第五章 管中流动

合集下载

流体力学龙天渝课后答案第五章孔口管嘴管路流动

流体力学龙天渝课后答案第五章孔口管嘴管路流动

解�由题得� � � �
1 � 0.707
l
� d � �� �1
6.如上题�当管嘴外空气压强为当地大气压强时�要求管嘴出流流速为 30m/s。此时静压箱 内应保持多少压强�空气密度为 ρ=1.2kg/m3。
解� v � � 2 �p �得 �p � 1.08kN / m 2 �
7.某恒温室采用多孔板送风�风道中的静压为 200Pa�孔口直径为 20mm�空气温度为 20℃� μ=0.8。要求通过风量为 1m3/s。问需要布置多少孔口�
∴负压值为-2.93m 16.如图水泵抽水系统�管长、管径单位为 m�ζ 给于图中�流量 Q=40×10-3m3/s�λ=0.03。 求�
�1�吸水管及压水管的 S 数。 �2�求水泵所需水头。 �3�绘制总水头线。
5
解��1� S H1
=
� 8�� �

L1 d1

��1 �
2
d
4 1
g

2
� �� �
� 8� l1
解�(1)
S P1 �
d1

2
d
4 1
�8� l2
SP2 �
d2

2
d
4 2
� 8(� l3 � 1)
SP3 �
d3

2
d
4 3
S P � S P1 � S P 2 � S P3
p � SPQ2
解得� p � 2500 Pa
�2�铅直安装不会改变总压�因为同种气体位压等于零 �3� p � S P Q 2 � 2830 Pa 18. 并联管路中各支管的流量分配�遵循什么原理�如果要得到各支管中流量相等�该如何 设计管路�

第五章 管中流动解析

第五章 管中流动解析

Re≤2320 流型判据: 2320< Re<13800 或为湍流)
Re ≥ 13800
层流 过渡状态(或为层流
湍流
5.1.4 水力直径
过流断面面积A与过流断面上流体与固体 接触周长S之比的4倍来作为特征尺寸。这种尺 寸称为水力直径,用dH表示
dH
4
A S
式中 A ——过流断面面积;
S ——过流断面上流体与固体相润湿的 周界长,称为湿周。
湍流的剪应力: 由分子运动和质 点脉动所引起
e
du
dy
e 涡流粘度,它表征脉动的强弱.
Re为一无因次量,称为雷诺数。
雷诺数的物理意义:
Re
du
u 2 u d
惯性力 粘性力
Re越大,表示惯性越大,湍动程度越剧烈; Re小,表示粘性力占主导地位,湍动程度小。
这就是说,液体流动时的雷诺数若相同,则 它的流动状态也相同。另一方面液流由层流转变 为湍流时的雷诺数和由湍流转变为层流的雷诺数 是不同的,前者称为上临界雷诺数,后者为下临 界雷诺数,后者数值小,所以一般都用后者作为 判别液流状态的依据,简称临界雷诺数,当液流 实际流动时的雷诺数小于临界雷诺数时,液流为 层流,反之液流则为湍流,常见的液流管道的临 界雷诺数可由实验求得。
(2) 湍流 当流体微团间互相掺混作无序地流动,其流速、压力等力学 参数在时间和空间中发生不规则脉动的流体运动,称为湍流,又 称为紊流。湍流是在大雷诺数下发生的,其基本特征是流体微团 运动的随机性。湍流中由于这种随机运动而引起的动量、热量和 质量的传递,其传递率比层流高很多。它一方面强化传递和反应 的效果;另一方面剧增了摩擦阻力和能量损耗。
5.1 流动形态
5.1.1 雷诺实验

流体力学第五章 管中流动-1

流体力学第五章 管中流动-1
解: (1)由表1-6(P28)查此时水的粘度为1.308×10-6
Re vd 1.0 0.1 76453 Rec 2300 6 1.308 10


管中流动为湍流。 (2) Rec vc d

vc
Rec
d
1.308 106 2300 0.03 0.1
2012年12月15日 20
5.2 圆管中的层流
本章所讨论的流体 1. 流体是不可压缩的; 2. 运动是定常的;
主要内容: • 速度分布 • 流量计算 • 切应力分布 • 沿程能量损失
2012年12月15日 21
过流截面上流速分布的两种方法
vd
我们知道当
较小,即速度和管子直径较小而粘度较大时出现层流
哈根-伯肃叶(Hagen-Poiseuille)定律, 它与精密实验的测定结果完全一致。
2012年12月15日 26
粘 度 的 测 定 方 法
利用哈根-伯肃叶(Hagen-Poiseuille)定律可以测定粘度,它是测 定粘度的依据。因为,根据公式可以导出:

pd 4
128qvl

pd 4t
4 A 4 Bh 2h 4cm S 2B vd 要使 Re H 2320 v 0.017 m / s dH

2012年12月15日 18
例题三:某段自来水管,d=100mm,v=1.0m/s,
水温10℃, (1)试判断管中水流流态? (2)若要保持层流,最大流速是多少?
(2)速度分布具有轴对称性,速度分布呈抛物线形。 (3)等径管路中,压强变化均匀。 (4)管中的质量力不影响流动性。
2012年12月15日 22
• 1.第一种方法 • 根据圆管中层流的流动特点,对N-S方程式

传热学第五章_对流换热原理-6

传热学第五章_对流换热原理-6

2-2)管内流体平均温度
t f
c p tudf
f
c pudf
2 R 2um
R
turdr
0
f
其中,tf为根据焓值计算的截断面平均温度。
由热平衡方程
dQ hx (tw t f )x * 2R * dx cpumR2dt f

dQ q * 2R * dx
可得
dt f 2q 2hx (tw t f ) x
t
( tw t r tw t f
)rR
( r )rR tw t f
const
而同时又有
q
(
t r
)
r
R
h(t w
tf
)
于是,得
(
t r
)
r
R
h
const
tw t f
上式又表明,常物性流体在热充分发展段的一个特点是 换热系数保持不变。
另外,如果边界层在管 中心处汇合时流体流动 仍然保持层流,那么进 入充分发展区后也就继 续保持层流流动状态, 从而构成流体管内层流 流动过程。
若 Pr<1, 则意味着流动进口段长于热进口段; 1-3)管内流动充分发展段的流态判断
Re 2300 2300 Re 10 4 Re 10 4
层流 过渡流 旺盛湍流
2)管内流体平均速度与平均温度
2-1)管内流体运动平均速度
um
f udf 0f
2
R 2
R rudr V
0
f
其中,V-体积流量;f-管的截断面积;u-局部流速
dx c pum R
c pum R
积分上式可得全管长流体的平均温度。
由于热边界存在有均匀壁温和均匀热流两种典型情

第五章 孔口、管嘴出流和有压管路

第五章 孔口、管嘴出流和有压管路

(2)管嘴长度l=(3~4)d。
5.2.4 其他形式管嘴

工程上为了增加孔口的泄水能力或为了增加(减少)出 口的速度,常采用不同的管嘴形式


(1)圆锥形扩张管嘴 (θ=5~7° ) (2)圆锥形收敛管嘴 (较大的出口流速 ) (3)流线形管嘴 (阻力系数最小 )
孔口、管嘴的水力特性
5.3 有压管路恒定流计算
1
从 1→2 建立伯努利方程,有
v2 H 0 00 n 2g 2g 2g
l (3 ~ 4)d
0v0 2
v 2
H
c
0 d
2
0
1 v n
2 gH0 n 2 gH0
c
2
n 0.5
式中:
1 n n
1
n 为管咀流速系数, n 0.82
pc

0.75H 0

对圆柱形外管嘴:
α=1, ε=0.64, φ=0.82
5.2.3 圆柱形外管嘴的正常工作条件

收缩断面的真空是有限制的,如长江中下游地区, 当真空度达7米水柱以上时,由于液体在低于饱和蒸汽 压时会发生汽化 。 圆柱形外管嘴的正常工作条件是: (1)作用水头H0≤9米;

5.2 管嘴出流
一、圆柱形外伸管嘴的恒定出流

计算特点: 出流特点:
hf 0
在C-C断面形成收缩,然后再扩大,逐步充满 整个断面。 1
l (3 ~ 4)d
H
c
0 d
2
0
c
2
1

在孔口接一段长l=(3~4)d的 短管,液流经过短管并充满出口 断面流出的水力现象成为管嘴出 流。 根据实际需要管嘴可设计成: 1)圆柱形:内管嘴和外管嘴 2)非圆柱形:扩张管嘴和收缩 管嘴。

第5章-圆管流动

第5章-圆管流动

e/d
Re
莫迪图λ
结论
0.03 0.1473 0.00102 1.732×106 0.02 用0.02重算
0.02 0.1358 0.0011 1.87×106 0.02
一致
d 0.298 1/5 0.1358m 即设计的最小管径为0.1358m
5.6 圆管湍流的沿程损失
5.6.3 非圆管的湍流沿程损失
——摩擦阻力系数,与
管径d、管中流速u和管 壁的光滑程度有关;
5.4 圆管中流体的湍流运动:
湍流剪应力分布与普朗特混合长度理论

1
2'


du dy


ux'
u
' y
平均值:
脉动值:
Re数较小时,1 占主导地位
Re数很大时, 2 1
牛顿内摩擦力 雷诺应力
y
u(y l')
第五章 圆管流动
内容提纲
5.1 雷诺实验与流态判据 5.2 圆管中流体的层流运动 5.3 椭圆管中流体的层流运动(自学) 5.4 圆管中流体的湍流运动 5.5 流体运动的两种阻力 5.6 圆管湍流的沿程损失 5.7 管路的局部损失 5.8 管路计算(自学)
按流体与固体接触情况来分,流体运动主要有下列四种形式。

1 2 umax
(层流时平均速度为最大速度的1/2)
5.4 圆管中流体的湍流运动:
湍流运动:三维随机运动,脉动性
瞬时速度 = 时均速度 + 脉动速度
u u u'
u 1
T
udt
T0
u' u u, 1 T u'dt 0

第五章 孔口管嘴出流及管路计算

第五章 孔口管嘴出流及管路计算

hw 2 s2
1 s2
hw 3 s3
1 s3
Q1 Q2
s2
Q2 ; s1 Q3
s3
Q3 ; s1 Q1
s3 s1
或者:
Q1 : Q2 : Q3 1 s1 : 1 s2 : 1 s3
流量分配规律
第四节 流体通过缝隙液流动 一、平行平板缝隙 图示为在两块平行平板所形成的缝隙间充 满了液体,缝隙高度为h,缝隙宽度和长度 为b和l,且一般恒有b>>h和l>>h。
QA QB QC Q0 Q
管路水力计算
2.阻力损失关系:串联管路系统的总水头损失(压头)损失 等于各管段水头损失之和。
hw hw A hwB hwC
2 2 2 hw S A Q A S B QB S C QC
第三节
三、并联管路计算
由不同直径或粗糙度的 简单管道连接在一起的 管道叫做串联管道 1.流量关系:
管路水力计算
列1-1及2-2断面伯努利方程:
2 pa v12 p a v2 H 0 hw g 2 g g 2 g 2 v2 H hw 2g v2 l 对于短管: hw h f h j d 2g l 8 hw 2 4 Q 2 hw SQ2 d gd
第二节
1、管嘴出流流量
管嘴出流
以管嘴中心线为基准线,列1-1及b-b断面伯努利方程:
αV V2 H ζ 2g 2g 2g
2 1 1
α V2

1
H0 H
1v12
2g
管嘴出口速度为
V
αζ
2 gH0 n 2 gH0
管嘴流量 Q VA n A 2gH 0 un A 2gH 0

流体力学课件 第五章 流动阻力

流体力学课件  第五章  流动阻力

斜直线分布
r hf 1 g grJ 2 l 2
du grh f dr 2l
抛物线分布
2.流速分布 3.流量
Q
r0 0
gh f 2 2 u (r0 r ) 4l
gh f 2 2 gh f 4 (r0 r ) 2 rdr d 4l 128l
(3)粗糙区
莫迪
§5-7 局部损失计算
一、边界层理论
1.边界层:贴近平板存在 较大切应力、粘性影响不能 忽略的这一层液体 。
2.边界层的厚度:当流速达到 边界层的厚度顺流增大,即δ是x的函数。
处时,它
3.转捩点,临界雷诺数 转捩点:在x=xcr处边界层由层流转变为紊流的过渡点。
临界雷诺数: Recr
三、总水头损失
hw h f h j
i 1 i 1 n n
§5-2 流体流动的两种型态
一、雷诺实验
1883年英国物理学家雷诺按图示试验装置对粘性流体进行 实验,提出了流体运动存在两种型态:层流和紊流。
1 4
(a)
hf 5
(b)
2
3
(c)
1.层流 :管中水流呈层状流动,各层的流体质点互不掺混的 流动状态。
四、湍流切应力分布和流速分布
1.切应力分布
du 2 du 2 1 2 L ( ) dy dy
摩擦切应力 普朗特混合长度 : 附加切应力
y L ky 1 r0
k 称为卡门常数
k 0.36 ~ 0.435
2.流速分布 (1)近壁层流层: 管壁切应力
du u 0 dy y
§5-6 湍流的沿程损失
一、湍流沿程损失计算

流体力学第五章 管中流动 湍流-2

流体力学第五章 管中流动 湍流-2
粘性底层一般1 mm左右。
粘性底层 过渡区 湍流核心区
图3.4.2 湍流的速度结构
2012年12月15日 11
粘性底层虽然很小,但其作用不可忽视。 由于管子的材料,加工方法,使用条件,使用年限的影响,使得管壁 出现各种不同程度的凸凹不平,它们的平均尺寸△称为绝对粗糙度。 δ>△ 粗糙度对湍流核心几乎无影响, 水力光滑管 δ<△ 湍流核心流体冲击粗糙突起部位,引起涡旋,加剧湍乱程度, 增加能量损失, 水力粗糙管
来速度,到达新位置后,立刻和b层流体混合在一起,其速度变为b层速度。具 有了b层的时均速度。
2012年12月15日 5
vy 'dAv
该微团在x方向的原动量vy 'dAv
小于b层具有的动量
vy
'
dA(v
l
dv dy
)
和b层混合后,必然使b层流体动量在x方向上降低,引起瞬时 的速度脉动-vx。
对于原来流体微团来说,到达b层后,原来y方向的脉动转换 为x方向的脉动。如此反复,湍流脉动频繁的主要原因。
层流破坏后,在湍流中会形成许多涡旋,这是造成速 度脉动的原因,但理论上找脉动规律很困难。
统计时均法: 不着眼于瞬时状态,而是以某一个适当时间段 内的时间平均参数作为基础去研究这段时间内 湍流的时均特性。时间长短2、3秒一般足够。
2012年12月15日 2
1、时均流动与脉动
下图为一点上的速度变化曲线,用T时间段内的时间平均 值代替瞬时值,这一平均值就称作一点上的时均速度。
R
2012年12月15日 16
思考题
2.湍流研究中为什么要引入时均概念?湍流时,恒定 流与非恒定流如何定义?
3.湍流时的切应力有哪两种形式?它们各与哪些因素 有关?各主要作用在哪些部位?

第五章 管中流动

第五章 管中流动

一、时均流动与脉动
根据图所示的一点上的速度变化曲线,用一 定时间间隔T内的统计平均值,称为时均流 速 v 来代替瞬时速度,即
1 v T

T
0
vt dt
瞬时速度v与时均速度 v 之间的差值称为脉动 速度,用v’表示,即
v v v
想一想:湍流的瞬时流速、 时均流速、脉动流速、断面 平均流速有何联系和区别?
流体粘性切应力与附加切应力的产生有着本质的区别,前者是流体分子无 规则运动碰撞造成的,而后者是流体质点脉动的结果。
2. 混合长度理论
湍流附加切应力 t v vy 中,脉动流速 v , vy 均为随机量,不能直接计 x x 算,无法求解切应力。所以1925年德国力学家普兰特比拟气体分子自由程的概念, 提出了混合长理论。
p P h f gqV gqV pqV Fv g
2 128lqV P pqV d 4
七、层流起始段
流体以均匀的速度流入管道后,由于粘性,近壁处产生边界层,边界 层沿着流动方向逐渐向管轴扩展,因此沿流动方向的各断面上速度分布不 断改变,流经一段距离L后,过流断面上的速度分布曲线才能达到层流或 湍流的典型速度分布曲线,这段距离L称为进口起始段。
二、混合长度理论
1. 湍流流动中的附加切应力
t v vy 0 x
——雷诺切应力 雷诺切应力的时均值
t v vy x
在湍流运动中除了平均运动的粘性切应力 而外,还多了一项由于脉动所引起的附加 切应力,总的切应力为
dv v v x y dy
速度分布按对数规律,特 点是速度梯度小。
一、临界速度与临界雷诺数
上临界流速vc:层流→湍流时的流速。 下临界流速vc:湍流→层流时的流速。 vc < vc Re= vd/ 上临界雷诺数Rec :层流→湍流时的临界雷诺数,它易受外界干扰, 数值不稳定。 下临界雷诺数Rec :湍流→层流时的临界雷诺数,是流态的判别标准。 判别依据:

《流体力学》第五章孔口管嘴管路流动

《流体力学》第五章孔口管嘴管路流动

2g
A
C O
C
(C
1)
vc2 2g

(ZA
ZC )
pA


pC


Av
2 A
2g

H0

(Z A
ZC )
pA


pC
AvA2
2g
§5.1孔口自由出流
1
则有
vc

c 1
2gH0
H0

(Z A
ZC )
pA


pC
AvA2
2g
H0称为作用水头,是促使
力系数是不变的。
§5.4 简单管路
SH、Sp对已给定的管路是一个定数,它综合 反映了管路上的沿程和局部阻力情况,称为 管路阻抗。
H SHQ2
p SpQ2
简单管路中,总阻力损失与体积流量平方成 正比。
§5.4 简单管路
例5-5:某矿渣混凝土板风道,断面积为1m*1.2m, 长为50m,局部阻力系数Σζ=2.5,流量为14m3/s, 空气温度为20℃,求压强损失。

2v22
2g
1
vc2 2g
2
vc2 2g
令 H0 (H1 ζH12:局)液部体p阻1 经力p孔2系口数处1v的122g1 2v22
1
H1 H
H2
2
2
H0 (1 2 ) 2vcg2突ζ然2:液扩体大在的收局缩部断阻面力之系后数 C
C
§5.2 孔口淹没出流
1
c 1
2gH0
Q A 2gH0 A 2gH0
出流
H0

5.孔口、管嘴出流和有压管流

5.孔口、管嘴出流和有压管流
2
v2 n 2 gH0
2
A2 1 2 1 1 A c
2 2 2 a c pv p a pc a c 1 v2 1 2 2 a 1 2 a 1 n H 0 g g 2 g
A.Q1=Q2;
B.Q1>Q2;
C.Q1<Q2; D.关系不定。
四、应用
1.虹吸管的水力计算 (略)
管道轴线的一部分高出无压的上游供水水面,
这样的管道称为虹吸管。因为虹吸管输水,具有能
跨越高地,减少挖方,以及便于自动操作等优点, 在工程中广为应用。
虹吸现象
流速 v 2 gH0
1 l1 l2 d 1 2
3、分析:
水击现象只发生在液体中,因气体的压缩性很大,而 液体的较小,故当液体的受压急剧升高时就会产生水击; 管壁 具有足够的刚性才可能产生水击; 如果液体是不可 压缩的,管壁是完全刚性的,则水击压强可达到无限大。
二、水击的传播过程 以较简单的阀门突然关闭为例 1、分析:
与自由出流一致
结论 1、流量公式:
Q A 2 gH 0
2、自由式与淹没式对比: 1> 公式形式相同; 2> φ、μ基本相同,但 H0不同; 3> 自由出流与孔口的淹没深度有关,
淹没出流与上、下游水位差有关。
z H v0 v0 v2
自由式: H0 = H + v02 2g
淹没式: v02 2g v22 2g
2F
A
H H' 2g
解得
H ' 2.44
一昼夜的漏水量
V ( H H ' ) F 8.16m3

流体力学 第五章 孔口管嘴管路流动(第二次)

流体力学 第五章 孔口管嘴管路流动(第二次)



l d

22
2g

2



l d


2 2
2g
由 2 2gH

对于圆柱形管嘴,经实验得:
22 2 H
2g
0.64, 0.02, l / d 3, 0.82
得 pa pc 0.75H 0
负压
表明在收缩断面的真空度是作用水头75%,管嘴的 作用相当于将孔口自由出流的作用水头增大了75%, 从而管嘴流量大为增加。
(2)但是,随着作用水头的增加,真空度亦将增 大。当真空值降低到液体的空气分离压,甚至到饱 和蒸汽压时,液体将气化产生大量气体,必然破坏 流动的连续性而使管嘴不能正常工作。因此,一般 对于水,其作用水头不应大于9~9.5m。
五、管嘴出流的两个限制条件
(1)对收缩断面真空度的限制
1.当流体为水时,在真空值达到7~8mH2O,常温下 的水会发生汽化而不断产生气泡,破坏了连续流动。
2.外界空气在较大压差作用下,近2-2断面冲入真空 区,破坏了真空。
真空值上限
真空值控制在7mH2O以下,故作用水头的极限值 [H2O]=7/0.75=9.3m.
穷究于理,成就与工
流体力学
内容回顾
核心问题1: 孔口出流分类
孔口出流:容器壁
上开孔,水经孔口
流出的水力现象。
H
d
l
d H 10 小孔口
孔口
d H 10 大孔口
孔口断面 流速分布
1、小孔口:以孔口断面上流速分布的均匀性为衡 量标准,如果孔口断面上各点的流速是均匀分 布的,则称为小孔口。
2、大孔口:如果孔口断面上各点的流速相差较大, 不能按均匀分布计算,则称为大孔口。

流体力学4

流体力学4

2、起始段长度:层流 L*=0.02875dRe; 紊流 L*=(25~40)d。 3、① 如果管路很长,l»L* , 则起始段的影响可以忽略,用
64 ② 工程实际中管路较短, Re 考虑到起始段的影响,取 75 Re
5—3 圆管中的湍流

一、时均流动与脉动
管中湍流的速度随时在发生变化, 这种瞬息变化的现象称为脉动。 研究湍流的方法是统计时均法, 研究某一时间段内的湍流时均特性。

三、管路特性
管路特性就是指一条管路上水头H(hW)
与流量qV之间的函数关系,用曲线表示 则称为管路特性曲线。 hW=k· V2 q

例题1:图示两种状态,管水平与管自然 下垂,那种状态流量大,为什么?
1
3
Z2
2
Z1

解:分别对1、2断面及1、3断面列伯努 利方程,有
l V2 l V2 z1 ( 入 ) 2 g (1 入 ) 2 g d d l V2 2 z 2 (1 入 ) 2 g d

d 2g
64 层流 Re
75 ;工程中取 Re
68 0.25 紊流 0.11( R d ) e
5—5 圆管中的局部阻力

局部损失
V hj 2g
2

一、局部阻力产生的原因 1、漩涡; 2、速度的重新分布。
二、几种常用的局部阻力系数 1、管路截面的突然扩大
(V1 V2 ) hj 2g
5—2 圆管中的层流
一、速度分布与流量 p 2 2 1、速度分布 v (R r ) 4l

可简写为 v A Br 公式说明过流断面上的速度v与半径r 成二次旋转抛物面的关系。

第五章 管中流动习题

第五章 管中流动习题

第四章 流体动力学教学安排(1)雷诺实验(1课时)(2)圆管中的层流 (1课时) (3)圆管中的湍流(2课时) (3)管路中的沿程阻力(1课时) (4)管路中的局部阻力(2课时) (5)管路计算(2课时) 本章教学要求(1)雷诺实验(掌握雷诺实验、两种流动状态的判定、层流和湍流形成的原因、水力直径 计算,理解管中层流湍流的水头损失规律)(2)圆管中的层流(速度分布、切应力分布,沿程阻力计算)(3)圆管中的湍流(速度分布、切应力分布,沿程阻力计算,粘性底层 、圆管中紊流的区划、水力光滑与水力粗糙概念)(3)管路中的沿程阻力(尼古拉兹实验五个区域,区域与相对粗糙度和RE 关系) (4)管路中的局部阻力(记住突扩管、淹没入流、水箱出流局部阻力系数)(5)管路计算(什么是长管、什么是短管,简单管路和并联、串联管路计算问题)问答题:1. 试从流动特性、速度分布、切应力分布和水头损失比较圆管的层流和紊流特性?2. 输水管道的流量一定时,随着管径的增加,雷诺数是增加还是减少?3. 什么是水力光滑、什么是水力粗糙?4. 按照尼古拉玆试验曲线可将流动分成几个区域?各个区域的特点?如何判断?沿程阻力系数是如何确定的?5. 什么是水力直径?什么是湿周?6.液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。

7.由紊流转变为层流的临界流速k v 小于 由层流转变为紊流的临界流速k v ',其中kv '称为上临界速度,k v 称为下临界速度。

8.对圆管来说,临界雷诺数值=k Re 2320。

9.圆管层流的沿程阻力系数仅与雷诺数有关,且成反比,而和管壁粗糙无关。

10.根据λ繁荣变化特征,尼古拉兹实验曲线可分为五个阻力区,分别是层流区;临界区;紊流光滑区;紊流过渡区和紊流粗糙区。

11.速度的大小、方向或分布发生变化而引起的能量损失,称为局部损失。

12.正三角形断面管道(边长为a),其水力半径R 等于a x A R 123==,当量直径de 等于a R 334=。

流体力学龙天渝课后答案第五章孔口管嘴管路流动

流体力学龙天渝课后答案第五章孔口管嘴管路流动


L5
d
5 5
)
H并

S
2
Q
2 2
� 11.15m
H 1�5 � S1�5Q 2 � 13m 7
∴ H � 11.15 � 13 � 24.15m
23.管段 1 的管径为 20mm�管段 2 为 25mm�l1 为 20m�l2 为 10m��� 1 � �� 2 � 15 �� � 0.025 �
1
� �� �
1 l
� d � �� �1
证�∵ H 0

v2 2g
� ��
v2 2g
��
l d
v2 2g
∴ v � � 2 gH 0
其中� �
1 l
� d � �� �1
5.某诱导器的静压箱上装有圆柱形管嘴�管径为 4mm�长度 l =100mm�λ=0.02�从管嘴入 口到出口的局部阻力系数 �� � 0.5 �求管嘴的流速系数和流量系数�见上题图�。
由于 H 不变� Q3 减小�所以 Q 2 减小 25.三层供水管路�各管段的�值皆 106s2/m5� 层高均为 5m。设 a 点的压力水头为 20m�求 Q1、Q2、Q3�并比较三流量�得出结论来。�忽 略 a 处流速水头�
解� Q' � Q2 � Q3
Q � Q1 � Q' � Q1 � Q2 � Q3
解�Q= n�A 2 �p �得 n � 218.4 �所以需要 219 个 �
8.水从 A 水箱通过直径为 10cm 的孔口流入 B 水箱�流量系数为 0.62。设上游水箱的水面高
程 H 1 =3m 保持不变。
�1�B 水箱中无水时�求通过孔口的流量。
�2�B 水箱水面高程 H 2 =2m 时�求通过孔口的流量。

水力学 第五章_有压管道的恒定流

水力学 第五章_有压管道的恒定流
式中 hw ——为管嘴的水头损失,等于进口损失与收缩断面后的 进口损失与收缩断面后的 扩大损失之和(管嘴沿程水头损失忽略),也就是相 扩大损失之和 当于管道锐缘进口的损失情况. ζn——管嘴阻力系数,即管道锐缘进口局部阻力系数, 一股取ζn =0.5; n ——管嘴流速系数 n = 1 / α + ζ n ≈ 1 / 1 + 0.5 = 0.82 μn——管嘴流量系数,因出口无收缩,故 n = n = 0.82
各种流速下的k值计算,其结果见表5—2. 为了计算方便,编制出各种管材,各种管径的比阻A的计算表 .钢管的 见表 钢管的A见表 见表5-4. 钢管的 见表5—3,铸铁管的 见表 ,铸铁管的A见表 .
2.串联管路 . 由直径不同的几段管路依次连接而成的管路,称为串联 由直径不同的几段管路依次连接而成的管路 管路.串联管路各管段通过的流量可能相同,也可能不同. 根据能量方程得(各管段的流量Q,直径d,流速v不同,整个 整个 串联管路的水头损失应等于各管段水头损失之和): 串联管路的水头损失应等于各管段水头损失之和
= ε = 0.54 × 0.97 = 0.62
2.大孔口的自由出流 大孔口的自由出流
适用上式, Ho为大孔口中心的水头, = ε
中ε较大.
在水利工程中,闸孔出流可按大孔口出流计算,其流量系数列 于表51中.
§5—2 液体经管嘴的恒定出流
1.圆柱形外管嘴的恒定出流 . 圆柱形外管嘴: 圆柱形外管嘴: 在孔口断面处接一直径与孔口直径完全相同 的圆柱形短管,其长度L=(3~4)d. 收缩断面C-C处水流与管壁分离,形成漩涡区;在管嘴出口断 面上,水流已完全充满整个断面. 列 管嘴为自由出流时的 伯努利方程 以通过管嘴断面形心的水平面为 基准面; 基准面; 对 断面 断面0-0 和 管嘴出口断面 b-b列方程.

水力学系统讲义课件第五章(1)-流动形态及水头损失

水力学系统讲义课件第五章(1)-流动形态及水头损失

1
v1≈0 进口
0 1
转弯 突扩
突缩 阀门
H
2 V0 Q
2
h w12 hf hj
过水断面的形状和尺寸对沿程水头损失的影响
A
A
A
A1
A2
Χ1
Χ2
Χ3
Χ4
Χ5
圆形
正方形
长方形
(a)
(b)
湿周:过水断面上被液体湿润的固体周界长度,
记为χ。
1 2 3
hf1 hf 2 hf 3
产生原因:液体的粘滞性和液体质点间的动量 交换而引起的。
1
v1≈0 进口
0 1
转弯 突扩
突缩 阀门
H
2 V0 Q
2
局部水头损失:在水流方向、断面形状和尺寸 改变以及障碍处产生,记为hj。
产生原因:局部地区产生漩涡。漩涡的产生及 维持,漩涡水体与主流之间的动量交换,漩涡 间的碰撞与摩擦均需消耗能量而引起水头损失。
形过水断面渠道的水 力半径为
b
矩形过水断面渠道的水力 半径,令m=0,则
R bh mh2 b 2h 1 m2
R bh b 2h
对于h/b<1/10的宽矩形过水断面渠道的水力半径
R h h 1 2 h b
§5-2 均匀流中沿程水头损失的计算 公式
圆管总流中取出长度为s的一段作为控制体,研 究其平衡。假设流动是恒定的均匀流,且液体 是不可压缩的。
实验结论
1.同一种液体在同一个管道中流动,当流速不 同时液体有两种不同的运动型态:
(1)层流:是指在流速较小时,液体质点作有 条不紊的直线运动,水流各层上的质点互不掺 混。 (2)紊流(湍流):是指在流速较大时,流层 逐渐不稳定,质点相互掺混,液体质点运动轨 迹极不规则的流动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p1 p 2


Δpf
压力降→阻力损失 的直观表现
说明:若管路不为水平或直径不等,则上下游之间的压力 变化 除因阻力损失外,还包括位能或动能变化所引 起的部分。 即:p1-p2≠△pf
直管阻力损失的计算
hf p1 p 2

hf g Δpf
2 p1 u12 p2 u2 z1 z2 Hf g 2 g g 2g
Hf
g
Δ p f h f gH f
阻力损失:△pf ——Pa
hf ——J/kg
Hf ——m
(2) 范宁公式
p1r 2 p2r 2 w 2rl
p f p1 p2 ( 4l ) w d
W
p1 r
W
p2
w l u 2 p f 8 u 2 d 2
e 涡流粘度, 它表征脉动的强弱.
随 Re 及所处的位置而变. 不同于粘度., 难于测定.
5.3.2 边界层概念
为什么引入边界层概念? 实际流体与固体壁面作相对运动时,流体内部 存在剪应力作用,由于速度梯度集中在壁面附近, 故剪应力也集中在壁面附近。而远离壁面处的速度 变化很小,作用于流体层间的剪应力也小到可以忽 略,这部分流体便可以当作理想流体。 也就是说,分析实际流体与固体壁面的相对运 动时,应以壁面附近的流体为主要对象。故普兰德 提出了边界层的概念。
5.4 管内流动的阻力损失
流体流动阻力包括:1· 直管阻力损失(沿程阻力损失)
5.4.1 直管阻力损失
局部阻力损失(管件、阀门等的阻力损失) 2·
1 2
(1) 直管阻力损失的直观表现 2 p1 u12 p 2 u2 z1 g z2 g hf 2 2
u
p1 R p2
hf
C→D:截面继续扩大,p ↑,近壁面处流体在反向压力(逆压强梯 度)作用下被迫倒流,产生大量旋涡,此即边界层分离。
C点:由于阻力损失,流速降为0(若为理想流体,D点流速降为0);
边界层分离演示
边界层分离的后果:〈1〉产生大量的旋涡
〈2〉造成较大能量损失
平板及流线型物体不会发生边界层分离
流体沿壁面流过时的阻力→表皮阻力(或摩擦阻力) 流体的流道发生弯曲、突然扩大或缩小、绕过物体流 动,引起边界层分离→形体阻力。
ur
p r 2 c 2 l 2
因紧贴在管壁上的运动速度为零:即r = R, u= 0,代入上式求c
Δp 2 c R 4l
p ur (R2 r 2 ) 4l
u max Δ p 2 R 4 l
在管中心,r =0, ur 达到最大值umax
2 pR r ur 1 u max 4l R 2
5.1.3 雷诺数
实验表明,液体在圆管中的流动状态不仅 与管内的平均流速v有关,还和管径d、液体的 运动粘度ν 有关,但是真正决定液流运动状态 的是用这三个数所组成的一个称为雷诺数Re的 无量纲数,即
Re
du


du

3
du (m)(m / s)(kg / m ) 0 0 0 m kg s Re kg /(m s) Re为一无因次量,称为雷诺数。
本章主要讨论管中不可压缩流体的运动规 律,其中有许多基本概念对于绕流或明渠流动也 是适用的,管中流动所涉及的问题包括流动状态、 速度分布、起始段、流量和压差的计算、能量损 失等等。其中能量损失问题是本章的重点。该问 题在第三章稍有涉及但并未深入讨论,因为它与 流动状态有关。本章首先介绍层流和湍流概念, 讨论层流和湍流能量损失的形成原因和计算方法, 介绍沿程阻力和局部阻力系数的公式和图表,然 后以短管和长管为例说明上述原理的具体应用, 最后再简单介绍管中水击现象。
b
du d
k
q
u
第五章
1 2 3 4
管中流动
按流体与固体接触情况来分,流体运动主要有下列四种形式。
流体在固体内部的管中流动和缝隙中流动; 流体在固体外部的绕流; 流体在固体一侧的明渠流动; 流体与固体不相接触的孔口出流和射流。
除此之外也还有一些更复杂的形式。这些广泛的流体运动形 式与航空、水利等多种学科有关。就机械制造类专业来说,以第 一种形式较为常见,不要说大范围的工厂车间中管道比比皆是, 就是小范围的机床汽车中也往往有错综复杂的润滑、冷却、液压 或燃料管道,甚至叶轮机叶轮及其他许多机械构件的通道也不妨 可以看作是一种疏导流体的异形管道。
p1

p2 r 2
du y dy
5.2.1 层流速度分布
2rl r p1 p 2 2rl 2l
du r dr
y R r , dy dr
du p 即: r r dr 2 l p dur rdr 2 l
r 2 1 R
上式即为管内层流时的速度分布表达式u 随r 按抛物线分布, 在空间的速度分布图形则为一旋转抛物面。
5.2.2 湍流的速度分布 r p1 p 2
2l du 湍流条件下:特征方程=+e 中的e 难测定 dy n
ห้องสมุดไป่ตู้
雷诺数的物理意义:
Re
du

u 惯性力 u d 粘性力
2
Re越大,表示惯性越大,湍动程度越剧烈; Re小,表示粘性力占主导地位,湍动程度小。
这就是说,液体流动时的雷诺数若相同,则 它的流动状态也相同。另一方面液流由层流转变 为湍流时的雷诺数和由湍流转变为层流的雷诺数 是不同的,前者称为上临界雷诺数,后者为下临 界雷诺数,后者数值小,所以一般都用后者作为 判别液流状态的依据,简称临界雷诺数,当液流 实际流动时的雷诺数小于临界雷诺数时,液流为 层流,反之液流则为湍流,常见的液流管道的临 界雷诺数可由实验求得。
将b、q、k表示为a、c、j 的函数,整理得
c+k=2 j=1-k a=-b-k-q
c=2-k
带入Δp的幂函数中: p f Kd bk ql bu 2k 1k k q
p f Kd bk ql bu 2k 1k k q
p f
p f
l K 2 u d
R 2u
2
u
p f 8l
R
2
p f 32l
d2
p f
32 lu d2
此式称为哈根(Hagen)-泊谡叶(Poiseyulle)公式
2 l u 与范宁公式比较 p f d 2
64 64 = du Re
由哈根-泊谡叶公式得层流时阻力损失与速度的一次方 成正比、与管长的一次方成正比、与管径的两次方成反 比。注意该式适用于层流、牛顿流体
w 令=8 u 2
2
l
l u p f d 2
l u hf d 2
2
l u2 Hf d 2g
上三式为计算直管阻力损失的范宁公式,
它适用于层流和湍流。
5.4.2 层流时的摩擦损失
由层流时的最大速度与压力降的关系可得:
u max
p f 4l
n
6
0.791
7
0.817
8
0.837
9
0.852
10
0.865
u/ uc
5.3
圆管中的湍流
5.3.1 湍流的脉动现象和时均化
时均速度和脉动速度 : u
1 T

T
0
udt
瞬时速度 时均速度 脉动速度, 即u u u
湍流的剪应力: du 由分子运动和质 e dy 点脉动所引起
5.4.3 湍流流动的阻力损失
(1)因次分析法
因次……就是量纲 ,如质量[M]、长度[L]、时间[T] 因次论的依据:1· 物理量方程的因次一致性 2·π定理:任何因次一致的物理量方程都 可以表示为准数关联式;准数个数i=n-m 式中:n为物理量个数, m为用于表示所有物理量的基本因次数目 影响直管阻力损失的因数有三个: 1· 物性因数:μ和ρ 2·设备因数:l 、d和管壁粗糙度 ε 3· 流动因数:u
[u]=L T
-1 -1 -1
式中各物理量的因次 为: L
-1
[d]=L [ε]=L
[ρ]=ML-3 [μ ]=ML T 将各物理量的因次代入,整理得:
MT 2 L1 M j k Labc3 j k qT ck
根据因次一致性原则得: j+k=1 a+b+c-3j-k+q=-1
S ——过流断面上流体与固体相润湿的 周界长,称为湿周。
5.2 流体在圆管内的速度分布
流体在管内流动的受力分析
在长度为l的管段内划出半径 为r的圆柱形流体段作分析。
〈1〉压力(取流速方向为正)
2 2 P r p P r p2 1 1, 2
〈2〉重力,垂直于管轴,故投影为0
〈3〉阻力,作用于侧表面2πrl 上的剪力为
qv 1 u u max 平均速度: 2 R 2
(层流时平均速度为最大速度的1/2)
湍流时,有ur= umax(1-r/R) 1/n= umax(1-r/R)1/7 (令n=7)
u 0.817umax
即湍流时平均速度大约等于管中心处最大速度的0.82倍。 Re 越大,则n值越大,求出之ur/ umax便越大。
5.3.3 边界层及其形成
壁面附近速度变化较大、流动阻力集中在此区域→边界层 离壁面较远、速度基本不变的区域,流动阻力可忽略→主流区 边界层的范围:速度0 →99%u主体
5.3.4 边界层分离
边界层的一个重要特点是在某些情况下会脱离壁 面,称为边界层分离。
相关文档
最新文档