高功率光纤激光器发展概况
激光器行业发展概况与市场趋势分析
激光器行业发展概况与市场趋势分析一、激光产业链分析激光具有单色性好、亮度高、方向性好等特点,广泛应用于军用和民用领域。
在民用领域,激光加工工艺在机械、汽车、航空、钢铁、造船、电子等大型制造业产业中正在逐步替代传统加工工艺,在军事领域,激光能量武器成为各国重点支持和发展的新概念武器。
随着中国激光行业的不断升级,激光产业以形成了较为完整的产业链,上游为激光晶体、光学镜片、各类激光器、数控系统等,中游为激光切割机、激光焊接机等激光设备,下游则为材料加工、电子信息等应用行业。
激光器位于激光产业链的中游,是激光的发生装置,主要由泵浦源、增益介质、谐振腔三大核心功能部件组成。
泵浦源为激光器提供光源,增益介质吸收泵浦源提供的能量后将光放大,谐振腔为泵浦光源与增益介质之间的回路,振腔振荡选模输出激光。
二、全球激光器市场规模2018年,全球激光器市场规模约为137.5亿美元,2009年至2018年年均复合增速为11.14%。
现阶段,得益于激光器产品特性的突出优势以及广泛的应用领域,全球激光器市场处于稳步增长的态势,市场容量逐渐扩大,未来有巨大增长空间。
材料加工、通信和光存储市场占全球激光器下游需求约44.8%、27.8%,为最主要应用。
2018年应用于材料加工、通信和光储存的激光器销售收入分别为61.6亿美元和38.2亿美元,分别占全球激光器收入的44.8%和27.8%。
其余科研和军事、医疗和美容、仪表和传感器、其他市场收入分别为12.8亿美元、10.3亿美元、10.2亿美元和4.4亿美元,分别占全球激光器收入的9.3%、7.5%、7.4%和3.2%。
工业激光器为激光器主要应用领域,2018年占激光器总市场规模的36.77%。
2013-2018年全球各类工业激光器的销售收入持续增长,2018年达50.58亿美元,同比增长4.18%,占全球激光器行业比例从2013年的27.74%增长至36.77%。
工业激光器主要用于切割、金属焊接、打标、半导体、金属精加工等领域其中,其中,材料加工中的切割领域占据全球工业激光器约1/3的市场需求。
光纤激光器工作原理及发展
光纤激光器的工作原理及其发展前景1 引言光纤激光器于1963 年发明,到20 世纪80 年代末第一批商用光纤激光器面市,经历了20 多年的发展历程。
光纤激光器被人们视为一种超高速光通信用放大器。
光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势。
光纤激光器有很多独特优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。
近年来光纤激光器的输出功率得到迅速提高。
已达到10—100 kW作为工业用激光器,现已成为输出功率最高的激光器。
光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。
其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。
本文简要介绍了光纤激光器的结构、工作原理、分类、特点及其研究进展,最后对光纤激光器的发展前景进行了展望。
2 光纤激光器的结构及工作原理2.1 光纤激光器的结构和传统的固体、气体激光器一样。
光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。
泵浦源一般采用高功率半导体激光器(LD) ,增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。
图 1 为典型的光纤激光器的基本构型。
增益介质为掺稀土离子的光纤芯,掺杂光纤夹在 2 个仔细选择的反射镜之间.从而构成F—P谐振器。
泵浦光束从第1个反射镜入射到稀土掺杂光纤中•激射输出光从第2个反射镜输出来。
2.2 光纤激光器的工作原理掺稀土元素的光纤放大器促进了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。
DFB光纤激光器国内外发展状况
DFB光纤激光器国内外发展状况从国内发展状况来看,中国在光通信领域的发展非常迅速,并取得了一系列重大突破。
DFB光纤激光器作为一种关键器件,在国内光通信领域得到了广泛应用。
中国科学院、清华大学、复旦大学等一些重点高校和科研机构开展了深入的研究工作,提高了DFB光纤激光器的性能。
同时,国内一些光通信设备厂商如中兴通讯、华为等也在DFB光纤激光器的研发和生产方面取得了很大进展。
目前,国内DFB光纤激光器的技术水平已经达到了国际先进水平,并在国内市场上占有很大份额。
从国外发展状况来看,DFB光纤激光器在国外也有广泛的应用。
美国是DFB光纤激光器的主要研发和生产国家之一,其在等离子体物理、激光雷达、光纤传感等领域的应用上取得了很多成果。
欧洲的一些研究机构如爱丁堡大学、剑桥大学等也进行了很多与DFB光纤激光器相关的研究,提高了DFB光纤激光器的性能。
此外,日本、韩国等国家也在DFB光纤激光器的研究和应用方面取得了一些成果。
总的来说,DFB光纤激光器在国内外均取得了很大的发展。
在技术方面,通过不断的研究和创新,DFB光纤激光器的性能得到了很大的提高。
在应用方面,DFB光纤激光器已经广泛应用于光通信、激光雷达、传感等领域,为这些领域的发展提供了重要支持。
此外,随着光通信、光纤传感等领域的不断发展,对DFB光纤激光器的需求将会进一步增加,这将为DFB光纤激光器的发展提供更大的机遇和空间。
虽然DFB光纤激光器在国内外都取得了很大的进展,但还存在一些问题需要解决。
首先,DFB光纤激光器的制造成本较高,需要进一步提高生产效率,降低制造成本。
其次,目前DFB光纤激光器的输出功率还有一定的限制,需要进一步提高输出功率。
另外,DFB光纤激光器在高温、高湿等恶劣环境下的性能表现也需要改进。
这些问题的解决需要更多的研究和创新,在光学材料、工艺技术等方面进行深入研究。
综上所述,DFB光纤激光器在国内外得到了广泛的应用,并取得了重要突破。
国内外光纤激光器行业发展现状、市场规模及预测分析
国内外光纤激光器行业发展现状、市场规模及预测分析提示:(1)全球激光器行业发展现状 1)全球激光器行业市场规模和用途(1)全球激光器行业发展现状1)全球激光器行业市场规模和用途欧美等发达国家最先开始使用激光器,并在较长时间内占据较大的市场份额。
随着全球制造业向发展中国家转移,亚太地区激光行业市场份额迅速增长。
发展中国家在制造业升级过程中,逐步使用激光设备代替传统设备,对激光器的需求旺盛,系目前全球激光行业市场最主要的驱动力之一。
根据报告,2012-2016 年,全球激光器行业收入规模持续增长,从2012年的87.30 亿美元增加至2016 年的104.00 亿美元,年复合增长率为4.47%。
随着大功率激光器技术突破和增材制造技术的成熟,预计未来激光器行业将持续快速增长。
2012-2016 年,全球激光器行业收入如下图所示:图:2012-2016年全球激光器行业收入参考相关发布的《2018-2023年中国激光器行业市场需求现状分析与投资发展前景研究报告》激光器用途十分广泛,目前主要应用于通信、材料加工、印刷、军事研发、医疗美容等领域。
根据数据,2016 年,全球激光器行业应用领域中材料加工相关的激光器收入31.20 亿美元,占全球激光器收入的30%,为仅次于通讯的第二大激光器应用领域;研发与军事运用相关激光器收入8.32 亿美元,占全球激光器收入的8%;医疗美容相关激光器收入8.32 亿美元,占全球激光器的8%。
具体情况如下:图:2016 年全球激光器用途分类情况2)工业激光器市场规模和用途近年来,全球工业激光器市场规模保持较快增长,根据数据,全球工业激光器收入从2012 年的23.11亿美元增加至2016 年的31.57 亿美元,年复合增长率为8.11%。
2014 年以来,工业激光器市场规模增速逐步加快,最近三年的市场规模增长率分别为5.79%、8.93%和10.17%。
2012-2016 年,全球工业激光器市场规模如下图所示:图:2012-2016 年全球工业激光器市场规模以工作物质分类,工业激光器可以分为光纤激光器、CO2 激光器、固体激光器和其他激光器,其中,光纤激光器在材料加工领域占比最高。
2024年高功率激光器市场规模分析
2024年高功率激光器市场规模分析1. 引言高功率激光器是一种能够产生高功率激光束的设备,广泛用于多个领域,如工业、医疗和科学研究。
本文将对高功率激光器市场的规模进行详细分析。
2. 市场趋势随着科技的不断发展和应用领域的拓展,高功率激光器市场正在迅速增长。
以下是市场中的一些主要趋势:2.1 行业需求增加高功率激光器在工业和科学研究领域具有广泛的应用。
工业上,高功率激光器被用于激光切割、激光焊接、激光打标和激光雕刻等工艺。
科学研究中,高功率激光器用于精密光谱分析、原子物理研究和光学交叉研究等。
2.2 技术进步推动市场增长随着激光技术的不断进步,高功率激光器的性能和可靠性得到了显著提升。
高功率激光器的输出功率、波长范围和脉冲重复频率等参数一直在不断提高,从而满足了不同应用领域的需求。
2.3 医疗领域需求增加高功率激光器在医疗领域也有广泛的应用。
例如,激光手术是一种常见的治疗方法,高功率激光器可以用于切割和烧蚀组织。
此外,在激光治疗和激光诊断方面,高功率激光器也发挥着重要作用。
3. 市场细分高功率激光器市场可以根据使用领域和激光器类型进行细分。
3.1 使用领域根据使用领域不同,高功率激光器市场可分为工业、医疗和科学研究等领域。
其中,工业是市场的主要使用领域,占据了最大份额。
3.2 激光器类型高功率激光器市场根据激光器类型可分为固体激光器、气体激光器和半导体激光器等。
固体激光器具有高功率、稳定性和长寿命等优点,所以在市场中具有较大的份额。
4. 市场规模高功率激光器市场在过去几年中呈现出快速增长的趋势。
根据市场研究公司的报告,预计高功率激光器市场规模将在未来几年内持续增长,并达到XX亿美元。
这主要受到市场需求增加、技术进步和新兴应用领域的推动。
5. 市场竞争格局高功率激光器市场竞争激烈,主要厂商包括TRUMPF、Coherent、IPG Photonics 等。
这些公司凭借其先进的技术和广泛的产品线在市场中占据了一定的份额。
光纤激光器发展概况
而三能级系统中,下能级E1是基态,或是极靠 近基态的能级。通常情况下,粒子几乎全部处 于基态。必须将一半以上的粒子激发到高能级 时才能实现粒子数反转,这就需要较高的泵浦 功率。所以,三能级系统的阈值泵浦功率远高 于四能级系统。
除能级数目外,另外一个对阀值有影响的重要因 素是光纤介质的长度。在一个端面泵浦光纤激光 器中,所能得到的泵浦光子数和粒子反转数将在 泵浦端达到最大值。如果光纤太短,则对泵浦光 的吸收不充分。
光纤激光器的应用
光纤激光器以其卓越的性能和低廉的价格, 在光纤通信、光纤传感、工业加工、医疗、 军事等领域取得了日益广泛的应用。
光纤激光器的基本理论
光纤激光器按工作原理可分为四类:稀土类掺 杂光纤激光器;光纤非线性效应激光器;单晶 光纤激光器;塑料光纤激光器。
形成光纤激光的三个必须条件是:增益介质、 谐振腔和粒子数反转。
但这并不意味着光纤越长越好,因为光纤太长, 在输出端介质对激光光子吸收将使输出功率下降。
光纤激光器谐振腔结构
谐振腔是光纤激光器的重要组成部分,对辐 射光进行反馈和选频,形成谐振,输出激光。 谐振腔有多种结构,其中常见的是FabryPerot腔和环形腔。
如下图所示,Fabry-Perot谐振腔是由平行放置 的介质镜组成的,其中一个是全反,另一个是部 分反射,两个介质镜可放置在光纤的两端,也可 直接镀在光纤的端面上。Fabry-Perot谐振腔如 下图
泵浦光从光纤激光器的左边腔镜耦合进入光
纤,激励光纤中的掺杂离子跃迁到高能态,离子 无辐射跃迁到亚稳态形成粒子数反转,再受激辐 射跃迁回基态产生光子,光子在谐振腔中振荡放 大后形成激光输出。
高功率激光器技术与产业发展概述
高功率激光器技术与产业发展概述随着科学技术的不断发展,高功率激光器已成为现代制造业、材料加工、医疗、军事等领域的重要技术工具。
高功率激光器技术的发展对于促进产业的繁荣发展有着重要的推动作用。
高功率激光器技术自20世纪初期开始发展,随着技术的不断成熟和完善,其能量密度和能量输出水平不断提高。
经历了几个重要发展阶段:1. 氙离子激光器时期(20世纪60年代)氙离子激光器是第一种大功率连续激光器。
该激光器功率能达到数百瓦,被广泛应用于医疗、科研、军事等领域。
二氧化碳激光器的功率可以达到数千瓦,应用范围更广,被广泛应用于加工、切割、打孔、焊接、雕刻等领域。
3. 光纤激光器时期(90年代-至今)随着新材料的发展和技术的进步,光纤激光器成为国际上一种具有领先优势的高功率激光器。
光纤激光器功率高达数十千瓦,激光光束经光纤输送,几乎没有损耗。
二、高功率激光器在产业中的应用1. 制造业高功率激光器在制造业中的应用十分广泛,可以应用于机床加工、雕刻、镭射打标、微加工等领域。
例如汽车零部件的加工、电子元器件的制造、玻璃制品的打磨和切割,都需要用到高功率激光器。
2. 非金属材料加工高功率激光器可以用于非金属材料的加工和切割,如塑料、皮革、木材等。
其优点在于准确、高效、无毒、无污染等。
3. 医疗高功率激光器在医疗领域中被广泛应用,如白内障、近视的手术。
激光是一种无接触性操作的方法,已经成为眼科手术的主要工具。
4. 军事高功率激光器在军事领域中的作用不言而喻,被用于飞越导弹的控制和打击敌方飞机。
激光武器系统的高精度和高效性为军事行动提供了关键的支持。
高功率激光器技术作为现代技术的重要组成部分,随着科学技术的不断进步和工业环境的深刻变化,其未来发展颇具前景。
随着高功率激光器技术的不断完善和发展,其应用范围远不止于当前。
为此,我们需要更加注重高技术研发,加强相关部门间的合作,以推动高功率激光器技术在未来的应用和发展。
中国激光产业市场现状及竞争格局分析-高功率激光器将成为企业竞争主战场
中国激光产业市场现状及竞争格局分析高功率激光器将成为企业竞争主战场1、中国激光加工和激光器产业市场集中度较高自从1961年中科院长春光学精密机械研究所研制出我国第一台红宝石激光器至今,我国激光技术也走过了五十多年的快速发展历程。
经过多年的发展,我国激光产业已经逐步具备了在技术和价格上的竞争力。
中国激光产业结构主要分为激光加工、激光器、激光芯片及器件、激光晶体、激光显示、激光医疗等。
2019年中国激光产业市场中,激光加工遥遥领先,占比40%;其次为激光器,占比20%,二者共占据了激光产业市场规模的三分之二。
同时,国内规模以上超过150家的激光企业中,半数以上的企业集中于激光加工和激光器相关领域,反映了激光加工和激光器产业具有较高的行业集中度。
2、华南地区激光产业规模保持领先地位根据中国科学院武汉文献情报中心的数据,在我国激光产业的五大地带中,2019年,华南地区的激光市场规模为200亿元,其中广东和福建是支撑其市场规模增长的“领头羊”;华中地区激光市场规模为150亿元,形成了以武汉为首的激光产业群;华东地区激光市场规模为120亿元,主要集中在上海和浙江两省市;东北/华北实现了100亿元的市场规模,东北以辽宁和吉林为中心,华北集中于北京和河北;相比之下,西部地区市场规模较小,为60亿元,主要集中于四川、陕西、重庆一带。
3、高功率激光器将成为国内外厂商竞争主要战场按照2020年中国激光产业报告的分类,低于1kW的光纤激光器为低功率光纤激光器,1kW-1.5kW的为中功率光纤激光器,高于1.5kW的为高功率光纤激光器。
2019年,我国各功率光纤激光器出货量都保持了增长。
经过多年发展,我国低功率光纤激光器技术逐渐成熟且成本低,国内市场基本实现了国产化;中功率光纤激光器国产化率过半;伴随国内光纤激光制造厂商整体技术的提升,市场的竞争逐渐转向中高功率光纤激光器,2019年3kW-6kW出货量超过3000台,并有将近800台的6 kW以上高功率光纤激光器投放市场,是2018年的两倍以上。
高功率激光器的发展与应用研究
高功率激光器的发展与应用研究自从激光技术被发明并且应用于实践以来,便引起了全球科技领域的广泛关注。
激光技术作为一种精密测量与精确制造的基础工具,功能应用正在不断地拓展。
高功率激光器近年来在国内外科学研究与工业领域中得到广泛关注和应用,并取得了突破性成果。
本文将介绍高功率激光器的发展历程以及其在各个领域的应用研究。
高功率激光器的发展历程激光技术是一种高能量密度的电磁波,具有单色化、一束集中、相干性强、调制度高等特点。
激光器的功率越高,其应用领域及应用效果就越广泛和明显。
早期的激光器功率仅为几个瓦特,现在已经发展到超过10万瓦。
其中,高功率激光器的发展历程如下:1962年,美国贝尔实验室科学家塞奇维克首次制作出了一台连续波四个激光器。
1964年,美国女性物理学家瓦特斯斯研制出一台半导体激光器,并开创了激光器发展新局面;1977年,美国贝尔实验室研制出了一台发射功率达1千瓦级别的连续激光器材料;1983年,加拿大国家技术研究所研制出了输出功率高达750瓦的固体激光器;1990年,法国创新公司研制出了国际上最先进的1兆瓦钛宝石激光器;2000年,日本以太空开发为基础,发明了世界上首款远离地球300千米使用的氢气激光器,被称为“超炫激光器”。
可见,高功率激光器的发展历程经历了40多年的漫长的历程,由早期的几个瓦特到现在超过10万瓦,技术已经得到了较为全面的提升。
高功率激光器的应用研究随着高功率激光器的不断发展,其应用研究也得到了较多的关注,被广泛应用于各个领域,如以下几个案例:医疗领域:近年来,高功率激光器被广泛地应用于医疗领域,如在冠状动脉阻塞、治疗癫痫和癌症、慢性肝病、糖尿病、靶向治疗乳腺癌等方面。
其中,钛宝石激光器、半导体激光器和二氧化碳激光器等设备是医院中使用最多的类型。
光通信领域:传统的光通信技术是以光纤通信方式为主的,但是随着激光技术的发展,越来越多的激光设备被应用于光信号传输。
高功率激光器通信系统可以用于卫星通信、海底电缆通信、高速列车通信和远程飞行器通信等领域。
高功率光纤激光技术
光纤激光器的介绍周菊平2009142105摘要:作为固体激光器的一员,光纤激光器以其结构简单紧凑、体积小,工作稳定可靠,易于集成等特点,一直被认为是固体激光器技术实用化的最佳选择。
高功率光纤激光除在科研、工业加工和医疗保健等领域有着广泛的应用外,在军事国防领域也有着巨大的应用价值。
海湾战争等高技术战争的实践表明,光电武器装备对战术武器性能起决定性作用。
近十年来,高功率光纤技术已成为激光技术领域的热点研究技术之一。
本文介绍了光纤激光器的背景及最新成果,双包层光纤激光器的原理与特点。
关键词:双包层光纤光纤激光器掺杂光纤早在1961年,美国光学公司(American Optical Corporation)的Snitzer等就提出了光纤激光器的构想,但由于受当时条件的限制,研究进展非常缓慢。
进入20世纪80年代中期,Townsend等发明了溶液掺杂技术(Solution doping technique)。
此后,Poole等用改进的化学气相沉积法(MCVD)研制成低损耗的掺铒光纤,一些实验室开始从掺铒光纤中得到了波长1.5um、高达30dB的光放大增益,引起了人们的高度重视。
到80年代中后期,基于半导体激光器泵浦的掺铒光纤激光器和低损耗的石英单模光纤制造技术,为光纤通信的迅猛发展奠定了强有力的技术基础。
正是由于掺铒光纤放大器为光纤通信所带来诱人前景的驱动,引发了80年代中后期稀土掺杂光纤激光器的研究热潮。
随后Hanna等纷纷报道掺铒、钕、镱、铥及铒/镱共掺等光纤激光器。
但当时采用的稀土掺杂光纤为单包层光纤,泵浦光必须直接耦合到直径仅仅几微米的单模纤芯中,这对泵浦源的激光模式提出了较高的要求,导致泵浦源昂贵且耦合效率低。
因此,传统的稀土掺杂光纤激光器只能作为一种低功率的光子器件。
1)与传统的半导体激光器不同,光纤激光器以掺杂稀土元素的光纤作为工作介质,采用反馈器件构成谐振腔,在泵浦光的激励下,光纤内掺杂介质产生受激发射,进而形成激光振荡输出激光。
激光行业年度总结报告(3篇)
第1篇一、行业概述2023年,激光行业整体呈现稳健发展的态势。
随着激光技术在各个领域的广泛应用,激光行业市场规模持续扩大,产业格局不断优化。
本文将从市场发展、技术创新、企业表现等方面对2023年激光行业进行总结。
二、市场发展1. 市场规模持续扩大据相关数据显示,2023年全球激光市场规模达到XX亿元,同比增长XX%。
其中,我国激光市场规模占全球市场的XX%,达到XX亿元,同比增长XX%。
随着激光技术在制造业、医疗、科研等领域的广泛应用,未来市场空间巨大。
2. 国产替代加速在核心技术方面,我国激光行业取得了显著成果。
在光纤激光器、激光切割设备等领域,国产产品已逐渐替代进口,市场份额不断提升。
此外,国内企业在核心零部件、激光设备等方面加大研发投入,为行业持续发展提供有力支撑。
三、技术创新1. 光纤激光器技术2023年,光纤激光器技术取得重大突破。
国内企业成功研发出高性能、高稳定性、低成本的激光器产品,为激光行业提供了有力保障。
此外,激光器输出功率不断提高,单波长激光器输出功率已达到XXW,满足各类应用需求。
2. 激光切割设备技术在激光切割设备领域,我国企业积极研发高精度、高速度、高稳定性的激光切割设备。
其中,光纤激光切割机在切割速度、切割精度、切割效率等方面取得显著提升,成为激光切割设备市场的主流产品。
3. 激光加工应用技术激光加工技术在多个领域取得广泛应用。
如激光焊接、激光切割、激光打标、激光切割等。
在新能源汽车、航空航天、电子信息等行业,激光加工技术已成为关键加工手段。
四、企业表现1. 锐科激光锐科激光在2023年取得了优异的成绩。
公司专注于光纤激光器及相关产品的研发、生产和销售,市场占有率位居国内首位。
此外,锐科激光在研发投入、智慧工厂建设等方面持续发力,为行业树立了榜样。
2. 英诺激光英诺激光致力于激光器和整体解决方案的研发、生产和销售。
公司产品广泛应用于工业制造、生物医疗等领域。
在消费电子、光伏、3D打印等行业,英诺激光产品表现出良好的市场竞争力。
光纤激光器的输出功率日益提升
光纤激光器的输出功率日益提升随着单模光纤激光器的功率达到10kW、多模光纤激光器的功率达到50kW,光纤激光器的应用正在突破工业领域进入到军事应用中,成为战场上部署高能激光武器的候选产品。
在激光技术发展的早期,获得高功率激光输出的最好方法是从大体积激光材料中提取能量。
目前,仍然有一些应用在采用这种方法,比如在利弗莫尔国家实验室的国家点火装置(N I F)中,就利用了大块玻璃放大器把脉冲放大到1.8MJ。
但是对于很多工业应用,掺镱光纤已经成为高功率激光介质的理想之选。
自从E lilas Snitzer于1963年发明第一台光纤激光器以来,光纤激光器在功率提升方面已经走过了很长的历程。
2009年6月,IPG P hotonics公司在慕尼黑激光展上和由定向能专业协会(DEPS)主办的固体激光器与半导体激光器大会上发布了输出功率达10kW的连续波单模光纤激光器。
IP G P hotonics公司工业市场部副总裁Bill Shiner说,IP G已经生产出了输出功率高达50kW的多模光纤激光器,而且Raytheon公司已经测试其作为激光武器的潜在应用。
但是IP G目前的主要业务还是面向工业材料加工应用,从切割用于太阳能电池的硅晶圆到金属板的机器人焊接。
为什么选择光纤?类似于其他二极管泵浦的激光器,光纤激光器本质上是把低质量的泵浦激光转换为更高质量的激光输出,这些高质量的激光输出可应用于医疗、材料加工以及激光武器等诸多领域。
在实现高功率输出方面,光纤激光器具有两个重要优势:一是从泵浦光到高质量输出光的过程,具有较高的转换效率;二是具备良好的散热能力。
图1:二极管泵浦的双包层光纤激光器可以采用端面泵浦或侧面泵浦,但是光束必须以一定的角度接近光纤的轴,使泵浦光(蓝线)可以在外层纤芯中传导。
激光增益介质被掺杂在内层纤芯中(红线)。
图中文字:P ump——泵浦,P ump diode——泵浦二极管,E nd pumping——端面泵浦,Side pumping——侧面泵浦,P ump light——泵浦光,Outer core——外层纤芯,I nner c ore——内层纤芯,Dual-c lad fiber——双包层光纤,Fiber-laser bae——光纤激光器输出光束光纤激光器之所以能获得较高的效率,主要得益于二极管泵浦、增益掺杂介质的精心选择以及光纤的优化设计。
光纤激光器国内外研究现状及发展趋势
光纤激光器国内外研究现状及发展趋势光纤激光器是目前激光技术领域中的重要研究方向之一、它以光纤作为激光光路的传输媒介,具有输出光束质量高、功率稳定等优势,广泛应用于通信、医疗、工业等领域。
本文将从国内外研究现状和发展趋势两个方面进行讨论。
首先,光纤激光器的国内研究现状。
我国在光纤激光器领域的研究取得了一定的成果。
例如,我国科学家在光纤激光器技术方面进行了大量的探索和研究,研制出了一系列具有自主知识产权的光纤激光器。
这些光纤激光器在传输功率、波长范围、光束质量等方面取得了较高的性能,具有较好的应用前景。
此外,我国在光纤激光器的相关领域也取得了一定的突破。
例如,在光纤材料与制备技术方面,我国科学家成功研制出了高硅石英光纤,使得光纤激光器的输出功率得到了大幅度的提升;在光纤激光器的激光调制与控制技术方面,我国科学家开创性地提出了多光束合成技术,实现了光纤激光器输出光束的形态调控;在光纤激光器的应用领域,我国科学家积极探索光纤激光器在医疗美容、材料加工等领域的应用,取得了一系列重要的应用成果。
其次,光纤激光器的国外研究现状。
与我国相比,国外在光纤激光器领域的研究起步较早,取得了许多重要的研究成果。
例如,美国、德国、日本等国家在光纤激光器的高功率、超快脉冲等方面的研究领先于世界,其研发的高功率、高光束质量的光纤激光器已经在军事、工业等领域得到了广泛应用。
另外,国外科学家在光纤激光器的性能提升和应用拓展方面也取得了一系列重要的突破。
例如,近年来,国外研究机构和企业在光纤激光器的波长可调、频率可调等方面进行了大量研究,并取得了重要的研究成果。
这些成果不仅提高了光纤激光器的功能多样性,还拓展了其在通信、医疗、生物科学等领域的应用空间。
最后,光纤激光器的发展趋势。
随着激光技术的不断进步,光纤激光器在功率、波长、频率、束质量等方面仍有很大的发展空间。
未来,光纤激光器的发展趋势主要体现在以下几个方面:首先,光纤激光器的功率将继续提升。
高功率光纤激光器研究现状分析
高功率光纤激光器研究现状分析首先,随着光纤材料的不断改良和光纤激光器技术的不断进步,高功率光纤激光器的输出功率已经实现了快速增长。
传统的光纤激光器在几十瓦到几百瓦的功率范围内,而现在已经出现了功率超过数千瓦的高功率光纤激光器。
这主要得益于光纤材料的改进,如掺镱光纤、光纤棒和双包层光纤等,以及掺铒光纤、掺铽光纤和掺钛光纤等材料的开发。
这些改进使得高功率光纤激光器能够实现更高的功率输出,并具有更好的光束质量。
其次,高功率光纤激光器的工作波长范围也在不断扩展。
最初的光纤激光器工作于近红外波段,主要集中在1μm附近。
然而,随着光纤材料的改进,现在已经出现了工作于中红外和远红外波段的高功率光纤激光器,如掺铒掺铥光纤激光器和掺砷化铟光纤激光器等。
这些新材料的开发使得高功率光纤激光器能够实现更多的应用场景,如医学成像、材料加工和环境监测等。
此外,高功率光纤激光器的束品质也得到了极大的提升。
光纤激光器的束质量通常由M2值来衡量,M2值越小代表光束越接近理想的高斯光束。
近年来,通过使用光纤光栅和光纤非线性效应等措施,高功率光纤激光器的束品质得到了显著改善。
目前,一些商业化的高功率光纤激光器已经能够实现M2值低于1.2,接近于理想的高斯光束。
最后,高功率光纤激光器的可靠性也在不断提升。
传统的光纤激光器在高功率输出时容易受到光纤端面热损伤和光纤中的非线性效应的限制。
然而,通过使用抗反射涂层和熔石英光纤等措施,高功率光纤激光器的可靠性得到了极大的提高。
现在,商业化的高功率光纤激光器已经可以连续工作数千小时,并且能够承受高达数十千瓦的功率输出。
综上所述,高功率光纤激光器的研究取得了显著的进展。
随着光纤材料的不断改良和光纤激光器技术的不断创新,高功率光纤激光器的输出功率、工作波长范围、束品质和可靠性都有了显著的提升。
这些进展使得高功率光纤激光器在医学、通信、材料加工等领域具有更广阔的应用前景。
激光器技术的应用现状和发展趋势
激光器技术的应用现状和发展趋势一、应用现状激光器技术自20世纪60年代发明以来,已经广泛应用于各个领域,对人类社会产生了深远的影响。
以下是激光器技术在当前的主要应用领域:1. 工业制造:激光器技术在工业制造领域的应用广泛,包括切割、焊接、打标、表面处理等。
激光器的高精度、高速度和高能量特性使得它在制造业中具有不可替代的地位。
2. 通信与信息传输:激光器技术是现代通信的基础,如光纤通信。
激光器的单色性好、相干性强,使得信息传输的带宽大、速度快、损耗低,是现代通信技术的核心组成部分。
3. 医疗卫生:激光器技术在医学领域的应用包括眼科、皮肤科、牙科等。
激光器的非接触、非侵入性使得其在治疗和诊断中具有许多优点。
4. 科学研究:激光器技术是许多科学研究的必备工具,如光谱分析、物理实验、生物研究等。
激光器的可调谐性和高能量特性使得它在科学研究中具有重要作用。
5. 军事与安全:激光器技术在军事和安全领域的应用包括激光雷达、目标指示、光电对抗等。
激光器的定向性好、能量集中,使得它在军事和安全领域具有重要应用价值。
二、发展趋势随着科技的进步和应用需求的不断增长,激光器技术的发展趋势如下:1. 高功率激光器:高功率激光器在工业制造、科学研究等领域有广泛应用。
随着技术的进步,高功率激光器的输出功率不断提高,性能更加稳定可靠。
2. 新型激光器:随着光电子技术和材料科学的不断发展,新型激光器不断涌现,如量子点激光器、光纤激光器、表面等离子体共振激光器等。
这些新型激光器具有独特的性能和应用前景。
3. 微型化与集成化:随着微纳加工技术的发展,微型化和集成化的激光器成为研究热点。
微型化与集成化的激光器具有体积小、重量轻、易于集成等优点,在光通信、光传感等领域有广泛应用。
4. 智能化与自动化:随着人工智能和自动化技术的不断发展,智能化和自动化的激光器成为研究的新方向。
智能化和自动化的激光器可以实现自我调节、自我诊断和自我修复等功能,提高系统的稳定性和可靠性。
光纤激光器发展史
光纤激光器发展史光纤激光器是一种利用光纤作为激光介质的激光器。
它具有高效率、高功率、高质量光束等优点,被广泛应用于通信、医疗、材料加工等领域。
本文将从光纤激光器的起源、发展和应用等方面进行详细介绍。
光纤激光器的起源可以追溯到20世纪60年代初,当时美国贝尔实验室的研究人员首次提出了将激光放大器与光纤结合的想法。
然而,由于当时光纤的制备技术还不成熟,导致光纤激光器的实际应用受到很大限制。
直到20世纪70年代初,随着光纤技术的突破和激光技术的发展,光纤激光器才开始逐渐成为研究的热点。
1970年,美国贝尔实验室的Peter C. Schultz等人首次实现了光纤激光放大器的工作原理,标志着光纤激光器的诞生。
光纤激光器的发展离不开光纤技术的进步。
20世纪70年代中期,研究人员开始采用单模光纤作为光纤激光器的激光介质,以提高光束质量和功率输出。
此后,光纤材料的制备工艺不断改进,光纤的损耗逐渐降低,使得光纤激光器的性能得到了大幅提升。
随着光纤激光器的技术突破,其应用领域也得到了广泛拓展。
光纤激光器在通信领域的应用尤为重要。
1983年,美国贝尔实验室的Kumar N. Patel首次将光纤激光器应用于光纤通信系统,实现了长距离、高速率的光纤传输,开启了光通信时代的大门。
除了通信领域,光纤激光器在医疗和材料加工领域也发挥着重要作用。
医疗方面,光纤激光器可以用于激光手术、激光治疗等,具有创伤小、恢复快的特点。
材料加工方面,光纤激光器可以用于切割、焊接、打孔等工艺,具有高精度、高效率的优势。
随着科技的不断进步,光纤激光器的性能和应用领域还将继续拓展。
目前,研究人员正在努力提高光纤激光器的功率输出和光束质量,以满足更高要求的应用场景。
同时,光纤激光器在激光雷达、光纤传感等领域也有着广阔的发展前景。
光纤激光器作为一种重要的激光器件,经历了从起源到发展的历程,并在通信、医疗、材料加工等领域发挥着重要作用。
随着技术的进步,光纤激光器的性能和应用还将不断提升,为人们的生活带来更多便利和可能性。
光纤激光器国内外研究现状及发展趋势
光纤激光器国内外研究现状及发展趋势
光纤激光器是利用光纤作为激光谐振腔的激光器,具有体积小、功率高、光束质量好、可靠性高等优点。
国内外对光纤激光器的研究已经有了较大的进展,主要表现为以下几个方面:
1.技术路线的发展:目前光纤激光器主要分为掺铒光纤激光器和掺镱光纤激光器两种技术路线。
在这两种技术路线上,研究人员不断地尝试着新的掺杂元素,如掺铥、掺镥等,以提高激光器的性能。
2.激光器功率的提高:目前光纤激光器的最高输出功率已经超过了10 kW,而且在逐步向更高功率的方向发展。
为了提高激光器的功率,研究人员不断尝试着新的激光器结构,如双芯光纤、大芯径光纤等。
3.激光器光束质量的提高:光纤激光器因为其波导结构的特殊性质,光束质量非常好。
但是,为了满足不同的应用需求,研究人员还在不断地提高光束质量,例如通过控制光纤的折射率分布等方法。
4.应用领域的扩大:随着光纤激光器性能的不断提高,其应用领域也在不断地扩大。
目前光纤激光器已经广泛应用于工业加工、医疗、通信等领域,未来还有更多的应用领域等待光纤激光器的发展。
发展趋势:
未来,光纤激光器的发展趋势将是:
1.高功率化:光纤激光器的输出功率将继续提高,向更高功率的方向发展。
2.高光束质量化:光纤激光器的光束质量将继续提高,以满足更高精度的应用需求。
3.多波长化:为了满足更多的应用需求,光纤激光器将继续向多波长方向发展,例如通过多掺杂元素的光纤实现多波长输出。
4.智能化:光纤激光器将向智能化方向发展,例如通过集成传感器等技术,实现对激光器的实时监测和控制。
总之,光纤激光器作为一种重要的激光器,其研究和发展将会在未来继续取得更大的进展。
2023年光纤激光器行业市场环境分析
2023年光纤激光器行业市场环境分析光纤激光器是近年来光电行业中快速发展的一种新型激光器。
光纤激光器采用光纤作为激光媒质,具有输出波长窄、功率稳定、光束质量高、可调谐范围宽等特点,广泛应用于材料加工、医学、通信、测量等领域。
本文将就光纤激光器行业进行市场环境分析。
一、行业概述光纤激光器行业是近年来国内光电行业中增长较快的领域之一。
光纤激光器产业具有光纤制造、激光器芯片制造、系统集成、产业应用等多个互补且相互依存的产业环节,是一个具有较高附加值的综合性产业。
据不完全统计,2019年光纤激光器行业市场规模已达到170亿元,其中出口额占约三分之一。
二、市场需求分析1.材料加工领域随着中国制造业向高端化、智能化转型,材料加工领域对激光器产品的需求也日益增长。
光纤激光器在金属材料加工、电子元器件加工、汽车零配件加工等领域中具有很强的竞争优势。
特别是近年来汽车行业的快速发展,驱动了大量汽车零配件加工需求,这为光纤激光器行业提供了广阔的市场空间。
2.医疗美容领域随着全球老龄化社会的逐渐到来,医疗美容需求也逐渐增加。
在医疗美容领域,光纤激光器可以用于纹身去除、褐斑去除、皮肤松弛去除等多个项目,光纤激光器因其输出波长特殊,被广泛应用于皮肤组织切割和治疗。
3.通信领域光纤激光器在通信领域中也具有很大的应用潜力。
随着5G时代的到来,宽带、网络、数据中心等基础设施建设在全球范围内加速,光纤激光器的市场需求也将得到大幅度提升。
三、市场发展趋势1.市场规模快速扩大随着科技的不断发展和市场需求的增加,光纤激光器行业市场规模呈现出快速增长的趋势。
在汽车、电子、医疗等领域,光纤激光器行业的应用前景广阔。
2.技术不断升级随着科技的发展,光纤激光器行业技术也在不断升级,性能不断提高。
技术的不断升级很大程度上能够推动行业发展,对于降低设备成本、提高效率和品质,更好地满足客户需求都起到了积极作用。
3.市场竞争趋于白热化随着市场需求的日益增长,光纤激光器市场竞争也越来越激烈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年第12期中文核心期刊高功率光纤激光器发展概况Survey of high-power fiber lasersZHANG Jing-song(Electronic communications technology department,Shenzhen Institute of Information Technology,Shenzhen Guangdong 518029,China)Abstract :High-power fiber lasers have wide applications in the filed of optical communication,printing,marking,material processing,medicine etc.High-power fiber lasers may substitute conventional lasers large-ly,have new application of laser,broaden the scope of laser industry.The history and recent development of high-power fiber lasers home and aboard are surveyed.The prospect of high-power fiber lasers is discussed.Key words :high-power fiber laser,double-clad fiber,cladding pump张劲松(深圳信息职业技术学院电子通信技术系,广东深圳518029)摘要:高功率光纤激光器以其优越的性能和超值的价格,在光通信、印刷、打标、材料加工、医疗等领域有着广阔的应用,将会很大程度上替代传统激光器,并开辟一些新的激光应用领域,扩大激光产业的规模。
概述国内外高功率光纤激光器的发展历史与现状。
展望了高功率光纤激光器的发展前景。
关键词:大功率光纤激光器;双包层光纤;包层泵浦中图分类号:TN248文献标识码:A文章编号:1002-5561(2009)12-0008-030引言从1960年第一台激光器(美国Maiman 等首先用红宝石晶体获得了激光输出)问世到现在近50年过去了,激光技术确如人们所期,渗入了各行各业:通信、生物技术、医学、印刷、制造、军事、娱乐业等。
在某些领域,它已经成为不可替代的核心技术。
但是激光产业规模还不够大,究其原因,不是人类不需要激光,而是传统激光器不好用:成本高、效率低、故障多。
光纤激光器的出现带来了扩大激光产业规模的希望。
光纤激光器激光光束质量好,电-光转换效率高,输出功率大;所有的半导体器件及光纤组件都可以融接成一体,避免了元件的分立,可靠性得到极大提高。
1国外高功率光纤激光器发展概况光纤激光器的最早有关研究可以追溯到20世纪60年代初期,当时激光器刚刚出现不久,人们对激光器的研究投入了极大热情,积极研制开发各种新型激光器。
1961年,美国光学公司的E.Snitzer 等在光纤激光器领域进行了开创性的工作,他们利用棒状掺钕(Nd 3+)玻璃波导获得了波长1.06μm 的激光。
20世纪70年代,光纤通信的研究开始起步,新兴的光纤通信系统对新型光源的需求极大地刺激了激光器的研究工作。
但由于人们的注意力集中到迅猛发展的半导体激光器技术上,以及光纤激光器自身的一些当时无法克服的困难,光纤激光器的研究逐渐沉寂下来。
尽管如此,仍然取得了一些值得一提的成就。
例如,1973年,J.Stone 等成功地研制出能够在室温下连续工作的掺钕光纤激光器,他们采用的半导体注入型激光器终端泵浦方式对以后实用型光纤激光器的研究具有重要的意义。
20世纪80年代,英国Southampton 大学的S.B.Poole 等用MCVD 法成功地制备了低损耗的掺钕和掺铒光纤,因为掺铒光纤光纤激光器的激射波长恰好位于通信光纤的1.55μm 低损耗窗口,人们开始认识到光纤放大器和光纤激光器在提高传输速率和延长传输距离等方面无疑将给光纤通信带来一场革命。
掺铒光纤放大器(EDFA )得到了迅速的发展并成为一项成熟的应用技术。
但是,光纤通信用的光纤激光器输出功率一般都是毫瓦级,一直以来只局限于光通讯等领域;同时由于巨大的行业差距,几乎无人把它与激光收稿日期:2009-08-31。
作者简介:张劲松(1969-),男,博士,高工,现主要从事光纤激光器、放大器等方面的研究。
⑧加工等联想到一起。
然而,对于大多数的激光应用领域,相比于毫瓦级,我们更需要瓦级的光功率输出。
1988年Snitzer等人提出了双包层的泵浦技术[1],改变了人们对光纤激光器只能产生小功率输出的看法,使得利用光纤激光器产生大功率和高亮度的激光输出成为可能。
初期人们主要研究掺Nd3+包层泵浦光纤激光器,因其为4能级系统,阈值功率低等优点。
1992年Minelly等人报道了输出功率大于1W的Nd掺杂双包层光纤激光器。
1993年,在包层泵浦掺Nd3+光纤激光器实验中,H.Po等得到了输出功率5W、斜率效率51%的激光[2];1995年,H.Zellmer等报道了输出波长为1064nm、功率为9.2W的双包层泵浦的掺Nd3+光纤激光器,斜率效率仅为25%,主要是因为采用了圆形包层泵浦结构导致单模芯层对泵浦光的吸收不够充分[3]。
然而,由于Nd的吸收带非常窄,对泵浦源的波长稳定性和精度要求较高,而Yb则具有相当宽的吸收带,可提供更高的转换效率与输出功率,人们转而重点关注Yb掺杂光纤激光器的研究。
1994年,H.M.Pask等率先在掺Yb石英光纤中实现了包层泵浦[4],采用975nm的泵浦光在波长1040nm 处获得了0.5W的激光输出,斜率效率达到了80%。
l997年,美国宝丽来公司的M.Muendel等报道了l100nm、35.5W的单模输出连续激光的掺Yb双包层光纤激光器[5]。
1998年,Lucent技术公司的Kosinki等报道了一种内包层截面形状为星形的掺Yb双包层光纤激光器,得到了20W的激光输出。
1999年SDL公司的V.Dominic等利用四个45W 的半导体激光器从两端泵浦,研制成功110W的单模连续激光输出掺Yb双包层光纤激光器,光-光转换效率58%[6]。
2000年,IPG公司利用其发明的多光纤侧向耦合技术,率先实现百瓦级光纤激光器的全光纤化,为其商业应用奠定了坚实的基础。
2002年,德国的J.Limpert等报告了双掺杂的双包层光纤激光器的结果。
采用双波长(808nm、975nm)的半导体激光器泵浦45m长的Nd/Yb共掺的双包层光纤,获得150W激光输出。
2003年,德国V.Reichel等、IPG公司、SPI公司分别报道了200W、300W、610W的单模激光输出的掺镱光纤激光器。
2004年,SPI研制成功1.36kW连续光纤激光器[7]。
2005年,IPG公司推出了2kW单模光纤激光器[8]。
2006年,IPG光纤激光器单模输出功率最高可达3kW[9]。
2009年,IPG在美国向客户交付了它的第一个5kW单模光纤激光器。
多模激光输出方面:2002年IPG公司公布了2kW 的掺Yb双包层光纤激光器。
2004年建成10kW掺Yb双包层光纤激光器。
2005年,17kW光纤激光器进入生产线。
目前输出功率已经达到10万瓦级。
2国内高功率光纤激光器发展概况国内关于双包层光纤激光器的研究始于20世纪90年代末。
已有多家单位开展了双包层光纤激光器的研究,如中科院上海光学精密机械研究所、南开大学、中国电子科技集团公司第十一研究所、中国兵器装备研究院、北京光电技术研究所、烽火通信、清华大学、复旦大学等。
1999年,南开大学与电子部46所合作研制出大数值孔径的掺Yb双包层光纤,并在双包层光纤光栅等方面进行了研究。
2000年,上海光机所报道了输出功率为3.84W,斜率效率为55%的掺Yb双包层光纤激光器的实验结果[10];南开大学采用国产半导体激光器分别泵浦电子部46所、俄罗斯研制的双包层光纤,实现了大于200mW的的激光输出[11]。
2001年,复旦大学研究了一种高效率可调谐掺镱双包层光纤激光器[12],最大输出功率为440mW,斜率效率约为80%,输出波长可在1070~1150nm的范围内调谐。
2002年,南开大学报道了全光纤掺Yb双包层光纤激光器,输出功率1.2W。
2003年,上海光机所分别报道了50W、115W的掺钇双包层光纤激光器。
2004年,清华大学报道了双端侧向泵浦掺Yb双包层光纤激光器,实现137W的激光输出;2004年底,上海光机所与烽火通信合作,采用掺镱D形双包层光纤,获得了444W的激光输出,转换效率70%以上。
2005年,北京光电技术研究所研制成功30W单模连续全光纤激光器。
上海光机所研制出实用化20W 光纤激光器。
2006年,清华大学精密仪器系光子与电子学研究中心,采用烽火通信提供的新型掺Yb双包层光纤,当前向与后向泵浦功率共计约1020W时,输出功率达张劲松:高功率光纤激光器发展概况⑨2009年第12期2009年第12期714W ,光一光转换效率达到70%[13]。
中国电子科技集团公司第十一研究所研制的大功率光纤激光器,当泵浦光功率为1550W 时,光纤激光输出功率为1207W ,斜率效率为78.6%[14]。
中国兵器装备研究院采用双端泵浦、高效的偏振耦合等技术研制成功的单根光纤激光器输出功率达到1049W ,光一光转换效率大于60%,电一光转换效率大于30%[15]。
2007年上海光机所单根光纤获得了916W 的激光输出。
3结束语包层泵浦光纤激光器在光纤通信、印刷、打标、材料加工、军事、医疗等领域有着广阔的应用。
例如:对于目前在技术上已经成熟的百瓦量级以下的商用光纤激光器来说,其输出为单横模,可广泛应用于精密激光打标、雕刻、非金属的切割与小型元件的焊接等领域中。
对于采用常规组束技术的上千瓦的高功率光纤激光器,很多特性也优于同等功率水平的CO 2或固体YAG 激光器,可用于金属加工等领域。
在Raman 放大器中有重要应用。
光纤Raman 放大器需要较高的泵浦功率,多年来未能实现其实用化的主要困难就是没有合适的泵浦源,固体激光器如Nd:YAG 、Nd:YLF 等虽然有足够功率,但系统复杂不适用于光通信系统。
包层泵浦光纤激光器可让喇曼光纤放大器获得合适波长的高功率泵浦源,使Er 提供的80nm 带宽可以开发利用,远距离大容量的光通信成为了现实。
包层泵浦光纤激光器由于结构紧凑、价格相对低廉和无气体、染料、溶剂等而特别适用于医学应用。