:同类项与系数无关,几个常数项也是同类项, 与字母的顺序无关.
典例精析
例题2:如果2axb3与-3bya4是同类项,那么x=_____,y=____.
4
3
同步练习
1.填空:(1)-3a 与6b ;(2)-3 y3与2x2 ;(3)2m 与-5n2 .2.x2yn+1与-3xmy4是同类项,则m= ,n= .
B
变式练习
同 类 项
合并同类项
课堂小结
同学们再见!
授课老师:
时间:2024年9月15日
解:4x2-8x+5-3x2+6x-2=(4x2-3x2)+(-8x+6x)+(5-2)= x2 -2x +3
1.找出同类项用不同的线划出各组同类项,注意每一项的符号.2.同类项结合用括号将同类项结合,括号间用加号连接.3.合并同类项简记为:一找,二搬,三合.
注意:合并同类项的步骤
(1)6x-10x2 +12x2-5x+1(2)-2x3+3x2-2x3+2x3-x2(3)x 2y-3xy2+2yx2-y 2x
人教版七年级数学上册《整式》整式的加减PPT精品课件
解:(1) ∵25>10,
∴购买25个排球应付25a×0.8=20a(b元; ②当b>10时,应付0.8ab元.
2.1 整式
第2课时
复习导入
1.什么是单项式?单项式的系数和次数? 表示数或字母的积的式子叫做单项式.
注意:单独的一个数或一个字母也是单项式. 一个单项式中,所有字母的指数的和,叫做这
⑥x2+√13x.
其中属于多项式的有( C )
A.2 个 B.3 个 C.4 个 D.5 个
2.多项式2x4+5x2-6的项是____2_x_4_,___5_x_2__,_-_,6 常数项是 ______-. 6
课堂小结
(1)利用定义判定多项式,其关键是看式子是否是单项式的和,是 哪几个单项式的和; (2)多项式是由单项式组成的,但不能说多项式包含单项式,它们 是两个不同的概念,没有从属关系.
属于单项式的是___①__②___⑤__⑦________(填序号). 属于多项式的是____④__⑥___⑧_________(填序号). 属于整式的是_①___②___④__⑤___⑥__⑦___⑧___(填序号).
课堂小结
1.几个单项式的和叫做多项式 2.在多项式中,每个单项式叫做多项式的项 3.不含字母的项叫做常数项 4.多项式里次数最高项的次数就是多项式的次数
=392.5 这个圆环的面积是392.5 cm2.
应用提高
如图,文化广场上摆了一些桌子,若并排摆n张桌 子,可同时容纳多少人?当n=20时,可同时容纳多
少人?
……
1张桌子
2张桌子
3张桌子
解:并排摆n张桌子,可同时容纳(4n+2)人. 当n=20时, 4n+2=4×20+2=82
此时,可同时容纳82人.
∴购买25个排球应付25a×0.8=20a(b元; ②当b>10时,应付0.8ab元.
2.1 整式
第2课时
复习导入
1.什么是单项式?单项式的系数和次数? 表示数或字母的积的式子叫做单项式.
注意:单独的一个数或一个字母也是单项式. 一个单项式中,所有字母的指数的和,叫做这
⑥x2+√13x.
其中属于多项式的有( C )
A.2 个 B.3 个 C.4 个 D.5 个
2.多项式2x4+5x2-6的项是____2_x_4_,___5_x_2__,_-_,6 常数项是 ______-. 6
课堂小结
(1)利用定义判定多项式,其关键是看式子是否是单项式的和,是 哪几个单项式的和; (2)多项式是由单项式组成的,但不能说多项式包含单项式,它们 是两个不同的概念,没有从属关系.
属于单项式的是___①__②___⑤__⑦________(填序号). 属于多项式的是____④__⑥___⑧_________(填序号). 属于整式的是_①___②___④__⑤___⑥__⑦___⑧___(填序号).
课堂小结
1.几个单项式的和叫做多项式 2.在多项式中,每个单项式叫做多项式的项 3.不含字母的项叫做常数项 4.多项式里次数最高项的次数就是多项式的次数
=392.5 这个圆环的面积是392.5 cm2.
应用提高
如图,文化广场上摆了一些桌子,若并排摆n张桌 子,可同时容纳多少人?当n=20时,可同时容纳多
少人?
……
1张桌子
2张桌子
3张桌子
解:并排摆n张桌子,可同时容纳(4n+2)人. 当n=20时, 4n+2=4×20+2=82
此时,可同时容纳82人.
人教版七年级数学上册第二章《整式的加减》复习课课件
【解析】可以发现每个图形的五角星个数都比前面一 个图形的五角星个数多3个.由于第1个图形的五角星个数是 3×1+1,所以第n个图形的五角星个数是3n+1,故第202X个 图形五角星个数是3×202X+1=6052.
知识框架
用字母表示数 整 整 单项式:系数、次数
式 式 多项式: 项、次数、常数项 同类项: 定义、“两相同、两无关”
方法技能:
在求多项式的值时,一般情况是先化简,然后再 把字母的值代入化简后的式子中求值,化简的过 程就是整式运算的过程.
针对训练
5.化简后再求值:5x2-2y-8(x2-2y)+3(2x2-3y),其中 |x+12|+(y-13)2=0. 分析:原式去括号合并得到最简结果,利用非负 数的性质求出x与y的值,代入计算即可求出值. 解:原式=5x2-2y-8x2+16y+6x2-9y=3x2-5y. 因为|x+2|+(y-3)2=0,所以x+2=0,y-3=0, 即x=-2,y=3,则原式=12-15= -3.
s=1002×(1002+1)=1005006.
即2+4+6+8+……+2004=1005006.
考点讲授
小结:视察是解题的前提条件,当已知数据有很多组 时,需要仔细视察,反复比较,才能发现其中的规律.
针对训练
6. 视察下列图形:它们是按一定规律排列的,依照 此规律,第202X个图形中共有__6_0_5_2___个五角星.
易错警示:
单项式的次数和系数、多项式的次数和项是 容易混淆的概念,须辨别清楚.
考点2 同类项
考点讲授
例2 若3xm+5y2与x3yn的和是单项式,求mn的值.
知识框架
用字母表示数 整 整 单项式:系数、次数
式 式 多项式: 项、次数、常数项 同类项: 定义、“两相同、两无关”
方法技能:
在求多项式的值时,一般情况是先化简,然后再 把字母的值代入化简后的式子中求值,化简的过 程就是整式运算的过程.
针对训练
5.化简后再求值:5x2-2y-8(x2-2y)+3(2x2-3y),其中 |x+12|+(y-13)2=0. 分析:原式去括号合并得到最简结果,利用非负 数的性质求出x与y的值,代入计算即可求出值. 解:原式=5x2-2y-8x2+16y+6x2-9y=3x2-5y. 因为|x+2|+(y-3)2=0,所以x+2=0,y-3=0, 即x=-2,y=3,则原式=12-15= -3.
s=1002×(1002+1)=1005006.
即2+4+6+8+……+2004=1005006.
考点讲授
小结:视察是解题的前提条件,当已知数据有很多组 时,需要仔细视察,反复比较,才能发现其中的规律.
针对训练
6. 视察下列图形:它们是按一定规律排列的,依照 此规律,第202X个图形中共有__6_0_5_2___个五角星.
易错警示:
单项式的次数和系数、多项式的次数和项是 容易混淆的概念,须辨别清楚.
考点2 同类项
考点讲授
例2 若3xm+5y2与x3yn的和是单项式,求mn的值.
整式的加减课件(17张PPT)沪教版(2024)七年级数学上册
照括号的方法去括号,再合并同类项,就可以得到这几个整式相加减档运
算结果。
典例分析
例1 计算:
(1)2x-(3x-2y+3)+(5y-2);
(2)(a3+3a2+4a-1)-(a2-3a-a3-3);
解:(1)2x-(3x-2y+3)+(5y-2)
(2)(a3+3a2+4a-1)-(a2-3a-a3-3)
=2x-3x+2y-3+5y-2
=a3+3a2+4a-1-a2+3a+a3+3
=-x+7y-5
=2a3+2a2+7a+2
典例分析
例2 计算:
(1)2(3a+4b)-3(2a-3b);
(2)(x2-2x)-2[(x2-1)+4x].
解: (1)2(3a+4b)-3(2a-3b)
(2)(x2-2x)-2[(x2-1)+4x]
解: 15a2-ሼ−4a2+[5a-8a2-(2a2-a)]ሽ
=15a2-[-4a2+(5a-8a2-2a2+a)]
=15a2-[-4a2+(6a-10a2)]
=15a2-(-4a2+6a-10a2)
=15a2+14a2-6a
=29a2-6a
1
当a=- 时,
2
12
1
原式=29×(- ) -6×(- )
2
2
29
= +3
4
41
=
4
学以致用
1. 计算:
1 2 2
1
算结果。
典例分析
例1 计算:
(1)2x-(3x-2y+3)+(5y-2);
(2)(a3+3a2+4a-1)-(a2-3a-a3-3);
解:(1)2x-(3x-2y+3)+(5y-2)
(2)(a3+3a2+4a-1)-(a2-3a-a3-3)
=2x-3x+2y-3+5y-2
=a3+3a2+4a-1-a2+3a+a3+3
=-x+7y-5
=2a3+2a2+7a+2
典例分析
例2 计算:
(1)2(3a+4b)-3(2a-3b);
(2)(x2-2x)-2[(x2-1)+4x].
解: (1)2(3a+4b)-3(2a-3b)
(2)(x2-2x)-2[(x2-1)+4x]
解: 15a2-ሼ−4a2+[5a-8a2-(2a2-a)]ሽ
=15a2-[-4a2+(5a-8a2-2a2+a)]
=15a2-[-4a2+(6a-10a2)]
=15a2-(-4a2+6a-10a2)
=15a2+14a2-6a
=29a2-6a
1
当a=- 时,
2
12
1
原式=29×(- ) -6×(- )
2
2
29
= +3
4
41
=
4
学以致用
1. 计算:
1 2 2
1
4.2 整式的加减第3课时 整式的加减 课件(共35张PPT)
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
整式加减的一般步骤是:先去括号,再合并同类项. 注意: (1)整式加减运算的过程中,一般把多项式用括号括
起来; (2)整式加减的最后结果中不能含有同类项,即要合
并到不能再合并为止.
(2)(8a-7b)-(4a-5b) =8a-7b-4a+5b 去括号 =4a-2b 合并同类项
例2 已知A=3x2y+3xy2+y4,B=-8xy2-2x2y-2y4 求:(1)A-B;(2)A+ 1 B.
2
导引:将A,B代表的多项式代入,然后去括号、合并
同类项.
解:(1)A-B=(3x2y+3xy2+y4)-(-8xy2-2x2y-2y4)
人教2024七上数学 同步精品课件
人教版七年级上册
人教2024版七上数学同步高效精简课件 第四章 整式的加减
4.2 整式的加减
目录页
新课导入
讲授新课
当堂练习
课堂小结
新课导入
✓ 教学目标 ✓ 教学重点
学习目标
1.熟练进行整式的加减运算.(重点) 2.能根据题意列出式子,表示问题中的数量关系. (难点)
A.M<N
B.M=N
C.M>N
D.无法确定
当堂练习
5.多项式
与多项式
的和不含二次项,则m为( C )
A.2 B.-2 C.4 D.-4
6.已知a2+2a=1,则整式2a2+4a-1的值是( B ) A.0 B.1 C.-1 D.-2
当堂练习
7.若多项式3x3-2x2+3x+1与多项式x2-2mx3+2x 3
=3x2y+3xy2+y4+8xy2+2x2y+2y4
=5x2y+11xy2+3y4.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+
1 b
,
1 4
x2y3z.
单项式有:0,
—
ab2 3
,?
— x,?
1 4
x
2
y
3
z.
多项式有:x
— 3
2
,3m 2
+
1
整式有:
0,
—
ab2 3
Hale Waihona Puke ,?— x,?x
— 3
2
,3m 2
+ 1,
1 4
x2y3z.
评析:本题需应用单项式、多项式、整式的意义来解答。单 项式只含有“乘积”运算;多项式必须含有加法或减法运 算。不论单项式还是多项式,分母中都不能含有字母。
(1)按x的升幂排列;(2)按y的降幂排列。
解:(1)按x的升幂排列:
(2)按y的降幂排列:
评析:对含有两个或两个以上字母的多项式重新排列,先要 确定是按哪个字母升(降)幂排列,再将常数项或不含这个 字母的项按照升幂排在第一项,降幂排在最后一项。
1、对于同类项应从概念出发,掌握判断标准:
(1)字母相同; (2)相同字母的指数相同;
用代数式表示乙数: (1)乙数比x大5; (2)乙数比x的2倍小3; (3)乙数比x的倒数小7; (4)乙数比x大16%
回顾 思考
先填空,再请说出你所列式子的运算含义.
1.边长为x的正方形的周长是 4x .
2.一辆汽车的速度是v千米/小时,行驶t小时
所走过的路程为vt 千米。 3.如图正方体的表面积为 6a2,体积为 a3. 4.设n表示一个数,则它的相反数是-n. 5.半径为r的圆面积是πr2.
两相同
(3)与系数无关; (4)与字母的顺序无关。
两无关
2、合并同类项是整式加减的基础。法则:合并同类项, 只把系数相加减,字母及字母的指数不变。 注意以下几点:(前提:正确判断同类项) (1)常数项是同类项,所以几个常数项可以合并; (2)两个同类项系数互为相反数,则这两项的和等于0; (3)同类项中的“合并”是指同类项系数求和,把所得到 结果作为新的项的系数,字母与字母的指数不变。 (4)只有同类项才能合并,不是同类项就不能合并。
相信自己你是最棒的
a
回顾 思考
1、温度由toc下降5oc后是 t-5 oc。
2、买一个篮球需要x元,买一个排球需
要y 元买一 个足球需要z元,买3个篮球、
5个排球、2个足球共需要 3x+5y+2z 元。
3、如图三角尺的面积为
;
4、如图是一所住宅区的建筑平面图,这所 住宅的建筑面积是 x2+2x+18 ㎡。
同类项:4x2与- 3x2 - 8x与- 6x + 5与- 2
3.化简:(1)-xy2– xy2 (2) – 3x2y - 3xy2 + 2x2y - 2xy2
1.已知:_2 x3my3与-
值2.已. 知:32xmym+1
1_ 4
x6yn+1是同类项,求
m、n的
与 — 3x2yn 能合并.则
m= 2 ,n=3
1.说出下列各组中的两个单项式是不是同类项?为什么?
(1)x2y与-3yx2; 是 (2) a2b2与-ab2;不是
(3)-3与6; 是
(4) 2a与ab 不是
2. 指出4x2 - 8x + 5 - 3x2 - 6x - 2中的同类项
多项式中的项:4x2 ,- 8x , + 5 ,- 3x2 , - 6x , - 2
组成多项式的每个单项式的次数是该多项式各项的次 数;“几次项”中“次”就是指这个次数;
多项式的次数,是指示最高次项发次数。
(3) 单项式和多项式是统称为整式。
[例1] 指出下列代数式中哪些是单项式?哪些是
多项式?哪些是整式?
ab2
0, —
解:
3
,?
— x,?
x
— 3
2
,
s t
,3m 2
+ 1,
1 a
2. 多项式x+y-z是单项式 x、y、的和-z,它是___次
_1__项式3 . 3. 多项式3m3-2m-5+m2的常数项是__-_5_, 一次项是-__2_m__, 二次项的系数是__1___.
4.如果-5xym-1为4次单项式,则m=_4 ___.
5.若-ax2yb+1是关于x、y的五次单项式,且系数
为-1/2,则a=_1_/_2_,b=____. 2
6.多项式-3a2b3 +5a2b2-4ab-2 共有几项,多 项式的次数是多少?第三项是什么,它的系 数和次数分别是多少?
(4)根据加法的交换律和结合律,可以把一个多项式的各 项重新排列,移动多项式的项时,需连同项的符号一起 移动,这样的移动并没有改变项的符号和多项式的值。
(1)单项式是由数与字母的乘积组成的代数式; 单独的一个数或字母也是单项式; 单项式的数字因数叫做单项式的系数; 单项式中所有字母的指数的和叫做单项式的次数,而
且次数只与字母有关。
(2)多项式是建立在单项式概念基础上,几个单项式的和 就是多项式;
每个单项式是该多项式的一个项;每项包括它前面的 符号,这点一定要注意。
.
3.关于a, b的多项式 a2 + 6ab + 8b2 _ 2mab + b2
不ab含项. 则m= 3 .
4.如果2a2bn+1与-4amb3是同类项,则m=_2__,n2=__; 5.若5xy2+axy2=-2xy2,则a=_-__7_; 6.在6xy-3x2-4x2y-5yx2+x2中没有同类项的项是6_x_y_
把一个多项式按某个字母的指数从大到小的顺序排列 起来叫做把该多项式按这个字母的降幂排列;
把一个多项式按某个字母的指数从小到大的顺序排列 起来叫做把该多项式按这个字母的升幂排列。
排列时,一定要看清楚是按哪个字母,进行什么样的 排列(升幂或降幂)
[例2]将多项式xy — x4
—y 4
+
2 3
x
2
y3
—2x3y2按下列要求排列
下面各题的判断是否正确。
①-7xy2的系数是7;( ×)
②-x2y3与x3没有系数;(× )
③-ab3c2的次数是0+3+2;(× ) ④-a3的系数是-1; (√ )
⑤-32x2y3的次数是7;(× )
⑥
1 3
πr2h的系数是
1 3
。(
×)
成长的足迹 1. 单项式m2n2的系数是_1____,次数是__4___, m2n42是____次单项式.
本章知识点回顾
用字母表示数 用列式表示数量关系
整 单项式定义、系
式 数、次数
整
的 多项式定义、系 式
加 数、次数
减 同类项定义
合并同类项的法则 整式的加减
去括号的法则
应该注意四点:
(1)代数式中出现乘号,通常写作“."或者省略不写. (2)数字与字母相乘时,数字写在字母前面. (3)除法运算写成分数形式. (4)当表示和或差而后面有单位时,代数式应加括号.