向量三点共线结论的推广及应用

合集下载

(完整版)平面向量中“三点共线定理”妙用

(完整版)平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。

特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。

例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。

点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。

例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

高中数学教学论文 向量法证明三点共线的又一方法及应用

高中数学教学论文 向量法证明三点共线的又一方法及应用

向量法证明三点共线的又一方法及应用平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明.原题 已知OB λOA μOC =+u u u r u u u r u u u r ,其中1λμ+=. 求证:A 、B 、C 三点共线思路:通过向量共线(如AB k AC =u u u r u u u r )得三点共线.证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+u u u r u u u r u u u r u u u r u u u r∴()OB OA μOC OA -=-u u u r u u u r u u u r u u u r ∴AB μAC =u u u r u u u r∴A 、B 、C 三点共线.思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性;2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+u u u r u u u r u u u r ,且1λμ+=.揭示了三点贡献的又一个性质;3. 特别地,12λμ==时,1()2OB OA OC =+u u u r u u u r u u u r ,点B 为AC u u u r 的中点,揭示了OAC V中线OB 的一个向量公式,应用广泛.应用举例 例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且13BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明BN λBM μBC =+u u u r u u u u r u u u r ,且1λμ+=. 证明:由已知BD BA BC =+u u u r u u u r u u u r ,又点N 在BD 上,且13BN BD =,得 1111()3333BN BD BA BC BA BC ==+=+u u u r u u u r u u u r u u u r u u u r u u u r 又点M 是AB 的中点, 12BM BA ∴=u u u u r u u u r ,即2BA BM =u u u r u u u u rD A B C M N2133BN BM BC ∴=+u u u r u u u u r u u u r 而21133+= ∴M 、N 、C 三点共线.点评:证明过程比证明MN mMC =u u u u r u u u u r 简洁.例2如图,平行四边形OACB 中,13BD BC =,OD 与AB 相交于E ,求证:. 14BE BA =. 思路分析:可以借助向量知识,只须证明:14BE BA =u u u r u u u r ,而BA BO BC =+u u u r u u u r u u u r ,又O 、D 、E 三点共线,存在唯一实数对λ、μ,且1λμ+=,使BE λBO μBD =+u u u r u u u r u u u r ,从而得到BE u u u r 与BA u u u r 的关系. 证明:由已知条件,BA BO BC =+u u u r u u u r u u u r ,又B 、E 、A 三点共线,可设BE k BA =u u u r u u u r ,则BE k BO k BC =+u u u r u u u r u u u r ①又O 、E 、D 三点共线,则存在唯一实数对λ、μ,使BE λBO μBD =+u u u r u u u r u u u r ,且1λμ+=. 又13BD BC =u u u r u u u r 13BE λBO μBC ∴=+u u u r u u u r u u u r ②根据①、②得 131k λk μλμ=⎧⎪⎪=⎨⎪+=⎪⎩,解得141434k λμ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩ 14BE BA ∴=u u u r u u u r 14BE BA ∴= 点评:借助向量知识,充分运用三点共线的向量性质解决问题,巧妙、简洁. D O AC E B。

向量三点共线结论的推广及应用

向量三点共线结论的推广及应用

向量中“三点共线”结论的推广及应用 姓名: 一、知识点:1、向量共线(平行)的定义: 2、三点共线的向量证明原理:二、结论:已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1.小结:变式.已知A ,P ,B 是共线的三点,O 为面内任意一点,且OP →=mOA →+nOB →(m ,n ∈R ),若OP tOP '=,则求tm tn +的值。

小结:二、三点共线例题分析例1.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,求实数p 的值.小结:例2.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,求实数m 的值.小结:变式1.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,求m +n 的值.小结:变式2.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,求1n +1m 的值.小结:变式3.如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.小结: 例3.给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.小结:变式1、平行四边形ABCD 中,060BAD ∠=,1AB AD ==,P 为平行四边形内一点,且2AP =, 若AP AB AD λμ=+ , 则λ+的最大值为变式2. 在矩形ABCD 中,1,2AB AD ==,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为 .小结:变式3.已知点G 是ABC ∆的重心,点P 是GBC ∆内一点,若,AP AB AC λμλμ=++则的取值范围是___________小结: 例4.已知O 是△ABC 内部一点,且3OA →+4OB →+5OC →=0求△AOB 与△AOC 的面积之比.变式1.已知O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△AOB 与△AOC 的面积之比.变式2.已知O 为三角形ABC 内一点,且满足()1OA OB OC O λλ++-=,若O A B ∆的面积与OAC ∆的面积比值为13,则λ的值为小结:ABGP G ’P ’三、三点共线练习1.在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则5λ+3μ的最大值为 .2、平行四边形ABCD 中,060BAD ∠=,1AB AD ==,P 为平行四边形内一点,且2AP =, 若AP AB AD λμ=+ , 则λ+的最大值为3.如图,直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足AP →=mAB →+nAD →(m ,n 均为正实数),则1m +1n的最小值为 .4.在ABC ∆中,M 为边BC 上的任意一点,点N 在线段AM 上,且满足31=,若),(R ∈+=μλμλ,则μλ+的值为 .5.已知点()()1,0,0,1A B ,O 为坐标原点,点P 为函数()()20f x x x x=+>图象上任意一点,若OP mOA nOB =+(),m n R ∈,则m n +的最小值为6.已知点()()2,0,0,1A B -,O 为坐标原点,点P 为函数()2x f x e =+图象上任意一点,若OP mOA nOB =+(),m n R ∈,则m n +的最小值为7. ,,A B C 为单位圆上三个不同的点,若π,,(,)4ABC OB mOA nOC m n ∠==+∈R ,则m n +最小值为_______.。

三点共线算法

三点共线算法

三点共线算法三点共线算法是数学中的一个重要概念,用来判断给定的三个点是否在同一条直线上。

这个算法在几何学、计算机图形学以及计算机视觉等领域中都有广泛应用。

本文将介绍三点共线算法的原理和应用,以及一些相关的概念和定理。

一、三点共线算法的原理三点共线算法的原理其实很简单,就是利用向量的线性相关性来判断三个点是否在同一条直线上。

具体来说,我们可以将三个点分别表示为向量A、B和C,然后计算向量AB和向量AC的叉积。

如果叉积为零,即(AB × AC) = 0,那么这三个点就在同一条直线上;如果叉积不为零,那么这三个点就不在同一条直线上。

三点共线算法在几何学中有广泛的应用。

例如,在解析几何中,我们经常需要判断一个三角形的三个顶点是否共线,这时就可以利用三点共线算法来判断。

此外,在计算机图形学和计算机视觉中,三点共线算法也常用于图像处理和目标识别等任务中。

三、相关概念和定理除了三点共线算法,还有一些相关的概念和定理也与之密切相关。

例如,共线点定理指出,如果一个点在一条直线上,那么它的任意两个点也在同一条直线上。

这个定理可以作为三点共线算法的基础。

还有一些定理可以用于判断三个点是否共线。

例如,如果三角形的两边的中点和第三边的一个顶点共线,那么这三个点就共线。

另外,如果一个三角形的内心和外心与三个顶点共线,那么这三个点也共线。

四、三点共线算法的优化虽然三点共线算法很简单,但是在实际应用中可能会遇到一些性能问题。

例如,当处理大规模数据时,如果对所有的三个点都执行一次三点共线算法,那么算法的时间复杂度将会很高。

为了提高算法的效率,可以采用一些优化措施,例如使用空间分割树结构来加速算法的执行。

五、总结三点共线算法是一种判断给定的三个点是否在同一条直线上的算法。

它的原理很简单,只需要计算两个向量的叉积即可。

这个算法在几何学、计算机图形学和计算机视觉等领域中有广泛的应用。

此外,还有一些相关的概念和定理可以用于判断三个点是否共线。

平面向量中的三点共线结论的应用

平面向量中的三点共线结论的应用

若,3.已知B 为OAC 边AC 上一点,且满足OC y OA x OB +=4,不等式222313x y m m x y +≥-++恒成立时,实数m 的最值范围为___________.巩固练习1.在ABC ∆中,4AB =,O 为三角形的外接圆的圆心,若),(R y x AC y AB x AO ∈+=且21x y +=,则ABC ∆的面积的最大值为_____.2.在P AB ∆中,,60,9,80=∠==APB PB P A 点C 满足PB y P A x PC +=,且,0,0,532≥≥=+y x y x 其中则||PC 的最大值为______,最小值为______.3.已知ABC ∆的外心为O 满足AC y AB x AO +=,若,10,6==AC AB 且,5102=+y x 则=∠BAC cos ______.例5.如图,M 为△ABC 的中线AD 的中点,过点M 的直线分别交线段AB 、AC 于点P 、Q 两点,设AP xAB =,AQ y AC =,记()y f x =,设32()32g x x a x a =++,[0,1]x ∈,若对任意11[,1]3x ∈,总存在2[0,1]x ∈,使得12()()f x g x =成立,则实数a 的取值范围为______.巩固练习2.(2022·辽宁葫芦岛·高三期末)如图,在等腰ABC 中,已知2AB AC ==,120A ∠= ,E ,F 分别是边AB ,AC 上的点,且AE AB λ= ,AF AC μ=,其中λ,R μ∈,且21λμ+=,若线段EF ,BC 的中点分别为M ,N ,则MN的最小值是()A .77B .217C .2114D .213.(2023·全国·高三专题练习)直角三角形ABC 中,P 是斜边BC 上一点,且满足2BP PC =,点M 、N 在过点P 的直线上,若AM m AB = ,AN nAC =,()0,0m n >>,则下列结论错误的是()A .12m n+为常数B .m n +的最小值为169C .2m n +的最小值为3D .m 、n 的值可以为12m =,2n =巧用杠杆原理处理三角形中的向量问题数值,各线段上得如图所示各点的标数则根据杠杆平衡原理可,已知三角形中的赋值标数法,d,cNC AN b a MB AM ==点数值乘数值等于点数值乘线段上,段数值乘积相等。

三点共线向量表示及其性质应用

三点共线向量表示及其性质应用

三点共线向量表示及其性质应用新课标新教材《数学4》一道例题给出了三点共线的向量法表示,还提示我们可以利用这个例题解决三点共线问题,所以值得我们深入探究和发掘.本文就此给出了三点共线向量表示的两种证法探究,以启迪思维和拓展思路之目的,另外又给出了三点共线向量表示在解题中的应用。

下面且看笔者一一道来,供大家参考。

例题:如图1,A ,B ,C 是平面内三个点,P 是平面内任意一点,若点C 在直线AB 上,则存在实数λ,使得PC =λPA +(1-λ)PB .证法探究:思路1分析: 初看欲证目标,始感实难下手。

我们不妨从结论出发探寻线路,欲证PC =λPA +(1-λ)PB ,只需证PC =λPA +PB -λPB ⇔PC -PB =λ(PA -PB )⇔BC =λBA ⇔BC ∥BA .这样证明思路有了。

证法1:∵向量BC 与向量BA 共线,∴BC =λBA ,即PC -PB =λ(PA -PB ),PC =λPA +PB -λPB ,∴PC =λPA +(1-λ)PB .证毕,再思考一下实数λ的几何意义究竟如何。

考察向量等式BC =λBA ,结合图形,易知,当点C 在线段AB 上时,则BC 与BA 同向,有0≤λ≤1;当点C 在线段AB 延长线上时,则BC 与BA 反向,有λ<0;当点C 在线段BA 延长线上时,则BC 与BA 同向,有λ>1.思路2分析:回想平面向量基本定理,如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内任一向量a ,存在一对实数21,λλ,使2211e e a λλ+=。

所以我们可以不共线PA 、PB 作为一组基底,PC 则由它们线性表示,即存在λ,μ∈R ,使PC =λPA+μPB .接下来,证明思路有了。

请看证法2。

证法2:当A 、B 、P 共线时,结论显然成立;当A 、B 、P 不共线,即有向量PA 、PB 不共线,以PA 、PB 为基底,PC 由它们线性表示,即存在λ,μ∈R ,使PC =λPA+μPB .过点C 作BP A C //',AP B C //',如图2.PC =A P '+B P ',所以A P '=λPA ,B P '=μPB .由λ='='=||||||PA PA BA ,||PA A P '||PB B B '=||PB B P PB '=1-μ,得1-μ=λ,即μ=1-λ,故PC =λPA +(1-λ)PB .此例题逆命题亦成立,即已知A ,B ,C 是平面内三个点,P 是平面内任意一点,若存在实数λ,μ,有PC =λPA +μPB ,且λ+μ=1,则A ,B ,C 三点共线.故此逆命题可作三点共线判定方法。

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B、P三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x ,y使得:OP xOA yOB =+且1x y +=。

特别地有:当点P在线段AB 上时,0,0x y >> 当点P 在线段A B之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。

例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为Sn,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O),则S 200=( ) A .100ﻩﻩﻩﻩB.101 ﻩC.200 ﻩﻩﻩD.201解:由平面三点共线的向量式定理可知:a1+a 200=1,∴1200200200()1002a a S +==,故选A。

点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。

例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y x x y ∴>> 由基本不等式可知:4424y x y x x y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是B C的中点,过点O 的直线分别交直线AB 、AC于不同的两点M 、N,若AB = m AM ,AC =nAN ,则m +n 的值为 .解:因为O 是B C的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是图3图4图2△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线.设OA x OP =,OB y OQ =,证明:yx 11+是定值; 证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y∴+= 113x y ∴+= 11x y ∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与B F相交于G 点,记AB a =,AD b =,则AG =_______A.2177a b +B. 2377a b +C. 3177a b + D. 4277a b + 分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

共线向量定理的推论的推广及其应用

共线向量定理的推论的推广及其应用

共线向量定理的推论的推广及应用贵州织金一中 龙瑞华最近几年的高考试题中,很多题目都是以向量知识为背景,向量知识成高考的热点。

在高二下册B 版本的课本第九章第五节中讲到共线向量定理的推论。

下面就该推论的推广在解题中的应用加以探究。

一、推论的叙述及变式。

如果l 为经过已知点A 且平行于已知非零向量a 的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式:(1)OP OA ta=+在l 上取AB a =,则(1)式可化为OP OA t AB =+因为AB OB OA =- ∴(1)(2)OP t OA tOB=-+由(2)式可看出等号的左边向量OP 的系数1刚好等于右边的向量OA 与OB 的系数之和1-t +t ,由推论易知此时A 、B 、P 三点同在一条直线上。

O 为直线外一点,即P 为△OAB 边AB 上的点,线段OB 、OP 、OA 是有共同端点的三条线段,另外的三个端点都在同一条线上。

线段OP 刚好是三条线段中的中间一条,它所表示的向量(1)OP t OA tOB =-+,在等式中,左边系数之和=右边系数之和。

图(一)a二、推论的推广由共线向量定理的推论,我们可以得到如下结论: 结论一:在△ABC 中,D 为BC 边上的点,如果BD x =DCy,则以A 点为起点的三个向量的中间一个向量AD =AC AB x y x y x y+++。

证明:BD BC,BD=AD AB,BC=AC-AB xx y=-+即可证明。

结论二:共起点的三个向量如果它们的终点在同一条直线上,那么用其中二个向量表示另一个向量时,左边系数之和等于右边系数之和。

结论三:在结论一中如果点D 不在边BC ,是在三角形ABC 的内部或外部,在图(三)中,AD=xAC+yAB ,则 1x y +<,在图(四)中AD AC AB x y =+,则 1x y +>,证明先找到AD 与BC 的交点,转化为第一种情形,即三点在同一条直线上,再应用向量共线定理a b λ=进行转化。

共线向量定理及其应用

共线向量定理及其应用

共线向量定理及其应用知识点:一、共线向量基本定理a (a ≠0 )与b 共线⇔存在唯一一个实数λ,使b a λ= 。

推论:a 与b共线⇔存在不全为零的实数12,λλ,使120a b λλ+=成立。

二.三点共线1.点A,B,P 共线⇔存在非零实数λ,使AP AB λ=成立。

(1)若点P 在线段AB 上(与A.B 不重合)时,则0<λ<1; (2)若点P 与A 重合时,则λ=0; (3)若点P 与B 重合时,则λ=1;(4)若点P 在线段AB 的延长线上时,则λ>1; (5)若点P 为线段AB 的中点时,则λ=12; (6)点P 在线段BA 的延长线上时,λ<0. 2.对于平面上的任意一点O,点P.A.B 三点共线⇔x (1)()OP OA x OB x R =+-∈3.对于平面上的任意一点O,点P.A.B 三点共线⇔(,)OP xOA yOB x y R =+∈且x+y=1.三.重要结论1.若向量a,b不共线,则12120==0a b λλλλ+= 当且仅当时成立,反之亦然。

2.若向量a,b不共线,则1212a ==0b λλλλ= 当且仅当时成立,反之亦然。

3.若向量a,b不共线,则11221212a ==b a b λμλμλλμμ+=+ 当且仅当且时成立,反之亦然练习部分:1.在△ABC中,点D在线段BC的延长线上,且,点O在线段CD上(与点C、D不重合),若的取值范围是()A.B.C.D.2.如图所示,A,B,C是圆O上的三点,CO的延长线与线段BA 的延长线交于圆O 外的点D,若,则m+n的取值范围是A.(0,1)B(1,+∞)C(-∞,-1)D(-1,0).3.如图,经过∆OAB的重心G的直线与OA.OB分别交于P.Q,设,,,,OP mOA OQ nOB m n R==∈,则11n m+的值为----------- 。

4.如图,一条直线EF 与平行四边形ABCD 的两边AB,AD 分别交于E,F 两点,且交其对角线AC于K ,其中,则λ的值是()A.15B.14C.13D.125.在△ABO中,11,,42OC OA OD OB == AD与BC相交于点M,设,OA a OB b ==,试用a 和b 表示向量OM6.设两个非零向量a 与b 不共线,试确定实数k,使得ka b + 和a kb +共线答案:1.设(01)CO CD λλ=<< ,x (1)AO AB X AC xAB AC xAC =+-=+- , ()AO AC x AB AC ∴-=- ,x ()3CO CB x BC xCD ⇒==-=-,3,x λ∴=-所以,0<-3x<1,103x ∴-<<.2.解::由C,O.D 三点共线知,(0),1OCOC kOD k k OD=<=<又,所以-1<k<0. 又B.A.D三点共线,(1)OD OA OBλλ∴=+- .(1)OC kOD k OA k OB λλ∴==+- .所以m+n=k λ+(1)k λ-=k (1,0)∈-3.解221111()()3323OG OD OA OB OP OQ m n ==⨯+=+ =1133OP OQ m n+.,,P G Q 三点共线,11111,333m n m n∴+=∴+= 4.解()AK AC AB AD λλ==+=32AE AF λλ+ ,因为K,E,F 三点共线,所以3λ+2λ=1.∴λ=15. 5.解∵D ,M ,A三点共线,∴存在实数m使得m (1)(1);2m O M O D m O A m a b =+-=-+ 又B ,M ,C 三点共线,同理可得,1(1)4n OM nOB n OC a nb -=+-=+62{,1714mn m n m =∴=--=得,1377OM a b ∴=+6.k=1。

平面向量三点共线结论

平面向量三点共线结论

平面向量三点共线结论
平面向量三点共线结论是指在平面上,如果三个不共线的向量都在同一直线上,则这三个向量共线。

该定理可用来证明三个点是否共线,从而得出相应的结论。

首先,我们来回顾一下向量的基本概念,在数学中,向量是一种有方向性的对象。

它表示从一个位置指向另一个位置的直线,它可以用大写字母来表示,例如a、b、c。

向量可以用二维和三维空间来表示,它的方向可以沿着X 轴,Y轴或Z轴方向改变,它的大小也可以改变。

平面向量三点共线结论是指,如果在平面上有三个不共线的向量,即a、b、c,且这三个向量都在同一直线上,则这三个向量共线。

证明:
假设a、b、c是平面上三个不共线的向量,且这三个向量都在同一直线上,则有:
(1) 向量a、b、c在同一平面内。

(2) 向量a、b、c的头部和尾部都在同一直线上。

(3) 向量a、b、c有一定的比例关系,即
a/b=c/d=e/f,其中d、e和f也是向量。

由此可知,如果三个不共线的向量都在同一直线上,则这三个向量共线。

这里给出的证明是在平面空间中的三点共线定理,而同样的定理也适用于空间三点共线定理,即当三个向量分别位于三个不同的点时,如果这三个点都在同一直线上,则这三个向量共线。

该定理的应用非常广泛,可以用来证明三个点是否共线,同时也可用于证明两点之间的向量是否平行,从而得出相应的结论。

沪教版(上海)数学高二上册8.4平面向量的应用—三点共线课件

沪教版(上海)数学高二上册8.4平面向量的应用—三点共线课件
平面向量的应用
——三点共线 平面向量的应用
——三点共线
平面向量的应用 重心到顶点的距离与其到对边中点距离之比为2:1。
重心到顶点的距离与其到对边中点距离之比为2:1。 平面向量的应用
——三点共线
——三点共线 平面向量的应用
——三点共线 重心到顶点的距离与其到对边中点距离之比为2:1。 重心到顶点的距离与其到对边中点距离之比为2:1。 重心到顶点的距离与其到对边中点距离之比为2:1。 平面向量的应用
——三点共线
外一点,若pOA 平面向量的应用
——三点共线
qOB
rOC
0
(
p,
q,
r
R),
平面向量的应用
则p q r ——三点共线
平面向量的应用 ——三点共线

平面向量的应用
—线
重心到顶点的距离与其到对边中点距离之比为2:1。
平面向量的应用
——三点共线
重心到顶点的距离与其到对边中点距离之比为2:1。
实数1、2,使a 1e1 2e2 。
我们把不平行的向量e1、e2叫做这一平面内 所有向量的一组基底。
新课引入
过 OAB的重心G的直线与边OA,OB 分别交于P,Q,设OP h OA,OQ k OB, 研究 1 1 是否为定值。若是,求出此定值。
hk
知识储备:
三角形的重心: 三条中线的交点。
热身练习2
已知等差数列{an}前n项和为Sn。
若OB a1OA a200 OC,且A, B, C 三点共线( 设直线不过原点O),
则S200

例题讲解1:
例1. 过 OAB的重心G的直线与边OA,OB
分别交于P,Q,设OP h OA,OQ k OB,

向量中有关三点共线的一个结论的简单应用

向量中有关三点共线的一个结论的简单应用

2021年第07期总第500期数理化解题研究向量中有关三点共线的一个结论的简单应用孙红(浙江省青田中学;2;900)摘 要:向量具有几何和代数的双重属性,它是沟通几何与代数的桥梁,注重运用向量解决数学问题,体现了几何与代数的融合,有利于培养学生的数学思维能力,有利于提升数学学科核心素养.本文结合具体的实例,探讨了向量中三点共线的一个结论的简单应用•关键词:向量;三点共线;应用中图分类号:G632 文献标识码:A 文章编号:;008 -0333(202;)07 -0049 -03向量是近代数学中重要和基本的数学概念之一,是 解决解析几何的有力工具,有着丰富的实际背景和深刻 的几何背景.向量来源于物理,并且兼有”数”和”形”的特点,坐标表示使平面内的向量和坐标建立了一一对应的 关系,将“数”与“形”紧密结合起来’从而将图形的基本性 质转化为向量的运算体系•在平面向量的解题中涉及到三点共线时经常用到下面的结论,我们一起来探讨一下•结论 已知0,A ,B ,C 四点共面,若0C 二入°4 + “ OB(入,“ e R ),则A ,B ,C 三点在同一条直线上的充要条件是 入 + “ - 1.证明 (先证必要性) 若A ,B , C 三点在同一条直 线上,则存在t e R ,使得A C - t AB.所以O B - 04 -t ( O B - B ).即 B - (1 - t )04 + t 0B -入 B + /zO B .则r -;-t ,此时入+“-1.z 二t ,(再证充分性)若入+ z - 1,则0C -入04 + z 0B - (1 -z )0B + z 0B .所以0B - 0B -z (0B - 0B ).即A C -/zA B .所以A ,B ,C 三点在同一条直线上.综上所述,A ,B , C 三点在同一条直线上的充要条件 是入+ z — ; •点评平面向量三点共线结论中三个向量04,0B , 0B 必须是同起点,其中蕴含了一个几何特征,即三点共线 和一个代数结论入+ z -1 •上述结论中包含了两个方面:(;)若A ,B ,C 三点在同一条直线上,则入+ z -1; (2)若入+ z -;,则A , B , C 三点在同一条直线上•在向量解题中 要注意灵活应用,即结论的正用和逆用,下面一起来看一 下结论的简单应用.题1在A ABC 中,D ,E 分别是线段BC 上(除端点外)的两个动点,B + B -% A b + yA c ,求丄+ 4的最小值.%y分析因为B ,D ,C 三点共线,所以存在m E R ,使得A 力-mA B + (1 - m )A C . ①同理,由B , E , C 三点共线,则存在n e R ,使得A B -nA B + (1 - n )AC.②所以AD + AE - (m + n )A B + (2 - m - n )AC - % A B +% - m + n , “ …y AC ,即{解得 % + y -2•y - 2 - m - n ,又分别是线段BC 上的两个动点,所以0 < m <1,0 < n < 1.2% - 3、时等号成立.4y -;所以 0 <%,y <2.所以丄+ -y -I I 1 +%y 2 V %/5+2 弹・4% ]-9,V %y 丿2,'% + y -2,当且仅当y 4%即V %y ,:0( %+y )-2 f 5 + % +4;所以丄+ ~~的最小值为刍.% y 2点评 本题条件不多,解题时要充分利用已知条件找到%,y 满足的关系式•上述解题过程中利用了平面向量 三点共线的一个结论’根据B ,D ,C 三点共线和B ,E ,C 三点共线可得到等式①和②,结合已知条件可得% + y -2,因此 本题就转化为在% + y -2和0<%,y <2的条件下,求丄+ 土%y收稿日期:2020 -12 -05作者简介:孙红(1979 -),女,安徽省宿县人,中学高级教师,从事高中数学教学研究.— 49—数理化解题研究2021年第07期总第500期的最小值问题,利用1的代换容易求出最小值题2 已知0为△ 4BC 所在平面内的一点,0》—4 0》,0力—1 0》,4D 与BC 交于点M ,设0》—a , 0》—b .用a ,b 表示0》.分析这是学生作业本上的一道习题,学生拿到这道题可能会感觉无从下手,题目中涉及的向量比较多,事 实上,根据题目条件4,M ,D 三点共线,存在m e R ,使得而—m 0》+ (1 - m )0》—m a +辽%①同理B ,M ,C 三点共线,存在n e R ,使得》—n0》+ (1 - n )0》—a + (1 - n )b .②一n m 二才,由等式①和②可得,解得<1 - m v4n — .1 ;所以0M — 7 a + 7 b .当然本题也可以利用平面图形的几何性质来解决. 过点》作04交BC 于点N ,根据题意容易得到,DN—1 0C — 1 C4.所以》M — 1 M4,—1》》—2 6 6 77 (0》-0》)—7 卜-1 bj— ; a -[[b .所以0》—0》+—;a + 7 b .题3 已知0为△ 4BC 外接圆的圆心,4B —6,4C —15,40 — % 4》+ y 4》,2% +3y — 1,求 cosZ B4C 的值.分析 40 — % 4》+ y 4C — 2% x 2 4》 + 3 y x ; 4》,令4》丁 — 1 4》,4C ; — 1 4》,贝V 40 —2% 4》;+ 3y 4C ;.因为 2%+ 3y — 1,所以0,B',C '三点共线•又0为厶4BC 外接圆的圆心,B ;是线段4B 的中点,所以B'C ;是线段4B 的中垂 线•在 RtA 4B'C ;中,有 4B ; — 1 4B —3,4C ; — ; 4C — 5,4B ;cos/B'4C ‘ — 4》3—5 •即 cosZ B4C35点评 上述解题过程利用了平面向量中三点共线的 结论,因为题目条件中给出等式2% +3y — 1,有时我们会 想能否利用三点共线的结论,而要利用结论必须要出现 系数2%和3y ,因此需要对已知等式进行恒等变形,即40—%4》+ y4》—2% x 2 4》+ 3y x ; 4》,这时只需令4》—1 4》,4》—;4》,贝V 4》—2% 4》+3y4》.又 2% +3y — 1, 容易得到0,B ;,C ;三点共线,这是三点共线结论的逆用, 通过对已知等式进行恒等变形,结合已知条件构造三点共线进行解题,这种解题思路在向量解题中经常运用.题4给定两个长度为1的平面向量0》和0》,它们的夹角为120°,点C 在以0为圆心的圆弧4B 上变动,若0C — % 0》+ y 0》(% ,y e R ),求% + y 的最大值•分析 连接4B 交0C 于点》,因为4,B ,》三点共线,则存在 m , n e R ,使得0》—m 0》+ n 0》,m + n — 1(m ,n e R ).又0,》,C 三点共线,所以存在t e R ,使得0》 -t0》 — tm 0》 + tn 0》—% 0》+ y 0》.即{,解得 % + y — t ( m + n ) — t.y — tn.又t俑—嵩,当0》丄4B 时」轨占此时t唤—2,即% + y 的最大值为2 •点评 上述解题过程中利用了 4,B ,》三点共线,存 在m ,n e R ,使得0》—m 0》+ n 0》,m + n — 1,以及0, D , C 三点共线,存在t e R ,使得0》—t 0》,从而得到等式% +y — t.又t — 0》— J ,因此要求% + y 的最大值,即求|0》 |0》0》的最小值,结合图形容易求得答案•事实上,假若%+ y — 1,则4,B ,C 三点共线,但是因为点C 在圆弧4B 上运动,因此只需将直线4B 平移至4'B ‘,使得直线4'B ;与圆 弧4B 有交点,即为点C.根据等和线定理容易得到,% + y —-p0》l — 10》|•又'0》e [t ,1 ],所以%+ y 的最大值为2 ,此时直线4'B ‘与圆弧4B 相切,切点为点C.思路1根据平面向量分解定理,按照向量加法的几何意义及平行四边形法则,等式0》—%0》+ y 0》表明了 将0》向0》和0》方向上进行分解,在0》和0》方向上的投影分别是%,y ,因此我们可以利用余弦定理得到等式%2 + y 2- %y — 1,然后再结合基本不等式知识或△法求解% + y 的最大值.思路2引入变量Z C0B — a ,利用正弦定理将% + y的最大值问题转化为关于a 的三角函数的最值问题.思路3建立平面直角坐标系,将本题转化为向量的代数运算.比如以0》所在直线为%轴,以点0为坐标原点建立平面直角坐标系,容易得到4 (1,0),B设C (cos 0,sin 0)〔0三0三;n )根据0C — % 0》+ y 0》.将 % + y 的最大值问题转化为关于0的三角函数的最值问题.变式 若本题的其他条件不变,求2% + y 的最大值. 上述几种方法同样适用,若用到等和线定理,则需将—50—2021年第07期总第500期数理化解题研究已知等式进行恒等变形•事实上’OC-%04+y O B-2%X ;04+y O B,令O M-;04,即M为线段OA的中点,则OC-2%O M+y O B.连接MB交OC于点N,假设2%+y -1,则C,M,B三点共线,但是因为点C在圆弧AB上运动,根据等和线定理,只需将直线MB平移至M'B,,使得直线M‘B,与圆弧相切’切点为点C,此时(2%+y)喰-临-侖,根据图形可得OC丄M'B',MB〃MW.所以OC丄MB,即ON丄MB,在△ABM中利用面积法可求得O/V•题5(2019年浙江高考卷)已知点F(1,0)为抛物线y2-2p%(p>0)的焦点,过点F的直线交抛物线于A,B 两点,点C在抛物线上,使得A ABC的重心G在%轴上,直线AC交%轴于点Q,且点Q在点F的右侧,记A AFG,△CQG的面积分别是S;,S2•(1)求卩的值及抛物线的准线方程;S(2)求S;的最小值及此时点G的坐标.S2分析解析几何是高考重点考查的内容之一,本题考查的是抛物线的标准方程以及直线与抛物线的位置关系,同时考查了学生的转化与化归能力、数形结合能力、运算求解能力,以及运用所学知识分析问题和解决问题的能力,考查逻辑推理、直观想象、数学运算等核心素养•(;)抛物线的标准方程为y2-4%;(2)思路1设点法•设点A(t2,21),写出直线AF的方程,联立抛物线方程可求得点B的坐标(用t表示),结S合已知条件从而求得点C,G,Q的坐标,进而得到S;的表S2达式,可写成关于变量t的函数,最后利用换元法以及基本不等式等知识求得函数的最小值.思路2设出直线AB的方程,如Z AB:%-my+ 1,将直线AB的方程与抛物线方程联立,设A(%;,y;),B(%2,y2),利用韦达定理,结合题目条件容易求得点C,G,Q的坐标, S从而得到S;的表达式,因此问题就转化为求函数的最小S2值问题•这两种方法都比较好,但解题中计算量非常大,很难将解题进行到底,解决此题需要一定的综合解题的能力.思路3有些同学是利用向量知识进行求解,相比较而言计算量较小,在解题过程中利用了平面向量中三点共线的一个结论,及三角形中的重心的性质等知识,最终S将S;最大值问题转化为求函数的最大值问题•下面是利S2用向量法求解本题的部分解析•因为点G是A ABC的重心,则S△agb-S△agc.令A F-入A V,AQ-/zAC(0<入,“<1),贝卩S;-S“G-^S△ABG,S2-S△CQG-(1-z)S△AGC.所以-;—延长AG 交BC于点M,则A M-;(A F+A C),AG-;A M-;(A B+A C).又F,G,Q三点共线,所以存在t e R,使A F -tAF+(1-t)AQ-入tAB+z(;-t)A C-;(AB+AC).即{入t-V,解得入二2"[•门、13"-;z(;-1)二亍又0<入,z<;,所以2<z<;•A A所以S;二入__S21-z(3z-;)(;-仏)-3^z2+4z-;■3--1+孚——;、三3z+^丿+4-23+4当且仅当{”-丄,z;;;C T+7-3,即{\3+3入二6时等号成立.73“-;所以的最小值为;+£•(点G的坐标求解略)解析几何中有关面积最值或范围问题是高考的热点和难点之一,一般来讲有两种常见的解题思路:(1)构造关于所求量的函数,将有关面积的最值或范围问题转化为函数的最值或范围问题;(2)构造关于所求量的不等式来求解最值或范围.解题过程中经常将直线方程与圆锥曲线方程联立,利用韦达定理、弦长公式、点到直线的距离、基本不等式等知识•解析几何作为高考解答题之一,常作为压轴题,解答题重视数学思想、数学方法的理解、掌握与灵活运用,综合性强,难度较大,体现了对学生数学素养的考查.对于本题相比较前面涉及到的三种解题方法中,利用向量法求解本题计算量较少,容易求解.参考文献:[1]何振华.例谈高中数学一题多解的“套路”[J].福建中学数学,2018(12):38-40.[责任编辑:李璟]—51—。

平面向量中三点共线定理的推广及应用

平面向量中三点共线定理的推广及应用

平面向量中三点共线定理的推广及应用
三点共线定理是指在平面向量中,三个点A,B,C,如果向
量AB与向量AC的夹角为0°或180°,则三点A,B,C共线。

三点共线定理的推广及应用主要有以下几点:
1. 平面向量中四点共线定理:在平面向量中,如果四个点A,B,C,D满足向量AB与向量AC的夹角为0°或180°,向量BC与向量CD的夹角也为0°或180°,则四点A,B,C,D共线。

2. 平面向量中多点共线定理:在平面向量中,如果n个点A,B,C,D,…,P满足,任意两个相邻的向量的夹角为0°或180°,则n个点共线。

3. 平面向量中两点共线定理:在平面向量中,如果两个点A,B满足向量AB的夹角为0°或180°,则两点A,B共线。

4. 平面向量中多边形共线定理:在平面向量中,如果n边形的每两个相邻边的夹角都为0°或180°,则n边形共线。

5. 平面向量中多角形共线定理:在平面向量中,如果n角形的每两个相邻边的夹角都为0°或180°,则n角形共线。

6. 平面向量中多条直线共线定理:在平面向量中,如果n条直线的每两条直线的夹角都为0°或180°,则n条直线共线。

以上是平面向量中三点共线定理的推广及应用,它们在几何图形中都有广泛的应用,可以帮助我们更好地理解和分析几何图形。

库仑定律三点共线结论

库仑定律三点共线结论

库仑定律三点共线结论1. 引言库仑定律是电磁学中的基本定律之一,描述了两个电荷之间的相互作用力。

它由法国物理学家库仑在18世纪末提出,并被广泛应用于电场和静电学的研究中。

在此基础上,我们可以推导出一个重要的结论:库仑定律三点共线结论。

2. 库仑定律回顾在介绍库仑定律三点共线结论之前,先回顾一下库仑定律的表达式。

假设有两个点电荷q 1和q 2,它们之间的相互作用力F 与它们之间的距离r 成正比,方向沿着连接两个电荷的直线。

根据库仑定律,这个力可以表示为:F =k ⋅q 1⋅q 2r 2其中,k 是一个常量,称为库仑常数。

3. 库仑定律三点共线结论在某些情况下,当有三个点电荷分布在空间中时,它们可能会形成一条直线。

我们将这种情况称为“三点共线”。

那么,库仑定律在三点共线的情况下有什么特殊的结论呢?假设有三个点电荷q 1、q 2和q 3,它们分别位于空间中的点A 、B 和C 上。

如果这三个点电荷满足以下条件:1. q 1和q 2之间的相互作用力与它们之间的距离r 12成正比;2. q 2和q 3之间的相互作用力与它们之间的距离r 23成正比。

那么,我们可以得出结论:如果q 1、q 2、q 3三个点电荷共线,即直线ABC 上存在一点使得AB 和BC 重合,那么这三个电荷之间的相互作用力也将共线。

4. 证明为了证明库仑定律三点共线结论,我们可以利用向量法进行推导。

首先,根据库仑定律,我们知道两个点电荷之间的相互作用力是沿着连接这两个电荷的直线方向的。

因此,在直线AB 上,由q 1、q 2产生的力可以表示为:F 12⃗⃗⃗⃗⃗ =k ⋅q 1⋅q 2r 122⋅r 12⃗⃗⃗⃗⃗ 其中,r 12⃗⃗⃗⃗⃗ 是从q 1指向q 2的位移向量。

同样地,在直线BC 上,由q 2、q 3产生的力可以表示为:F 23⃗⃗⃗⃗⃗⃗ =k ⋅q 2⋅q 3r 232⋅r 23⃗⃗⃗⃗⃗ 其中,r 23⃗⃗⃗⃗⃗ 是从q 2指向q 3的位移向量。

平面向量中“三点共线定理”妙用讲解学习

平面向量中“三点共线定理”妙用讲解学习

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。

特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。

例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。

点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。

例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

向量三点共线定理及其延伸应用汇总

向量三点共线定理及其延伸应用汇总

向量三点共线定理及其扩展应用详解一、平面向量中三点共线定理的扩展及其应用一、问题的提出及证明。

1、向量三点共线定理:在平面中A 、B 、C 三点共线的充要条件是:.O A xOB yOC =+(O 为平面内任意一点),其中1x y +=。

那么1x y +<、1x y +>时分别有什么结证?并给予证明。

结论扩展如下:1、如果O 为平面内直线BC 外任意一点,则 当1x y +<时 A 与O 点在直线BC 同侧,1x y +>时, A 与O 点在直线BC 的异侧,证明如下: 设 O A xOB yOC =+且 A 与B 、C 不共线,延长OA 与直线BC 交于A 1点 设 1O A O A λ=(λ≠0、λ≠1)A 1与B 、C 共线 则 存在两个不全为零的实数m 、n1OA mOB nOC =+ 且1m n += 则 OA mOB nOC λ=+mnOA OB OC λλ⇒=+mx λ∴=、ny λ=1m nx y λλ++==(1)1λ> 则 1x y +< 则 111OA OA OA λ=<∴A 与O 点在直线BC 的同侧(如图[1]) (2)0λ<,则101x y λ+=<<,此时OA 与1OA 反向A 与O 在直线BC 的同侧(如图[2])图[2]BCA 1OA OA 1BCA图[1](3)1o λ<<,则1x y +>此时 111OA OA OA λ=>∴ A 与O 在直线BC 的异侧(如图[3])图[3]2、如图[4]过O 作直线平行AB ,延长BO 、AO 、将AB 的O 侧区域划分为6个部分,并设OP xOA yOB =+, 则点P 落在各区域时,x 、y 满足的条件是:(Ⅰ)区:0001x y x y <⎧⎪>⎨⎪<+<⎩ (Ⅱ)区:0001x y x y >⎧⎪>⎨⎪<+<⎩ (Ⅲ)区:0001x y x y >⎧⎪<⎨⎪<+<⎩(Ⅳ)区:0011x y x y >⎧⎪<⎨⎪-<+<⎩ (Ⅴ)区:00x y <⎧⎨<⎩ (Ⅵ)区:0010x y x y <⎧⎪>⎨⎪-<+<⎩(证明略)二、用扩展定理解高考题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量中“三点共线”结论的推广及应用
一、引例:(1)在△ABC 中,若点D 满足BD →=2DC →,则AD →=______AB →+______AC →
(2)已知AP →=43AB →,则OP →=______OA →+______OB → 结论:已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →
(1)若m +n =1,求证:A ,P ,B 三点共线;
(2)若A ,P ,B 三点共线,求证:m +n =1.
变式.已知A ,P ,B 是共线的三点,O 为面内任意一点,且OP →=mOA →+nOB →(m ,n ∈R),
若OP tOP '=u u u u v u u u v ,则tm tn +的值为_________
二、三点共线例题分析
例1.设a ,b 不共线,AB →=2a +pb ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,
求实数p 的值.
例2.如图,在△ABC 中,AN →=13
NC →,P 是BN 上的一点,若AP →=mAB →+211
AC →,求实数m 的值.
变式1.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别
交直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,求m +n
的值.
变式2.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,
设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,求1n +1m 的值.
变式3.如图所示,在△ABO 中,OC →=14OA →,OD →=12
OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.
例3.已知O 是△ABC 内部一点,)(2PC PB AB +=,求△PBC 与△ABC 的面积之比.
变式1.已知O 为三角形ABC 内一点,且满足()1OA OB OC O λλ++-=u u u v u u u v u u u v u v ,若OAB ∆的
面积与OAC ∆的面积比值为13
,则λ的值为
变式2.已知P 是△ABC 内部一点,且OA →+OC →=-2OB →,求△AOB 与△AOC 的面积之
比.。

相关文档
最新文档