最新27.1图形的相似课件ppt
合集下载
图形的相似 课件(共30张PPT)
题型1 判断两个四边形是否相似
D A B C D/ A/ B/ C/
课堂练习
1.如图,四边形ABCD 和EFGH 相似,求 角α ,β 的大小和EH的长度x
21 D A β 18 83° 78° C B
E
24
x
118°
H
F
α
G
课堂练习 2.如图所示的两个五边形相似,求 未知边a、b、c、d 的长度. 6 c 9 d
(小组合作)
(1)观察手中两个多边形,形状相同吗?它 们相似吗?
(2)量一量这两个多边形,对应的角和边, 你发现了什么?
相似多边形的特征:
对应角相等,对应边的比相等.
多边形相似的定义
如果两个多边形满足对应角相等,对 应边的比相等,那么这两个多边形相似.
C
C1
A
B
A1
B1
相似多边形对应边的比称为相似比
27.1图形的相似
复习旧知
新课导入
教学 过程
课堂练习 布置作 业 归纳总结
退出
复习旧知
观察:这4张邮票有什么特点?
全等图形: 形状、大小完全相同的图形是全等图形。
观察:各图中的两个三角形是全等形吗?
A
D
B
A
C
C O
E
M
F
S
O
D N T
B
全等三角形:
能够完全重合的两个三角形叫做全等三角形
注意:平移、翻折、旋转前后的两个三角形 的位置改变,但形状、大小不变。
教学重难点
重点:相似图形、相似多边形的概念。
难点:相似多边形性质的探究。
新课导入
1.你能说一说每一组图片的共同之处吗?
27.1 图形的相似课件(共30张PPT)
比)与另两条线段的比相等,如
a b
c
d(即
ad
=
bc),我们就说这四
条线段成比
27.1 图形的相似
观察与思考 1.观察多面体模型与五棱柱教具中的正五边形回答下列问题
27.1 图形的相似
问题1 这些正五边形两两之间相似吗?
相似
问题2 在这两个正五边形中,是否有对应相等的内角?
是
问题3 在这两个正五边形中,对应内角的两边是否成比例?
78° 83°
B
C
F
α G
27.1 图形的相似
解:∵ 四边形 ABCD 和 EFGH 相似, ∴ 它们的对应角相等.由此可得
∠α = ∠C = 83°,∠A = ∠E=118°.
在四边形 ABCD 中,
β = 360°-(78°+83°+118°) = 81°.
21 D
A
β
18
78° 83°
B
C
x E
27.1 图形的相似 如果放在教室最后面展示又有什么不同? 2. 图形的放大:
两个图形相似,其中一个图形可以 看作由另一个图形放大或缩小得到.
通过上面两 组图形的观 察,发现了 什么?
27.1 图形的相似 例1 放大镜观察学具的一个角和原来的角有什么关系?
放大之后的角与原来的 角是相似关系
27.1 图形的相似
118° 24
F
H
α G
27.1 图形的相似
∵ 四边形 ABCD 和四边形 EFGH 相似, ∴它们的对应边成比例,由此可得
EH AD
EF AB
,即
x 21
24 18
.
解得 x = 28 cm.
27.1 图形的相似课件
1.相似图形概念:把
的图形说成是相似图
形.举出几个相似图形的例子。
2.如图,下面右边的四个图形中,与左边的图形 相似的是( )
列举生活中相似图形的例子
你看到过哈哈镜吗?哈哈镜中的形象与你 本人相似吗?
(A)
(B)
(C)
同一底片印出来的不同尺寸的照片 也是相似图形.
放电影时胶片上的图像和它映射到 屏幕上的图像,都是彼此相似的.
当堂检测,反馈提高
1.△ABC与△DEF相似,且相似比是 ,则△DEF 与 △ABC与的相似比是( ).
A. 2
3
B.23
C.52
D.94
2.下列所给的条件中,能确定相似的有( )
(1)两个半径不相等的圆;(2)所有的正方形;(3) 所有的等腰三角形;(4)所有的等边三角形;(5)所 有的等腰梯形;(6)所有的正六边形.
段是成比例线段,简称比例线段.
4.相似多边形
(1)如何判别两个多边形相似?
对应角 ,且对应边的比 的两个多边形的两个多边形相似。
(2)相似多边形有哪些性质?
相似多边形的对应角 ,对应边的比 (对应边 )。
(3)相似比:相似多边形 的比称为相似比.
问题:1、相似比为1时,相似的两个图形有什么关系?
2、下列说法正确的是( )
27.1 图形的相似
图形的相似
图形的相似
图形的相似
图形的相似
图形的相似
观察下面两张照片,你发现有什么相同与 不同?
想一想:我们刚才所见到的图 形有什么相同和不同的地方?
相同点:形状相同. 不同点:大小不一定相 (一同).相似图形
形状相同的图形叫做相似图形.
自学教材P34-35,完成以下练习:
届九年级数学下册 第27章 图形的相似 27.1 图形的相似课件 (新版)新人教版.ppt
18cm
78° B
83° C
F
α
G
16
新知讲解
四边形ABCD和EFGH相似,它们的对应边的比相等.由此可得
EHEF,即x =24, AD AB 21 18
解得 x=28cm.
x
H
21cm
D
A
β
E 118°
24cm
18cm
78° B
83° C
F
α G
17
新知讲解
练一练
1.下列图形中能够确定相似的是( ABDF) A.两个半径不相等的圆 B.所有的等边三角形
an
分析:已知等边三角形的每个角都为60°, 三边都相等. 所以满足边数相等,对应
角相等,以及对应边的比相等.
13
新知讲解
…
a1
a2
a3
an
同理,任意两个正方形都相似.
归纳:任意两个边数相等的正多边形都相似.
问题:任意的两个菱形(或矩形)是否相似?为什么?
14
新知讲解
典例精析
例1.如图,四边形ABCD和EFGH相似,求角α,β的大小和EH的长度x.
H x
21cm
D
A
β
E 118°
24cm
18cm
78°
83°
B
C F
α G
15
新知讲解
解:四边形ABCD和EFGH相似,它们的对应角相等.由此可得 ∠α=∠C=83°,∠A=∠E=118° 在四边形ABCD中,
∠β=360°-(78°+83°+118°)=81°.
H x
21cm
D
A
β
24cm
E 118°
人教版九年级数学下册27.1《 图形的相似》 课件 (共29张PPT)
练一练
2.下列说法正确的是
( C)
A.相似形是全等形;
B.不相似的图形可能是全等形;C.全等形是相似形;D.不全等的图形不是相似形.
练一练
(1) (2)
(3)
下列各组图形 相似吗?
什么样的两个多边形是相似的?
二、相似多边形
1、定义:两个边数相同的多边形,如果它们的角分 别相等,对应边的比相等,那么这两个多边形叫做相 似多边形 2、相似比:相似多边形对应边的比叫做相似比
读着△ABC相似于△ A'B’C’
∽读作“相似于”通常把对应顶点写在对应位置上
ABC 和 DEF相似
4 CD E
7
12 14
6
AB DE
BC DF
AC EF
2 A BF
∠A =∠_E____, ∠B =∠_D____, ∠C =∠_F____;
△ABC的三条边的长分别为6、8、 10,与△ABC相似的△A/B/C/的最长 边为30。则△A/B/C/的最短边的长 为___1_8___。
ABC 和 EDF 相似
AB BC AC K ED DF EF
C DE
K表示这两个相似三角形
的相似比
F
相似比就是它们的对应边的比
AB
☺ 它有顺序关系
ABC ∽ EDF 它的相似比为
AB K ED
EDF∽ ABC 它的相似比为
ED 1 AB K
判断下列两个三角形是否相似?简单说明理由, 如果相似,写出对应边的比例
探索
请观察下面展示的图片的大 小和形状有什么关系?
观察
探索
日归常纳生活中我们会碰到很多这样形状 相同、大小不一定相同的图形,在数 学上,我们把具有相同形状的图形称 为相似形
人教版数学九年级下册27.1《图形的相似》课件(共17张PPT)
探究相似图形的关系
图形的放大 图形的缩小
相似图形的关系
两个图形相似,其中一个图形可以看作 由另一个图形放大或缩小得到。
随堂练习
1、教材P25.练习
补充:
1、你认为下列属于选项中哪个才是相似图形的本质属性(D )
A.大小不同
B.大小相同
C.形状不同
D.形状相同
2、下列说法:
①全等的图形一定相似;
归纳总结
所有的直角三角形不一定是相似图形 所以的等腰三角形不一定是相似图形 所有的锐角三角形不一定是相似图形 所有的等边三角形是相似图形 所有的等腰直角三角形是相似图形
相似图形的形状必须完全相同 相似图形与图形的大小、颜色、位置无关
购买楼房时,消费者只能根据户型平面图 纸选房,并且建筑工人建筑是严格按照图纸进 行施工,你认为选好的楼房结构可靠吗?
②相似图形一定全等;
③关于某条直线轴对称的两个图形一定相似;
④关于某个点中心对称的两个图形相似。
正确的有:__①_②_③____
课堂小结
相似图形的定义:
形状相同的图形叫做相似图形。
两个图形相似,如果大小不同, 其中一个图形可以看作由另一个 图形放大或缩小得到。
小练习
1.在下列图形中找出相似图形。
解后思考:
F
位置不同, 但形状相同
F
2.判断下列各组图形是否相似
等 腰 直 角 三 角 形
(1)
等腰Βιβλιοθήκη 直角三角
形
(3)
一
般
直
等
角
边
三
三
角
角
形
形
等
腰
等
直
腰
角
人教版九年级下册数学27.1:相似多边形 课件(共16张PPT)
对于图中两个相似的四边形,它们的对应角、对应边是否有同样的结论?
∠C=∠G= 900, ∠D=∠H= 900
在比例尺为1:10 000 000的地图上,量得甲、乙两地的距离是30cm,求两地的实际距离
相似多边形的判定方法:
(2)正方形ABCD与正方形EFGH. ∴AB=BC=CD=DA
x
∴∠A=∠E= 900, ∠B=∠F= 900
D
∴AB=BC=CD=DA
EF=FG=GH=HE
B
C
∴ ABBCCDDA.
E
H
EF FGGHHE
F
G
探究
1. 下图是两个相似的三角形,猜想它们的对 应角、对应边的比是否相等?
2. 对于图中两个相似的四边形,它们的对应 角、对应边是否有同样的结论?
问题:任意两个相似的多边形有什么性质?
相似多边形性质: 相似多边形对应角相等,对应边的比相等.
118°
18cm 例 如图,四边形ABCD和EFGH相似,求角α,β的大小和EH的长度x
x = 300000000 答: 甲,乙两地的实际距离为30000千米
解:四边形ABCD和EFGH相似,它们的对应角相等.由此可得
78° 83° ∠β=360°-(78°+83°+118°)=81°.
我们把相似多边形对应边的比称为相似比.
EF=FG=GH=HE ∠α=∠C=83°,∠A=∠E=118°
的比相等,那么这两个多边形相似. 解得 x=28(cm)
四边形ABCD和EFGH相似,它们的对应边的比相等.由此可得 我们把相似多边形对应边的比称为相似比.
答: 甲,乙两地的实际距离为30000千米 答: 甲,乙两地的实际距离为30000千米 (2)正方形ABCD与正方形EFGH. ∴∠A=∠E= 900, ∠B=∠F= 900
27.1 图形的相似 课件 2024-2025学年人教版(2012)九年级下册数学
比为 35, 则ABEE(AE<BE)的值为___12____.
课堂小结
图形的相似
相似多边形的定义 相似多边形的性质
相似 图形
四条线段成比例 相似比
综合应用创新
题型 1 利用比例的性质解决比例尺问题
例 7 某市的两个旅游景区之间的距离为105 km,则在一 张比例尺为1∶2 000 000 的交通旅游图上,它们之间 的距离大约相当于( ) A. 一根火柴的长度 B. 一支体温计的长度 C. 一支铅笔的长度 D. 一根筷子的长度
知2-讲
感悟新知
3. 比例的性质:若ab=dc,则ad=bc.
知2-讲
感悟新知
知2-讲
温馨提示 成比例线段是有顺序的,即若线段a,b,c,d成比例,
则有a∶b=c∶d或ab=dc,不能随意更改位置.
感悟新知
拓展 1. 合比性质:
知2-讲
若ab=dc, 则a±b b=c±d d. 2. 等比性质:
感悟新知
解:不相似. 理由如下:
知3-练
∵在矩形ABCD 中,AB=1.5 m,AD=3 m,镶在其外围的
木质边框宽7 .5 cm=0.075 m,∴EF=1.5+2×0.075=
1.65(m),EH=3+2×0.075=3.15(m).∴AEFB=11..655=1101,AEHD
=
3 3.15
综合应用创新
题型 2 利用比例的性质求值
例 8 如图27.1-3,在线段AB上取C,D两点,已知AB= 6 cm,AC=1 cm,且线段AC,CD,DB,AB 是成比 例线段,求线段CD的长.
综合应用创新
思路引导:
解:设CD=x cm,则DB=AB-AC-CD=6-1-x=(5- x) cm. ∵线段AC,CD,DB,AB 是成比例线段, ∴CACD=DABB. ∴1x=5-6 x.∴ x(5-x)=6,解得x=2 或x=3. 经检验,x=2 或x=3 均是原方程的解. 故线段CD的长为2 cm或3 cm.
课堂小结
图形的相似
相似多边形的定义 相似多边形的性质
相似 图形
四条线段成比例 相似比
综合应用创新
题型 1 利用比例的性质解决比例尺问题
例 7 某市的两个旅游景区之间的距离为105 km,则在一 张比例尺为1∶2 000 000 的交通旅游图上,它们之间 的距离大约相当于( ) A. 一根火柴的长度 B. 一支体温计的长度 C. 一支铅笔的长度 D. 一根筷子的长度
知2-讲
感悟新知
3. 比例的性质:若ab=dc,则ad=bc.
知2-讲
感悟新知
知2-讲
温馨提示 成比例线段是有顺序的,即若线段a,b,c,d成比例,
则有a∶b=c∶d或ab=dc,不能随意更改位置.
感悟新知
拓展 1. 合比性质:
知2-讲
若ab=dc, 则a±b b=c±d d. 2. 等比性质:
感悟新知
解:不相似. 理由如下:
知3-练
∵在矩形ABCD 中,AB=1.5 m,AD=3 m,镶在其外围的
木质边框宽7 .5 cm=0.075 m,∴EF=1.5+2×0.075=
1.65(m),EH=3+2×0.075=3.15(m).∴AEFB=11..655=1101,AEHD
=
3 3.15
综合应用创新
题型 2 利用比例的性质求值
例 8 如图27.1-3,在线段AB上取C,D两点,已知AB= 6 cm,AC=1 cm,且线段AC,CD,DB,AB 是成比 例线段,求线段CD的长.
综合应用创新
思路引导:
解:设CD=x cm,则DB=AB-AC-CD=6-1-x=(5- x) cm. ∵线段AC,CD,DB,AB 是成比例线段, ∴CACD=DABB. ∴1x=5-6 x.∴ x(5-x)=6,解得x=2 或x=3. 经检验,x=2 或x=3 均是原方程的解. 故线段CD的长为2 cm或3 cm.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形相似的一种判定方法)
问题2
A
2cm
D
3cm
B
C
E
F
已知△ABC∽△DEF,AC=2cm,DF=3cm
那么△ABC与△DEF对应边的比= ?2:3
我们将相似三角形对应边的比称之
为相似比。(用字母k表示)
问题3 △ABC∽△A'B'C'
△ABC与△A'B'C'的
3cm C
C' 6cm
相似比k1 =?BC 1 A
30
6 65╰0
800
5
α╭
图1
3
15
20
x
图2
• 相似图形 ——相同形状的图形
• 判断两个图形是否相似 • 利用相似放大或缩小图形
•相似多边形的特征和识别:
特征 对应角相等 相似多边形
识别 对应边的比相等
语文百花园六
1、能够用词语接龙的方法积累词语。 2、运用已有的阅读文章的方法,自己独立阅读 短文回答问题。 3、了解人们使用的各种笔的发明及的演变过程, 能够按要求根据自己收集的资料把“笔的演变”介 绍清楚。 4、在了解“笔的演变”的基础上展开想像,改 进一种笔,能够把未来的笔介绍清楚,写一篇习作。
下图是两个等边三角形,找出图形中的 成比例线段,并用比例式表示. 两个任意三角形是相似图形吗?
两个任意等腰三角形呢?
AC BCAB DH EH DE
例2:如图,点E、F分别是矩形ABCD的边AD、
BC的中点,若矩形ABCD与矩形EABF相似,
AB=1,求矩形ABCD的面积. A
E
D
解:∵矩形ABCD∽矩形EABF
B C/
读作:
△ABC相似于△ A'B'C' A/'
B/
注意 在写两个三角形相似时应
把表示对应顶点的字母写在对 应的位置上。
用符号语言表示:
C
A
B
C'
∵ ∠A= ∠A' 、∠B= ∠B' 、 ∠C=C'
AB BC CA A'B' B'C' C'A'
∴ △ABC∽△A'B'C'
A'
(B' 相似三角形的定义可以作为
A
D
E
B
C
A
E D
B
C
已知:ΔABC ∽ ΔADE,其中 ∠ADE= ∠B,写出对应边的比例 式。
例1 在如图所示的相似四边形中, 求未知边x、 y的长度和角度a的大小.
解:由于两个四边形相似,它 们的对应边的比相等,对应角 相等,所以
18 y x 4 67
解得 x=31.5,y=27
a =360°-(77°+83°+117°)=83°
形成认识:
1.相似多边形的特征:
对应角相等,对应边的比相等
符号语言(以四边形为例): ∵四边形ABCD∽四边形A′B′C′D′ ABBCCD DA
AB BC CD DA A A , B B , C C , D D (相似多边形对应角相等,对应边的比相等)
形成认识
2、两个相似多边形对应边的比也叫做这 两个多边形的相似比.
27.1图形的相似
请观察下面几组图片
你从上述几组图片发现了什么?
它们的大小不一定相等, 形状相同.
1、相似图形的概念:
形状相同的图形叫做相似图形。
注意:相似图形的大小不一定相同。
2、全等图形:
形状、大小都相同的图形称为全等图形。
注:全等图形是相似图形的特殊情况。
3、图形的相似具有传递性;
? (9)
(10) (11)
(12)
(13)
(14)
试一试
请把下列各组图形是否相似的结 论写在下面的括号里.
解: ①相似 ②不相似 ③不相似 ④相似 ⑤不相似 ⑥不相似
观察下面的图形(a)~(g),其中哪些 是与图形(1)、(2)或(3)相似的?
ABDF
思 考
全等的两个三角形相 似吗?
A
A
C
3、相似多边形的识别: 如果两个多边形对应角相等,对应
边的比相等,那么这两个多边形相似.
问题1:这两个三角形是Байду номын сангаас为 相似形?
对应角……? 对应边……?
相似三角形定义:我们把对应角相
等,对应边的比相等的两个三角形叫做 相似三角形。
△ABC与△ A'B'C'相似
C
表示为:
A
△ABC∽△ A'B'C'
B
B'C' 2
A'
B'
△A'B'C'与△ABC的相似比k2=BB?'CC'
2 1
三角形的前后次序不同,所 得相似比不同。
判断:
× 1、所有的等腰三角形都相似( )
2、所有的等边三角形都相似( √ )
× 3、所有直角三角形都相似( )
4、所有的等腰直角三角形都相似(√)
三角形的中位线截得的三角形与 原三角形是否相似?相似比是多少?
AB BC AE AB
AB 2AE •BC B F
C
又∵F是BC的中点 AE1AD1BC
1BC2 AB2 1
2 BC 2
2
2
S矩A形 B CA D•B B C2
基础训练
• 填空: • (1)等腰三角形两腰的比是__1_∶__1___; • (2)直角三 角形斜边上的中线和斜边的
比是__1_∶__2____.
C
B B
两个相似的平面图形之间有什么关系 呢?为什么有些图形是相似的,而有些 不是呢?相似图形有什么主要特征呢?
合情猜测
如果两个图形相似,它们的对应边、 对应角可能存在某种关系.
探索一
图中两个四边形是相似形,仔细观察这两 个图形,它们对应边之间存在怎样的关系? 对应角之间又有什么关系?
探索二
再看看图中两个相似的五边形,是否 与你观察所得到的结果一样?
1、积累词语。 2、能够把未来笔的样子、功能介绍清楚。
一、语海畅游
(一)词语接龙
藕断丝连:藕断了,但藕丝仍然连着。比喻表
连绵不绝:接连不断。形容连续不止,从不中
绝处逢生:在毫无出路的情况下得到生路。绝
轻而易举 举一反三:比喻从一件事类推而知道许多事情。 三长两短:意外的灾祸或事故。现较多指人的 微不足道:比喻非常微小,不值得一提。微: 道听途说:从路上听来的,马上就在路上传播 说三道四:指乱发议论。
基础训练
• 口答: • (3)如图所示的两个五边形是否相似?
基础训练
• 口答: • (4)如图,正方形的边长a=10,菱形的
边长b=5,它们相似吗?请说明理由.
基础训练
3
• 练习:
800
x
• ⑴如图1,则x= 2.5 , ╮1250
y = 1.5 ,α= 900;
y
• ⑵如图2,x= 22.5 .
图形 A
图形 B
图形 C
如果图形A与图形B相似,图形B与图形C相似, 那么图形A与图形C相似。
放大镜下的图形和 原来的图形相似吗?
放大镜下的角与原图 形中角是什么关系?
你看到过哈哈镜吗?哈哈镜中的形 象与你本人相似吗?
(A)
(B)
(C)
观察下列图形,哪些是相似形?
?
⑴
⑵
⑶
⑷
⑸⑹
(7)
(8)