2015年陕西中考数学副题

合集下载

陕西省2015年中考数学试题及答案(Word版)

陕西省2015年中考数学试题及答案(Word版)

2015年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-032)(( )A.1B.23- C.0 D.322.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =∙B.2224)2(b a ab =-C.532)(a a =D.ab b a b a 332223=÷ 4.如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( )A.2B.-2C.4D.-4 6.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>x x x 的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度 9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( )A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧 二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。

2015年陕西中考数学试题及答案

2015年陕西中考数学试题及答案

2015年陕西中考数学一、选择题(共10小题;共50.0分)1. 计算:(−23)0= ( )A. 1B. −32C. 0D. 23 2. 如图是一个螺母的示意图,它的俯视图是A.B.C.D.3. 下列计算正确的是 ( ) A. a 2⋅a 3=a 6B. (−2ab )2=4a 2b 2C. (a 2)3=a 5D.3a 3b 2÷a 2b 2=3ab 4. 如图,AB ∥CD ,直线 EF 分别交直线 AB ,CD 于点 E ,F ,若 ∠1=46∘30ʹ,则 ∠2 的度数为A. 43∘30ʹB. 53∘30ʹC. 133∘30ʹD. 153∘30ʹ5. 设正比例函数 y =mx 的图象经过点 A (m,4),且 y 的值随 x 值的增大而减小,则 m = ( )A. 2B. −2C. 4D. −46. 如图,在 △ABC 中,∠A =36∘,AB =AC ,BD 是 △ABC 的角平分线,若在边 AB 上截取 BE =BC ,连接 DE ,则图中等腰三角形共有A. 2个B. 3个C. 4个D. 5个7. 不等式组{12x+1≥−3,x−2(x−3)>0的最大整数解为 ( )A. 8B. 6C. 5D. 48. 在平面直角坐标系中,将直线l1:y=−2x−2平移后,得到直线l2:y=−2x+4,则下列平移作法正确的是 ( )A. 将l1向右平移3个单位长度B. 将l1向右平移6个单位长度C. 将l1向上平移2个单位长度D. 将l1向上平移4个单位长度9. 在平行四边形ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为 ( )A. 7B. 4或10C. 5或9D. 6或810. 下列关于二次函数y=ax2−2ax+1(a>1)的图象与x轴交点的判断,正确的是 ( )A. 没有交点B. 只有一个交点,且它位于y轴右侧C. 有两个交点,且它们均位于y轴左侧D. 有两个交点,且它们均位于y轴右侧二、填空题(共4小题;共20.0分)11. 将实数√5,π,0,−6由小到大用“ <”号连起来,可表示为.12. 请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.正八边形一个内角的度数为.B.如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为.(用科学计算器计算,结果精确到0.1∘)13. 如图,在平面直角坐标系中,过点M(−3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为14. 如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45∘,若点M,N分别是AB,BC的中点,则MN长的最大值是三、解答题(共11小题;共143.0分)15. 计算:√3×(−√6)+∣∣−2√2∣∣+(12)−3.16. 解分式方程:x−2x+3−3x−3=1.17. 如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)18. 某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育教师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.19. 如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E.求证:AD=CE.20. 晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ,请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)21. 胡老师计划组织朋友暑假去革命圣地延安两日游.经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.22. 某中学要在全校学生中举办“中国梦⋅我的梦”主题演讲比赛,要求每班选一名代表参赛,九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)23. 如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.24. 在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为Mʹ,与x轴交于Aʹ,Bʹ两点,与y轴交于Cʹ点,在以A,B,C,M,Aʹ,Bʹ,Cʹ,Mʹ这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.25. 如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60∘,AD=8,BC=12.(1)如图 1,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图 2,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图 3,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.答案第一部分1. A2. B3. B4. C5. B6. D7. C8. A9. D 10. D第二部分11. −6<0<√5<π12. A.135∘;B.27.8∘.13. 1014. 3√2第三部分15. (1) 原式=−√18+2√2+8=−3√2+2√2+8=8−√2.16. (1) (x −2)(x −3)−3(x +3)=(x +3)(x −3),x 2−5x +6−3x −9=x 2−9,−8x =−6,x =34. 经验证,x =34 是原方程的根.17. (1)如图,直线 AD 即为所求.18. (1) 补全的两幅统计图如图所示.18. (2) 良好18. (3) 650×26%=169(人).∴ 该年级女生中 1 分钟“仰卧起坐”个数达到优秀的人数是 169 人.19. (1) ∵AE ∥BD ,∴∠EAC =∠ACB ,∵AB =AC ,∴∠B =∠ACB ,∴∠EAC =∠B ,在 △ABD 和 △CAE 中,{∠B =∠EAC,AB =AC,∠BAD =∠ACE,.∴△ABD ≅△CAE ,∴AD =CE .20. (1) 由题意得 ∠CAD =∠MND =90∘,∠CDA =MDN ,∴△CAD ∽△MND ,∴CA MN =AD ND .∴1.6MN =1×0.8(5+1)×0.8,∴MN =9.6,∵∠EBF=∠MNF=90∘,∠EFB=∠MFN,∴△EBF∽△MNF,∴EBMN =BFNF∴EB9.6=2×0.8(2+9)×0.8.∴EB≈1.75,∴小军身高约为1.75米.21. (1) 甲旅行社:y=640×0.85x=544x;乙旅行社:当x≤20时,y=640×0.9x=576x;当x>20时,y=640×0.9×20+640×0.75(x−20)=480x+1920;21. (2) 甲旅行社:当x=32时,y=544×32=17408,乙旅行社:∵32>20,∴当x≥20时,y=480×32+1920=17280,∵17408>17280,∴胡老师应选择乙旅行社.22. (1) 所求概率P=36=12.22. (2) 游戏公平.理由如下:由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P(小亮胜)=936=14,P(小丽胜)=936=14,∴游戏是公平的.23. (1) ∵⊙O与DE相切于点B,AB是⊙O的直径,∴∠ABE=90∘,∴∠BAE+∠E=90∘,∵∠DAE=90∘,∴∠BAD+∠BAE=90∘,∴∠BAD=∠E.23. (2) 连接BC,∵AB是⊙O的直径,∴∠ACB=90∘,∵AC=8,AB=2×5=10,∴BC=√AB2−AC2=6,∵∠BCA=∠ABE=90∘,∠BAD=∠E,∴△ABC∽△EAB,∴ACEB =BCAB,∴8EB =610, ∴BE =403.24. (1) 令 y =0,得 x 2+5x +4=0,∴x 1=−4,x 2=−1,令 x =0,得 y =4,∴A (−4,0),B (−1,0),C (0,4) [或 A (−1,0),B (−4,0),C (0,4) 也正确].24. (2) ∵A ,B ,C 关于坐标原点 O 对称后的点为 (4,0),(1,0),(0,−4),∴ 所求抛物线的函数表达式为 y =ax 2+bx −4,将 (4,0),(1,0) 代入上式,得 a =−1,b =5.∴y =−x 2+5x −4 即为所求.[ y =−(x −52)2+94 或 y =−(x −1)(x −4) 也正确] 24. (3)如图,取四点 A ,M ,Aʹ,Mʹ,连接 AM ,MAʹ,AʹMʹ,MʹA ,MMʹ,由中心对称性可知,MMʹ 过点 O ,OA =OAʹ,OM =OMʹ,∴ 四边形 AMAʹMʹ 为平行四边形,又知 AAʹ 与 MMʹ 不垂直,∴ 平行四边形 AMAʹMʹ 不是菱形,过点 M 作 MD ⊥x 轴 于点 D ,∵y =x 2+5x +4=(x +52)2−94,∴M (−52,−94),又 ∵A (−4,0),Aʹ(4,0)∴AAʹ=8,MD =94, ∴S 平行四边形AMAʹMʹ=2S △AMAʹ=2×12×8×94=18. (求得符合题意的平行四边形 BMBʹMʹ 的面积为 92 或平行四边形 CMCʹMʹ 的面积为 20 亦正确)25. (1) 24√3 25. (2)如图,作点 C 关于直线 AD 的对称点 Cʹ,连接 CʹN ,CʹD ,CʹB ,CʹB 交 AD 于点 Nʹ,连接 CNʹ,则 BN +NC =BN +NCʹ≥BCʹ=BNʹ+CNʹ,∴△BNC 周长的最小值为 △BNʹC 的周长为 BNʹ+CNʹ+BC =BCʹ+BC ,∵AD∥BC,CD⊥BC,∠ABC=60∘,∴过点A作AE⊥BC于点E,则CE=AD=8,∴BE=4,AE=BE⋅tan60∘=4√3,∴CCʹ=2CD=2AE=8√3,∵BC=12,∴BCʹ=√BC2+CCʹ2=4√21,∴△BNC周长的最小值为4√21+12.25. (3)如图,存在点P,使得cos∠BPC的值最小.作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆⊙O,⊙O与直线PQ 交于点N,则PB=PC,圆心O在PN上,∵AD∥BC,∴⊙O与AD相切于点P,∵PQ=DC=4√3>6,∴PQ>BQ,∴∠BPC<90∘,圆心O在弦BC的上方,在AD上任取一点Pʹ,连接PʹB,PʹC,PʹB交⊙O于点M,连接MC,∴∠BPC=∠BMC≥∠BPʹC,∴∠BPC最大,cos∠BPC的值最小,连接OB,则∠BON=2∠BPN=∠BPC,∵OB=OP=4√3−OQ,在Rt△BOQ中,OQ2+62=(4√3−OQ)2,∴OQ=√32,∴OB=7√32,∴cos∠BPC=cos∠BOQ=OQOB =17,∴此时cos∠BPC的值为17.。

2015年陕西省中考数学

2015年陕西省中考数学

(﹣)0=( )A .1 B .﹣C . 0D . 2.(3分)(2015•陕西)如图是一个螺母的示意图,它的俯视图是(陕西)如图是一个螺母的示意图,它的俯视图是( )A .B .C .D .3.(3分)(2015•陕西)下列计算正确的是(陕西)下列计算正确的是( )A . a 2•a 3=a 6B . (﹣2ab )2=4a 2b 2C . (a 2)3=a 5D . 3a 3b 2÷a 2b 2=3ab 4.(3分)(2015•陕西)如图,AB ∥CD ,直线EF 分别交直线AB ,CD 于点E ,F .若∠1=46°30ʹ,则∠2的度数为(的度数为( )A .43°30ʹ B .53°30ʹ C . 133°30ʹ D . 153°30ʹ5.(3分)(2015•陕西)设正比例函数y=mx 的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m=( )A . 2B . ﹣2 C . 4D . ﹣4 6.(3分)(2015•陕西)如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线.若在边AB 上截取BE=BC ,连接DE ,则图中等腰三角形共有(,则图中等腰三角形共有( )2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1.(3分)(2015•陕西)计算:A.2个B.3个C.4个D.5个的最大整数解为(的最大整数解为(A.8B.6C.5D.4A.将l1向右平移3个单位长度个单位长度个单位长度 B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度个单位长度个单位长度 D.将l1向上平移4个单位长度A.7B.4或10 C.5或9 D.6或8 A.没有交点有交点B.只有一个交点,且它位于y轴右侧轴右侧C.有两个交点,且它们均位于y轴左侧轴左侧D.有两个交点,且它们均位于y轴右侧轴右侧陕西)将实数,.陕西)正八边形一个内角的度数为 .陕西)正八边形一个内角的度数为y=的图象交于长的最大值是陕西)计算:×(﹣2)陕西)解分式方程:=1个数的中位数落在等级;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.胡老师选择收取总费用较少的一家.23.(7分)(2015•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.述游戏,直至分出胜负为止. 如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)个小圆点的小正方体)24.(8分)(2015•陕西)如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点B 作⊙O 的切线DE ,与AC 的延长线交于点D ,作AE ⊥AC 交DE 于点E .(1)求证:∠BAD=∠E ;(2)若⊙O 的半径为5,AC=8,求BE 的长.的长.25.(10分)(2015•陕西)在平面直角坐标系中,抛物线y=x 2+5x+4的顶点为M ,与x 轴交于A ,B 两点,与y 轴交于C 点.点.(1)求点A ,B ,C 的坐标;的坐标;(2)求抛物线y=x 2+5x+4关于坐标原点O 对称的抛物线的函数表达式;对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M ʹ,与x 轴交于A ʹ,B ʹ两点,与y 轴交于C ʹ点,在以A ,B ,C ,M ,A ʹ,B ʹ,C ʹ,M ʹ这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.是菱形的平行四边形的面积.26.(12分)(2015•陕西)如图,在每一个四边形ABCD 中,均有AD ∥BC ,CD ⊥BC ,∠ABC=60°,AD=8,BC=12.(1)如图①,点M 是四边形ABCD 边AD 上的一点,则△BMC 的面积为的面积为 ; (2)如图②,点N 是四边形ABCD 边AD 上的任意一点,请你求出△BNC 周长的最小值; (3)如图③,在四边形ABCD 的边AD 上,是否存在一点P ,使得cos ∠BPC 的值最小?若存在,求出此时cos ∠BPC 的值;若不存在,请说明理由.的值;若不存在,请说明理由.。

2015年陕西省中考数学试卷及答案

2015年陕西省中考数学试卷及答案

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前陕西省2015年初中毕业学业考试数学 .................................................................................. 1 陕西省2015年初中毕业学业考试数学答案解析 (5)陕西省2015年初中毕业学业考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:02()3-= ( )A .1B .32-C .0D .232.如图是一个螺母的示意图,它的俯视图是 ( )ABC D3.下列计算正确的是( )A .236a a a =B .222(2)4ab a b -=C .235()a a =D .322233a b a b ab ÷=4.如图,AB CD ∥,直线EF 分别交直线,AB CD 于点,E F .若14630'∠=,则2∠的度数为 ( ) A .4330' B .5330' C .13330' D .15330'5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则m =( )A .2B .2-C .4D .4-6.如图,在ABC △中,36A ∠=,AB AC =,BD 是ABC △的角平分线.若在边AB 上截取BE BC =,连接DE ,则图中等腰三角形共有 ( )A .2个B .3个C .4个D .5个7.不等式组113,22(3)0x x x ⎧+⎪⎨⎪--⎩≥->的最大整数解为( )A .8B .6C .5D .48.在平面直角坐标系中,将直线1:22l y x =--平移后,得到直线2:24l y x =-+,则下列平移作法正确的是 ( ) A .将1l 向右平移3个单位长度 B .将1l 向右平移6个单位长度 C .将1l 向上平移2个单位长度 D .将1l 向上平移4个单位长度 9.在□ABCD 中,10AB =,14BC =,E ,F 分别为边BC ,AD 上的点.若四边形AECF为正方形,则AE 的长为( )A .7B .4或10C .5或9D .6或810.下列关于二次函数221(1)y ax ax a =-+>的图象与x 轴交点的判断,正确的是 ( ) A .没有交点B .只有一个交点,且它位于y 轴右侧C .有两个交点,且它们均位于y 轴左侧D .有两个交点,且它们均位于y 轴右侧第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题3分,共12分.把答案填写在题中的横线上) 11.π,0,6-由小到大用“<”号连起来,可表示为 . 12.请从以下两小题中任选一个作答,若多选,则按第一题计分.A .正八边形一个内角的度数为 .B .如图,有一滑梯AB ,其水平宽度AC 为5.3米,铅直高度BC 为2.8米,则A ∠的度数约为 (用科学计算器计算,结果精确到0.1).13.如图,在平面直角坐标系中,过点()32M -,分别作x 轴、y 轴的垂线与反比例函数4y x=的图象交于,A B 两点,则四边形MAOB 的面积为 .14.如图,AB 是O 的弦,6AB =,点C 是O 上的一个动点,且45ACB ∠=.若点,M N 分别是,AB BC 的中点,则MN 长的最大值是.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分5分)31(|()2-+-+.16.(本小题满分5分) 解分式方程:23133x x x --=+-.17.(本小题满分5分)如图,已知ABC △,请用尺规过点A 作一条直线,使其将ABC △分成面积相等的两部分.(保留作图痕迹,不写作法)18.(本小题满分5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育教师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x ).现在我们将这些同学的测试结果分为四个等级:优秀(44)x ≥、良好(3643)x ≤≤、及格(2535)x ≤≤和不及格(24)x ≤,并将统计结果绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题: (1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在 等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.19.(本小题满分7分)如图,在ABC △中AB AC =,.作AD AB ⊥交BC 的延长线于点D ,作AE BD ∥,CE AC ⊥,且,AE CE 相交于点E . 求证:AD CE =.20.(本小题满分7分)晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ 移动,如图,当小聪正好站在广场的A 点(距N 点5块地砖长)时,其影长AD 恰好为1块地砖长;当小军正好站在广场的B 点(距N 点9块地砖长)时,其影长BF 恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN NQ ⊥,AC NQ ⊥,BE NQ ⊥.请你根据以上信息,求出小军身高BE 的长.(结果精确到0.01米)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)21.(本小题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游.经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同.针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (元)与x (人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.22.(本小题满分7分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题: (1)小亮掷得向上一面的点数为奇数的概率是多少? (2)该游戏是否公平?请用列表或树状图等方法说明理由. (骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)23.(本小题满分8分) 如图,AB 是O 的直径,AC 是O 的弦,过点B 作O 的切线DE ,与AC 的延长线交于点D ,作AE AC ⊥交DE 于点E .(1)求证:BAD E ∠=∠;(2)若O 的半径为5,8AC =,求BE 的长.24.(本小题满分10分)在平面直角坐标系中,抛物线254y x x =++的顶点为M ,与x 轴交于,A B 两点,与y 轴交于C 点.(1)求点,,A B C 的坐标;(2)求抛物线254y x x =++关于坐标原点O 对称的抛物线的函数表达式; (3)设(2)中所求抛物线的顶点为M ',与x 轴交于,A B ''两点,与y 轴交于C '点.在以,,,,,,,A B C M A B C M ''''这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.25.(本小题满分12分)如图,在每一个四边形ABCD 中,均有AD BC ∥,CD BC ⊥,60ABC ∠=,8AD =,12BC =.(1)如图1,点M 是四边形ABCD 边AD 上的一点,则BMC △的面积为 ;毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

【真题精选】陕西省2015年中考数学试题及答案(Word版)

【真题精选】陕西省2015年中考数学试题及答案(Word版)

数学精品复习资料2015年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-032)(( )A.1B.23- C.0 D.322.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =∙B.2224)2(b a ab =-C.532)(a a =D.ab b a b a 332223=÷ 4.如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( )A.2B.-2C.4D.-4 6.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( ) A.2个 B.3个 C.4个 D.5个7.不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>x x x 的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度 9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( )A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧 二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。

陕西近10年中考数学真题及副题选择题

陕西近10年中考数学真题及副题选择题

陕西近7年中考数学真题及副题选择题一、选择题(共14小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1. 计算:(-3)0=( )(2019)A. 1B.0 C 3 D.131、下列四个实数中,最大的是( ) (2019副) A. 2 B.3 C. 0 D. ﹣11. -78的相反数是()(2018)A .-87 B. 87 C .-78 D. 781. -711的倒数是( )(2018副)A.711 B. -711 C. 117 D. -1171、 计算:(-12)2-1=( )(2017)A. -54B. -14C. -34 D. 01. 计算: 3-2=( )(2017副)A. -19B. 19C. -6D. -161. 计算:(-12)×2=( )(2016)A. -1B. 1C. 4D. -41.计算:(-3)×(-13)=( )(2016副)A.-1B.1C.-9D.9 1. 计算:(-23)0=( )(2015)A. 1B. -32C. 0D. 231.下列四个实数中,最大的是( )(2015副)A.0B.3C.2D.-1 1. 计算:(-3)2=( )(2014副)A. -6B. 6C. -9D. 91. 4的算术平方根是( )(2014)A. -2B. 2C. -12D. 121.-23的倒数是( )(2013副)A.-32B.32C.-23D.231.下列四个数中最小的数是( )(2013) A.-2 B.0 C.13D.52. 如图,是由两个正方体组成的几何体,则该几何体的俯视图为( )(2019)2.下列图形中,经过折叠可以得到四棱柱的是 ( )(2018副)2. 如图,是一个几何体的表面展开图,则该几何体是( )2018)A. 正方体B. 长方体C. 三棱柱D. 四棱锥2.如图的几何体是由一平面将一圆柱体截去一部分后所得,则该几何体的俯视图是()(2017副)2. 如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )(2017)2.如图,下面的几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是()(2016副)2. 如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()(2016)2、如图是一枚古钱币的示意图,它的左视图是()(2015副)2. 如图是一个螺母的示意图,它的俯视图是()(2015)2、如图,下面几何体是由一个圆柱被经过上下底面圆心的平面截得的,则它的左视图是()(2014副)2、下图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是() (2014)2、如图,将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是()(2013副)2、如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是()(2013)3.如图,OC是∠AOB的平分线,l OB,若∠1=52º,则∠2的度数为()(2019)A.52ºB.54ºC.64ºD.69º3. 如图,直线a∥b,在Rt△ABC中,∠C=90°,AC⊥b,垂足为A,则图中与∠1互余的角有()(2018副)A.2个B.3个C.4个D.5个3. 如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()(2018)A. 1个B. 2个C. 3个D. 4个3 如图,直线a∥b,点A在直线b上,∠BAC=108°,∠BAC的两边与直线a分别交于B、C两点.若∠1=42°,则∠2的大小为()(2017副)A. 30°B. 38°C. 52°D. 72°3. 如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上.若∠1=25°,则∠2的大小为()(2017)A. 55°B. 75°C. 65°D. 85°3..如图,AB∥CD.若∠1=40°,∠2=65°,则∠CAD=()(2016副)A.50°B.65°C.75°D.85°3.如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AED=()(2016)A. 65°B. 115°C. 125°D. 130°3、如图,AB∥CD,直线EF交直线AB、CD于点E、F,FH平分∠CFE.若∠EFD=70°,则∠EHF的度数为()(2015副)A.35°B.55°C.65°D.70°3、. 如图,AB∥CD,直线EF分别交直线AB、CD于点E、F.若∠1=46°30′,则∠2的度数为()(2015)A. 43°30′B. 53°30′C. 133°30′D. 153°30′3. 如图,∠B=40°,∠ACD=108°.若B、C、D三点在一条直线上,则∠A的大小是()(2014副)(第4题图)A. 148°B. 78°C. 68°D. 50°3. 小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()(2014)A. 110 B.19 C.16 D.153、.如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AED的大小为()(2013副)(第4题图)A.55°B.105°C.65°D.115°3.如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小为()(2013)A.65°B.55°C.45°D.35°。

2015年陕西省中考数学试卷附详细答案(原版+解析版)

2015年陕西省中考数学试卷附详细答案(原版+解析版)

2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:(﹣)0=()2.(3分)(2015•陕西)如图是一个螺母的示意图,它的俯视图是()A.B.C.D.3.(3分)(2015•陕西)下列计算正确的是()4.(3分)(2015•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠1的度数为()5.(3分)(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()6.(3分)(2015•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()7.(3分)(2015•陕西)不等式组的最大整数解为()8.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()9.(3分)(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()10.(3分)(2015•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2015•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为.12.(3分)(2015•陕西)正八边形一个内角的度数为.13.(2015•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).14.(3分)(2015•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.15.(3分)(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.17.(5分)(2015•陕西)解分式方程:﹣=1.18.(5分)(2015•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)(2015•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)(2015•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)(2015•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)(2015•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.(8分)(2015•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.25.(10分)(2015•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26.(12分)(2015•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:(﹣)0=(),求出(﹣)(﹣)2.(3分)(2015•陕西)如图是一个螺母的示意图,它的俯视图是()A.B.C.D.3.(3分)(2015•陕西)下列计算正确的是()4.(3分)(2015•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠1的度数为()5.(3分)(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()6.(3分)(2015•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()DBC=∠7.(3分)(2015•陕西)不等式组的最大整数解为()8.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()9.(3分)(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()10.(3分)(2015•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2015•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为﹣6.≈6612.(3分)(2015•陕西)正八边形一个内角的度数为135°.每一个内角的度数为×13.(2015•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).A=≈14.(3分)(2015•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y 轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.的图象过|ab|=2|cd|=2y=的图象过|ab|=2|cd|=2|ab|=2 |cd|=215.(3分)(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是3.MN=ACAD=6MN=AD=3.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.+2+8+2+2+8.17.(5分)(2015•陕西)解分式方程:﹣=1.,是分式方程的解.18.(5分)(2015•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)(2015•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)(2015•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)(2015•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)(2015•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)∴小亮掷得向上一面的点数为奇数的概率是:=,24.(8分)(2015•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.,BE=.25.(10分)(2015•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.,根据)代入上式,得解得:,MD=,26.(12分)(2015•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.=4,BC;;=4=2CD=2AE=8=4PQ=DC=4OB=OP=4,OB=BOQ==,的值为.。

陕西省2015年中考数学试题(WORD版,含答案)

陕西省2015年中考数学试题(WORD版,含答案)

2015年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-032)(()A.1B.23- C.0 D.322.如图是一个螺母的示意图,它的俯视图是()3.下列计算正确的是()A.632aaa=• B.2224)2(baab=-C.532)(aa= D.abbaba332223=÷4.如图,AB//CD,直线EF分别交直线AB、CD于点E、F,若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mxy=的图象经过点)4,(mA,且y的值随x值的增大而减小,则=m ()A.2B.-2C.4D.-46.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个7.不等式组⎪⎩⎪⎨⎧---≥+)3(23121>xxx的最大整数解为()A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF 为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( ) A.没有交点 B.只有一个交点,且它位于y 轴右侧 C.有两个交点,且它们均位于y 轴左侧 D.有两个交点,且它们均位于y 轴右侧 二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。

陕西省2015年中考数学试题及答案(Word版)

陕西省2015年中考数学试题及答案(Word版)

2015年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-032)(( ) A.1 B.23- C.0 D.32 2.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =•B.2224)2(b a ab =-C.532)(a a =D.ab b a b a 332223=÷4.如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( )A.2B.-2C.4D.-46.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>x x x 的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF 为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( )A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。

2015年陕西省中考数学试卷(含解析)

2015年陕西省中考数学试卷(含解析)

2015年陕西省中考数学试卷一、选择题1、计算:(-)0=()A.1B.-C.0D.2、如图是一个螺母的示意图,它的俯视图是()A.B.C.D.3、下列计算正确的是()A.a2•a3=a6B.(-2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab4、如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′5、设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.-2C.4D.-46、如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个7、不等式组的最大整数解为()A.8B.6C.5D.48、在平面直角坐标系中,将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度9、在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或810、下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧二、填空题11、将实数,π,0,-6由小到大用“<”号连起来,可表示为 __________ .12、正八边形一个内角的度数为 __________ .13、如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为 __________ (用科学计算器计算,结果精确到0.1°).14、如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为 __________ .15、如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是 __________ .三、解答题16、计算:×(-)+|-2|+()-3.17、解分式方程:-=1.18、如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)19、某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在 __________ 等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20、如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21、晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22、胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23、某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24、如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.25、在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26、如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为__________ ;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.2015年陕西省中考数学试卷的答案和解析一、选择题1、答案:A试题分析:根据零指数幂:a0=1(a≠0),求出(-)0的值是多少即可.试题解析:(-)0=1.故选:A.2、答案:B试题分析:根据从上面看得到的图形是俯视图,可得答案.试题解析:从上面看外面是一个正六边形,里面是一个没有圆心的圆,故选:B.3、答案:B试题分析:根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.试题解析:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.4、答案:C试题分析:先根据平行线的性质求出∠EFD的度数,再根据补角的定义即可得出结论.试题解析:∵AB∥CD,∠1=46°30′,∴∠EFD=∠1=46°30′,∴∠2=180°-46°30′=133°30′.故选C.5、答案:B试题分析:直接根据正比例函数的性质和待定系数法求解即可.试题解析:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=-2,故选B6、答案:D试题分析:根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.试题解析:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°-∠DBC-∠C=180°-36°-72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°-36°)÷2=72°,∴∠ADE=∠BED-∠A=72°-36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.C试题分析:先求出各个不等式的解集,再求出不等式组的解集,最后求出答案即可.试题解析:∵解不等式①得:x≥-8,解不等式②得:x<6,∴不等式组的解集为-8≤x<6,∴不等式组的最大整数解为5,故选C.8、答案:A试题分析:利用一次函数图象的平移规律,左加右减,上加下减,得出即可.试题解析:∵将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,∴-2(x+a)-2=-2x+4,解得:a=-3,故将l1向右平移3个单位长度.故选:A.9、答案:D试题分析:设AE的长为x,根据正方形的性质可得BE=14-x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.试题解析:如图:设AE的长为x,根据正方形的性质可得BE=14-x,在△ABE中,根据勾股定理可得x2+(14-x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.D试题分析:根据函数值为零,可得相应的方程,根据根的判别式,公式法求方程的根,可得答案.试题解析:当y=0时,ax2-2ax+1=0,∵a>1∴△=(-2a)2-4a=4a(a-1)>0,ax2-2ax+1=0有两个根,函数与有两个交点,x=>0,故选:D.二、填空题11、答案:试题分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.试题解析:≈2.236,π≈3.14,∵-6<0<2.236<3.14,∴-6.故答案为:-6.12、答案:试题分析:首先根据多边形内角和定理:(n-2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.试题解析:正八边形的内角和为:(8-2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.13、答案:试题分析:直接利用坡度的定义求得坡角的度数即可.试题解析:∵tan∠A==≈0.5283,∴∠A=27.8°,故答案为:27.8°.14、答案:试题分析:设点A的坐标为(a,b),点B的坐标为(c,d),根据反比例函数y=的图象过A,B两点,所以ab=4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.试题解析:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2,∵点M(-3,2),∴S矩形MCDO=3×2=6,∴四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO=2+2+6=10,故答案为:10.15、答案:试题分析:根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.试题解析:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3故答案为:3.三、解答题16、答案:试题分析:根据二次根式的乘法法则和负整数整数幂的意义得到原式=-+2+8,然后化简后合并即可.试题解析:原式=-+2+8=-3+2+8=8-.17、答案:试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:去分母得:x2-5x+6-3x-9=x2-9,解得:x=,经检验x=是分式方程的解.18、答案:试题分析:作BC边上的中线,即可把△ABC分成面积相等的两部分.试题解析:如图,直线AD即为所求:19、答案:试题分析:(1)根据各个等级的百分比得出答案即可;(2)根据中位数的定义知道中位数是第25和26个数的平均数,由此即可得出答案;(3)首先根据扇形图得出优秀人数占的百分比,条形统计图可以求出平均数的最小值,然后即可求出答案.试题解析:(1);(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.20、答案:试题分析:根据平行线的性质得出∠EAC=∠ACB,再利用ASA证出△ABD≌△CAE,从而得出AD=CE.试题解析:证明:∵AE∥BD,∴∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE,∴AD=CE.21、答案:试题分析:先证明△CAD~△MND,利用相似三角形的性质求得MN=9.6,再证明△EFB~△MFN,即可解答.试题解析:由题意得:∠CAD=∠MND=90°,∠CDA=MDN,∴△CAD~△MND,∴,∴,∴MN=9.6,又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EFB~△MFN,∴,∴∴EB≈1.75,∴小军身高约为1.75米.22、答案:试题分析:(1)根据总费用等于人数乘以打折后的单价,易得y甲=640×0.85x,对于乙两家旅行社的总费用,分类讨论:当0≤x≤20时,y乙=640×0.9x;当x>20时,y乙=640×0.9×20+640×0.75(x-20);(2)把x=32分别代入(1)中对应得函数关系计算y甲和y乙的值,然后比较大小即可.试题解析:(1)甲两家旅行社的总费用:y甲=640×0.85x=544x;乙两家旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x;当x>20时,y乙=640×0.9×20+640×0.75(x-20)=480x+1920;(2)当x=32时,y甲=544×32=17408(元),y乙=480×32+1920=17280,因为y甲>y乙,所以胡老师选择乙旅行社.23、答案:试题分析:(1)首先判断出向上一面的点数为奇数有3种情况,然后根据概率公式,求出小亮掷得向上一面的点数为奇数的概率是多少即可.(2)首先应用列表法,列举出所有可能的结果,然后分别判断出小亮、小丽获胜的概率是多少,再比较它们的大小,判断出该游戏是否公平即可.试题解析:(1)∵向上一面的点数为奇数有3种情况,∴小亮掷得向上一面的点数为奇数的概率是:.(2)填表如下:1 2 3 4 5 61(1,1(1,2(1,3)(1,4(1,(1,6))))5)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P(小亮胜)=,P(小丽胜)==,∴游戏是公平的.24、答案:试题分析:(1)根据切线的性质,和等角的余角相等证明即可;(2)根据勾股定理和相似三角形进行解答即可.试题解析:(1)证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,∴∠ABE=90°,∴∠BAE+∠E=90°,∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD=∠E;(2)连接BC,如图:∵AB是⊙O的直径,∴∠ACB=90°,∵AC=8,AB=2×5=10,∴BC=,∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC∽△EAB,∴,∴,∴BE=.25、答案:试题分析:(1)令y=0,求出x的值;令x=0,求出y,即可解答;(2)先求出A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,-4),再代入解析式,即可解答;(3)取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,由此判定四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,从而平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,求出抛物线的顶点坐标M,根据,即可解答.试题解析:(1)令y=0,得x2+5x+4=0,∴x1=-4,x2=-1,令x=0,得y=4,∴A(-4,0),B(-1,0),C(0,4).(2)∵A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,-4),∴所求抛物线的函数表达式为y=ax2+bx-4,将(4,0),(1,0)代入上式,得解得:,∴y=-x2+5x-4.(3)如图,取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,∴四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,∴平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,∵y=,∴M(),又∵A(-4,0),A′(4,0)∴AA′=8,MD=,∴=26、答案:试题分析:(1)如图①,过A作AE⊥BC,可得出四边形AECF为矩形,得到EC=AD,BE=BC-EC,在直角三角形ABE中,求出AE的长,即为三角形BMC的高,求出三角形BMC面积即可;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,可得出△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,求出即可;(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,根据AD与BC平行,得到圆O与AD相切,根据PQ=DC,判断得到PQ大于BQ,可得出圆心O在BC上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,可得∠BPC=∠BMC≥∠BP′C,即∠BPC最小,cos∠BPC的值最小,连接OB,求出即可.试题解析:(1)如图①,过A作AE⊥BC,∴四边形AECD为矩形,∴EC=AD=8,BE=BC-EC=12-8=4,在Rt△ABE中,∠ABE=60°,BE=4,∴AB=2BE=8,AE==4,则S△BMC=BC•AE=24;故答案为:24;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,∵AD∥BC,AE⊥BC,∠ABC=60°,∴过点A作AE⊥BC,则CE=AD=8,∴BE=4,AE=BE•tan60°=4,∴CC′=2CD=2AE=8,∵BC=12,∴BC′==4,∴△BNC周长的最小值为4+12;(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,∵AD∥BC,∴圆O与AD相切于点P,∵PQ=DC=4>6,∴PQ>BQ,∴∠BPC<90°,圆心O在弦BC的上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,∴∠BPC=∠BMC≥∠BP′C,∴∠BPC最大,cos∠BPC的值最小,连接OB,则∠BON=2∠BPN=∠BPC,∵OB=OP=4-OQ,在Rt△BOQ中,根据勾股定理得:OQ2+62=(4-OQ)2,解得:OQ=,∴OB=,∴cos∠BPC=cos∠BOQ==,则此时cos∠BPC的值为.。

2015年陕西中考数学真题卷含答案解析

2015年陕西中考数学真题卷含答案解析

2015年陕西省初中毕业学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.计算:(-23)0=( )A.1B.-32C.0 D.232.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.a2·a3=a6B.(-2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab4.如图,AB∥CD,直线EF分别交直线AB、CD于点E、F,若∠1=46°30',则∠2的度数为( )A.43°30'B.53°30'C.133°30'D.153°30'5.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( )A.2B.-2C.4D.-46.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连结DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.不等式组{12x +1≥-3,x -2(x -3)>0的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线l 1:y=-2x-2平移后,得到直线l 2:y=-2x+4,则下列平移作法正确的是( )A.将l 1向右平移3个单位长度B.将l 1向右平移6个单位长度C.将l 1向上平移2个单位长度D.将l 1向上平移4个单位长度9.在▱ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点.若四边形AECF 为正方形,则AE 的长为( ) A.7B.4或10C.5或9D.6或810.下列关于二次函数y=ax 2-2ax+1(a>1)的图象与x 轴交点的判断,正确的是( ) A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧第Ⅱ卷(非选择题,共90分)二、填空题(共4小题,每小题3分,计12分)11.将实数√5,π,0,-6由小到大用“<”连起来,可表示为 . 12.请从以下两个小题中任选一个····作答,若多选,则按第一题计分.A.正八边形一个内角的度数为 .B.如图,有一滑梯AB,其水平宽度AC 为 5.3米,铅直高度BC 为 2.8米,则∠A 的度数约为 .(用科学计算器计算,结果精确到0.1°)13.如图,在平面直角坐标系中,过点M(-3,2)分别作x 轴、y 轴的垂线与反比例函数y=4x的图象交于A 、B 两点,则四边形MAOB 的面积为 .14.如图,AB 是☉O 的弦,AB=6,点C 是☉O 上的一个动点,且∠ACB=45°.若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是 .三、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分)计算:√3×(-√6)+|-2√2|+(12)-3.16.(本题满分5分)解分式方程:x -2x+3-3x -3=1.17.(本题满分5分)如图,已知△ABC,请用尺规过点A 作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)18.(本题满分5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育教师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x).现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.19.(本题满分7分)如图,在△ABC中,AB=AC.作AD⊥AB交BC的延长线于点D,作AE∥BD、CE⊥AC,且AE、CE相交于点E.求证:AD=CE.20.(本题满分7分)晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)21.(本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游.经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人折收费;乙旅行社表示,若人数不超过20人,每人都按九.折收费,超过20人,则超出都按八五··部分每人按七五折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x人.··(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.22.(本题满分7分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)23.(本题满分8分)如图,AB是☉O的直径,AC是☉O的弦,过点B作☉O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若☉O的半径为5,AC=8,求BE的长.24.(本题满分10分)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A、B两点,与y轴交于C点.(1)求点A、B、C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M',与x轴交于A'、B'两点,与y轴交于C'点.在以A、B、C、不是菱形的平行M、A'、B'、C'、M'这八个点中的四个点为顶点的平行四边形中,求其中一个··四边形的面积.25.(本题满分12分)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD 的边AD 上,是否存在一点P,使得cos ∠BPC 的值最小?若存在,求出此时cos ∠BPC 的值;若不存在,请说明理由.答案全解全析:一、选择题1.A(-23)0=1.故选A.2.B 从上往下看得到的图形是由正六边形和没有圆心的圆组成的,故选B.3.B 对于A,a 2·a 3=a 2+3=a 5;对于B,(-2ab)2=(-2)2a2b2=4a2b2;对于C,(a2)3=a2×3=a6;对于D,3a3b2÷a2b2=3a.故选B.4.C∵AB∥CD,∴∠EFD=∠1=46°30',∴∠2=180°-∠EFD=180°-46°30'=133°30',故选C.5.B将点A(m,4)代入y=mx,得4=m2,则m=±2,又∵y的值随x值的增大而减小,∴m<0,∴m=-2,故选B.6.D依题意,可知题图中的△ABC,△AED,△BDC,△BDE,△ADB为等腰三角形,则共有5个等腰三角形.故选D.7.C解不等式组{12x+1≥-3,x-2(x-3)>0得-8≤x<6,则其最大整数解为5.故选C.8.A设将直线l1向右平移a个单位长度后得到直线l2,则有-2(x-a)-2=-2x+4,解得a=3,故将直线l1向右平移3个单位长度后得到直线l2,故选A.9.D如图,设AE=x,则BE=14-x,在Rt△AEB中,x2+(14-x)2=102,整理得x2-14x+48=0,解得x1=6,x2=8.故选D.评析本题考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.10.D依题意得,Δ=4a2-4a=4a(a-1),∵a>1,∴Δ>0,故二次函数图象与x轴有两个交点,选项A、B错误.设二次函数图象与x轴的交点的横坐标分别为x1,x2,显然x 1,x 2是方程ax 2-2ax+1=0的两根,则x 1+x 2=2>0,x 1x 2=1a>0,故x 1>0,x 2>0,则二次函数y=ax 2-2ax+1的图象与x 轴的两个交点均位于y 轴右侧,故选项C 错误,选项D 正确.故选D.二、填空题11.答案 -6<0<√5<π解析 ∵√4<√5<√9,∴2<√5<3,又∵π>3, ∴-6<0<√5<π.评析 此题主要考查了实数大小的比较方法.要熟练掌握:负实数<0<正实数,两个负实数比较大小,绝对值大的反而小. 12.答案 A.135° B.27.8° 解析 A.正八边形一个内角的度数为(8-2)×180°8=135°. B.tan A=BC AC =2.85.3≈0.528 3,∴∠A ≈27.8°. 13.答案 10解析 如图,设MA 与x 轴交于点C,MB 与y 轴交于点D.由题意可知点A 的坐标为(-3,-43),点B 的坐标为(2,2),则点C 的坐标为(-3,0),点D 的坐标为(0,2).∴S 四边形MAOB =S 矩形MCOD +S △ACO +S △BDO =3×2+12×3×43+12×2×2 =6+2+2=10. 14.答案 3√2解析 依题意,知MN=12AC,且当AC 为☉O 的直径时,MN 的长度最大.连结OB,∵∠ACB=45°,∴∠AOB=90°,设☉O的半径为r,则√2r=6,解得r=3√2,故MN的最大值为3√2.评析本题考查了三角形的中位线、等腰直角三角形的性质及圆周角定理,解题的关键是了解MN取最大值时AC的位置.难度不大.三、解答题15.解析原式=-√18+2√2+8(3分)=-3√2+2√2+8(4分)=8-√2.(5分)16.解析(x-2)(x-3)-3(x+3)=(x+3)(x-3),x2-5x+6-3x-9=x2-9,(2分)-8x=-6,x=3.(4分)是原方程的根.(5分)经检验,x=3417.解析如图,直线AD即为所求.(5分) 18.解析(1)补全的两幅统计图如图所示.(2分)(2)良好.(3分) (3)650×26%=169(人).∴该年级女生中1分钟“仰卧起坐”个数达到优秀的人数为169人.(5分) 19.证明 ∵AE ∥BD, ∴∠EAC=∠ACB. ∵AB=AC, ∴∠B=∠ACB. ∴∠EAC=∠B.(4分) 又∵∠BAD=∠ACE=90°, ∴△ABD ≌△CAE.(6分) ∴AD=CE.(7分)20.解析 由题意得∠CAD=∠MND=90°,∠CDA=∠MDN, ∴△CAD ∽△MND. ∴CA MN =ADND .(2分) ∴1.6MN =1×0.8(5+1)×0.8. ∴MN=9.6.(3分)又∵∠EBF=∠MNF=90°,∠EFB=∠MFN. ∴△EBF ∽△MNF. ∴EB MN =BFNF .(5分) ∴EB9.6=2×0.8(2+9)×0.8. ∴EB ≈1.75.∴小军的身高约为1.75米.(7分)21.解析 (1)甲旅行社:y=640×0.85x=544x.(1分) 乙旅行社:当x ≤20时,y=640×0.9x=576x;当x>20时,y=640×0.9×20+640×0.75(x -20)=480x+1 920.(4分) (2)甲旅行社:当x=32时,y=544×32=17 408.乙旅行社:∵32>20,∴当x=32时,y=480×32+1 920=17 280. ∵17 408>17 280,∴胡老师应选择乙旅行社.(7分) 22.解析 (1)所求概率P=36=12.(2分) (2)游戏公平.(3分) 理由如下:小丽 小亮1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. ∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.(7分)23.解析 (1)证明:∵☉O 与DE 相切于点B,AB 为☉O 的直径, ∴∠ABE=90°.(1分) ∴∠BAE+∠E=90°. 又∵∠DAE=90°, ∴∠BAD+∠BAE=90°. ∴∠BAD=∠E.(3分) (2)连结BC.∵AB 为☉O 的直径, ∴∠ACB=90°.∵AC=8,AB=2×5=10, ∴BC=√AB 2-AC 2=6.(5分)又∵∠BCA=∠ABE=90°,∠BAD=∠E, ∴△ABC ∽△EAB. ∴AC EB =BCAB . ∴8EB =610. ∴BE=403.(8分)24.解析 (1)令y=0,得x 2+5x+4=0, ∴x 1=-4,x 2=-1. 令x=0,得y=4.∴A(-4,0),B(-1,0),C(0,4).(A(-1,0),B(-4,0),C(0,4)也正确)(3分)(2)不妨令A 在B 的左侧.∵A,B,C 关于坐标原点O 对称的点为(4,0),(1,0),(0,-4), ∴所求抛物线的函数表达式可设为y=ax 2+bx-4.(5分) 将(4,0),(1,0)代入上式,得a=-1,b=5. ∴y=-x 2+5x-4即为所求.(7分)(y =-(x-52)2+94或y =-(x-1)(x-4)也正确)(3)如图,取四点A 、M 、A'、M'.连结AM,MA',A'M',M'A,MM'.由中心对称性可知, MM'过点O,OA=OA',OM=OM', ∴四边形AMA'M'为平行四边形. 又知AA'与MM'不垂直,∴▱AMA'M'不是菱形.(8分) 过点M 作MD ⊥x 轴于点D. ∵y=x 2+5x+4=(x +52)2-94,∴M (-52,-94).又∵A(-4,0),A'(4,0), ∴AA'=8,MD=94.∴S ▱AMA'M'=2S △AMA'=2×12×8×94=18.(10分)求得符合题意的▱BMB'M'的面积为92或▱CMC'M'的面积为20亦正确25.解析 (1)24√3.(3分)(2)如图①,作点C 关于直线AD 的对称点C',连结C'N 、C'D 、C'B,C'B 交AD 于点N',连结CN',则BN+NC=BN+NC'≥BC'=BN'+CN'.∴△BNC 周长的最小值为△BN'C 的周长=BN'+CN'+BC=BC'+BC.(4分) ∵AD ∥BC,CD ⊥BC,∠ABC=60°, ∴过点A 作AE ⊥BC 于点E,则CE=AD=8. ∴BE=4,AE=BE ·tan 60°=4√3. ∴CC'=2CD=2AE=8√3. 又∵BC=12,∴BC'=√BC 2+CC'2=4√21.(6分) ∴△BNC 周长的最小值为4√21+12.(7分)图①(3)如图②,存在点P,使得cos ∠BPC 的值最小.(8分)作BC 的中垂线PQ 交BC 于点Q,交AD 于点P,连结BP 、CP,作△BPC 的外接圆☉O,圆心O 在PN 上.图②∵AD ∥BC,∴☉O 与AD 正好相切于点P, ∵PQ=DC=4√3>5, ∴PQ>BQ.∴∠BPC<90°,圆心O 在弦BC 的上方.在AD 上任取一点P',连结P'B 、P'C,P'B 交☉O 于点M,连结MC. ∴∠BPC=∠BMC ≥∠BP'C.∴∠BPC 最大,cos ∠BPC 的值最小.(10分) 连结OB,则∠BON=2∠BPN=∠BPC. ∵OB=OP=4√3-OQ,在Rt △BOQ 中,OQ 2+62=(4√3-OQ)2.∴OQ=√32.∴OB=7√32. ∴cos ∠BPC=cos ∠BOQ=OQ OB =17. ∴此时cos ∠BPC 的值是17.(12分)。

2015陕西中考数学(word版)

2015陕西中考数学(word版)

数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-0)32( ( )A.1B.23- C.0 D.32 2.如图是一个螺母的示意图,它的俯视图 ( )C. D.A. B. 3.下列计算正确的是 ( )A. 632a a a =⋅ B. 2224)2(b a ab =- C. 532)(a a = D.ab b a b a 232223=÷ 4.如图AB//CD ,直线EF 分别交AB 、CD 于E 、F ,若∠1=46°30’,则∠2的度数为( )A. 43°30’B. 53°30’C. 133°30’D. 153°30’5.设正比例函数mx y =的图像经过点A )4,(m 且y 的值随x 值的增大而减小,则m = ( )A.2B. -2C.4D.-46.如图,在△ABC 中,∠A=36°,AB=AC,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC,连接DE ,则图中等腰三角形共有 ( )A.2个B. 3个C. 4个D.5个7.不等式组⎪⎩⎪⎨⎧>---≥+0)3(2,3121x x x 的最大整数解为 ( ) A. 8 B. 6 C. 5 D. 48.在平面直角坐标系中,将直线1l :22--=x y 平移后得到直线2l :42+-=x y ,则下列平移,做法正确的是 ( )A. 将1l 向右平移3个单位长度B. 将1l 向右平移6个单位长度C. 将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度9.在平行四边形ABCD 中,AB=10,BC=14,E,F 分别为边BC 、AD 上的点,若四边形AECF 为正方形,则AE 的长为 ( )A. 7B. 4或10C. 5或9D. 6或810.下列关于二次函数)1(122>+-=a ax ax y 的图像与x 轴交点的判断,正确的是 ( )A. 没有交点B. 只有一个交点,且它位于y 轴右侧C. 有两个交点,且它们均位于y 轴左侧D. 有两个交点,且它们均位于y 轴右侧二、填空题(共4小题,每小题3分,计12分)11.将实数5、π、0、6-由小到大用“<”连接起来,可表示为 。

2015年陕西省中考数学试题与答案(word版)

2015年陕西省中考数学试题与答案(word版)

2015 年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题共30分)一、选择题(共10 小题,每小题 3 分,计 30 分,每小题只有一个选项是符合题意的)1.(20)()计算:332A.1B.C.0D.23 2.如图是一个螺母的示意图,它的俯视图是()3. 下列计算正确的是()A. a 2a3a6B.( 2ab)24a2b2C. (a 2)3a5D.3a3b2a2b23ab4. 如图, AB//CD, 直线 EF 分别交直线 AB、CD于点 E、F, 若∠ 1=46°30′,则∠ 2的度数为()A.43 °30′B.53°30′C.133°30′D.153°30′5.设正比例函数 y mx 的图象经过点A(m,4),且 y 的值随x值的增大而减小,则 m()A.2B.-2C.4D.-46.如图,在△ ABC中,∠ A=36°,AB=AC,BD是△ ABC的角平分线,若在边 AB上截取 BE=BC,连接 DE,则图中等腰三角形共有()A.2 个B.3个C.4 个D.5个7. 不等式组1x 13的最大整数解为()2x2(x>3)A.8B.6C.5D.48. 在平面直角坐标系中, 将直线 l 1 : y 2x 2平移后,得到直线 l 2 : y2x4 ,则下列平移作法正确的是( )A. 将 l 1向右平移 3 个单位长度B. 将 l 1 向右平移 6 个单位长度C. 将 l 1向上平移 2 个单位长度D.将 l 1向上平移 4 个单位长度9. 在□ABCD 中, AB=10,BC=14,E 、F 分别为边 BC 、AD 上的点,若四边形 AECF为正方形,则 AE 的长为()A.7B.4 或10C.5 或9D.6 或810. 下列关于二次函数 y ax 22ax 1(a >1)的图象与 x 轴交点的判断,正确的是()A. 没有交点B.只有一个交点,且它位于y 轴右侧C. 有两个交点,且它们均位于y 轴左侧D. 有两个交点, 且它们均位于 y 轴右侧二、填空题(共 4 小题,每小题 3 分,计 12 分)11. 将实数 5,,0, 6 由小到大用“<” 号连起来,可表示为 _________________。

2015年陕西省中考数学试卷含答案

2015年陕西省中考数学试卷含答案

2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:(﹣)0=()A.1 B.﹣C.0 D.2.如图是一个螺母的示意图,它的俯视图是()A.B.C.D.3.下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab4.如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数y=mx的图像经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣46.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个7.不等式组的最大整数解为()A.8 B.6 C.5 D.48.在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度9.在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或810.下列关于二次函数y=ax2﹣2ax+1(a>1)的图像与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧二、填空题(共5小题,每小题3分,计12分,其中12,13题为选做题,任选一题作答)11.将实数,π,0,﹣6由小到大用“<”号连起来,可表示为.12.正八边形的一个内角的度数为.13.如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).14.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图像交于A,B两点,则四边形MAOB的面积为.15.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)计算:×(﹣)+|﹣2|+()﹣3.17.(5分)解分式方程:﹣=1.18.(5分)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.(8分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC 的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E.(2)若⊙O的半径为5,AC=8,求BE的长.25.(10分)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26.(12分)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为.(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC的周长的最小值.(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.2015年陕西省中考数学试卷参考答案与解析一、1.A 解析:(﹣)0=1.故选A.点评:此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.2.B 解析:从上面看外面是一个正六边形,里面是一个没有圆心的圆.故选B.点评:此题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.B 解析:A.a2•a3=a5,故A正确;B正确;C.(a2)3=a6,故C错误;D.3a2b2÷a2b2=3,故D错误.故选B.点评:此题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决此题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法法则.4.C 解析:∵AB∥CD,∠1=46°30′,∴∠EFD=∠1=46°30′,∴∠2=180°﹣46°30′=133°30′.故选C.点评:此题考查的是平行线的性质,用到的知识点:两直线平行,同位角相等.5.B 解析:把x=m,y=4代入y=mx,可得m=±2.因为y的值随x值的增大而减小,所以m=﹣2.故选B.点评:此题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图像为直线,当k>0时,图像经过第一、三象限,y随x的增大而增大;当k<0时,图像经过第二、四象限,y随x 的增大而减小.6.D 解析:∵AB=AC,∴△ABC是等腰三角形.∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形.在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC.∴△BCD是等腰三角形.∵BE=BC,∴BD=BE,∴△BDE是等腰三角形.∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE.∴DE=AE.∴△ADE是等腰三角形.∴图中的等腰三角形有5个.故选D.点评:此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线的定义等,解题时要找出所有的等腰三角形,不要遗漏.7.C 解析:.解不等式①,得x≥﹣8;解不等式②,得x<6.∴不等式组的解集为﹣8≤x<6,∴不等式组的最大整数解为5.故选C.8.A 解析:∵将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,∴﹣2(x+a)﹣2=﹣2x+4,解得a=﹣3.故将l1向右平移3个单位长度.故选A.9.D 解析:如图.设AE的长为x,根据正方形的性质可得BE=14﹣x.在Rt△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选D.点评:考查了平行四边形的性质、正方形的性质、勾股定理,关键是根据勾股定理得到关于AE的方程.10.D 解析:当y=0时,ax2﹣2ax+1=0.∵a>1,∴△=(﹣2a)2﹣4a=4a(a﹣1)>0,∴ax2﹣2ax+1=0有两个根,∴x=>0.点评:此题考查了抛物线与x轴的交点,利用了函数与方程的关系,方程的求根公式.二、11.﹣6解析:≈2.236,π≈3.14.∵﹣6<0<2.236<3.14,∴﹣6.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.135°解析:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为×1080°=135°.点评:此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n≥3,且n为整数).13.27.8°解析:∵tanA==≈0.5283,∴∠A=27.8°.点评:此题考查了坡度和坡角的知识,解题时注意坡角的正切值等于铅直高度与水平宽度的比值,难度不大.14.10 解析:如图.设点A的坐标为(a,b),点B的坐标为(c,d).∵反比例函数y=的图像过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2.∵点M(﹣3,2),∴S矩形MCDO=3×2=6.∴四边形MAOB的面积为S△AOC+S△BOD+S矩形MCDO=2+2+6=10.点评:此题主要考查反比例函数的对称性和k的几何意义,根据条件得出S△AOC=|ab|=2,S△BOD=|cd|=2是解题的关键,注意k的几何意义的应用.15.3解析:∵M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大.如图.∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3.点评:此题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、16.解:原式=﹣+2+8=﹣3+2+8=8﹣.点评:此题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,最后合并同类二次根式.也考查了负整数指数幂.17.解:去分母,得x2﹣5x+6﹣3x﹣9=x2﹣9,解得x=.经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.解:如图,直线AD即为所求.点评:此题主要考查三角形中线的作法,同时要掌握若两个三角形等底等高,则它们的面积相等.19.解:(1)如图.(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级.(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.点评:此题难度中等,主要考查统计图表的识别;解此题要懂得频率分布直方图的意义.同时考查了平均数和中位数的定义.20.证明:∵AE∥BD,∴∠EAC=∠ACB.∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC.在△ABD和△CAE中,,∴△ABD≌△CAE.∴AD=CE.点评:此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、平行线的性质,关键是利用ASA证出△ABD≌△CAE.21.解:由题意,得∠CAD=∠MND=90°,∠CDA=∠MDN,∴△CAD~△MND.∴,∴,∴MN=9.6.又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EFB~△MFN,∴.∴,∴EB≈1.75,∴小军的身高约为1.75米.点评:此题考查的是相似三角形的判定及性质,解答此题的关键是相似三角形的判定.22.解:(1)甲家旅行社的总费用:y甲=640×0.85x=544x;乙家旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x;当x>20时,y乙=640×0.9×20+640×0.75(x﹣20)=480x+1920.(2)当x=32时,y甲=544×32=17408(元),y乙=480×32+1920=17280.因为y甲>y乙,所以胡老师选择乙旅行社.点评:此题考查了一次函数的应用:利用实际问题中的数量关系建立一次函数关系,特别对乙旅行社的总费用要采用分段函数解决问题.23.解:(1)∵向上一面的点数为奇数有3种情况,∴小亮掷得向上一面的点数为奇数的概率是:.(2)填表如下:由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜分别有9种结果.∴P(小亮胜)=,P(小丽胜)==,∴游戏是公平的.点评:(1)此题主要考查了判断游戏公平性问题,要熟练掌握,首先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)此题主要考查了列举法(画树状图法)求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图.24.(1)证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,∴∠ABE=90°,∴∠BAE+∠E=90°.∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD=∠E.(2)解:连接BC,如图.∵AB是⊙O的直径,∴∠ACB=90°.∵AC=8,AB=2×5=10,∴BC=.∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC∽△EAB,∴.∴,∴BE=.点评:此题考查了切线的性质、相似三角形等知识点,关键是根据切线的性质和相似三角形的性质分析.25.解:(1)令y=0,得x2+5x+4=0,∴x1=﹣4,x2=﹣1.令x=0,得y=4,∴A(﹣4,0),B(﹣1,0),C(0,4).(2)∵A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),∴所求抛物线的函数表达式为y=ax2+bx﹣4.解得.将(4,0),(1,0)分别代入上式,得,∴y=﹣x2+5x﹣4.(3)如图,取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′.由中心对称性可知,MM′过点O,OA=OA′,OM=OM′.∴四边形AMA′M′为平行四边形.又知AA′与MM′不垂直,∴平行四边形AMA′M′不是菱形.如图,过点M作MD⊥x轴于点D.∵y=,∴M().又∵A(﹣4,0),A′(4,0),∴AA′=8,MD=,∴=.点评:此题考查了二次函数的性质与图像、中心对称、平行四边形的判定、菱形的判定,综合性较强,解决此题的关键是根据中心对称,求出抛物线的解析式,在(3)中注意菱形的判定与数形结合思想的应用.26.解:(1)如图①,过点A作AE⊥BC,∴四边形AECD为矩形,∴EC=AD=8,BE=BC﹣EC=12﹣8=4.在Rt△ABE中,∠ABE=60°,BE=4,∴AB=2BE=8,AE==4,则S△BMC=BC•AE=24.(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′.∴△BNC的周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC.∵AD∥BC,AE⊥BC,∠ABC=60°,∴过点A作AE⊥BC,则CE=AD=8,∴BE=4,AE=BE•tan60°=4.∴CC′=2CD=2AE=8.∵BC=12,∴BC′==4.∴△BNC的周长的最小值为4+12.(3)如图③,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上.∵AD∥BC,∴圆O与AD相切于点P.∵PQ=DC=4>6,∴PQ>BQ,∴∠BPC<90°,圆心O在弦BC的上方.在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC.∴∠BPC=∠BMC≥∠BP′C,∴∠BPC最大,cos∠BPC的值最小.连接OB,则∠BON=2∠BPN=∠BPC.∵OB=OP=4﹣OQ,∴在Rt△BOQ中,根据勾股定理,得OQ2+62=(4﹣OQ)2,解得OQ=.∴OB=,∴cos∠BPC=cos∠BOQ==.则此时cos∠BPC的值为.点评:此题属于四边形的综合题,涉及的知识有:勾股定理、矩形的判定与性质、对称的性质、圆的切线的判定与性质以及锐角三角函数的定义,熟练掌握定理及性质是解此题的关键.。

2015年陕西省中考数学试卷附答案(微信支付)

2015年陕西省中考数学试卷附答案(微信支付)

2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分) 1.计算:(﹣)0=( ). ﹣C.A .B .C .D . 3.下列计算正确的是( ) A .a 2•a 3=a 6 B .(﹣2ab )2=4a 2b 2 C .(a 2)3=a 5 D .3a 2b 2÷a 2b 2=3abA . 43°30′B . 53°30′C . 133°30′D .153°30′连接DE ,则图中等腰三角形共有( ) A .2个 B . 3个 C . 4个 D .5个 7.不等式组的最大整数解为( )12 A . 没有交点 B . 只有一个交点,且它位于y 轴右侧 C . 有两个交点,且它们均位于y 轴左侧 D . 有两个交点,且它们均位于y 轴右侧 二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答) 11.将实数,π,0,﹣6由小到大用“<”号连起来,可表示为 . 12.请从以下两个小题任选一个作答,若多选,则按第一题计分。

A. 正八边形一个内角的度数为 .B .如图,有一滑梯AB ,其水平宽度AC 为5.3米,铅直高度BC 为2.8米,则∠A 的度数约为(用科学计算器计算,结果精确到0.1°).13.如图,在平面直角坐标系中,过点M (﹣3,2)分别作x 轴、y 轴的垂线与反比例函数y=的图象交于A ,B 两点,则四边形MAOB 的面积为 .14.如图,AB 是⊙O 的弦,AB=6,点C 是⊙O 上的一个动点,且∠ACB=45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是 . 三、解答题(共11小题,计78分,解答时写出过程) 15.(5分)计算:×(﹣)+|﹣2|+()﹣3.16.(5分)解分式方程:﹣=1.17.(5分)如图,已知△ABC ,请用尺规过点A 作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)18.(5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.19.(7分)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.20.(7分)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)21.(7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.22.(7分)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)23.(8分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.24.(10分)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.25.(12分)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.2015年陕西省中考数学试卷参考答案1.A2.B3.B4.C5.B6.D7.C8.A9.D10.D11.﹣6.12.135°.13.27.8°14.10.15.3.三、16.解:原式=﹣+2+8=﹣3+2+8=8﹣.17.解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.18.解:如图,直线AD即为所求:19.解:(1);(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.20.证明:∵AE∥BD,∴∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE,∴AD=CE.21.解:由题意得:∠CAD=∠MND=90°,∠CDA=MDN,∴△CAD~△MND,∴,∴,∴MN=9.6,又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EFB~△MFN,∴,∴∴EB≈1.75,∴小军身高约为1.75米.22.解:(1)甲两家旅行社的总费用:y甲=640×0.85x=544x;乙两家旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x;当x>20时,y乙=640×0.9×20+640×0.75(x﹣20)=480x+1920;(2)当x=32时,y甲=544×32=17408(元),y乙=480×32+1920=17280,因为y甲>y乙,所以胡老师选择乙旅行社.23.解:(1)∵向上一面的点数为奇数有3种情况,∴小亮掷得向上一面的点数为奇数的概率是:.(2)填表如下:1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P(小亮胜)=,P(小丽胜)==,∴游戏是公平的.24.(1)证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,∴∠ABE=90°,∴∠BAE+∠E=90°,∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD=∠E;(2)解:连接BC,如图:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年陕西中考数学副题
2015年陕西省中考数学副题
一、选择题(共10小题,每小题3份,计30份,每小题只有一个选项符合题意)
1、下列四个实数中,最大的是( ) A. 2 B.
3
C. 0
D. ﹣1
2、如图是一枚古钱币的示意图,它的左视图是( )
A. B. C. D.
3、下列计算正确的是( ) A.2
2(1)
1
a a +=+ B.
26(2)3a b ab a
÷-=- C.
235
a a a += D.
33
(2)6a a -=-
4、如图,AB ∥CD ,直线EF 交直线AB 、CD 于点E 、F ,FH 平分∠CFE 。

若∠EFD=70°,则∠EHF 的度数为( )
A. 70°
B. 65°
C. 55°
D. 35° 5、对于正比例函数3y x
,当自变量x 的值增加1时,函
数y 的值增加( )
A. 13
B. 1
3
C. 3
D. ﹣3
6、如图,点P 是△ABC 内一点,且PA=PB=PC ,则点P 是( )
10、在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为26
=++,则m的值是()
y x x m
A.﹣4或﹣14
B. ﹣4或14
C. 4或﹣14
D. 4或14
二、填空题(共4个小题)
11、﹣8的立方根是。

12、请从以下两个小题任选一个作答,若多选,则按第一题计分。

A. 一个n边形的内角和为900°,则n= 。

B. 如图,一个山坡的坡长AB=400米,铅直高度BC=150米,则坡角∠A的大小为(用科学计数法计算,结果精确到1°)
13、在平面直角坐标系中,反比例函数k y
=的图象位于第
x
二、四象限,且经过点(1,22
k-),则k的值为。

14、如图,A、B是半圆O上的两点,MN是直径,OB ⊥MN,AB=4,OB=5,P是MN上一个动点,则PA+PB 的最小值为。

第12题B 第14题
三、解答题(共11小题,计78分,解答应写出过程) 15、(本题满分52
1
832|5|()3
-⨯-+-
16、(本题满分5分)解分式方程:32222
x x x +=
+-
B
B
N
A
17、(本题满分5分)如图,请用尺规在△ABC 的边BC 上找一点D ,使得点D 到AB 、AC 的距离相等(保留作图痕迹,不写作法)
18、(本题满分5分)我们根据《2014年陕西省国民经济运行情况统计》提供的三大产业总产值的信息,绘制了如下的两幅统计图。

2014年陕西省三大产业总产值统计图
A
B
C
9689.8
6435.2
总产值
(亿元)产业
第二产业
产业
100008000
6000400020000
第一产业8.84%
第二产业54.78%
第三产业36.38%
请你根据以上信息,解答下列问题:
(1)补全上面的条形统计图;
(2)2014年陕西省三大产业的平均总产值是亿元(结果精确到1亿元)
(3)如果2015年陕西省生产总值(第一、二、三产业总产值之和)必上年增长8.5%,那么请求出2015年陕西省生产总值约为多少亿元?(结果精确到1亿元)
19、(本题满分7分)如图,在△ABC中,AB=AC,D 是BC延长线上一点,连接AD,过点S、D分别作AE ∥BD,DE∥AB,AE、DE交于点E,连接CE。

求证:AD=CE
A
D
20、(本题满分7分)周末,小凯和同学带着皮尺,去测量杨大爷家露台遮阳篷的宽度。

如图,由于无法直接测量,小凯便在楼前面的地面上选择了一条直线EF ,通过在直线EF 上选点观测,发现当他位于N 点时,他的视线从M 点通过露台D 点正好落在遮阳篷A 点处;当他位于N'点时,视线从M'点通过露台D 点正好落在遮阳篷B 点处。

这样观测到的两个点A 、B 间的距离即为遮阳篷的宽。

已知AB ∥CD ∥EF ,点C 在AG 上,AG 、DE 、MN 、M'N'均垂直于EF ,MN=M'N',露台的宽CD=GE 。

测得GE=5米,EN=12.3米,NN'=6.2.请你根据以上信息,求出遮阳篷的宽AB 是多少米?(结果精确到0.01米)
21、(本题满分7分)常温下,有一种烧水壶加热1.5升
F
G
C
N
N'
M'
M D
A
E
B
的纯净水时,加热中的水温y(℃)与加热时间x(秒)之间近似地满足一次函数关系,经试验,在常温下用这种壶将1.5升的纯净水加热到70℃时,所用时间为3分16秒;再加热40秒,水温正好达到80℃。

(1)求出y与x的函数关系式;
(2)在常温下,若用这种烧水壶将1.5升的28℃纯净水烧开(温度为100度),则需要加热多长时间?
22、(本题满分7分)小昕的口袋中有5把相似的钥匙,其中2把钥匙(记为A1,A2)能打开教室前门锁,而剩余的3把钥匙(记为B1,B2,B3)不能打开教室前门锁。

(1)请求出小昕从口袋中随便摸出一把钥匙就能打开教室前门锁的概率。

(2)请用树状图或列表等方法,求出小昕从口袋中第一次随机摸出的一把钥匙不能打开教室前门锁(摸出的钥匙不再放回)。

而第二次随机摸出的一把钥匙正好能打开教室前门锁的概率。

23、(本题满分8分)如图,在Rt △ABC 中,∠BAC=90°,∠BAD=∠C ,点D 在BC 边上,以AD 为直径的⊙O 交AB 于点E ,交AC 于点F 。

(1)求证:BC 是⊙O 的切线
(2)已知:AB=6,AC=8,求AF 的长。

24、(本题满分10分)如图,在平面直角坐标系中,抛物线2
y x bx c 与x 轴交于A 、B 两点,与y 轴交于点C 。

已知A (﹣3,0),该抛物线的对称轴为直线12
x 。

(1)求该抛物线的函数表达式 (2)求点B 、C 的坐标
(3)假设将线段BC 平移,使得平移后线段的一个端点
F
E O
D
A
在这条抛物线上,另一个端点在x 轴上,若将点B 、C 平移后的对应点分别记为点D 、E ,求以B 、C 、D 、E 为顶点的四边形面积的最大值。

25、(本题满分12分)问题探究:
(1)如图①,AB 为⊙O 的弦,点C 是⊙O 上的一点,在直线AB 上方找一个点D ,使得∠ADB=∠ACB ,画出∠ADB ,并说明理由
(2)如图②,AB 是⊙O 的弦,点C 是⊙O 上的一个点,在过点C 的直线l 上找一点P ,使得∠APB<∠ACB ,画出∠APB ,并说明理由
(3)如图③,已知足球门宽AB 约为52一球员从距B 点52C 点(点A 、B 、C 均在球场的底线上),沿与AC 成45°的CD 方向带球。

试问,该球员能否在射
x
y
C
A
B
O
线CD 上找一点P ,使得点P 最佳射门点(即∠APB 最大)?若能找到,求出这时点P 与点C 的距离;若找不到,请说明理由。

O
A
B
C
O
A
B
C
D
A
C
B。

相关文档
最新文档