特殊平行四边形动点及存在性问题压轴题终审稿)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊平行四边形动点及存在性问题压轴题

文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

特殊平行四边形中的动点及存在性问题

【例1】正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为。

【练习1】如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.

(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;

(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F 的坐标.

【例2】如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当三角形△ODP是腰长为5的等腰三角形时,P的坐标为;

【练习2】如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),

并且a,b满足16

b=.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)

(1)求B、C两点的坐标;

(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;

(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.

【例3】(1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为;

(2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.

【练习3】如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).

(1)求G点坐标;

(2)求直线EF解析式;

(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.

【例4】在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以

4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts

(0

(1)求证:AE=DF;

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.

【练习4】如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动时间为t秒(0

t≥)

(1)点E的坐标为,F的坐标为;

(2)当t为何值时,四边形POFE是平行四边形;

(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.

【巩固练习】

1、菱形ABCD中,AB=2,∠BAD=60°,点E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为。

第1题图第2题图第3题图

第4题图

2、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG,在旋转过程中,DG的最大值是_________;最小值是__________.

3、已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,连接AE,BG,若BC=DE=4,将正方形DEFG绕点D旋转,当AE取最小值时,AF= .

4、在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8。过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的T处,折痕为MN.当点T在直线l上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为____.

5、如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动到C点返回,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).

(1)当t为何值时,四边形PQDC是平行四边形;

(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?

(3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.

6、如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A

是方程组⎩

⎨⎧=-=632y x y x 的解,点C 是直线x y 2=与直线AB 的交点,点D 在线段OC 上,OD =52。

(1)求直线AB 的解析式及点C 的坐标;

(2)求直线AD 的解析式;

(3)P 是直线AD 上的点,在平面内是否存在点Q ,使以0、A 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.

相关文档
最新文档