模电复习总结
模电知识点总结
模电知识点总结1. 电路基本原理电路是电子技术的基础,它是由电阻、电容和电感等元件组成的。
在模拟电子技术中,我们经常需要分析和设计各种电路。
因此,了解电路基本原理是学习模拟电子技术的第一步。
电路分析包括欧姆定律、基尔霍夫定律、节点电压法和网孔电流法等。
这些原理是分析电路的重要工具,可以帮助我们理解电路中各个元件之间的关系。
2. 放大器放大器是模拟电子技术中的重要部分,它的作用是放大电压或电流信号。
放大器包括各种类型,例如运放放大器、电子管放大器和功率放大器等。
学习放大器的原理和特性可以帮助我们设计各种类型的放大器电路。
在实际应用中,放大器经常用于音频放大、信号处理和通信系统等领域。
3. 滤波器滤波器是模拟电子技术中的重要部分,它的作用是通过滤波器电路来处理信号中的不同频率成分。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
了解滤波器的原理和特性可以帮助我们设计滤波器电路以及实现信号处理和分析等功能。
4. 模拟信号处理电路模拟信号处理电路是模拟电子技术的核心内容,它包括各种模拟信号处理和传输电路。
常见的模拟信号处理电路包括模拟加减法器、积分器、微分器、比较器和信号发生器等。
了解这些电路的原理和特性可以帮助我们设计各种模拟信号处理系统和仪器。
5. 模拟数字转换模拟数字转换(ADC和DAC)是模拟电子技术中的重要部分,它的作用是将模拟信号转换为数字信号或将数字信号转换为模拟信号。
了解ADC和DAC的原理和特性可以帮助我们设计各种模拟数字转换电路以及实现数字信号处理和传输等功能。
总之,模拟电子技术是电子工程中的一个重要分支,它在通信、音频、视频和医疗等领域都有广泛的应用。
通过学习模拟电子技术的知识点,我们可以掌握电子技术的基本原理和技能,为未来的工作和研究打下良好的基础。
希望以上总结的知识点能对学习模拟电子技术的朋友们有所帮助。
模拟电路期末重点总结
模拟电路期末重点总结一、基本概念1. 信号与信号描述的方式2. 模拟电路的基本组成部分3. 模拟电路中的基本元件:电阻、电容和电感4. 基本电路定律:欧姆定律、基尔霍夫定律5. 模拟电路的常见信号源:直流电源、交流电源、信号发生器等二、放大器及其应用1. 放大器的基本原理和分类2. 放大器的频率响应:通频带、增益带宽积、截止频率3. 常见放大器电路:共基极放大器、共射极放大器、共集电极放大器4. 放大器的非线性失真及其衡量方法5. 放大器的稳定性分析与补偿方法6. 放大器的应用:功率放大、差分放大器、运算放大器等三、滤波器1. 滤波器的基本原理和分类2. 滤波器的频率响应:通频带、截止频率、衰减特性、相位特性3. 一阶滤波器:低通滤波器、高通滤波器、带通滤波器、带阻滤波器4. 二阶及以上滤波器:巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器5. 滤波器的设计:选择频率响应、元件参数计算、频率响应曲线绘制等四、反馈与稳定性1. 反馈的基本概念和分类2. 反馈电路的基本特性:增益、输入阻抗、输出阻抗3. 反馈网络的分析方法:开环增益、闭环增益、反馈系数、传输函数4. 反馈对电路性能的影响:增益稳定、频率稳定、阻抗稳定5. 反馈的设计与应用:选择反馈类型、计算反馈网络参数、稳定性分析等五、振荡器与信号发生器1. 振荡器的基本概念和分类2. 反馈振荡器的工作原理和条件3. 原型振荡器电路:震荡频率计算、电路稳定性分析4. 信号发生器的基本原理和常见电路:正弦波发生器、方波发生器、脉冲发生器等5. 信号发生器的电路设计与参数计算六、功率放大器与运算放大器1. 功率放大器的基本概念和应用领域2. A类、B类、AB类功率放大器的工作原理和特点3. 放大器的功率分配:效率和最大功率输出4. 运算放大器的基本概念和特性5. 运算放大器的基础电路:反相放大器、非反相放大器、加法器等6. 运算放大器的应用:积分器、微分器、比较器、滤波器等七、混频器与调制解调器1. 混频器的基本原理和分类2. 混频器的输入输出特性:转移函数、幅频特性、相频特性3. 调制解调器的基本原理和应用:AM调制解调、FM调制解调、PM调制解调4. 调制解调器的电路实现:调幅电路、调频电路、解调电路等八、特殊用途电路1. 比较器的基本原理和应用2. 电压源的设计与应用3. 倍压电路和反相器:电压倍增电路、反相放大电路等4. 电流源和电流镜电路:恒流源、恒流电桥等5. 电流传感器的电路设计和应用在模拟电路的学习中,我们需要掌握模拟电路的基本概念和基本组成部分,了解模拟电路中的基本元件和基本电路定律。
模电考前知识点总结
模电考前知识点总结模拟电子技术主要研究内容包括模拟电路的设计和分析、模拟信号的处理和传输、模拟电子系统的设计和调试等。
在模拟电子技术中,最基本的理论是基于几种基本电路元件,如二极管、三极管等,建立各种电路方程模型,进而解决各种电子电路问题。
在学习模拟电子技术的过程中,有一些知识点是必须要掌握的。
以下是一些常见的模拟电子技术知识点总结:一、基本电路分析方法1. 谈论母线电力超过220伏特进行电压升降的原理和方法。
2. 需要了解R-L,R-C 串并联电路的等效变换原理及实际应用。
3. 掌握电容电压跟踪积分电路和非积分电路的基本工作原理和参数设计方法。
4. 对于理想电感,理解它在激励下的等效原理。
5. 了解关于画感性理想电感变压器、绕组波音特性原理。
以上是一些基本电路分析方法的知识点总结。
在模拟电子技术中,学生需要通过理论学习和实践操作,熟练掌握这些方法,才能更好地理解和应用模拟电子技术。
二、线性集成电路线性集成电路是模拟电子技术中非常重要的一部分,主要包括放大器、滤波器、示波器、振荡器、计算和计算机等。
掌握了线性集成电路基本的分析与设计方法,可以更好地应用模拟电子技术。
1. 熟悉主要的线性集成电路,了解其特性和使用方法。
2. 了解基于 MOS 器件的模拟 IC 结构、工作原理和指标。
会设计基于 MOS 器件的模拟集成电路电路图。
以上是一些线性集成电路方面的知识点总结。
掌握了这些知识之后,可以更好地理解和应用模拟电子技术,从而更好地解决实际电路问题。
三、信号处理技术在模拟电子技术中,信号处理技术也是一个重要的方面。
掌握了信号处理技术相关知识后,能更好地理解和应用模拟电子技术。
1. 掌握基本信号的表示方法, 变换,系统特性的描述(零-极点,频域与时域的转换)2. 会进行系统励波,知道辨别各种非线性工作特性3. 了解控制工程与信号处理之间的联系和区别4. 实现对系统行为与性能的评估、设计,调节;5. 了解基于 DSP 的数字控制技术,了解模拟电子技术的近期发展,结合数字技术提出新的功能要求。
模电笔记知识点总结
模电笔记知识点总结一、模拟信号处理1. 模拟信号与数字信号模拟信号是指信号的数值是连续变化的,可以用连续的数学函数表示。
数字信号是指信号的数值是离散的,需要经过模数转换才能表示成数值输出。
模拟信号处理的目的是将模拟信号转换为数字信号,或者将数字信号转换为模拟信号。
2. 采样与保持采样是指将连续的模拟信号按照一定的时间间隔进行取样,得到一系列的离散数值。
保持是指在采样之后,保持所获得的信号值,直到下一次采样。
3. 模拟信号重构模拟信号重构是指将数字信号重新转换为模拟信号。
通常通过数字到模拟转换器(DAC)来实现。
4. 模拟信号滤波模拟信号滤波是指对模拟信号进行频率特性的调整,滤除不需要的频率成分,以及放大需要的频率成分。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
5. 模拟信号调制模拟信号调制是指将模拟信号转换为相应的调制信号,以便在传输和处理中更容易应用。
常见的模拟信号调制方式包括调幅调制(AM)、调频调制(FM)和调相调制(PM)。
二、放大器设计1. 放大器的基本原理放大器是一种电路,它可以放大输入信号的幅度,并输出相应的放大信号。
放大器的核心原理是利用晶体管或运算放大器等电子器件的非线性特性,实现信号的增益。
放大器的设计目标通常包括增益、带宽、输入/输出阻抗、噪声等方面的考虑。
2. 放大器的分类放大器可以根据其工作方式、频率响应等特性进行分类。
比较常见的放大器包括运算放大器、差分放大器、共模抑制放大器、功率放大器等。
3. 放大器的频率特性放大器的频率特性是指放大器对不同频率信号的响应。
常见的频率特性包括通频带、截止频率、增益带宽积等。
4. 放大器的非线性失真非线性失真是指放大器输出信号与输入信号之间存在非线性关系,导致输出信号不完全等于输入信号。
常见的非线性失真包括谐波失真、交调失真等。
5. 放大器的稳定性放大器的稳定性是指当放大器输出端负载发生变化时,放大器是否能够保持稳定的工作状态。
模电必考知识点总结
模电必考知识点总结一、基本电路理论1. 电路基本定律欧姆定律、基尔霍夫定律、电路中的功率计算等基本电路定律是模拟电子技术学习的基础,了解和掌握这些定律对于学习模拟电子技术是非常重要的。
2. 电路分析了解如何对电路进行简化、等效电路的转换、戴维南定理和诺依曼定理等电路分析的基本方法。
3. 电路稳定性掌握电路的稳定性分析方法,包括如何对直流放大电路和交流放大电路进行稳定性分析。
4. 传输线理论了解传输线的基本特性,包括传输线的阻抗、反射系数、传输线的匹配等知识。
二、放大电路1. 二极管放大电路了解二极管的基本特性和放大电路的设计原理,包括共射放大电路、共集放大电路和共基放大电路等基本的二极管放大电路。
2. 晶体管放大电路了解晶体管放大电路的基本原理和设计方法,包括共射放大电路、共集放大电路和共基放大电路等基本的晶体管放大电路。
3. 放大电路的频率响应了解放大电路的频率响应特性,包括截止频率、增益带宽积等相关知识。
4. 反馈电路掌握反馈电路的基本原理和分类,了解正反馈和负反馈电路的特点和应用。
三、运算放大电路1. 运算放大器的基本特性了解运算放大器的基本特性,包括输入输出阻抗、放大倍数、共模抑制比等相关知识。
2. 运算放大器的电路应用了解运算放大器在反馈电路、比较电路、滤波电路、振荡电路等方面的应用,掌握运算放大器的基本应用方法。
四、滤波器电路1. RC滤波器和RL滤波器了解RC滤波器和RL滤波器的基本原理、特性和应用,包括一阶和二阶滤波器的设计和性能分析。
2. 增益电路和阻抗转换电路掌握增益电路和阻抗转换电路的设计原理和方法,了解它们在滤波电路中的应用。
3. 模拟滤波器设计了解低通滤波器、高通滤波器、带通滤波器和带阻(陷波)滤波器的设计方法和特性,掌握模拟滤波器的设计技巧。
五、功率放大电路1. BJT功率放大电路了解晶体管功率放大电路的基本原理和设计方法,包括类A、类B、类AB和类C功率放大电路的特点和应用。
模电 知识点总结
模电知识点总结一、基本概念1. 电路元件:模拟电子技术的基本元件包括电阻、电容、电感、二极管、晶体管等。
其中,电阻用于限制电流,电容用于储存电荷,电感用于储存能量,二极管用于整流、开关等,晶体管用于放大、开关等。
2. 信号:在模拟电子技术中,信号是指随时间或空间变化的电压或电流。
常见的信号形式有直流信号、交流信号、脉冲信号等。
3. 放大器:放大器是模拟电子技术中的重要元件,用于放大输入信号的幅度。
常见的放大器有运放放大器、晶体管放大器等。
4. 滤波器:滤波器是用于选择特定频率范围内的信号,常用于滤除噪声、提取特定频率成分等。
5. 调制解调:调制是将基带信号调制到载波上,解调是将载波信号解调还原为基带信号。
调制解调技术是模拟电子技术中的重要应用之一。
二、基本电路1. 电阻电路:电阻是最基本的电路元件之一,常用于限制电流、调节电压和波形、分压等。
常见的电阻电路包括电压分压电路、电流分压电路、电阻网络等。
2. 电容电路:电容是能存储电荷的元件,常用于滤波、积分、微分等。
常见的电容电路包括RC电路、LC电路、多级滤波器等。
3. 电感电路:电感是储存能量的元件,常用于振荡器、磁耦合放大器等。
常见的电感电路包括RLC电路、振荡电路、滤波器等。
4. 滤波器电路:滤波器是用于选择特定频率范围内的信号的电路,常用于滤除杂散信号、提取特定频率成分等。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器、陷波滤波器等。
5. 放大器电路:放大器是用于放大电压、电流信号的电路,常用于信号调理、传感器信号放大、运算放大器电路等。
常见的放大器电路包括运算放大器电路、放大器电路、多级放大器电路等。
6. 混频器电路:混频器是用于将两路信号进行混频得到中频信号的电路,常用于调频收音机、超外差接收机等。
常见的混频器电路包括倍频器电路、调频接收机电路、超外差接收机电路等。
7. 调制解调电路:调制解调电路是用于调制解调信号的电路,常用于调制解调的通信系统、调幅收音机、调频收音机等。
电路模电知识点总结
电路模电知识点总结电路模电是电子学科的重要组成部分,也是电子工程师应当具备的基本知识。
电路模电涵盖了很多内容,包括基本电路理论、电子元件的特性、电路分析方法、模拟信号处理、数字信号处理等等。
本文将就电路模电的相关知识点进行总结,以供学习和参考。
一、基本电路理论1. 电压、电流和电阻的基本概念电压是电流的推动力,是电子在电路中的运动状态。
电流是电子通过导体的数量,是电路中的载流子的运动情况。
电阻是电路中阻碍电流通过的物理量,是影响电路工作性能的重要因素。
2. 电路基本定律基尔霍夫定律:节点定律和回路定律,用于分析复杂电路中的电压和电流关系。
欧姆定律:描述了电压、电流和电阻之间的基本关系。
功率定律:描述了电路中功率的计算方法,包括有源元件和无源元件的功率计算。
3. 电路分析方法电路分析中常用的方法包括节点分析法、回路分析法、戴维南定理和超定方程组的求解方法。
这些方法适用于不同类型的电路,能够有效地进行电路参数求解和性能分析。
二、电子元件的特性1. 二极管二极管是最基本的电子元件之一,具有整流、放大、开关和稳压等功能。
二极管的正向导通特性和反向截止特性是其重要特点,能够用于各种电路中。
2. 晶体三极管晶体三极管是一种重要的电子管,具有放大、开关和整流等功能。
其放大系数、输入阻抗和输出阻抗是其重要特性,直接影响了其在电路中的应用。
3. 集成电路集成电路是目前电子技术发展的主要方向,包括模拟集成电路和数字集成电路。
模拟集成电路主要包括运算放大器、比较器、滤波器、振荡器等,数字集成电路主要包括逻辑门、触发器、计数器和寄存器等。
三、模拟信号处理1. 信号的采集和重构模拟信号处理中,需要对真实世界的信号进行采集和处理,其中包括采样、量化和编码等过程,最终通过数字信号处理进行重构。
2. 运算放大器的应用运算放大器是模拟电路中的重要元件,常用于放大、滤波、积分和微分等功能。
根据其特性,可以设计不同类型的电路,满足不同的应用需求。
模电知识点复习总结
模电知识点复习总结模拟电子技术(模电)是电子工程中的重要基础学科之一,主要研究电路中的电压、电流以及能量的传输和转换。
下面是我对模电知识点的复习总结:一.基础知识1.电路基本定律:欧姆定律、基尔霍夫定律、电压分压定律、电流分流定律、功率定律。
2.信号描述与频域分析:时间域与频域的关系。
傅里叶级数和傅里叶变换的基本概念和应用。
3.理想放大器:增益、输入/输出电阻、输入/输出阻抗的概念和计算方法。
4.放大器基本电路:共射、共集、共基放大器的特点、电路结构和工作原理。
二.放大器设计1.放大器的参数:增益、输入/输出电阻、输入/输出阻抗。
2.放大器的稳定性:稳态稳定性和瞬态稳定性。
3.放大器的频率响应:截止频率、增益带宽积、输入/输出阻抗对频率的影响。
4.放大器的非线性失真:交趾略失真、交调失真、互调失真等。
5.放大电路的优化设计:负反馈、输入/输出阻抗匹配、增益平衡等。
三.运算放大器1.运算放大器的基本性质:增益、输入阻抗、输出阻抗、共模抑制比。
2.电压放大器:非反转放大器、反转放大器、仪表放大器、差分放大器。
3.运算放大器的应用电路:比较器、积分器、微分器、换相器、限幅器等。
4.运算放大器的非线性失真:输入失真、输出失真、交调失真等。
四.双向可调电源1.双向可调电源的基本原理:输入电压、输出电压和控制信号之间的关系。
2.双向可调电源的电路结构:移相电路、比较器、反相放大器、输出级等。
3.双向可调电源的控制方式:串行控制和并行控制。
五.滤波器设计1.常见滤波器类型:低通、高通、带通和带阻滤波器。
2.滤波器的频率响应特性:通频带、截止频率、衰减量。
3.滤波器的传输函数:频率选择特性、阶数选择。
4.滤波器的实现方法:RC、RL、LC和电子管等。
六.可控器件1.二极管:理想二极管模型、二极管的非理想特性、二极管的应用。
2.可控硅:双向可控硅、单向可控硅、可控硅的触发电路和应用。
3.功率晶体管:NPN、PNP型功率晶体管的特性参数、功率放大电路设计。
模电知识点复习总结
3.4.2 二极管电路的简化模型分析方法பைடு நூலகம்
1.二极管V-I 特性的建模
将指数模型 iD=IS(e分vD段VT线性1)化,得到二极管特性的 等效模型。 (1)理想模型
(a)V-I特性 (b)代表符号 (c)正向偏置时的电路模型 (d)反向偏置时的电路模型
(2)恒压降模型
(3)折线模型
(a)V-I特性 (b)电路模型
漂移运动: 由电场作用引起的载流子的运动称为漂移运动.
扩散运动: 由载流子浓度差引起的载流子的运动称为扩散运动.
3.2.2 PN结形成
在一块本征半导体两侧通过扩散不同的杂质,分 别形成N型半导体和P型半导体.此时将在N型半导 体和P型半导体的结合面上形成如下物理过程:
因浓度差
多子的扩散运动 由杂质离子形成空间电荷区
特别注意: ▪ 小信号模型中的微变电阻rd与静态工作点Q有关。 ▪ 该模型用于二极管处于正向偏置条件下,且vD>>VT 。
3.5 特殊二极管
(一)稳压二极管
I/mA
1 结构:面接触型硅二极管
2 主要特点: (a) 正向特性同普通二极管 (b) 反向特性
• 较大的 I 较小的 U •工作在反向击穿状态. 在一定范围内,反向击穿 具有可逆性。
则 = ICICEO
IB
当IC
IC
时
EO
, IC
IB
是另一个电流放大系数。同样,它也只与管
子的结构尺寸和掺杂浓度有关,与外加电压无关。
一般 >> 1 。
3. 三极管的三种组态
BJT的三种组态
共发射极接法,发射极作为公共电极,用CE表示; 共基极接法,基极作为公共电极,用CB表示; 共集电极接法,集电极作为公共电极,用CC表示.
模电重点总结复习必备
u
+
-
A
+
∞
i
f
R
i
i
f
i
i
i+
i-
i
+
+
T
-
i
+
u
R
i
i
i
b
i
f
2
虚短
3
虚断
1
串联负反馈,输入端电压求和
6
并联负反馈,输入端电流求和
5
虚断
4
虚短
判断能否自激的方法
(1)画出 的波特图
(2)找出两个特定的频率
(3)判断
(4)若不自激,则判断幅度裕度和相位裕度
方法一:
方法二:
02
01
分析方法:分频段研究法和时间常数法
直流稳压电源
工作原理
整流
计算
稳压
滤波
g
g
d
S
d
i
工作在非线性区时的特点
工作在线性区时的特点
虚断
虚短 虚断
运算放大器
波特图
画复杂电路或系统的波特图,关键在于一些基本因子
基本放大电路
01.
多级放大电路
01.
差分放大电路
01.
反馈放大电路
01.
运算放大器
01.
功率放大器
01.
频率响应
01.
直流稳压电源
01.
三、电路部分
共发射极、共集电极、共基极、 共源、共漏
特点和典型功能:
较大,Ri很大;适于小信号电压放大
共漏放大电路
+
C
g3
模拟电路知识点总结
模拟电路知识点总结一、模拟电路的基本概念模拟电路是处理连续变化的电信号的电子电路。
与数字电路处理离散的数字信号不同,模拟电路中的信号在时间和幅度上都是连续的。
这些信号可以是电压、电流或者其他物理量,如声音、光线等。
在模拟电路中,常见的元件包括电阻、电容、电感、二极管、三极管等。
电阻用于限制电流和分压;电容用于存储电荷和滤波;电感用于储存能量和滤波;二极管具有单向导电性,常用于整流和稳压;三极管则可以作为放大器或开关使用。
二、放大器放大器是模拟电路中的重要组成部分,其作用是将输入的小信号放大到所需的幅度。
常见的放大器有共射极放大器、共集电极放大器和共基极放大器。
共射极放大器具有较大的电压增益和电流增益,但输入电阻较小,输出电阻较大。
共集电极放大器的输入电阻较大,输出电阻较小,电压增益接近于 1 但具有电流放大作用。
共基极放大器具有较高的频率响应和较小的输入电容,常用于高频放大电路。
放大器的性能指标包括增益、输入电阻、输出电阻、带宽等。
增益表示放大的倍数,输入电阻影响信号源的负载,输出电阻影响放大器对负载的驱动能力,带宽则决定了放大器能够有效放大的信号频率范围。
三、反馈反馈在模拟电路中用于改善放大器的性能。
反馈分为正反馈和负反馈。
正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会被使用。
负反馈则可以减小增益的波动、提高线性度、扩展带宽、降低噪声等。
负反馈的类型有电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈。
通过选择不同类型的负反馈,可以根据具体需求调整放大器的性能。
四、集成运算放大器集成运算放大器(简称运放)是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。
它通常由差分输入级、中间放大级和输出级组成。
运放可以构成各种功能的电路,如比例放大器、加法器、减法器、积分器、微分器等。
在使用运放时,需要考虑其电源、输入输出范围、失调电压和失调电流等参数。
五、滤波器滤波器用于选择或抑制特定频率范围内的信号。
模拟电子技术总结复习资料
模拟电子技术复习资料一、前言模拟电子技术是电子工程师必备的技术之一,本文将模拟电子技术的相关知识点,以供复习之用。
二、基础知识1. 模拟电子技术的定义模拟电子技术是指以连续的时间和数值作为处理信号的基本方法,将原始信号转换为模拟电压或电流信号,经过放大、滤波、调制等技术处理后再转换为输出信号的一种电子技术。
2. 信号处理的分类信号处理可以分为模拟信号处理和数字信号处理两种方式。
其中,模拟信号处理是连续的,输出结果也是连续的;数字信号处理是离散的,输出结果也是离散的。
3. 电路元件常见的电路元件有电阻、电容、电感和二极管等。
在实际电路中,这些元件通常是串接或并联连接。
4. 电路分析电路分析主要包括基础电路分析、状态变量法和矩阵方法三种。
其中,基础电路分析可以用于简单电路的分析,状态变量法可用于复杂电路的分析,矩阵方法则适用于大型电路分析。
三、基本电路1. 电压分压器电压分压器是一种简单的电路,在电路中由两个电阻相连,起到将输入电压分压的作用。
分压器的输出电压等于输入电压乘以电路中两个电阻的比值,即:V_out = V_in * R2 / (R1 + R2)2. 电路共模抑制电路共模抑制是一种在电路中削弱两个信号(通常是两个交流信号)之间共同模式分量的方法。
在电路中添加一对差模信号,可以使一部分共模干扰信号被消除。
3. 交流放大器交流放大器是一种电路,用于放大输入信号的交流部分。
通常会使用共射极放大器来放大信号。
4. 滤波器滤波器是一种电路,主要功能是去除输入信号中不需要的频率或波形分量。
滤波器通常被划分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等不同类型。
四、放大器1. 放大器的分类放大器通常被分为共射极放大器、共集极放大器和共基极放大器等三种。
其中,共射极放大器最常用。
2. 放大器的增益与带宽放大器的增益和带宽是两个相互制约的指标。
在设计放大器时,需要综合考虑这两个指标来确定放大器的工作范围。
电子技术模拟电路知识点总结
电子技术模拟电路知识点总结一、模拟电路基础概念模拟电路处理的是连续变化的信号,与数字电路处理的离散信号不同。
在模拟电路中,电压和电流可以在一定范围内取任意值。
这是理解模拟电路的关键起点。
二、半导体器件1、二极管二极管是最简单的半导体器件之一,具有单向导电性。
当正向偏置时,电流容易通过;反向偏置时,电流极小。
二极管常用于整流电路,将交流转换为直流。
2、三极管三极管分为 NPN 型和 PNP 型。
它具有放大电流的作用,通过控制基极电流,可以实现对集电极电流的控制。
三极管在放大电路中应用广泛。
3、场效应管场效应管分为结型和绝缘栅型。
它是电压控制型器件,输入电阻高,噪声小,常用于集成电路中。
三、基本放大电路1、共射放大电路共射放大电路具有较大的电压放大倍数和电流放大倍数,但输入电阻较小,输出电阻较大。
2、共集放大电路共集放大电路又称射极跟随器,电压放大倍数接近 1,但输入电阻高,输出电阻小,具有良好的跟随特性。
3、共基放大电路共基放大电路具有较高的频率响应和较好的高频特性。
四、集成运算放大器集成运算放大器是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。
1、理想运算放大器特性具有“虚短”和“虚断”的特点。
“虚短”指两输入端电位近似相等,“虚断”指两输入端电流近似为零。
2、运算放大器的应用包括比例运算电路、加法运算电路、减法运算电路、积分运算电路和微分运算电路等。
五、反馈电路反馈可以改善放大器的性能。
1、正反馈和负反馈正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会用到。
负反馈能稳定放大倍数、改善频率特性等。
2、四种反馈组态电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈,它们对电路性能的影响各不相同。
六、功率放大电路功率放大电路的主要任务是向负载提供足够大的功率。
1、甲类、乙类和甲乙类功率放大电路甲类功放效率低,但失真小;乙类功放效率高,但存在交越失真;甲乙类功放则是介于两者之间。
模拟电路知识点总结资料
模拟电路知识点总结资料一、基本概念1. 电路:由电阻、电容、电感等基本元件组成的系统。
根据信号类型,电路可分为模拟电路和数字电路。
2. 模拟电路:能够处理连续变化的信号的电路。
模拟电路中的信号是连续的模拟波形,可以以任意时间间隔改变其数值。
3. 数字电路:只能处理离散的信号的电路。
数字电路中的信号是由0和1组成的脉冲波形,只在规定的时间点改变其数值。
二、基本元件1. 电阻:用于限制电流的流动,常用于控制信号的幅度和输出阻抗。
2. 电容:用于存储电荷,通常用于滤波、隔直、积分等功能。
3. 电感:用于存储磁能,通常用于滤波、隔交、微分等功能。
4. 二极管:用于实现电流的单向导通,可以作为整流器、开关等。
5. 晶体管:用于放大和控制电流,可以作为放大器、开关等。
三、基本电路1. 放大器:用于放大输入信号的幅度,常见的有运放放大器、晶体管放大器等。
2. 滤波器:用于滤除不需要的频率成分,常见的有低通滤波器、高通滤波器、带通滤波器等。
3. 比较器:用于比较两个信号的大小,常见的有比较器、振荡器等。
四、基本分析方法1. 直流分析:分析电路在稳态直流条件下的性能,通常用节点法、网孔法等进行分析。
2. 交流分析:分析电路在交流条件下的性能,通常用复数分析、频域分析等进行分析。
3. 时域分析:分析电路在时间域内的性能,通常用微分方程、积分方程等进行分析。
4. 非线性分析:分析电路中的非线性元件对性能的影响,通常需要用仿真软件进行分析。
五、常用工具和软件1. 万用表:用于测量电路中的电压、电流、电阻等参数。
2. 示波器:用于观测电路中的信号波形,可以分析信号的频率、幅度、相位等。
3. 信号发生器:用于产生各种形式的信号,可以用于测试电路的响应特性。
4. 仿真软件:如Multisim、Protues等,用于构建电路模型,进行电路仿真分析。
六、常见电路应用1. 放大器:用于音频放大、射频放大等。
2. 滤波器:用于音频滤波、射频滤波等。
模电总结(大全5篇)
模电总结(大全5篇)第一篇:模电总结半导体器件半导体中有两种载流子:电子,空穴。
当电子挣脱共价键的束缚成为自由电子后,共价键就留下一个空位,这个空位就称为空穴。
影响半导体导电性的因素:外界热(温度)和光的作用或往纯净的半导体中掺入某些杂质。
本征半导体:完全纯净的、结构完整的半导体晶体。
在绝对0度(T=0K)和没有外界激发时,价电子完全被共价键束缚着,本征半导体中没有可以运动的带电粒子(即载流子),它的导电能力为0,相当于绝缘体。
在常温下,由于热激发,使一些价电子获得足够的能量而脱离共价键的束缚,成为自由电子,同时共价键上留下一个空位,称为空穴。
本征激发的特点:① 两种载流子参与导电,自由电子数(n)=空穴数(p)② 外电场作用下产生电流,电流大小与载流子数目有关③ 导电能力随温度增加显著增加杂质半导体(通过掺杂,提高导电能力)N 型半导体:电子是多数载流子,空穴是少数载流子,但半导体呈中性,也称为(电子半导体)。
(在硅或锗晶体中掺入少量的五价元素,如磷形成)P 型半导体:空穴是多数载流子,电子是少数载流子,但半导体呈中性,也称为(空穴半导体)。
(在硅或锗晶体中掺入少量的三价元素,如硼形成)多子浓度主要取决于杂质浓度,少子浓度与温度有关。
二极管:导通管的压降看做常值(硅0.7V,锗0.2V)或0V(理想二极管)。
特殊二极管——稳压管(工作在反向击穿区)稳压原理:无论输入变化或负载变化,引起的电流变化都加于稳压管上,使输出电压稳定。
双极性晶体管(BJT)集电区:面积较大,基区:较薄,掺杂浓度低,发射区:掺杂浓度较高。
要使三极管能放大电流,必须使发射结正偏,集电结反偏。
双极性晶体管输出特性三个区域的特点: ① 放大区:发射结正偏,集电结反偏。
② 饱和区:发射结正偏,集电结正偏。
③ 截止区: 发射结、集电结均反偏。
双极型三极管是电流控制器件,场效应管是电压控制器件。
场效应管有两种: 结型场效应管JFET;绝缘栅型场效应管MOS ① N沟道增强型② N 沟道耗尽型③ P 沟道增强型④ P 沟道耗尽型耗尽型与增强型的区别在与UGS=0时是否有导电沟道。
模电知识点总结
模电知识点总结第一篇:模电知识点总结第一章绪论1.掌握放大电路的主要性能指标:输入电阻,输出电阻,增益,频率响应,非线性失真2.根据增益,放大电路有那些分类:电压放大,电流放大,互阻放大,互导放大第二章预算放大器1.集成运放适合于放大差模信号2.判断集成运放2个输入端虚短虚断如:在运算电路中,集成运放的反相输入端是否均为虚地。
3.运放组成的运算电路一般均引入负反馈4.当集成运放工作在非线性区时,输出电压不是高电平,就是低电平。
5.根据输入输出表达式判断电路种类同相:两输入端电压大小接近相等,相位相等。
反相:虚地。
第三章二极管及其基本电路1.二极管最主要的特征:单向导电性2.半导体二极管按其结构的不同,分为面接触型和点接触型3.面接触型用于整流。
点接触型用于高频电路和数字电路4.杂质半导体中少数载流子浓度只与温度有关5.掺杂半导体中多数载流子主要来源于掺杂6.在常温下硅二极管的开启电压为0.5伏,锗二极管的开启电压为0.1伏7.硅二极管管压降0.7伏,锗二极管管压降0.2伏8.PN结的电容效应是势垒电容,扩散电容9.PN结加电压时,空间电荷区的变化情况正向电压:外电场将多数载流子推向空间电荷区,使其变窄,削弱内电场,扩散加剧反向电压:外电场使空间电荷区变宽,加强内电场,阻止扩散运动进行10.当PN结处于正向偏置时,扩散电容大.当PN结反向偏置时,势垒电容大11.稳压二极管稳压时,工作在反向击穿区.发光二极管发光时,工作在正向导通区 12.稳压管称为齐纳二极管13.光电二极管是将光信号转换为电信号的器件,它在PN结反向偏置状态下运行,反向电压下进行,反向电流随光照强度的增加而上升14.如何用万用表测量二极管的阴阳极和判断二极管的质量优劣?用万用表的欧姆档测量二极管的电阻,记录下数值,然后交换表笔在测量一次,记录下来.两个结果,应一大一小,读数小的那次,黑表笔接的是阳极,红表笔接的是阴极.这个读数相差越多,二极管的质量越好.当两个读数都趋于无穷大时,二极管断路.当两个读数都趋于零时,二极管短路第四章双极结型三极管及放大电路1.半导体三极管又称双极结型三极管,简称BJT是放大器的核心器件2.采用微变等效电路求放大电路在小信号运用时,动态特性参数3.晶体三极管可以工作在: 放大区,发射结正偏,集电极反偏饱和区,发射结集电极正偏截止区,发射结集电极反偏4.NPN,PNP,硅锗管的判断5.工作在放大区的三极管,若当Ib以12μA增大到22μA时,Ic 从1mA变为2mA,β约为1006.直流偏置电路的作用是给放大电路设置一个合适的静态工作点,若工作点选的太高——饱和失真。
(完整版)模电总结复习资料
(完整版)模电总结复习资料第⼀章半导体⼆极管⼀.半导体的基础知识1.半导体---导电能⼒介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流⼦----带有正、负电荷的可移动的空⽳和电⼦统称为载流⼦。
5.杂质半导体----在本征半导体中掺⼊微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺⼊微量的三价元素(多⼦是空⽳,少⼦是电⼦)。
*N型半导体: 在本征半导体中掺⼊微量的五价元素(多⼦是电⼦,少⼦是空⽳)。
6. 杂质半导体的特性*载流⼦的浓度---多⼦浓度决定于杂质浓度,少⼦浓度与温度有关。
*体电阻---通常把杂质半导体⾃⾝的电阻称为体电阻。
*转型---通过改变掺杂浓度,⼀种杂质半导体可以改型为另外⼀种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截⽌。
8. PN结的伏安特性⼆. 半导体⼆极管*单向导电性------正向导通,反向截⽌。
*⼆极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析⽅法------将⼆极管断开,分析⼆极管两端电位的⾼低:若 V阳 >V阴( 正偏 ),⼆极管导通(短路);若 V阳1)图解分析法该式与伏安特性曲线的交点叫静态⼯作点Q。
2) 等效电路法直流等效电路法*总的解题⼿段----将⼆极管断开,分析⼆极管两端电位的⾼低:若 V阳 >V阴( 正偏 ),⼆极管导通(短路);若 V阳*三种模型微变等效电路法三. 稳压⼆极管及其稳压电路*稳压⼆极管的特性---正常⼯作时处在PN结的反向击穿区,所以稳压⼆极管在电路中要反向连接。
第⼆章三极管及其基本放⼤电路⼀. 三极管的结构、类型及特点1.类型---分为NPN和PNP两种。
模电复习总结
模电复习总结5⽉8⽇到14⽇,⽤了7天时间总结了模拟电⼦,其中⾃⼰⼿敲了⼤约8000字,到最后实在敲烦了,直接粘贴了部分内容。
另外还很⽆耻的粘下了好多图⽚。
希望对各位的复习能够起到点作⽤。
模拟电⼦——注电基础考试复习⽤⼀、元件基础1、半导体半导体器件中最常⽤的半导体材料有硅和锗两种,都是四价元素,其纯净物导电性很差,按照⼀定规律掺⼊三价、五价元素后,导电性能⼤幅上升,分别形成N型、P型半导体。
四价、五价元素混合后形成N型半导体,容易失去电⼦,形成较稳定的正价离⼦。
四价、三价元素混合后形成P型半导体,容易吸收电⼦,形成较稳定的负价离⼦。
P型半导体和N型半导体制造在同⼀块材料上,在两种半导体的交界⾯上形成PN结。
PN结是构成半导体器件的基础。
2、⼆极管⼀对PN结称为⼆极管,分别在P端和N端引出管脚。
P端易失去电⼦,作为⼆极管的正端。
N端易吸收电⼦,作为⼆极管的负端。
PN结由于两侧材料吸收电⼦能⼒不同的性质,成为⼀个耗尽层。
耗尽层到点能⼒较低,形成⼀个不稳定的内电场h0,此内电场从N端指向P端,即⼆极管的正端指向负端,内电场电压从P端指向N端。
其不稳定包括两个⽅⾯。
⼀个是受外界温度影响⽐较⾼,试验测得300K(25℃)时,温度电压当量U T≈26mV,在室温附近,温度每升⾼1℃,正向压降约减⼩2~2.5mV,温度每升⾼10℃,反向电流约增⼤⼀倍。
另⼀个是外部电压的影响。
当正向加⼀个电压时,由于内外电场⽅向相反,相当于内电场被削弱,耗尽层变薄,电压差很⼩,可以⼤量通过电⼦,容易导电。
当反向加⼀个电压时,由于内外电场⽅向相反,相当于内电场被加强,耗尽层变厚,电压差很⼤,很难通过电⼦,基本不导电。
这就是⼆极管的单向导电性。
⼆极管的伏安特性曲线中包括正向特性和反向特性。
实际使⽤的主要是较为直线部分,正向特性的线性部分为导通部分,线性部分延长线与电压轴的交点为导通电压U on。
导通电压根据不同材料和制作⼯艺,⼀般在0.1V~0.8V范围内(计算时,如不给出的话,硅管取0.7V,锗管取0.3V)。
(完整版)模电知识总结
第一部分半导体的基本知识二极管、三极管的结构、特性及主要参数;掌握饱和、放大、截止的基本概念和条件。
1、导体导电和本征半导体导电的区别:导体导电只有一种载流子:自由电子导电半导体导电有两种载流子:自由电子和空穴均参与导电自由电子和空穴成对出现,数目相等,所带电荷极性不同,故运动方向相反。
2、本征半导体的导电性很差,但与环境温度密切相关。
3、杂质半导体(1)N型半导体——掺入五价元素(2)P型半导体——掺入三价元素4、PN结——P型半导体和N型半导体的交界面在交界面处两种载流子的浓度差很大;空间电荷区又称为耗尽层反向电压超过一定值时,就会反向击穿,称之为反向击穿电压5、PN结的单向导电性——外加电压正向偏置反向偏置6、二极管的结构、特性及主要参数(1)P区引出的电极——阳极;N区引出的电极——阴极温度升高时,二极管的正向特性曲线将左移,反向特性曲线下移。
二极管的特性对温度很敏感。
其中,Is为反向电流,Uon为开启电压,硅的开启电压——0.5V,导通电压为0.6~0.8V,反向饱和电流<0.1μA,锗的开启电压——0.1V,导通电压为0.1~0.3V,反向饱和电流几十μA。
(2)主要参数1)最大整流电流I:最大正向平均电流2)最高反向工作电流U:允许外加的最大反向电流,通常为击穿电压U的一半3)反向电流I:二极管未击穿时的反向电流,其值越小,二极管的单向导电性越好,对温度越敏感4)最高工作频率f:二极管工作的上限频率,超过此值二极管不能很好的体现单向导电性7、稳压二极管在反向击穿时在一定的电流范围内(或在一定的功率耗损范围内),端电压几乎不变,表现出稳压特性,广泛应用于稳压电源和限幅电路中。
(1)稳压管的伏安特性(2)主要参数1)稳定电压U:规定电流下稳压管的反向击穿电压2)稳定电流I:稳压管工作在稳定状态时的参考电流。
电流低于此值时稳压效果变坏,甚至根本不稳压,只要不超过稳压管的额定功率,电流越大稳压效果越好。
模电常见知识点总结
模电常见知识点总结一、基本概念1. 电压、电流、功率:电压是电势差,单位是伏特;电流是电荷在单位时间内通过导体的数量,单位是安培;功率是单位时间内能量的转化率,单位是瓦特。
2. 电路元件:电路元件主要包括电阻、电容和电感。
电阻是电流对电压的阻碍作用,单位是欧姆;电容是储存电荷的能力,单位是法拉;电感是存储磁场能量的元件,单位是亨利。
3. 信号处理:模拟信号是连续的信号,可以采用模拟电子技术进行处理。
模拟信号的处理包括滤波、放大、混频等操作。
4. 放大器:放大器是一种能够增加信号幅度的电路,通常包括运放放大器、功率放大器等类型。
5. 混频器:混频器是一种能够将两个不同频率的信号进行混合的电路,主要用于调频、调相和倍频等应用。
6. 滤波器:滤波器可以根据频率特性对输入信号进行滤波,主要包括低通滤波器、带通滤波器和高通滤波器等。
7. 稳压器:稳压器是一种能够在负载变化时保持输出电压稳定的电路,主要包括线性稳压器和开关稳压器。
8. 模拟信号的采样与保持、量化与编码:在数字信号处理中,要将模拟信号转换为数字信号,需要进行模拟信号的采样与保持、量化与编码等操作。
二、基本电路分析方法1. 基尔霍夫定律:基尔霍夫定律是电路分析中的重要方法之一,包括基尔霍夫电流定律和基尔霍夫电压定律。
2. 节点分析法和支路分析法:节点分析法和支路分析法是电路分析中常用的两种方法,用于求解电路中的电压和电流。
3. 物理尺解法:物理尺解法是一种将电路问题转化为几何问题进行求解的方法,通常用于分析长线搭接、三角形回路等特殊电路。
4. 电压源法和电流源法:电压源法和电流源法是一种简化复杂电路的方法,适用于求解电路中的等效电阻和电流分布。
5. 理想变压器:理想变压器是一个重要的电路模型,可以通过它来求解电路中的电压和电流。
6. 交流电路分析:交流电路分析是模拟电子技术中的重要内容,包括交流电路中的阻抗、功率、相位等内容。
7. 电路的频率响应:电路的频率响应是指电路对不同频率信号的响应情况,可以通过传递函数或频率特性曲线来描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
零点漂移零点漂移可描述为:输入电压为零,输出电压偏离零值的变化。
它又被简称为:零漂零点漂移是怎样形成的:运算放大器均是采用直接耦合的方式,我们知道直接耦合式放大电路的各级的Q点是相互影响的,由于各级的放大作用,第一级的微弱变化,会使输出级产生很大的变化。
当输入短路时(由于一些原因使输入级的Q点发生微弱变化象:温度),输出将随时间缓慢变化,这样就形成了零点漂移。
产生零漂的原因是:晶体三极管的参数受温度的影响。
解决零漂最有效的措施是:采用差动电路。
BJT放大电路的零点漂移和差分放大器2011-08-10 17:55:57| 分类:微电子电路| 标签:晶体管差分放大器|字号大中小订阅Xie Meng-xian. (电子科大,成都市)在电路应用中,双极型晶体管的温度稳定性系数,主要是用来表征晶体管直流偏置电路所决定的工作点的温度稳定性。
而在晶体管的直接耦合放大电路中,还会出现的一种重要的不稳定现象——零点漂移。
零点漂移是指当放大器的输入电压为零(输入端短路)时,而在输出端有无规律的、变化缓慢的电压产生的现象,这是晶体管直接耦合放大电路中存在的一个特殊问题。
零点漂移不仅与偏置电路有关,而且也与其他许多因素有关。
(1)产生零点漂移的原因:引起晶体管出现零点漂移的原因很多,例如:温度的变化对晶体管参数的影响,电源电压的波动,元器件参数变值,环境温度变化等;其中最主要的因素是温度的变化,因为晶体管是温度的敏感器件,它的参数(VBE、β、ICBO)都将会随温度而发生变化,最终导致放大电路静态工作点产生偏移。
在诸多因素中,不仅温度的影响最大,而且最难控制的也是温度的变化。
故有时也把零点漂移简称为温度漂移。
如果晶体管的电压放大倍数为K,输入电压的漂移为ΔVpi,则由于温度的变化(ΔT)而使得输出电压的漂移ΔVpo可近似地表示为式中的ΔT=T-To是温度的变化,To为室温(25℃),T为任意温度;dVBE/dT 为发射结电压随温度的变化率(一般为-2 mV/℃~-2.5mV/℃);ICBO为室温下的集电结反向饱和电流;C为常数(一般为0.5%/℃~1.0%/℃);k为ICBO 的温度系数(Ge晶体管的k≈0.08/℃,Si晶体管的k≈0.12/℃)。
在多级放大器中,直接耦合式放大电路的各级的工作点是相互影响的,由于各级的放大作用,第一级的微弱变化,会使输出级产生很大的变化;因此,第l 级的零点漂移影响最大,级数越多、放大倍数越大,则零点漂移也越严重。
可见,减小零点漂移的关键是改善放大电路第1级的性能。
在零点漂移现象严重的情况下,往往会使有效信号被“淹没”,则这时直接耦合放大电路就不能正常工作。
因此,必须要采取措施来抑制零点漂移。
(2)抑制零点漂移的措施:(a) 选用高质量的硅管。
因为硅管的ICBO要比锗管的小好几个数量级,因此目前高质量的直流放大电路几乎都采用硅管。
另外,晶体管的制造工艺也很重要,即使是同一种类型的晶体管,如工艺不够严格,半导体表面不干净,将会使漂移程度增加。
所以必须严格挑选合格的半导体器件。
(b) 在电路中引入直流负反馈,稳定静态工作点。
(c) 采用温度补偿的方法,即利用热敏元件来抵消晶体管特性的变化。
补偿是指用另外一个元器件的漂移来抵消放大电路的漂移,如果参数配合得当,就能把漂移抑制在较低的限度之内。
在分立元件组成的电路中,常用二极管补偿方式来稳定静态工作点。
此方法简单实用,但效果不尽理想,适用于对温漂要求不高的电路。
(d)采用调制手段,调制是指将直流变化量转换为其他形式的变化量(如正弦波幅度的变化),并通过漂移很小的阻容耦合电路放大,再设法将放大了的信号还原为直流成份的变化。
这种方式电路结构复杂、成本高、频率特性差。
实现这种方法成本投入较高。
(e) 采用差动放大电路。
这是根据温度补偿的方法,利用两个特性都相同的晶体管来进行补偿,即可很好地抑制零点漂移。
在集成电路芯片内部,应用最广的单元电路就是基于参数补偿原理而构成的差动式放大电路。
在直接耦合放大电路中,抑制零点漂移最有效地方法是采用差动式放大电路。
(3)差动放大电路:差动放大电路又叫差分放大器,如图1所示;其中的图(a)是基本形式的差动放大电路,图(b)是电流负反馈形式的差动放大电路。
差动放大电路不仅能有效地放大直流信号,而且还能有效地减小由于电源波动和晶体管随温度变化而引起的零点漂移,因而获得了广泛的应用,特别是大量地应用于集成运放电路,常常被用作多级放大器的前置级。
对于图1(a)的基本差动式放大器,图中T1、T2是两个特性相同的晶体管(β1=β2=β),电路的接法对称、参数也对称(即基极和集电极上的电阻分别相等)。
该放大电路有两个输入端和两个输出端。
因左右两个放大电路完全对称,故在没有信号情况下输出也为0,即输入信号为0时,输出电压Vo=0,即表明差分放大器具有零输入时零输出的特;当温度变化时,左右两个管子的输出电压都要发生变动,也由于晶体管和电路的对称性,则两管的输出变化量(即每个晶体管的零点漂移)相同,就使得两个晶体管的零点漂移管在输出端相互抵消,从而导致总的输出电压Vo=O。
可见,差动放大电路能够有效地抑制零点漂移。
但是,由于性能完全一致的晶体管并不存在,因此完全对称的理想差动放大电路也就不可能实现;所以单靠提高电路的对称性来抑制零点漂移的效果是有限的。
特别是,当采用单端输出(即输出电压从一个管的集电极与“地”之间取出)时,零点漂移就根本无法抑制。
实际上,这种情况的出现主要是由于基本差动电路中的每个晶体管的集电极电位的漂移并末受到抑制的缘故。
为此,常常采用的差动放大电路是图1(b)的典型电路;在这种典型差动放大电路中,主要是增加了一个发射极的公共电阻RE和一个负电源(-VCC)。
调零电位器RP可以看成是RE的一部分。
由于发射极电阻RE的电流负反馈作用,就稳定了晶体管的静态工作点,使得晶体管的集电极电位基本不变,从而限制了每个晶体管的零点漂移范围,这就进一步减小了差分电路的零点漂移。
所以带有发射极电阻RE的典型差动放大电路具有很小的零点漂移。
这种典型差动放大电路即使是采用单端输出,其零点漂移也能得到有效地抑制。
差分电路放大的是差模信号(相位相反的信号),而零点漂移属于共模信号(相位相同的信号)。
则可以说晶体管发射极电阻RE能够抑制共模信号,而对差模信号不起抑制作用。
显然,若RE的阻值取得大一些,则电流负反馈作用就强一些,因而抑制每个晶体管零点漂移的作用也就显著一些,电路的稳定性也就更好一些。
但是RE对差模信号将起着负反馈的作用,会影响到晶体管的增益,因此RE的阻值也不宜过大,一般调零电位器RP的值可取在几十W~几百W 之间。
总之,差动放大电路既可利用晶体管和电路的对称性、采用双端输出的方式来抑制零点漂移;也可以利用发射极公共电阻RE的电流负反馈作用来稳定静态工作点,并从而抑制每个晶体管的零点漂移,这时即使采用单端输出也可以获得很小的零点漂移。
差动放大电路这种抑制零点漂移的能力,也就是对共模输入信号的放大作用进行抑制的能力。
差分放大器能够放大差模信号和抑制共模信号的能力,通常采用所谓共模抑制比(C.M.R)这个参数来表征:C.M.R=[差模输入信号的放大倍数]/[共模输入信号的放大倍数]。
增大RE,选用高β及其高对称的晶体管,提高电路参数对称性,以及减小基极回路的电阻,都可以提高差分放大器的共模抑制比。
(a)基本差分电路(b)典型差分电路(4)四种主要的差动放大电路:在图1(b)典型差动放大电路的基础上,根据应用的要求,按照输入、输出的端头情况(是单端还是双端),可以有四种主要的差动放大电路(见图2):(a)双端输入、双端输出差动电路;(b)单端输入、单端输出差动电路;(c)双端输入、单端输出差动电路;(d)单端输入、双端输出差动电路。
(a)(b)(c)(d)偏置电路晶体管构成的放大器要做到不失真地将信号电压放大,就必须保证晶体管的发射结正偏、集电结反偏。
即应该设置它的工作点。
所谓工作点就是通过外部电路的设置使晶体管的基极、发射极和集电极处于所要求的电位(可根据计算获得)。
这些外部电路就称为偏置电路三极管放大电路中,不加偏置电路的话,信号只有一个半周在基极中产生电流,而且这个半周的一部分会小于三极管的阀值电压,因此三极管只能放大这个信号的不足一个半周。
要想放大整个信号周期,需要增加偏置电路。
基本的偏置电路由上偏置电阻和下偏置电阻组成。
在共发射极电路中,上偏置电路接在三极管基极与电源之间,下偏置电阻接在基极与地之间,上偏置电阻的作用是提高三极管的工作点,下偏置电阻的作用是使三极管的工作点更加稳定。
下偏置电阻两端有并联小电容的情况,但这个电容与偏置无关,起滤除杂波的作用,是旁路电容。
三极管的偏置有三种形式,加有上偏置电阻的叫正偏,不加偏置电路的称为零偏,不加偏置电路并且加上发射极电阻的,称为反偏。
音频信号放大需要正偏以降低失真度,高频信号放大常采用零偏或反偏以提高工作效率。
可以简单地概括成一个定义:由上偏置电阻和下偏置电阻等构成的电路称为偏置电路限幅电路二极管限幅器、二极管是串在输入、输出之间,故称它为串联限幅电路。
将二极管和负载并联,则组成并联限幅器利用三极管的截止和饱和特性也可构成限幅电路耦合方式:阻容耦合;直接耦合;变压器耦合;光电耦合。
复合管的电流放大系数β≈β1β 2缺点及解决办法穿透电流增大ICEO=ICEO2+ β2ICEO1解决办法:ICEO1经R分流一部分,r为负反馈电阻,提高工作的稳定性晶体管的类型由复合管中的第一支管子决定(b极)二极管限幅器原理二极管限幅器原理限幅器即将削去了一部分振幅波形的输入信号传到输出端的电路,因而也称削波器。
电路功能有上限幅(削去波形上部一部分)、下限幅(削去波形下部一部分)、双向限幅(同时削去波形上下各一部分),限幅器电阻R应满足条件RD《R〈RR,RD、RR分别为二极管正向导通电阻和反向截止电阻。
上限幅电平用EH表示,下限电平用EL表示。
1、串联限幅器开关器件位于限幅器的串联臂构成串联限幅器。
图5.4-79A为上限幅器及波形图,图中V经R1和R2分压取得限幅电平EH,则限幅器电阻R=R1//R2。
图5.4-79B为串联下限幅器及波形图。
2、并联限幅器开关器件位于限幅器的并联臂构成并联限幅器。
图5.4-80A为上限幅,图B为下限幅波形同5.4-79,图中电压源可用稳压管或其他低内阻电压源。
3、双赂限幅器同时具有上下限幅功能的电路为双向限幅器,波形如5.4-81所示,输入信号高于EH和低于EL的波形被削去,介于EH和EL之间的信号传到输出端。
图5.4-82A为串联双向限幅器,其中EH=V2R4/(R2+R4);E1=V1R2/(R1+R2);EL=E1+(EH-E1)(R1//R2)/[(R1//R2)+(R3//R4)];V1﹤0;V2﹥0。