初中数学九年级 二次函数人教版教案

合集下载

(精)人教版数学九年级上册《二次函数》全章教案(最新)

(精)人教版数学九年级上册《二次函数》全章教案(最新)

22.1 二次函数的图像和性质(一)一、学习目标1.知识与技术目标:(1)理解并掌握二次函数的看法;(2)能判断一个给定的函数能否为二次函数,并会用待定系数法求函数分析式;(3)能依据实质问题中的条件确立二次函数的分析式。

二、学习重点难点1.重点:理解二次函数的看法,能依据已知条件写出函数分析式;2.难点:理解二次函数的看法。

三、教课过程(一)创建情境、导入新课:回想一下什么是正比率函数、一次函数、反比率函数?它们的一般形式是如何的?(二)自主研究、合作沟通:问题 1:正方体的六个面是全等的正方形,假如正方形的棱长为x,表面积为 y,写出 y 与 x 的关系。

问题 2: n 边形的对角线数 d 与边数 n 之间有如何的关系 ?问题 3:某工厂一种产品此刻的年产量是20 件,计划此后两年增添产量.假如每年都比上一年的产量增添 x 倍,那么两年后这种产品的数目y 将随计划所定的x 的值而定, y 与 x 之间的关系如何表示 ?问题 4:察看以上三个问题所写出来的三个函数关系式有什么特色?小组沟通、议论得出结论:经化简后都拥有的形式。

问题 5:什么是二次函数?形如。

问题 6:函数 y=ax2+bx+c ,当 a、 b、 c 知足什么条件时, (1)它是二次函数 ?(2) 它是一次函数?(3) 它是正比率函数?(三)试试应用:例 1.对于 x 的函数y (m 21)x m2 m求 m 的值.是二次函数,注意:二次函数的二次项系数一定是的数。

例 2.已知对于 x 的二次函数,当数值为 7。

求这个二次函数的分析式.x=- 1 时,函数值为(待定系数法 )10,当x=1时,函数值为4,当x=2时,函(四)稳固提升:1.以下函数中,哪些是二次函数?(1)y=3x - 1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2- 2x+1;(5)y=x 2- x(1+x);(6)y=x -2+x .2.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。

人教版九年级数学上册《二次函数》教案

人教版九年级数学上册《二次函数》教案

《二次函数》教案教学目标1、从实际情境中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系;2、理解二次函数的概念,掌握二次函数的形式;3、会建立简单的二次函数模型,并能根据实际问题确定自变量的取值范围;教学重点二次函数的概念和解析式教学难点本节涉及的实际问题有的较为复杂,要求学生有较强的概括能力.教学过程创设情境,导入新课问题1、现有一根12m长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y与x之间的关系:(1)面积y(cm2)与圆的半径x(cm)(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文x两年后王先生共得本息y元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om,室内通道的尺寸如图,设一条边长为x (cm),种植面积为y (m2)x教师组织合作学习活动:先个体探求,尝试写出y 与x 之间的函数解析式.上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨.(1)y =πx 2 (2)y =2000(1+x )2=20000x 2+40000x +20000(3)y =(60-x -4)(x -2)=-x 2+58x -112(二)上述三个函数解析式具有哪些共同特征?让学生充分发表意见,提出各自看法.教师归纳总结:上述三个函数解析式经化简后都具y =ax ²+bx +c (a ,b ,c 是常数, a ≠0)的形式.板书:我们把形如y =ax ²+bx +c (其中a ,b ,c 是常数,a ≠0)的函数叫做二次函数(quadra ticfuncion ).称a 为二次项系数,b 为一次项系数,c 为常数项.请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项做一做下列函数中,哪些是二次函数?(1)2x y = (2)21xy -= (3)122--=x x y (4))1(x x y -= (5))1)(1()1(2-+--=x x x y2、分别说出下列二次函数的二次项系数、一次项系数和常数项:(1)12+=x y (2)12732-+=x x y (3))1(2x x y -= 3、若函数m mx m y --=2)1(2为二次函数,则m 的值为 .例题示范,了解规律 例1、已知二次函数 q px x y ++=2当x =1时,函数值是4;当x =2时,函数值是-5.求这个二次函数的解析式.此题难度较小,但却反映了求二次函数解析式的一般方法,可让学生一边说,教师一边板书示范,强调书写格式和思考方法.练习:已知二次函数c bx ax y ++=2 ,当x =2时,函数值是3;当x =-2时,函数值是2.求这个二次函数的解析式.例2、如图,一张正方形纸板的边长为2cm ,将它剪去4个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),四边形EFGH 的面积为y (cm 2),求:①y 关于x 的函数解析式和自变量x 的取值范围.②当x 分别为0.25,0.5,1.5,1.75时,对应的四边形EFGH 的面积,并列表表示.方法:(1)学生独立分析思考,尝试写出y 关于x 的函数解析式,教师巡回辅导,适时点拨.(2)对于第一个问题可以用多种方法解答,比如:求差法:四边形EFGH 的面积=正方形ABCD 的面积-直角三角形AEH 的面积DE 4倍. 直接法:先证明四边形EFGH 是正方形,再由勾股定理求出EH 2(3)对于自变量的取值范围,要求学生要根据实际问题中自变量的实际意义来确定.(4)对于第(2)小题,在求解并列表表示后,重点让学生看清x 与y 之间数值的对应关系和内在的规律性:随着x 的取值的增大,y 的值先减后增;y 的值具有对称性. 练习:用20米的篱笆围一个矩形的花圃(如图),设连墙的一边为x ,矩形的面积为y ,求:(1)写出y 关于x 的函数关系式.(2)当x =3时,矩形的面积为多少?归纳小结本节课你有什么收获? ABE F C G D H x。

二次函数教案 (第一课时)

二次函数教案 (第一课时)

二次函数教案 (第一课时)二次函数的教学设计一、教学内容二次函数(新人教版九年级下册第26.1.1节)二、教学目标1.知识技能通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,学生归纳出二次函数的概念并能够根据函数特征识别二次函数。

2.教学思考学生能对具体情境中的数学息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系。

3.解决问题体验数学与日常生活密切相关,让学生认识到许多问题可以用数学方法解决,体验实际问题“数学化”的过程。

4.情感态度通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识。

三、教学重点与难点1.教学重点认识二次函数,经历探索函数关系、归纳二次函数概念的过程。

2.教学困难根据函数解析式的结构特征,归纳出二次函数的概念。

第四,教学过程的安排教学活动流程活动1:温故知新,揭示课题活动内容和目的由回顾所学过的函数入手,引入函数大家庭中还会认识哪函数呢?然后从打篮球的例子引入二次函数。

学生能独立运用函数知识解决变量之间的关系。

2.活动:合作探究,获取新知识,制作探究环节,与学生互动,自主探索新知识,从而通过观察和归纳。

得到二次函数的解析式,获取新知。

本组题目是新知识的直接应用,目的是让学生能够区分。

活动3:小试身手,循序渐进认二次函数,循序渐进这一环节主要帮助学生处理解决问题,加深对二次函数的理解。

总结内容、应用、数学思维方法、获取知识的途径等。

活动四:回顾课堂,总结巩固方面,既总结知识,又提炼方法,让研究研究知识和运用知识都有很大的提升,方法就是学生讲收获。

活动5:课堂检测,测评反馈以测试的形式检测本节课的内容,检查学生的掌握程度,同时加深学生对知识的理解。

第五,教学过程的设计问题与情景【活动1】1.知识回顾:以问答式引起学生对知识的回忆。

2.揭示课题:以篮球为例。

人教版数学九年级上册《二次函数》第一课时教案

人教版数学九年级上册《二次函数》第一课时教案
四、展示点评点拨升华达成反思
例1、下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项.
例2、函数
(1)当m为何值时,y是x的二次函数?
(2)当m为何值时,y是x的一次函数?
【反思节点2】怎么判定一个函数是否为二次函数?
五、整合提高建构体系内化反思
【生活问题数学化】:一农民用40m长的篱笆围成一个一边靠墙的长方形菜园,和墙垂直的一边长为 ,菜园的面积为 ,

二、学案引导自主学习目标反思
问题2n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队数n有什么关系?
问题3某种产品现在的年产量是20 t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?
3.等式的右边最高次数为__________,可以没有一次项和常数项,但不能没有二次项.
4.没有特殊要求的话,x的取值范围是________.
二次函数的特殊形式:
当b=0时,y=_________
当c=0时,y=_________
当b=0,c=0时,y=__________
【反思节点1】二次函数必须满足的条件是什么?
(1)求y与x之间的函数关系式,并说出自变量的取值范围。
(2)当x=12m时,计算菜园的面积。
(3)当菜园的面积是 时,求x。
【反思节点3】如何求函数值及自变量的值?
【小结】知识网络
六、达标检测反馈矫正总结反思
1.下列函数中是二次函数的是()
A. B. C. D.
2.若函数 是关于x的二次函数,则()
思考:函数有什么共同特点?板书二次函数
一般地,形如

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。

人教版九年级数学上册《二次函数》教学设计

人教版九年级数学上册《二次函数》教学设计

二次函数【教课任务剖析】知识 1. 联合详细情境领会二次函数的意义,理解二次函数的有关观点,能够表示简单变量教技术之间的二次函数关系,能应用二次函数的有关知识解决简单的问题.学过程经历研究详细问题中数目关系和变化规律的过程,领会二次函数是刻画现实世界的一目方法个有效的数学模型 .标感情领会数学与生活的联系,锻炼学生的理性思想,领会经过研究学习新知识的乐趣.态度要点将简单的实质问题转变为二次函数的模型.理解二次函数的有关观点,能应用二次函数的相关知识解决简单的问题 .难点将简单的实质问题转变为二次函数的模型.【教课环节安排】环节教课识题设计教课活动设计情学生察看出示章前图 .出示章前图 .境教师导语:从喷头飞出水珠,在空中走过一条漂亮曲引线,你想知道在这条曲线的各个地点上,水珠的竖直教师口述,并板书课题入高度 h 与它距离喷头的水平距离x 之间有什么关系吗?经过本章的学习,我们便可解开这一疑团.【问题1】正方体的六个面是全等的正方形, 假如正教师出示问题,学生独立思虑,方体形的棱长为 x,表面积为y,请你写出y与x的关列出关系式,学生回答,全班进行订自系式 .正 .主请 3 名学生板练探【问题2】多边形的对角线条数 d 与边数 n 有什么关究系?【问题3】某工厂一种产品此刻的年产量是20 件,计划此后两年增添产量 . 假如每年都比上一年的产量合增添 x 倍,那么两年后这类产品的产量y 将随计划所作定的 x 的值而确立, y 与 x 之间的关系应如何表示?交【剖析】这类产品的元产量是20 件,一年后的产量流是件,再经过一年后的产量是件,即两年后的产量为即:.教师提出问题:这三个关系式有【问题4】察看以上三个问题所写出来的三个函数关什么共同点?系式有什么共同点 ?学生充足地发布自己的看法,教小组沟通、议论得出结论:.师指引学生概括出特色,获得二次函【问题5】什么是二次函数?数的定义 .形如()的函数,叫做二次函数 . 此中是自变量, a,b, c分别是函数分析式的,和.学生概括【小结】二次函数的特色条件:( 1)各项均为式;二次函数的定义:( 2)自变量的最高次数为;( 3)二次项系数不一般地,形如 y=ax 2+bx+c(a , b,等于. c 为常数, a≠ 0) 的函数叫做二次函【问题6】函数 y= ax2 +bx+c ,(1)当 a, b,c 知足数.此中 X 是自变量, a,b,c 分别是函数分析式的二次项系数,一次项时,它是二次函数.;(2)当a,b,c系数和常数项.知足时,它是一次函数.;(3)当 a , b , c满足时,它是正比例函数..1.一个圆柱的高等于底面半径,它的表面积S与尝半径R之间的关系式为.试 2.n 支球队参加竞赛,每两支之间进行一场竞赛.应写出比赛的场数 m 与球队数 n 之间的关系用式:.3. 当 m=时,函数 y=(m-2) x m22是二次函数 .4.已知二次函数 y= x2 +px+q, 当 x=1 时 , 函数值为4, 当 x=2 时, 函数值为 -5,求这个二次函数的分析式.成1. 用 16m 长的篱笆围成长方形圈养小兔,圈的面积果y( ㎡ ) 与长方形的长 x(m) 之间的函数关系式展为.它是函数.示2. 函数y (m+2) x m2-2是二次函数,则m的值是.3. 请说出以下二次函数中的二次项系数、一次项系数和常数项 .(1)y=4x 2-1(2)y=5x2-3x+1补 1. 一个长方形的长是宽的 2 倍,写出这个长方形的面偿积 S 与宽之间的函数关系式.提高2.某种商品的价钱是 2元,准备进行两次降价 . 假如每次降价的百分率都是x, 经过两次降价后的价钱y( 单位:元 ) 随每次降价的百分率x 的变化而变化,y与 x之间的函数关系能够用如何的函数来表示?教师出示题组学生独立思虑达成.请 4 名学生板练教师巡视,认识学生的学习状况,并针对个别在学习中有困难的学生进行个别指导 .达成后,先小组内进行沟通、议论,而后全班进行沟通 . 评析 .教师出示题目,请学生独立达成,而后沟通 .针对前几个环节出现的问题,进行针对性的赔偿,也可对学有余力的学生拓展提升 .。

人教版九年级数学上册(教案):22.1.1二次函数

人教版九年级数学上册(教案):22.1.1二次函数
人教版九年级数学上册(教案):22.1.1二次函数
一、教学内容
人教版九年级数学上册(教案):22.1.1二次函数。本节内容主要包括以下三个方面:
1.二次函数的定义:引导学生了解二次函数的一般形式,即f(x) = ax^2 + bx + c(a≠0),理解各系数对函数图像的影响。
2.二次函数的图像:探讨a、b、c的取值对二次函数图像的开口方向、对称轴、顶点、最值等性质的影响,并学会绘制二次函数图像。
-二次函数图像的绘制:如何根据函数解析式准确绘制出二次函数图像,特别是当系数变化时图像的调整。
-二次函数性质的应用:将二次函数的性质应用于解决具体问题,如求解最值、判断单调性等。
-二次函数与实际问题的结合:如何将现实生活中的问题转化为二次函数模型,并利用所学知识解决问题。
举例:在讲解a、b、c对图像影响时,难点在于如何让学生理解当a变化时,图像开口的大小和方向变化;当b变化时,对称轴的位置如何移动;当c变化时,图像与y轴的交点如何变化。可以通过动态演示或实物操作来帮助学生形象化理解。
-二次函数的图像性质:掌握开口方向、对称轴(x=-b/2a)、顶点((-b/2a, f(-b/2a)))、最值(最大值或最小值)等关键特征。
-二次函数的解析式与图像之间的关系:理解系数变化对图像的具体影响,如a>0时图像开口向上,a<0时开口向下;b影响对称轴的位置;c影响图像与y轴的交点。
-二次函数的实际应用:解决生活中的实际问题,如物体抛射、面积计算等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数的基本概念、图像性质和实际应用。通过实践活动和小组讨论,我们加深了对二次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计一. 教材分析人教版数学九年级上册第22.1节《二次函数的图象和性质(1)》是本册教材的重要内容,主要介绍二次函数的一般形式、图象特点以及一些基本性质。

通过本节内容的学习,学生可以掌握二次函数的基本知识,为后续学习二次函数的应用打下基础。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,具备一定的函数知识基础。

但二次函数相对复杂,学生对其理解和掌握可能存在一定的困难。

因此,在教学过程中,需要注重引导学生通过观察、思考、探索等方式,自主发现和总结二次函数的性质。

三. 教学目标1.理解二次函数的一般形式和图象特点。

2.掌握二次函数的顶点坐标、开口方向和判别式的概念。

3.能够运用二次函数的性质解决一些实际问题。

四. 教学重难点1.二次函数的一般形式和图象特点。

2.二次函数的顶点坐标、开口方向和判别式的理解与应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探索等方式自主学习。

2.利用多媒体课件辅助教学,直观展示二次函数的图象和性质。

3.注重数学语言的训练,引导学生规范表达。

六. 教学准备1.多媒体课件。

2.相关练习题。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生思考如何用数学模型来描述这些问题。

例如,抛物线运动、物体抛掷等。

从而引出二次函数的概念。

2.呈现(10分钟)利用多媒体课件,呈现二次函数的一般形式和图象特点。

引导学生观察并总结二次函数的性质。

3.操练(10分钟)让学生通过计算器或者绘图软件,自己动手绘制一些二次函数的图象,并观察其性质。

同时,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生运用所学的二次函数知识解决问题。

教师及时批改并给予反馈,帮助学生巩固所学知识。

5.拓展(10分钟)引导学生思考二次函数在实际生活中的应用,例如抛物线射门、跳水运动等。

人教版九年级上册二次函数教案

人教版九年级上册二次函数教案

二次函数教学设计教材教学内容 二次函数 教学目标知识目标1.理解二次函数概念,掌握二次函数的表达形式.结合具体情境体会二次函数作为一种数学模型的意义.2.探索具体问题中的数量关系和变化规律,用二次函数解决具体问题.3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围. 能力目标1.培养学生将实际问题转化为数学问题的能力;2.培养学生数学思维,在生活中寻找数学,掌握数学. 德育目标激发学生学习动机,培养学生良好学习习惯.教学重点、难点重点:二次函数的概念和解析式难点:根据实际问题确定变量,并用二次函数去表达变量之间的关系,从而解决实际问题.教学方法 主要采用讲授法 教学过程设计1.回顾旧知识正比例函数---------------y=kx(k ≠0),如:y=3x 反比例函数---------------y= (k ≠0),如:y=一次函数------------------y=kx+b(k,b 是常数,且k ≠0),如:y=5x+12.创设情境,导入新知识 1)写出以下表达式(1)正方体的六个面是全等的正方形,设正方体的棱长为x(cm),它的表面积是y(cm ²),y 与x 之间的关系式.解:y 与x 的关系可以表示为:y=6x ².(2)小明有x 颗糖果,小华拥有的糖果数y 是小明的x+3倍,y 与x 之间的关系式.解:y 与x 的关系可以表示为: y=x ²+3x.(3)某工厂一种产品现在的年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 的值而定,y 与x 之间的关系式.解:这种产品的原产量是20件,一年后的产量是 20(x+1) 件,那么,两年后的产量是 20(x+1)(x+1) 件, 所以, y=20(x+1) ²,xkx 1即y 与x 的关系式是:y=20x ²+40x+20.2)引导学生观察写出来的以上表达式.设问: (1)这几个函数是我们已学过的三种函数吗?答:不是.(2)这些函数的自变量x 的最高次数是多少?答:2.3)归纳总结:上述几个函数解析式经化简后都具y=ax²+bx+c(a,b,c 是常数,a ≠0)的形式.3.引入概念并板书我们把形如y=ax²+bx+c(其中a,b,c 是常数,a ≠0)的函数叫做二次函数(quadratic funcion) ,我们称a 为二次项系数, b 为一次项系数,c 为常数项.4.巩固练习下列函数中,哪些是二次函数?并指出二次函数的二次项系数、一次项系数和常数项.函数是否二次函数二次项系数一次项系数常数项)1(x x y -=是 -1 1 0 2)1()2)(2(---+=x x x y 否 --------------------- ---------- 122--=x x y是 2 -1 -1 21xy -= 否---------------------------------注意:判别函数是否二次函数时需要注意二次函数须满足的条件以及二次函数的形式. (1)条件:①a 、b 、c 都是常数 ②a ≠0 (2)二次函数的形式:①一般形式:y=ax²+bx+c②特殊形式:当b=0时y=ax ²+c 当c=0时y=ax ²+bx 当b=c=0时y=ax ²5.范例学习【例】用20米的篱笆围一个矩形的花圃,设连墙的一边为x 米,矩形的面积为y 平方米,请写出y 关于x 的函数关系式,以及自变量x 的取值范围.解:花圃的长是x 米,那么宽是 米,2x-20,2x-20x y ⨯=所以,花圃的面积是:即y 与x 之间的关系式是:x x y 10212+-=, 自变量x 的取值范围是:0<x <20.6.拓展练习如果函数1)1(12++k x k y -=是二次函数,那么k 的值是 ? 解:函数1)1(12++kx k y -=是二次函数,所以,k-1≠0,即k ≠1;而,k ²+1=2,即k=1(舍去)或k=-1; 所以,k=-1.7.小结(1)形如y=ax²+bx+c(其中a,b,C 是常数,a ≠0)的函数叫做二次函数(quadratic funcion) 我们称a 为二次项系数, b 为一次项系数,c 为常数项. (2)利用二次函数可解决简单实际问题.8.布置作业教科书P14习题26.1的2、8题板书设计。

初中数学二次函数教案(5篇)

初中数学二次函数教案(5篇)

初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。

二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。

同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。

进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。

而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。

所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。

4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。

人教版初中数学九年级上册《二次函数》教学设计

人教版初中数学九年级上册《二次函数》教学设计

二次函数教学设计(1)一教材分析二次函数的应用本身是学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查,新课标中要求学生能通过对实际问题的情景的分析确定二次函数的表达式,体会其含义,能根据图像的性质解决简单的实际问题,而最值又是生活中利用二次函数知识解决最常见,最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,为求利润等问题奠定基础,目的在于让学生通过掌握求面积最大这一类问题,学会用建模的思想去解决其他和函数有关的应用问题,此内容是学习一次函数及其应用的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础二教学目标。

1;知识与技能:通过本节学习,巩固二次函数的图像与性质,理解顶点与最值的关系,会求解最值问题2.过程与方法:通过观察图像,理解顶点的特殊性,会把实际问题中的最值问题转化为二次函数的最值问题,通过动手动脑,提高分析解决问题能力,并体会一般与特殊的关系,了解数形结合思想,函数思想3.情感态度与价值观:通过学生之间的讨论,交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中的广泛应用价值,三教学重点难点教学重点:利用二次函数的图像与性质,求面积的最值问题教学难点:1.正确构建数学模型2.对函数顶点,端点与最值的理解与应用四教学方法“启发探究式”为主线开展教学活动,解决问题以学生动手动脑为主,必要时加以小组讨论,充分调动学生学习的积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的五教学手段多媒体课件六课时安排1课时七教学过程加深巩固布置作业自主评价梳理面靠墙围成一个矩形,要求面积最大,如何围才能使矩形的面积最大?2.如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。

回答下面的问题:(1)设每个小矩形一边的长为xm,设四个小矩形的总面积为ym2,请写出用x表示y的函数表达式。

人教版数学九年级上册全套《二次函数》教案

人教版数学九年级上册全套《二次函数》教案

授课时间主备人课题教学第周年月日星期序号复备人第 22 章二次函数教材分析知识1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;目标2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会用配方法确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;目能力标目标情感目标教学重点教学难点4.会利用二次函数的图象求一元二次方程的近似解。

1.通过对实际问题情境的分析确定二次函数的表达式;2.能从图象上认识二次函数的性质;3.会用配方法或公式法确定图像的开口方向、顶点和对称轴;4.会利用二次函数的图像求一元二次方程的近似解经历探究二次函数图像、性质的过程,体会辩证法在数学中的应用,渗透数学思想方法,发展学生个性品质,从而达到提高学生整体数学素养的目的。

1.了解二次函数的含义2.理解二次函数的图象及其性质,3.抛物线图象的平移问题.4.体会一元二次方程与二次函数的关系5.能用二次函数解决实际问题1.二次函数图象特征及其性质.2.对二次函数与一元二次方程的关系理解与应用.3.应用二次函数解决实际问题.能解决与其他函数结合的问题本章的地位和作用:“二次函数”这一章是初中阶段所学的有关函数知识的重点内容之一,学生在学习教了正比例函数、一次函数、反比例函数之后学习二次函数,这是对函数及其应用知材识学习的深化和提高,是今后学习其它初等函数的基础,因此,这部分对学生学习分函数内容有着承上启下的作用,对培养和提高学生用函数模型(函数思想)来解决实际问题,逐步提高分析问题,解决问题的能力有着一定的作用。

析本章编写特点:(一)注重结论的探索在本章中,一般二次函数的图象和性质是从最简单的二次函数出发逐步深入地探讨的。

教科书通过设置观察、思考、讨论等栏目,引导学生探索相关的结论。

(二)注重知识之间的联系学生在“一次函数”一章已经了解了一次函数与一元一次方程、一元一次不等式(组)、二元一次方程组的联系。

九年级数学上册第22章二次函数教案(共14套新人教版)

九年级数学上册第22章二次函数教案(共14套新人教版)

九年级数学上册第22章二次函数教案(共14套新人教版)二次函数01教学目标1.结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系.02 预习反馈阅读教材P28~29,理解二次函数的意义及有关概念,完成下列内容.1.一般地,形如y=ax2+bx+c(a,b,c是常数,a ≠0)的函数,叫做二次函数.其中二次项系数、一次项系数和常数项分别为a,b,c.(1)下列函数中,不是二次函数的是(D)A.y=1-2x2 B.y=(x-1)2-1C.y=12(x+1)(x-1) D.y=(x-2)2-x2(2)二次函数y=x2+4x中,二次项系数是1,一次项系数是4,常数项是0.【点拨】判断二次函数要紧扣定义.2.现在我们已学过的函数有一次函数、二次函数,它们的表达式分别是y=ax+b(a,b是常数,a≠0)、y=ax2+bx+c(a,b,c是常数,a≠0).如:一个圆柱的高等于底面半径,写出它的表面积S与半径r之间的关系式.解:S表=4πr2.03 新课讲授例1 (教材P28问题1)n个球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m与球队数n之间的关系式.【解答】每个球队要与其他(n-1)个球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛是同一场比赛,所以比赛的场次数是m=12n(n-1)=12n2-12n.【跟踪训练1】(22.1.1习题)某校九(1)班共有x名学生,在毕业典礼上每两名同学都握一次手,共握手y次,试写出y与x之间的函数关系式y=12x2-12x,它是(填“是”或“不是”)二次函数.例2 (教材P28问题2)某种产品现在的年产量是20 t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?【解答】这种产品的原产量是20 t,一年后的产量是20(1+x)t,再经过一年后的产量是20(1+x)(1+x)t,即两年后的产量y =20(1+x)2.【跟踪训练2】(22.1.1习题)国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,降价后的价格为y元,则y与x的函数关系式为(C)A.y=36(1-x) B.y=36(1+x)C.y=18(1-x)2 D.y=18(1+x2)例3 (教材P29练习T2的变式)一个正方形的边长是12 cm,若从中挖去一个长为2x cm,宽为(x+1)cm的小矩形,剩余部分的面积为y cm2.(1)写出y与x之间的关系式,并指出y是x的什么函数?(2)当小矩形中x的值分别为2和4时,相应的剩余部分的面积是多少?【解答】(1)y=122-2x(x+1),即y=-2x2-2x+144.∴y是x 的二次函数.(2)当x=2和4时,相应的y的值分别为132和104.【点拨】几何图形的面积一般需画图分析,相关线段必须先用x的代数式表示出来.【跟踪训练3】用总长为60 m的篱笆围成矩形场地,写出场地面积S(m2)与矩形一边长a(m)之间的关系式.解:S=a&#8226;(60-2a)2=-a2+30a.04 巩固训练1.下列方程是一元二次方程的是(A)A.(5-a)2=2B.3x2+x-y2=0C.y2=5-(2y-y3) D.x-1x2+1=02.若y=(b-1)x2+3是二次函数,则b≠1.3.有一个人患流感,经过两轮传染后共有y人患了流感,每轮传染中,平均一个人传染了x人,则y与x之间的函数关系式为y=x2+2x+1.4.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB 边长为x m,则菜园的面积y(m2)与x(m)的函数解析式为y=-12x2+15x(不要求写出自变量x的取值范围).5.已知函数y=(m+1)xm2-3m-2+(m-1)x(m是常数).m为何值时,它是二次函数?解:m =4.【点拨】不要忽视m+1≠0.05 课堂小结1.二次函数的定义.2.熟记二次函数y=ax2+bx +c中,a≠0,a,b,c为常数.3.如何表示简单变量之间的二次函数关系?22.1.2 二次函数y=ax2的图象和性质01 教学目标1.能够用描点法画函数y=ax2的图象,并能根据图象认识和理解其性质.2.初步建立二次函数表达式与图象之间的联系,体会数与形的结合与转化.02 预习反馈阅读教材P30~32,自学“例1”“思考”“探究”“归纳”,掌握用描点法画函数y=ax2图象的方法,理解其性质,完成下列内容.1.一般地,当a&gt;0时,抛物线y=ax2的开口向上,对称轴是y轴,顶点是原点,顶点是抛物线的最低点,a越大,抛物线的开口越小.2.一般地,当a&lt;0时,抛物线y=ax2的开口向下,对称轴是y轴,顶点是原点,顶点是抛物线的最高点,a越小,抛物线的开口越小.3.从二次函数y=ax2的图象可以看出:如果a&gt;0,当x&lt;0时,y随x的增大而减小,当x&gt;0时,y随x的增大而增大;如果a&lt;0,当x&lt;0时,y随x的增大而增大,当x&gt;0时,y随x的增大而减小.4.(1)抛物线y=2x2的开口向上,对称轴是y轴,顶点是原点,顶点是抛物线的最低点;(2)抛物线y=-3x2的开口向下,对称轴是y轴,顶点是原点,顶点是抛物线的最高点;(3)在抛物线y=2x2对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;(4)在抛物线y=-3x2对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.03 新课导入回顾:一次函数的图象是一条直线.思考:二次函数的图象是什么形状呢?还记得如何用描点法画一个函数的图象吗?画函数图象的一般步骤:列表、描点、连线.导入:你能画出二次函数y=x2的图象吗?第一步:列表:x…-3-2-10123…y=x2…9410149…第二步:描点,在平面直角坐标系中描出表中各点,如图1.图1 图2第三步:连线,用平滑的曲线顺次连接各点,就得到二次函数y=x2的图象,如图2.思考:观察函数y=x2的图象,它有什么特点?总结:(1)二次函数的图象是一条曲线,它的开口向上,这条曲线叫做抛物线;(2)抛物线y=x2的对称轴是y轴,抛物线与它的对称轴的交点是(0,0),它是图象的最低点,叫做抛物线的顶点;(3)在对称轴的左侧,抛物线y=x2从左到右下降;在对称轴的右侧,抛物线y =x2从左到右上升.也就是说,当x&lt;0时,y随x的增大而减小;当x&gt;0时,y随x的增大而增大.04 新课讲授例1 (教材P30例1)在同一直角坐标系中,画出函数y=12x2,y=2x2的图象.【解答】分别列表,画出它们的图象,如图.x…-4-3-2-101234…y=12x2…84.520.500.524.58…x…-2-1.5-1-0.500.511.52…y=2x2…84.520.500.524.58…思考:函数y=12x2,y=2x2的图象与函数y=x2的图象相比,有什么共同点和不同点?总结:共同点是开口向上,对称轴是y轴,顶点是原点;不同点是开口大小不同,x2的系数越大,抛物线的开口越小.例2 (教材P30例1的变式)在同一直角坐标系中,画出函数y=-x2,y=-12x2,y=-2x2的图象,并考虑这些抛物线有什么共同点和不同点?【解答】画出图象如图.思考:当a<0时,二次函数y=ax2的图象有什么特点?【点拨】可从开口方向、对称轴、顶点、开口大小去比较和寻找规律.【跟踪训练1】(1)函数y=-2x2的图象是抛物线,顶点坐标是(0,0),对称轴是y轴,开口方向是向下;(2)函数y=x2,y=12x2和y =-2x2的图象如图所示,请指出三条抛物线的解析式.解:根据抛物线y=ax2中a的值来判断,上面最外面的抛物线为y=12x2,中间为y=x2,在x轴下方的为y=-2x2.【点拨】抛物线y=ax2,当a&gt;0时,开口向上;当a&lt;0时,开口向下,|a|越大,开口越小.例3 (补充例题)已知函数y=(m+2)xm2+m-4是关于x的二次函数.(1)求满足条件的m的值;(2)当m为何值时,抛物线有最低点?求这个最低点;(3)当x为何值时,y随x的增大而增大?当x为何值时,y随x的增大而减小?【解答】(1)由题意,得m2+m-4=2,m+2≠0.解得m=2或m=-3,m≠-2.∴当m=2或m=-3时,函数为二次函数.(2)若抛物线有最低点,则抛物线开口向上,∴m+2&gt;0,即m&gt;-2.∴m=2.这个最低点为抛物线的顶点,其坐标为(0,0),(3)当x&gt;0时,y随x的增大而增大;当x&gt;0时,y 随x的增大而减小.【点拨】也可结合图象来分析完成此题.【跟踪训练2】已知函数y=(m-1)xm2-2m+2+(m-2)x是二次函数,且开口向上.求m的值及二次函数的解析式,并回答y随x的变化规律.解:由题意有m-1&gt;0,m2-2m+2=2.解得m=0(舍去),m=2.所以二次函数的解析式为y=x2.所以当x&lt;0时,y随x的增大而减小,当x&gt;0时,y随x的增大而增大.05 巩固训练1.抛物线y=-13x2的开口向下,顶点坐标是(0,0),顶点是抛物线的最高(填“低”或“高”)点.2.在同一直角坐标系中,抛物线y=13x2与抛物线y=-13x2的形状相同,开口方向相反,两条抛物线关于x轴对称.3.当m=-2时,抛物线y=(m-1)xm2+m开口向下,对称轴为y轴,当x&lt;0时,y 随x的增大而增大;当x&gt;0时,y随x的增大而减小.4.二次函数y=-6x2,当x1&gt;x2&gt;0时,y1与y2的大小关系是y1&lt;y2.5.一个二次函数,它的图象的顶点是原点,对称轴是y 轴,且经过点(-1,14).(1)求这个二次函数的解析式;(2)画出这个二次函数的图象;(3)根据图象指出,当x>0时,若x增大,y怎样变化?当x<0时,若x增大,y怎样变化?解:(1)由题意,设二次函数解析式为y=ax2,将(-1,14)代入,得y=14x2。

人教版初中九年级上册数学《二次函数》教案

人教版初中九年级上册数学《二次函数》教案

第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数【知识与技能】1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系.【过程与方法】通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征.【情感态度】在探究二次函数的学习活动中,体会通过探究发现的乐趣.【教学重点】结合具体情境体会二次函数的意义,掌握二次函数的有关概念.【教学难点】1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件.一、情境导入,初步认识问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x之间的关系式可表示为,y是x的函数吗?问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n 有什么关系?这就是说,每个队要与其他个球队各比赛一场,整个比赛场次数应为,这里m是n的函数吗?问题3 某种产品现在的年产量为20t ,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 值而确定,y 与x 之间的关系应怎样表示?二、思考探究,获取新知全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题可给予个别指导.在同学们基本完成情形下,教师再针对问题2,解释m=12n(n-1)而不是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t ,第三年产量为20(1+x)(1+x)t ,得到y=20(1+x)2.【教学说明】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.思考函数y=6x 2,m=12n 2-12n,y=20x 2+40x+20有哪些共同点? 【教学说明】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习.【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax 2+bx+c(a,b,c 为常数,a ≠0)的函数,叫做二次函数.其中x 是自变量,a 、b 、c 分别是二次项系数,一次项系数和常数项.【教学说明】针对上述定义,教师应强调以下几个问题:(1)关于自变量x 的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a ≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax 2,二次项系数则仅是指a 的值;同样,一次项与一次项系数也不同.教师在学生理解的情况下,引导学生做课本P29练习.三、运用新知,深化理解1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:(1)y=(x+2)(x-2);(2)y=3x(2-x)+3x 2; (3)y=21x -2x+1;(4)y=1-3x 2.2.若y=(m+1)xm 2+1-2x+3是y 关于x 的二次函数,试确定m 的值或取值范围.3.某商场以每件30元的价格购进一种商品,试销中发现:这种商品的销售量m(件)与每件商品的销售价x (元)满足一次函数关系m=162-2x ,试写出商场销售这种商品的日销售利润y (元)与每件商品的销售价x (元)之间的函数关系式,y 是x 的二次函数吗?4.如图,用同样规格的正方形白瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,每一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n 的代数式表示);(2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数关系式(不要求写自变量n 的取值范围).【教学说明】这个环节的教学自主性很强,可让同学们分小组完成,对优胜小组给予鼓励,培养学生团队精神,让部分学生分享成功的快乐,但对题2、3、4,教师应及时给予引导,鼓励学生大胆完成.【答案】1.解:(1)y=(x+2)(x-2)=x 2-4,该函数是二次函数,它的二次项系数为1,一次项系数是0,常数项是-4.(2)y=3x(2-x)+3x 2=6x,该函数不是二次函数.(3)该函数不是二次函数.(4)该函数是二次函数,它的二次项系数为-3,一次项系数为0,常数项为1.2.解:∵()21123m y m x x +=+-+是y 关于x 的二次函数.∴m+1≠0且m 2+1=2,∴m ≠-1且m 2=1,∴m=1.3.解:由题意分析可知,该商品每件的利润为(x-30)元,则依题意可得:y=(162-3x)(x-30)即y=-3x2+252x-4860由此可知y是x的二次函数.4.解:(1)观察图示可知第1、2、3个图形中每一横行瓷砖分别为4,5,6,每一竖列瓷砖分别为3,4,5,由此推断在第n个图中,每一横行共有(n+3)块瓷砖,每一竖行共有(n+2)块瓷砖;(2)y=(n+3)(n+2)即y=n2+5n+6.四、师生互动,课堂小结1.二次函数的定义;2.熟记二次函数y=ax2+bx+c中a≠0,a、b、c为常数的条件.【教学说明】本环节设置的目的在于让学生进一步认识二次函数的相关定义,教师可与学生一起回顾.1.布置作业:教材习题22.1第1、2、7题;2.完成创优作业中本课时练习的“课时作业”部分.本课时的内容涉及到初中第二个函数内容,由于前面有了学习一次函数的经验,因此教师教学时可在学生以往经验的基础上,创设丰富的现实情境,使学生初步感知二次函数的意义,进而能从具体事物中抽象出数学模型,并列出二次函数的解析式.教学时应注重引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中的数学问题,提高研究与应用能力.良好的学习态度能够更好的提高学习能力。

二次函数人教版数学九年级上册教案

二次函数人教版数学九年级上册教案

二次函数人教版数学九年级上册教案二次函数是一个二次素数多项式(或单项式),它的基本则表示形式为y=ax²+bx+c(a≠0)。

二次函数最高次必须为二次,其图像是一条对称轴与y轴平行或重合于y轴的抛物线。

以下是整理的二次函数人教版数学九年级上册教案,欢迎大家借鉴与参考!22.1.3二次函数:学案出示目标1.会画二次函数y=ax2+bx+c的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.2.能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法.3.会求二次函数的最值,并能利用它解决简单的实际问题.预习导学阅读教材第3 7至39页,自学“思考”和“探究”,掌握将一般式化成顶点式的方式.自学反馈学生独立已经完成后集体订正①二次函数y=a(x-h )2+k的顶点坐标是(h,k),对称轴是x=h,当a&gt;0时,开口向上,此时二次函数有最小值,当x&gt;h时,y随x 的增大而增大,当x&lt;h时,y随x的增大而减小;当a&lt;0时,开口向下,此时二次函数有最大值,当xh时,y随x的增大而减小.②用配方法将y=ax2+bx+c化成y=a(x-h)2+k的形式,则h=- ,k= .则二次函数y=ax2+bx+c的图象的顶点坐标是(- , ),对称轴是x=-,当x=- 时,二次函数y=ax2+bx+c有最大(最小)值,当a&gt;0时,函数y有最小值,当a&lt;0时,函数y有最大值.③求二次函数y=2x2+4x-1顶点的坐标,对称轴,最值,并画出其函数图象.解:顶点坐标为(-1,-3),对称轴是直线x=-1,当x=-1时,y有最小值-3,图略.先将此函数解析式化成三角形现出式,再解其他问题,在画函数图象时,要在顶点的两边对称取点,直角画出的抛物线才能准确反映这个抛物线的特征.合作探究活动1 小组讨论例将下列二次函数写成正四面体式y=a(x-h)2+k的形式,并写出其低声方向,顶点坐标,对称轴.①y= x2-6x+21; ②y=-2x2-12x-22.解:①y= x2-6x+21= (x2-12x)+21= (x2-12x+36-36)+21= (x-6)2+3.∴此抛物线的开口向上,顶点坐标为(6,3),对称轴是直线x=6.②y=-2x2-12x-22=-2(x2+6x)-22=-2(x2+6x+9-9)-22=-2(x+3)2-4.∴此抛物线的开口向下,顶点坐标为(-3,4),对称轴是直线x=-3.第②小题注意h值的符号;配方法是数学这儿的一个重要方法,需多加练习,熟练掌握;抛物线的顶点矢量也可以根据公式直接求解.活动2 跟踪训练(独立基本完成后展示学习成果)1.已知直角三角形两条直角边的和非得等于8,两条直角边各为多少之时,这个直角三角形的面积最大,最大值是多少?解:当两条直角边都等于4时,面积最大为8注意图象的画法,结合图象解出最大值.2.抛物线y=-x2+4x-7的开口方向是向下,对称轴是x =2,顶点坐标是(2,-3).当x=2时,函数y有最大值,其值为-3.3.已知二次函数y=ax2+2x+c(a≠0)有最大值,且ac=4,则二次函数的顶点在第四象限.《22.1.3二次函数》练习题18.(教材P36例4变式)如图是某公园一喷水池,在水池中央有一垂直于地面的喷水柱,喷水时,水流在各方向相近沿形状相同的抛物线落下.若水流喷出的倾斜度y(m)与水平距离x(m)之间的整数关系式为y=-(x-1)2+2.25.(1)求喷出的水流离地面的最大高度;(2)求转子离地面的高度;(3)若把喷水池改成圆形,则水池半径至少为多少时,才能使喷出的水流不落在水池外?22.1.3二次函数的图象和性质类型同步练习一.选择题(共16小题)1.(2021•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是( )A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)2.(2021•上海)下列对二次函数y=x2﹣x的图象的描述,正确的是( )A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是萎缩的二次函数人教版数学九年级上册教案。

九年级数学下册第26章《二次函数》教案新人教版

九年级数学下册第26章《二次函数》教案新人教版

九年级数学下册第26章《二次函数》教案新人教版二次函数一、教学目标:1.使学生经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系;2.能用表格、关系式、图象表示变量之间的二次函数关系,发展有条理地进行思考和语言表达的能力,并能根据具体问题,选取适当的方法表示变量之间的二次函数关系;3.会作二次函数的图象,并能根据图象对二次函数的性质进行分析,并逐步积累研究一般函数性质的经验;4.能根据二次函数的表达式,确定二次函数的开口方向、对称轴和顶点坐标。

5. 能根据二次函数的性质解决实际问题。

二、教材分析:本章是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。

二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。

二次函数的图像抛物线,既是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。

和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。

函数不仅仅可以看成变量之间的依赖关系,同时函数的思想方法将贯穿整个数学学习过程。

学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。

这几节的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。

二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此这一章节的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。

人教版九年级二次函数教案

人教版九年级二次函数教案

人教版九年级二次函数教案教案标题:探索二次函数的性质与图像教学目标:1. 理解二次函数的定义,并能够根据给定的二次函数方程确定其对应的二次函数图像;2. 掌握二次函数的顶点、轴对称性、对称轴以及开口方向等性质;3. 能够根据图像特征,确定二次函数的基本形式。

教学内容:1. 二次函数的定义及其一般形式;2. 二次函数的顶点、轴对称性、对称轴等性质;3. 二次函数图像的基本形式。

教学步骤:一、导入与激发兴趣(5分钟)1. 引入二次函数的概念,与学生一起回顾一次函数的性质;2. 提出一个问题,如“如果我们将一次函数的图像平移一下,会发生什么变化?”来激发学生思考。

二、理解二次函数的定义及其一般形式(15分钟)1. 通过示例和解释,引导学生理解二次函数的定义;2. 教师讲解二次函数的一般形式,并与学生一起分析各个参数对图像的影响。

三、掌握二次函数的顶点、轴对称性、对称轴等性质(20分钟)1. 介绍二次函数的顶点概念,并解释其与图像的关系;2. 引导学生发现二次函数图像的轴对称性,并解释对称轴的确定方法;3. 通过示例和练习,让学生掌握顶点、轴对称性、对称轴等性质的应用。

四、确定二次函数的基本形式(15分钟)1. 引导学生观察不同二次函数图像的特征,并总结出不同开口方向的基本形式;2. 教师通过示例和练习,让学生能够根据图像特征确定二次函数的基本形式。

五、综合应用与拓展(15分钟)1. 提供一些综合应用问题,让学生运用所学知识解决实际问题;2. 鼓励学生思考二次函数在现实生活中的应用,并进行讨论。

六、小结与反思(5分钟)1. 教师对本节课的重点内容进行小结,并与学生一起复习;2. 鼓励学生提出问题和反思,以便进一步巩固所学知识。

教学辅助手段:1. PowerPoint演示;2. 黑板和粉笔;3. 教材和练习册。

教学评估:1. 课堂练习:通过课堂练习,检测学生对二次函数性质的理解和应用能力;2. 个人作业:布置一些练习题,让学生巩固所学知识;3. 课堂讨论:通过课堂讨论,评估学生对二次函数在现实生活中的应用理解程度。

人教版数学九年级上册26.1《二次函数》教学设计

人教版数学九年级上册26.1《二次函数》教学设计

人教版数学九年级上册26.1《二次函数》教学设计一. 教材分析人教版数学九年级上册第26.1节《二次函数》是整个初中数学的重要内容,它为学生提供了研究函数的一种新的方法,同时,也为高中阶段学习更复杂的函数打下基础。

本节课主要介绍二次函数的定义、图象和性质。

教材通过丰富的实例,引导学生探究二次函数的图象和性质,培养学生的观察能力、操作能力和抽象思维能力。

二. 学情分析九年级的学生已经具备了一定的函数知识,例如一次函数和反比例函数。

他们在学习过程中能借助于前面的知识,更好地理解和掌握二次函数。

但同时,二次函数的知识较为抽象,学生可能在学习过程中感到困惑。

因此,在教学过程中,教师需要关注学生的认知水平,采用合适的方法帮助学生理解和掌握二次函数。

三. 教学目标1.理解二次函数的定义,掌握二次函数的表示方法。

2.了解二次函数的图象特征,会画简单的二次函数图象。

3.理解二次函数的性质,会运用二次函数解决实际问题。

四. 教学重难点1.二次函数的定义和表示方法。

2.二次函数的图象和性质。

3.运用二次函数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生认识二次函数,激发学生的学习兴趣。

2.启发式教学法:在教学过程中,教师提出问题,引导学生思考和探究,培养学生的抽象思维能力。

3.合作学习法:学生分组讨论和探究,培养学生的团队协作能力。

4.实践操作法:让学生动手画图、计算,提高学生的动手操作能力。

六. 教学准备1.准备相关的教学课件和教学素材。

2.准备黑板和粉笔,以便进行板书。

3.准备练习题和测试题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)教师通过生活实例,如抛物线运动、物体抛出后的运动轨迹等,引导学生认识二次函数。

让学生思考:这些实例与数学中的函数有什么关系?从而引出本节课的主题——二次函数。

2.呈现(10分钟)教师讲解二次函数的定义和表示方法,让学生理解二次函数的基本概念。

人教版九年级数学上册教案 《二次函数》

人教版九年级数学上册教案 《二次函数》
四、随堂检测
1.(口答)下列函数中,哪些是二次函数?并且指出a、b、c;
(1)y=5x+1 (2)y=4x2-1 (3)y=2x3-3x2(4)y=5x4-3x+1
2.一个长方形的长是宽的2倍,写出这个长方形的面积S与宽x之间的函数关系式;
五、布置作业
1、课后随堂作业
2、宝典训练A 第15课时
六、板书设计: 二次函数
1、二次函数的概念
2、认识和理解二次函数的定义
教 学 后 记
大部分同学在学习了一次函数和一元二次方程之后,对二次函数的理解还是比较透切,认识了二次函数,为接下来学习二次函数的性质和图像打下一个好的基础。
生回答。
板书:二次函数定义:形如做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
3.小组讨论二次函数的特征,并以小组为单位做总结展示。
生:结果汇总:1.自变量的最高指数为2;
2.解析式为整式;
3.一次项、常数项可以等于0;
备 注
一、导入新课
1.正方体的六个面是全等的正方形,设正方体的棱长为x,表面积为y,显然对于x的每一个值,y都有一个对应值,即y是x的函数,他们的具体关系为;
2.多边形的对角线数d与边数n有什么关系?
3.某工厂一种产品现在的年产量是20件,计划今后两年增加产量。如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划规定的x的值而确定,y与x之间的关系应怎样表示?
4.二次项不能为0,其系数是不为0的任意实数。
三、课堂小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式
拓展延伸:
写出圆的面积y与它的周长x之间的函数关系;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学难点
教学准备
多媒体课件
课 堂 教 学 程 序 设 计
二次备课
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
AB长x(m)
1
2
3
4
5
6
7
8
9
BC长(m)
12
面积y(m2)
48
2.x的值是否可以任意取?有限定范围吗?
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点?
2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0<x<10。
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品பைடு நூலகம்售价降低多少时,能使销售利润最大?
在这个问题中,可提出如下问题供学生思考并回答:
1.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
[10-8=2(元),(10-8)×100=200(元)]
2.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
[(10-8-x);(100+100x)]
3.x的值是否可以任意取?如果不能任意取,请求出它的范围,
y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?
(分别是二次多项式)
[x的值不能任意取,其范围是0≤x≤2]
4.若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0<x<10=化为:
y=-2x2+20x(0<x<10)……………………………(1)
将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:
商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
作业
设计
必做
教科书P14:1、2
选做
教科书P14:7
教学
反思
P3练习第1,2题。
五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函数关系式.
课题
26.1二次函数(1)
课型
新授课




知 识

能 力
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围
过 程

方 法
注重学生参与,联系实际,丰富学生的感性认识
情 感
态 度
价值观
培养学生的良好的学习习惯
教学重点
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
相关文档
最新文档