解三角形复习课件-高三数学复习
第5讲 三角函数、解三解形
1 cos 2 2
2 1 与升幂公式: cos 2 2 cos ,1
1 cos 2 , 2
cos 2 2 sin 2 ).
10.辅助角公式中辅助角的确定: sin x b cos x a
(其中 角所在的角限由a,b的 a 2 b 2 sin( x ) 符号确定, 角的值由 tan b 确定)在求最值、
5 36
线上) = +k (k∈Z). (3)终边与 终边关于x轴对称 =- +2k (k∈Z).
(4) 终边与 终边关于y轴对称= - +2k
(k∈Z).
(5) 终边与 终边关于原点对称 = + +2k (k∈Z). (6) 终边在x轴上的角可表示为 =k ,k∈Z; 终边 在y轴上的角可表示为 k , k∈Z; 终边在 坐标轴上的角可表示为 2. 与
2
2
坐标向左( >0)或向右( <0)平移||个单位得
y=sin(x+ )的图象;②函数y=sin(x+ )图象的纵 坐标不变,横坐标变为原来的
1
sin( x+ )的图象;③图象y=sin( x+ )图象 的横坐标不变,纵坐标变为原来的A倍,得到函数 y=sin ( x+ )的图象;④函数y=Asin( x+ ) 图象的横坐标不变,纵坐标向上(k>0)或向下(k < 0) 平移|k|个单位得到y=Asin( x+ )+k的图象.要 特别注意,若由y=sin x得到y=sin( x+ )的图 象,则应向左或向右平移 y=sin x的图象?
高考数学复习考点知识讲解课件25 解三角形应用举例
— 15 —
(新教材) 高三总复习•数学
— 返回 —
测量距离问题的求解策略 (1)确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量 放在另外三角形中求解. (2)确定选用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.
— 16 —
(新教材) 高三总复习•数学
— 返回 —
即 DE=si1n0705s°itna4n51°5°=sin17050°×sincs4oi5ns°1155°°=sin17050°s×inss4ii5nn°1755°°=10s0insi1n54°5°.
又 sin15°=sin(45°-30°)=
6- 4
2,所以 DE=10s0insi1n54°5°=100(
图形表示
— 返回 —
— 5—
(新教材) 高三总复习•数学
术语 名称
术语意义
图形表示 例:(1)北偏东 α:
方向角
正北或正南方向线与目标 方向线所成的__锐__角__,通
常表达为北(南)偏东(西)α
(2)南偏西 α:
— 返回 —
— 6—
(新教材) 高三总复习•数学
— 返回 —
术语 名称
术语意义
图形表示
术语 名称
术语意义
在目标视线与水平视线(两者在
同一铅垂平面内)所成的角中, 仰角与俯角 目标视线在水平视线__上__方__的
叫做仰角,目标视线在水平视线 _下__方__的叫做俯角
图形表示
— 返回 —
— 4—
(新教材) 高三总复习•数学
术语 名称
方位角
术语意义
从某点的指北方向线起按 _顺__时__针__方向到目标方向线 之间的夹角叫做方位角.方 位角 θ 的范围是0_°_≤__θ_<_3_6_0_°
第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)
第七节解三角形应用举例一、教材概念·结论·性质重现1.仰角和俯角意义图示在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角.2.方位角意义图示从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α.3.方向角意义图示相对于某一正方向的水平角(1)北偏东α,即由指北方向顺时针旋转α到达目标方向;(2)北偏西α,即由指北方向逆时针旋转α到达目标方向;(3)南偏西等其他方向角类似.4.坡角与坡度意义图示(1)坡角:坡面与水平面所成的二面角的度数(如图,角θ为坡角);(2)坡度:坡面的铅直高度与水平长度之比(如图,i为坡度).坡度又称为坡比.解三角形应用问题的步骤1.判断下列说法的正误,对的打“√”,错的打“×”.(1)若从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α=β.(√) (2)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.(×) (3)若点P 在点Q 的北偏东44°,则点Q 在点P 的东偏北46°. (×) (4)方位角大小的范围是[0,π),方向角大小的范围是⎣⎢⎡⎭⎪⎫0,π2.(×)2.如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°D 解析:由条件及图可知,∠A =∠CBA =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 的南偏西80°. 3.如图,为测量一棵树OP 的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.30+303解析:在△PAB中,∠PAB=30°,∠APB=15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°·sin 30°=22×32-22×12=6-2 4.由正弦定理得PBsin 30°=ABsin 15°,所以PB=12×606-24=30(6+2),所以树的高度OP=PB sin 45°=30(6+2)×22=(30+303)(m).4.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为________ km.64解析:因为∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,所以∠DAC=60°,所以AC=CD=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=CDsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC cos 45°=34+38-2×32×64×22=38.所以AB=64km.所以A,B两点间的距离为64km.5.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为________.40 m解析:设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,由余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=40或x=-20(舍去).故电视塔的高度为40 m.考点1解三角形的实际应用——应用性考向1测量距离问题如图,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1 km,AC=3 km.假设小王和小李徒步攀登的速度为每小时1 250m,请问:两位登山爱好者能否在2个小时内徒步登上山峰.(即从B点出发到达C点)解:在△ABD中,由题意知,∠ADB=∠BAD=30°,所以AB=BD=1.因为∠ABD=120°,由正弦定理ABsin∠ADB=ADsin∠ABD,解得AD=3(km).在△ACD中,由AC2=AD2+CD2-2AD·CD·cos 150°,得9=3+CD2+23×32×CD.即CD2+3CD-6=0,解得CD=33-32(km),BC=BD+CD=33-12(km).两个小时小王和小李可徒步攀登1 250×2=2 500(m),即2.5km , 而33-12<36-12=52=2.5,所以两位登山爱好者可以在两个小时内徒步登上山峰.1.若将本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,求这条索道AC 的长.解:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD , 所以200sin 30°=ADsin 120°. 所以AD =200×sin 120°sin 30°=200 3 (m). 在△ABC 中,DC =300 m ,∠ADC =150°,所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(2003)2+3002-2×2003×300×cos 150°=390 000,所以AC =10039 m.故这条索道AC 长为10039 m.2.若将本例条件“∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km ”变为“∠ADC =135°,∠CAD =15°,AD =100 m ,作CO ⊥AB ,垂足为O ,延长AD 交CO 于点E ,且CE =50 m ,如图”,求角θ的余弦值.解:在△ACD 中,∠ADC =135°, ∠CAD =15°,所以∠ACD =30°. 由正弦定理可得AC =100×sin 135°sin 30°=100 2.在△ACE 中,由正弦定理可得sin ∠CEA =AC ·sin ∠CAE CE=3-1,所以cos θ=cos ⎝ ⎛⎭⎪⎫∠CEA -π2=sin ∠CEA =3-1.距离问题的解题思路这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.提醒:①基线的选取要恰当准确;②选取的三角形及正弦、余弦定理要恰当. 考向2 测量高度问题如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC =135°.若山高AD =100 m ,汽车从B 点到C 点历时14 s ,则这辆汽车的速度约为________m/s(精确到0.1).参考数据:2≈1.414,5≈2.236.22.6 解析:因为小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°, 所以∠BAD =60°,∠CAD =45°. 设这辆汽车的速度为v m/s ,则BC =14v . 在Rt △ABD 中,AB =AD cos ∠BAD =100cos 60°=200. 在Rt △ACD 中,AC =AD cos ∠CAD =100cos 45°=100 2. 在△ABC 中,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC , 所以(14v )2=(1002)2+2002-2×1002×200×cos 135°,所以v =50107≈22.6,所以这辆汽车的速度约为22.6 m/s.解决高度问题的注意事项(1)在解决有关高度问题时,理解仰角、俯角是关键.(2)高度问题一般是把它转化成解三角形问题,要注意三角形中的边角关系的应用.若是空间的问题要注意空间图形向平面图形的转化.1.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表” )和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭” ).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即∠ABC)为26.5°,夏至正午太阳高度角(即∠ADC)为73.5°,圭面上冬至线与夏至线之间的距离(即BD的长)为a,则表高(即AC的长)为()A.a sin 53°2sin 47°B.2sin 47°a sin 53°C.a tan 26.5°tan 73.5°tan 47°D.a sin 26.5°sin 73.5°sin 47°D解析:由题意得,∠BAD=73.5°-26.5°=47°.在△ABD中,由正弦定理可得,BDsin∠BAD=ADsin∠ABD,即asin 47°=ADsin 26.5°,则AD=a sin 26.5°sin 47°.在△ACD中,ACAD=sin∠ADC=sin 73.5°,所以AC=a sin 26.5°·sin 73.5°sin 47°.故选D.2.如图是改革开放四十周年大型展览的展馆——国家博物馆.现欲测量博物馆正门柱楼顶部一点P 离地面的高度OP (点O 在柱楼底部).在地面上的A ,B 两点测得点P 的仰角分别为30°,45°,且∠ABO =60°,AB =50米,则OP 为( )A .15米B .25米C .35米D .45米B 解析:如图所示:由于∠OAP =30°,∠PBO =45°,∠ABO =60°,AB =50米,OP ⊥AO ,OP ⊥OB .设OP =x ,则OA =3x ,OB =x ,在△OAB 中,由余弦定理得OA 2=OB 2+AB 2-2OB ·AB ·cos ∠ABO , 即(3x )2=502+x 2-2×50x ×12,所以x 2+25x -1 250=0,解得x =25或x =-50(舍).3.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =80米,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则A ,B 两点间的距离为________米.805 解析:如图,在△ACD 中,∠DCA =15°,∠ADC =150°,所以∠DAC =15°.由正弦定理,得AC=80sin 150°sin 15°=406-24=40(6+2)(米).在△BCD中,∠BDC=15°,∠BCD=135°,所以∠CBD=30°.由正弦定理,得CDsin∠CBD=BCsin∠BDC,所以BC=CD·sin∠BDCsin∠CBD=80×sin 15°sin 30°=40(6-2)(米).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=1 600(8+43)+1 600(8-43)+2×1 600(6+2)×(6-2)×12=1 600×16+1 600×4=1 600×20,解得AB=805(米),则A,B两点间的距离为805米.考点2正余弦定理在平面几何中的应用(2020·青岛模拟)如图,在平面四边形ABCD中,AB⊥AD,AB=1,AD =3,BC= 2.(1)若CD=1+3,求四边形ABCD的面积;(2)若sin∠BCD=325,∠ADC∈⎝⎛⎭⎪⎫0,π2,求sin∠ADC.解:(1)如图,连接BD,在Rt△ABD中,由勾股定理可得,BD2=AB2+AD2=4,所以BD=2.在△BCD 中,由余弦定理可得,cos C =BC 2+CD 2-BD 22BC ·CD =2+(1+3)2-222×2×(1+3)=22. 因为C 为三角形的内角,故C =π4, 所以S △ABD =12AB ·AD =12×1×3=32, S △BCD =12BC ·CD sin C =12×2×(1+3)×22=1+32, 故四边形ABCD 的面积S =1+232.(2)在△BCD 中,由正弦定理可得BC sin ∠BDC =BDsin ∠BCD , 所以sin ∠BDC =BC ·sin ∠BCD BD=35. 因为∠ADC ∈⎝ ⎛⎭⎪⎫0,π2,所以∠BDC ∈⎝ ⎛⎭⎪⎫0,π2, 所以cos ∠BDC =45,在Rt △ABD 中,tan ∠ADB =AB AD =33, 故∠ADB =π6,所以sin ∠ADC =sin ⎝ ⎛⎭⎪⎫∠BDC +π6=35×32+45×12=4+3310.正余弦定理解平面几何问题的注意点(1)图形中几何性质的挖掘往往是解题的切入点,或是问题求解的转折点. (2)根据条件或图形,找出已知,未知及求解中需要的三角形,用好三角恒等变换公式,运用正弦定理,余弦定理解题.(3)养成应用方程思想解题的意识.1.如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km),AB =5,BC =8,CD =3,AD =5,且∠B 与∠D 互补,则AC 的长为( )A .7 kmB .8 kmC .9 kmD .6 kmA 解析:在△ACD 中,由余弦定理得cos D =AD 2+CD 2-AC 22AD ·CD =34-AC 230. 在△ABC 中,由余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC=89-AC 280. 因为∠B +∠D =180°,所以cos B +cos D =0,即34-AC 230+89-AC 280=0,解得AC 2=49.所以AC =7.2.(2020·山师附中高三模拟)如图,在平面四边形ABCD 中,已知AB =26,AD =3,∠ADB =2∠ABD ,∠BCD =π3.(1)求BD ;(2)求△BCD 周长的最大值.解:在△ABD 中,设BD =x ,∠ABD =α,则∠ADB =2α, 因为AB sin 2α=AD sin α, 所以cos α=63.由余弦定理得cos α=x 2+24-946x =63. 整理得x 2-8x +15=0,解得x =5或x =3. 当x =3时,得∠ADB =2α=π2, 与AD 2+BD 2≠AB 2矛盾,故舍去, 所以BD =5.(2)在△BCD 中,设∠CBD =β, 所以BD sin π3=BC sin ⎝ ⎛⎭⎪⎫2π3-β=CD sin β,所以BC =1033sin ⎝ ⎛⎭⎪⎫2π3-β,CD =1033sin β,所以BC +CD =1033·⎝ ⎛⎭⎪⎫32sin β+32cos β=10sin ⎝ ⎛⎭⎪⎫β+π6≤10. 所以△BCD 周长的最大值为15.考点3 解三角形与三角函数的综合问题(2020·合肥模拟)已知函数f (x )=cos 2x +3sin(π-x )sin ⎝ ⎛⎭⎪⎫x -π2-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)锐角△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,已知f (A )=-1,a =2,求△ABC 的面积的最大值.解:(1)f (x )=1+cos 2x 2-3sin x cos x -12=12cos 2x -32sin 2x =-sin ⎝ ⎛⎭⎪⎫2x -π6. 令2k π-π2≤2x -π6≤2k π+π2, 得k π-π6≤x ≤k π+π3(k ∈Z ),所以函数f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π. (2)因为△ABC 为锐角三角形,所以0<A <π2,所以-π6<2A -π6<5π6. 又f (A )=-sin ⎝ ⎛⎭⎪⎫2A -π6=-1, 所以2A -π6=π2,即A =π3.因为a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ≥2bc -bc =bc ,当且仅当b =c =2时,等号成立.又a =2,所以bc ≤4, 所以S △ABC =12bc sin A ≤ 3. 即△ABC 的面积的最大值为 3.解三角形与三角函数综合问题的一般步骤已知函数f (x )=32sin 2x -cos 2x -12(x ∈R ),设△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c ,且c =3,f (C )=0.(1)求角C ;(2)若向量m =(1,sin A )与向量n =(2,sin B )共线,求△ABC 的周长. 解:(1)f (x )=32sin 2x -cos 2x -12=32sin 2x -12cos 2x -1=sin ⎝ ⎛⎭⎪⎫2x -π6-1. 因为f (C )=sin ⎝ ⎛⎭⎪⎫2C -π6-1=0且C 为三角形内角,所以C =π3. (2)若向量m =(1,sin A )与向量n =(2,sin B )共线, 则sin B -2sin A =0. 由正弦定理得b =2a ,由余弦定理得cos π3=a2+4a2-3 2·a·2a=12,解得a=1,b=2,故△ABC的周长为3+ 3.。
2022年全国新高考Ⅰ卷第18题解三角形说题-课件-2024届高三数学一轮复习
感悟
反思
2.加强教考衔接,注重通用方法,强调在深刻理解基础上的
融会贯通、灵活运用,让学生掌握原理、内化方法,主动进
行探究和深层次学习,帮助学生掌握探索的方法与解题的规
律,
3.在数学问题中,给出的条件有时会在量、形关系上显得较为杂
乱,要根据待解问题的表现形式,对所给的量、形关系做和谐统
一的化归,培养学生逻辑推理和数学运算的能力,注重学生核心
2
1 cos2 C
cos2 2 B 1 - cos2 B
1 sin 2 B
(2 cos2 B 1) 2 1 - cos2 B
cos2 B
2
4cos2 B
5
2
cos B
4 2 5
2
当且仅当cosB
2
时,等号成立.
2
反思感悟
原题呈现
命题立意
由第一问sinB -cosC 0,
2
cos x
设f ( x )
, x ( , )
1 sin x
2 2
1 sin x
得f ' ( x )
0
2
(1 sin x)
cos x
所以f ( x)
在( , )上单调递减
1 sin x
2 2
则f ( A) f ( 2 B )
2
所以A
内角之间的关系
学生的数学推理和运算能
力,以及转化和划归的数
学思想,分析,解决问题
的能力
本题设问由易到难,
重在培养学生的逻
辑推理,数学运算
这两大数学核心素
第四章第五节解三角形课件——2025届高三数学一轮基础专项复习
第五节 解三角形
2025年高考数学专项复习
目
录
壹
利用正、余弦定理解三角形
贰
三角形形状的判断及三角形的面
积
叁
用正、余弦定理求解与平面几何
有关的问题
肆
解三角形中的最值或范围问题
伍
解三角形的建模应用
壹
利用正、余弦定
理解三角形
教材知识萃取
在△ABC中,设角A,B,C所对的边分别是a,b,c,R为△ABC的外接圆半径.
2
3
3
,且csin A = 4sin B − 3acos C,则角A
【解析】 由正弦定理得,c =
4
3
3
π
3
=__.(此题答案下方有一道变式题,请自行作答哦)
sin C,a =
4
3
3
sin A,代入csin A = 4sin B − 3acos C,化简得
sin Csin A = 3sin B − 3sin Acos C,
120∘ ,故C选项不可以作为已知条件.
(【另解】根据正弦定理判断三角形解的个数的方法(见题后方法总结),可快速得出bsinA = 3<2 = a,从而判断
三角形有两解,所以C选项不可以作为已知条件)对于D,因为a = 2,b = 2
Hale Waihona Puke cos B =a2 +c2 −b2
2ac
=
22 +42 − 2
2×2×4
∴ sin Csin A = 3sin(A + C) − 3sin Acos C = 3sin Acos C + 3cos Asin C − 3sin Acos C = 3cos Asin C,
解三角形之中线、角平分线、高线问题+课件-高2025届高三数学一轮复习
( +
- )
.
(1)求∠ACB;
(2)若∠A= ,∠ACB 的平分线 CE 与边 AB 相交于点 E,延长 CE 至点 D,使得 CE=DE,求 cos∠ADB.
解:(2)不妨令 AC=3,因为∠ACB= ,可得 AB=3
1
1
1
:
:
sin A sin B sin C
2、求高一般采用等面积法,即求某边上的高,需要求出面积和底边长度
高线两个作用:(1)产生直角三角形;(2)与三角形的面积相关。
例题讲解
三角形的中线问题
【例 1】在 ABC 中, AD 是 BC 边的中线,
, BAC 120 且 AB AC
知识梳理
知识梳理
3、等面积法:
因为
所以
+
∆
+
=
∆
=2
1
1
,所以2 ∙
∆
2
整理的:
2
=
+2 ∙
2
2
+
2
(角平分线长公式)
【作用】
: ①利用角度关系建立各三角形之间的面积关系
②通过面积关系式求解角分线长度
1
=2
,
知识梳理
三、垂线
1 1 1
a b c
1、 h1,h2,h3 分别为 ABC 边 a,b,c 上的高,则 h1 : h2 : h3 : :
+ -
=
= ,
C,
例题讲解
三角形的高线问题
【例3】在△ABC中,内角A,B,C的对边分别为a,b,c,且(sin B-sin C)2=sin2A-sin Bsin C.
高三数学一轮课件 第四章 三角函数与解三角形 4.2 同角三角函数的基本关系及诱导公式
=
25.
5
关闭 关闭
解析 答案
知识梳理 双基自测
12345
-11-
自测点评
1.平方关系和商数关系式中的角都是同一个角,且商数关系式中
α≠
π 2
+kπ,k∈Z.
2.利用平方关系式解决问题时,要注意开方运算结果的符号,需要
根据角α的范围确定.
3.公式化简求值时,要利用公式化任意角的三角函数为锐角三角
函数,其步骤:去负—脱周—化锐,特别注意函数名称和符号的确定.
(2)若 α∈R,则 tan α=csoins������������恒成立. (
)
(3)sin(π+α)=-sin α成立的条件是α为锐角. ( )
(4)若 cos(nπ-θ)=13(n∈Z),则 cos θ=13. ( )
(1)× (2)× (3)× (4)×
关闭
答案
-7-
知识梳理 双基自测
12345
什(1)么1 ? (2) 3
答案
考点1
考点2
考点3
-25-
解析: (1)原式=-sin 1 200°·cos 1 290°-cos 1 020°sin 1 050°
=-sin(3×360°+120°)cos(3×360°+210°)-
cos(2×360°+300°)sin(2×360°+330°)
=
-
4 5
,
cos������
=
3 5
,
于是 1
cos ������-sin ������
=
1 35- -45
= 57.
考点1
考点2
考点3
高三数学一轮复习课件:第四章 三角函数 解三角形 4-1
解法二:扇形周长 C=2R+L,面积 S=12LR=12R(C-2R)= -R2+12CR=-R-C4 2+1C620<R<C2 ,
仅当 R=C4,即 C=4R 时,扇形的面积 S 最大, 此时 C=4R=2R+L,L=2R,由 L=2R 得 α=2, 即 α=2 时,扇形面积有最大值1C62.
涉及弧长和扇形面积的计算时,可用的公式有角度表示和弧 度表示两种,其中弧度表示的公式结构简单,易记好用,在使用 前,应将圆心角用弧度表示.弧长和扇形面积公式:l=|α|R,S =12|α|R2=12LR.在公式的选择上以简单、计算量小为原则,如本例 中解法二比解法一计算量小.
[跟踪演练]
已知扇形的面积为 2,扇形圆心角的弧度数是 4,则扇形的周
扇形有最大面积? [思路引导] (1)利用弧长公式求. (2)寻求周长、半径 R 及圆心角 α 的关系,用其中两个量表示
扇形面积.
[解] (1)设弧长为 l,则 α=60°=3π,R=10,l=π3×10=130π(cm). (2)解法一:扇形周长 C=2R+l=2R+αR,∴R=2+C α,
∴S 扇=12α·R2=12α·2+C α2 =C22α·4+41α+α2=C22·4+α1+α4≤C162.当且仅当 α2=4,即 α=2 时,扇形面积有最大值C162.
第
四
三角函数 解三角形
章
第一节
任意角和弧度制及任意角的三角函数
高考概览 1.了解任意角的概念;2.了解弧度制的概念,能进行弧度与角 度的互化;3.理解任意角的三角函数(正弦、余弦、正切)的定义.
吃透教材 夯双基
填一填 记一记 厚积薄发
[知识梳理] 1.角的概念 (1)角的形成 角可以看成平面内一条射线绕着端点从一个位置 旋转 到另 一个位置所成的图形.
高三数学(理)一轮复习(课件)第三章 三角函数、解三角形3-5
微提醒:①横坐标伸缩与ω的关系不清;②搞不清f(x)在x=
π 2
处取最
值;③确定不了解析式中φ的值。
5.函数y=sinx的图象上所有点的纵坐标不变,横坐标伸长为原来的2
倍得到的图象对应的函数解析式是________。
解析 根据函数图象变换法则可得。 答案 y=sin12x
6.若函数f(x)=sinωx(0<ω<2)在区间 0,π3 上单调递增,在区间 π3,2π 上单调递减,则ω=________。
4.(2018·全国卷Ⅲ)函数f(x)=cos ________。
3x+π6
在[0,π]的零点个数为
解析 因为0≤x≤π,所以π6≤3x+π6≤169π,由题可知3x+π6=2π,或3x +π6=32π,或3x+π6=52π。解得x=9π或49π或79π。故有3个零点。
答案 3
三、走出误区
(A>0,ω>0),x∈ [0,+∞)表示一个振 A 动量时
T=2ωπ f =T1=2ωπ
相位 ωx+φ
初相 φ
1.函数y=Asin(ωx+φ)+k图象平移的规律:“左加右减,上加下减”。
2.由y=sinωx到y=sin(ωx+φ)(ω>0,φ>0)的变换:向左平移
φ ω
个单位长
度而非φ个单位长度。
【变式训练】 (2018·天津高考)将函数y=sin 2x+π5 的图象向右平移
1π0个A单.位在长区度间,3所4π得,5图4π象上对单应调的递函增数(
)
B.在区间34π,π上单调递减
C.在区间54π,32π上单调递增
D.在区间32π,2π上单调递减
一、走进教材
1.(必修4P55练习T2改编)为了得到函数y=2sin 2x-π3 的图象,可以将函 数y=2sin2x的图象( )
高三数学一轮总复习课件:第三章 三角函数、解三角形3-2
答案 -1
R 热点命题· 深度剖析
研考点 知规律 通法悟道
问 题 探 究 问题 1 巧? 利用同角三角函数基本关系式化简求值时,涉及两个同角基 sinα 本关系 sin α+cos α=1 和 tanα=cosα,它们揭示同一角 α 的各三
诱导公式
解析
sin585° =sin(585° -360° )=sin225°
2 =sin(180° +45° )=-sin45° =- . 2
答案 A
5.点 A(sin2 011° ,cos2 011° )在直角坐标平面上位于( A.第一象限 C.第三象限 B.第二象限 D.第四象限
)
解析
2 011° =360° ×5+(180° +31° ),
第三章 三角函数、解三角形
第二节
同角三角函数的基本关系
基础回扣· 自主学习
热点命题· 深度剖析
特色专题· 感悟提高
高考明方向 sinα 1.理解同角三角函数的基本关系式:sin α+cos α=1,cosα=tanα.
2 2
π 2.能利用单位圆中的三角函数线推导出 ± α,π±α 的正弦、余弦、 2 正切的诱导公式.
∴sin2 011° =sin[360° ×5+(180° +31° )] =-sin31° <0, cos2 011° =cos[360° ×5+(180° +31° )]=-cos31° <0. ∴点 A 位于第三象限.
答案 C
sin2π-α· cosπ-α 6. 5π =________. 5π cos 2 +αsin 2 -α
高考数学二轮复习考点十《三角恒等变换与解三角形》课件
B,∴sin
A=a
sin b
B=183.
10.(2021·辽宁沈阳高三年级质量监测)若 cos x-π6=13,则 sin 2x+π6 =________.
答案 -79 解析 sin 2x+π6=sin 2x-π6+2π=cos 2x-π6=2cos2x-π6-1=-79.
11.(2021·广东高州第二次模拟)已知 α∈π2,π,且 2cos2α=sin α-1, 则 tan α=________.
号.
四、解答题 13.(2021·山东济宁高三第一次模拟)已知△ABC 的三个内角 A,B,C 的对边分别是 a,b,c,且 b cos C+c cos B=2a cos A. (1)求角 A; (2)若 a=2 3,△ABC 的面积为 2 3,求 b+c 的值.
解 (1)因为 b cos C+c cos B=2a cos A, 由正弦定理得,sin B cos C+sin C cos B=2sin A cos A, 所以 sin (B+C)=sin A=2sin A cos A, 因为 0<A<π,所以 sin A≠0,所以 cos A=12,所以 A=π3.
所以 cos α= 415,tan α=csoins αα= 1155.故选 A.
二、选择题(在每小题给出的四个选项中,有多项符合题目要求)
8.(2021·三湘名校教育联盟高三联考)在△ABC 中,角 A,B,C 的对边
分别为 a,b,c,若 c= 23b=3,B=2C,则下列结论正确的是( )
A.sin
(2)因为△ABC 的面积为 2 3,所以12bc sin A=2 3, 因为 A=π3,所以12bc sin π3=2 3,所以 bc=8. 由余弦定理得,a2=b2+c2-2bc cos A, 因为 a=2 3,A=π3, 所以 12=b2+c2-2bc cos π3=(b+c)2-3bc=(b+c)2-24, 所以 b+c=6.
4.6正弦定理和余弦定理课件高三数学一轮复习(1)
a sin
b
c
A=s_i_n_B_=_si_n_C_=2R
b2+c2-a2
cos A=______2_b_c__;
常见
c2+a2-b2
变形 cos B=_____2_a_c___;
a2+b2-c2 cos C=______2_a_b___
(1)求角 A 的值;
解 若选①,由于△ABC的内角A,B,C的对边分别为a,b,c,且btan A=
(2c-b)tan B,
∴由正弦定理得
sin
sin B·cos
AA=(2sin
C-sin
sin B)·cos
B B.
∵sin B≠0,∴sin Acos B=2sin Ccos A-sin Bcos A, 即sin(A+B)=2sin Ccos A, 即sin C=2sin Ccos A. ∵sin C≠0,∴cos A=12. 又 0<A<π,∴A=π3. 若选②,∵cos 2A+2cos2A2=1, 化简可得2cos2A+cos A=1, 解得 cos A=21或-1,且 A∈(0,π),∴A=π3.
=csin A
2.在△ABC中,已知a,b和A时,解的情况如下: A为锐角
A为钝角或直角
图形
关系式 a=bsin A bsin A<a<b
解的个数 __一__解__
__两__解__
a≥b __一__解__
a>b a≤b _一__解___ __无__解__
3.三角形常用面积公式 (1)S=12a·ha(ha 表示 a 边上的高). (2)S=12absin C=12acsin B=12bcsin A=a4bRc. (3)S=12r(a+b+c)(r 为内切圆半径).
第五章 第七节 解三角形的实际应用 课件(共43张PPT)
本题以“珠穆朗玛峰”为背景设计试题,考查解三角形等 知识,体现了智育的素养导向.破解此类题的关键是准确获取有效信息,合 理运用获取到的信息画出草图,把所求的问题转化到几何图形中,通过合理 运用平面几何相关知识进行求解.
2 2
,
所以 θ=π4 ,∠ABC=3θ=34π ,
所以 AC2=16+8-2×4×2
2
×(-
2 2
)=40,
所以 AC=2 10 .]
平面几何中解三角形问题的求解思路 (1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用 正弦、余弦定理求解. (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.
C [函数 f(x)的定义域为 R.
A.50 2 m C.25 2 m
B.50 3 m D.252 2 m
A
[由正弦定理得sin
AB ∠ACB
= sin
AC ∠CBA
,又由题意得∠CBA=30°,
所以 AB=ACsinsin∠∠CBAACB
50× =1
2 2
=50
2
(m).]
2
4.如图所示,已知两座灯塔 A 和 B 与海洋观察站 C 的距离相等,灯塔 A 在观察站 C 的北偏东 40°,灯塔 B 在观察站 C 的南偏东 60°,则灯塔 A 在灯塔 B 的 ________方向.
解析: 如图,设辑私艇在 C 处截住走私船,D 为岛 A 正南方向上一点, 缉私艇的速度为 x 海里/小时,结合题意知 BC=0.5x,AC =5,∠BAC=180°-38°-22°=120°,
2025届高三一轮复习数学课件:高考中的三角函数与解三角形问题
已知△ABC的内角A,B,C所对的边分别为a,b,c,且
(1)求角C;
(2)若D为AB的中点,且c=2, CD= 3 ,求a,b的值.
解:选择①:
(1)根据正弦定理,得(a-c)(a+c)=b(a-b),
整理得a2-c2=ab-b2,即a2+b2-c2=ab,
形结合思想和转化与化归思想应用较多.
典 例 突 破
题型一
三角函数的化简与求值
解决三角函数化简与求值问题的总体思路就是化异为同,目的是消元,减
少未知量的个数.如把三角函数式中的异名、异角、异次化为同名、同角、
同次;在三角函数求值中,把未知角用已知角表示,或把未知角通过三角变
换化成已知角也是化异为同;对于三角函数式中既有正弦函数、余弦函数
3 13
13,sin A= 13 .
sin
sin
A=
=
3 13
.
13
2 13
(2)由(1)及 a<c,得 cos A= 13 ,
12
5
2
则 sin 2A=2sin Acos A=13,cos 2A=1-2sin A=-13.
π
π
π
7 2
故 sin 2 + =sin 2Acos +cos 2Asin =
3
2sin Acos B+2sin Bcos A=2sin(A+B)=2sin C= 3,则 sin C= .
2
π
又 C 为锐角三角形的内角,则 C=3.
3
由正弦定理,得sin = sin = =2 3,
3
2
即 a=2 3sin A,b=2 3sin B,