小学奥数《等差数列公式》及其练习

合集下载

等差数列四年级奥数题

等差数列四年级奥数题

等差数列四年级奥数题
一、等差数列的基本概念
1. 定义
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。

这个常数叫做等差数列的公差,通常用字母公式表示。

例如数列公式就是一个等差数列,公差公式,因为公式
,公式,公式等。

2. 通项公式
对于等差数列公式,其通项公式为公式,其中公式是首项(数列的第一项),公式是项数,公式是第公式项的值。

例如在等差数列公式中,公式,公式,那么第公式项公式。

3. 求和公式
等差数列的前公式项和公式为公式,也可以写成公式。

例如求等差数列公式的和。

这里公式,公式,先求项数公式,根据公式,公式,解得公式。

再用求和公式公式。

二、四年级奥数等差数列题目及解析
1. 题目
有一个等差数列:公式,求这个数列的第公式项是多少?
2. 解析
首先确定这个等差数列的首项公式,公差公式(因为公式
,公式等)。

根据等差数列的通项公式公式,要求第公式项,即公式。

把公式,公式,公式代入通项公式可得:公式。

3. 题目
已知等差数列公式,这个数列的前公式项的和是多少?
4. 解析
先确定首项公式,公差公式。

根据等差数列的前公式项和公式公式,这里公式。

把公式,公式,公式代入可得:
公式
公式
公式。

5. 题目
在一个等差数列中,首项是公式,第公式项是公式,求公差公式。

6. 解析
已知公式,公式,公式。

根据通项公式公式,把公式,公式,公式代入可得:
公式
公式
公式
解得公式。

等差数列(小数数学 五年级奥数)

等差数列(小数数学 五年级奥数)

等差数列知识与方法:像(1)1,2,3,4,5,…;(2)10,20,30,40,50,…从第2项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列。

这个常数叫做等差数列的公差,通常用字母d表示。

在等差数列a1,a2,a3,…a n中,它的公差是d,那么a2=a1+da3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d…a n=a1+(n-1)×d(等差数列的通项公式)由此可见,等差数列从第2项起,每一项都等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,利用它可以求出等差数列的任何一项。

例题1:求等差数列3,8,13,18......的第38项和第69项。

练习1:求等差数列1,4,7,10,13.....的第20项和第80项.练习2:超市工作人员在商品上依次编号,分别为4,8,12,16......,请问第34个商品上标注的是什么数字?第58个标注的是什么数字?例题2:36个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?练习1:仓库里有一叠被编上号的书,共40本,已知每下面一本书比上面一本书的号码多5,最后一本书的编号是225,请问第一本书的编号是多少?练习2:幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具编号是98,每一个玩具的编号比后一个玩具的编号少3,问第一个小朋友上玩具编号是多少?例题3:等差数列4,12,20......,中的580是第几项?练习1:等差数列3,9,15,21.....中381是第几项?练习2:糖果生产商为机器编号,依次为7,13,19,25......。

问编号为433的机器是第几个?例题4:一批货箱上面的标号是按等差数列排列的。

第1项是3.6,第5项是12,求它的第2项.练习1:有一个等差数列的第1项是2.4,第7项是26.4,求它的第5项.练习2:有一排用等差数列编码的彩色小旗,第1面小旗上的号码为3.7,第8面小旗上的号码为38.7。

小学奥数:等差数列计算题.专项练习及答案解析

小学奥数:等差数列计算题.专项练习及答案解析

等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:34567677783787623078()+++++++=+⨯÷=⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。

奥数等差数列

奥数等差数列

第七讲等差数列(1)1; 2; 3; 4; 5; 6; 7; 8;(2)2: 4; 6: 8; 10: 12; 14; 16;—(3)1; 4; 9: 16: 25; 36; 49;…上面三组数都是数列.数列中称为项;第一个数叫第一项:又叫首项;第二个数叫第二项……以此类推;最后一个数叫做这个数列的末项.项的个数叫做项数.一个数列中;如果从第二项起;每一项与它前面一项的差都相等;这样的数列叫等差数列. 后项与前项的差叫做这个等差数列的公差.如等差数列:4; 7; 10; 13: 16; 19: 22; 25; 28.首项是4;末项是28:共差是3.这一讲我们学习有关等差数列的知识.例题与方法例1、在等差数列1; 5: 9: 13: 17;…;401中401是第几项?例2、100个小朋友排成一排报数;每后一个同学报的数都比前一个同学报的数多3;小明站在第一个位置:小宏站在最后一个位置.已知小宏报的数是300;小明报的数是几?例3、有一堆粗细均匀的圆木;堆成梯形:最上面的一层有5根圆木:每向下一层增加一根;一共堆了28层.最下面一层有多少根?例4、1+2+3+4+5+6+-+97+98+99+100二?例5、求100以内所有被5除余10的自然数的和.例6、小王和小胡两个人赛跑;限定时间为10秒;谁跑的距离长谁就获胜.小王第一秒跑1米;以后每秒都比以前一秒多跑0.1米;小胡自始至终每秒跑1.5米;谁能取胜?练习与思考(每题10分;共100分.)1.数列4; 7: 10; ......... 295: 298中298是第几项?2.蜗牛每小时都比前一小时多爬0. 1米:第10小时蜗牛爬了1. 9米:第一小时蜗牛爬多少米?3.在树立俄;10: 13: 16;…中;907是第几个数?第907个数是多少?4.求自然数中所有三位数的和.5.求所有除以4余1的两位数的和.6.0. 1+0. 3+0. 58. +0. 7+0. 9+0 11+0 13+0 15+-0 99 的和是多少?7.梯子最高一级宽32厘米;最底一级宽110厘米;中间还有6级:各级的宽度成等差数列;中间一级宽多少厘米?8.有12个数组成等差数列;第六项与第七项的和是12:求这12个数的和.9.一个物体从高空落下;已知第一秒下落距离是4. 9米;以后每秒落下的距离是都比前一秒多9. 8米50秒后物体落地.求物体最初距地面的高度.10.求下面数字方阵中所有数的和.1; 2: 3;•••; 98; 99; 1002; 3: 4;…99; 100; 1013; 4: 5;…;100; 101: 102100, 101, 102, -197, 198, 199第八讲找规律你能找出下面各数列暴烈的规律吗?请在括号内填上合适的数》(1)8; 15; 22; ( ); 36;•••;(2)17; 1; 15;1: 13; 1; ( ); ( );9;1;•••;(3)45; 1; 43;3: 41; 5; ( );( );37; 9;•••;(4)1; 2; 4; 8: 16; ( ); 64;•••;(5)10; 20; 21:42; 43; ( );( );174; 175;•••;(6) 1 ; 2; 3; 5:8: 13; 21 ;( );55.(7)1; 2; 3; 2: 3; 4; 3: 4; 5; 4; 5; 6; 6; 7;…从第一个数算起;前100个数的和是多少?练习与思考(第1题30分:其余每题10分:共100分.)(1)找规律;在括号内填上合适的数.(2)1,3,9,27, ( ),243;(3)2, 7, 12, 17,22, ( ), ( ),37;(4)1,3, 2,4, 3, ( ),4;(5)0,3,8, 15, 24, ( ) ,.48;(6)6, 3, 8, 5, 10, 7, 12,9, ( ), 11;(7)2, 3, 5, ( ), ( ), 17, 23;(8)81,64, ( ); 36; ( ); 16; 9: 4; 1;(9)1; 8; 9; 17; 26; ( ); 69;(10)4; 11; 18; 25; ( ); 39; 46;2.一串数按下面规律排列:1; 3: 5; 2; 4: 6; 3: 5; 7; 4: 6; 8; 5; 7; 9;…从第一个数算起;前100个数的和是多少?3.有一串黑白相间的珠子(如下图);第100个黑珠前面一共有多少个白珠?在平面中任意作100条直线;这些直线最多能形成多少个交点?5. 在平面中任意作20条直线;这些直线最多可把这个平面分成多少个部分?序! 12315算51+12+33+51+72+<序! 6789• • •算53+111+132+153+17• • •根据上面的规律;第40个序号的算式是什么?算式T+103 ”的序号上多少?7.小正方形的边长是1厘米;依次作出下面这些图形.rFh-k rfzii_* cE二二二壬已知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周长是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?4.己知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周厂是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?8 在方格纸上画折线(如本讲例4图);小方格的边长是1:图中的1; 2; 3; 4;…分别表示折线扩大第1: 2: 3; 4;…段.求折线中第100段的长度.长度是30的是第几段?能力测试(一)一、填空题(每空3分;工39分).1.在下面的括号里按照规律填上适当的数字.(1)1;2: 3; 4; 8:16:(); 64;128.(2)5;10; 15; 20;25: ( ); 35;40.(3)4;7:10: 13; 16;( ): 22; 25.(4)1; 1 :2; 3; 5:8; 13;21 ;()(5)1024:512; 256: ( ):64: 32: 16; 8: 4.(6)2;5:11: 20: 32;( ): 65; 86.(7)1;3:2; 4; 3: 5;( ): 6: 5.(8)1; 4; 9; 16; 25; ( ); 49; 64.1.9个人9天共读书1620页;平均1个人1天共读书()页;照这样计算;5个同学5天读书()页.2.如果平均1个同学1天植树()棵:那么;3个同学4天共植树120棵.3.买3只足球和9只篮球共用了570元;买9只足球和27只篮球要用()元.二、计算题(每小题5分;共10分).1.2+4+6+8+10+ - +22+24+262.1+2+3+4+5+6+ …+1996+1997+1998三、应用题(第1〜4题10其余每题10分;第5题11分;共51分).1.李老师将一叠练习本分给第一组的同学;如果每人分7本;还多7本.如果每人分9:那么有一个同学译本也分不到.第一组有多少同学?这叠练习本一共有多少本?2.一只小船在河中逆流航行176千米:用了11小时.一知水流速度是每小时4千米;这只小船返回原处要用多少小时?3.4只篮球和8只足球共买560元;6只篮球和3只足球共买390元.问:一只篮球和一只足球各买多少元?4.有10元钞票与5元钞票共128张:其中10元比5元多260元.两种面额的钞票各是多少张?5.下面是一种特殊数列的求和方法.要求数列2; 4; 8; 16; 32: 64; - : 1024; 2048的和;方法如下:S = 2+4+8+16+32+64+ …+1024+204822S = 4+8+16+32+64+ …+1024+2048+4096用下面的式子减去上面的式子;就得到S =4096 - 2 = 4094即数列2: 4; 8; 16; 32: 64;…;1024; 2048 的和是4094.仔细阅读上面的求和方法;然后利用这种方法求卜面数列的和.1: 3: 9; 27; 81: 243;…;177147: 531441.。

小学奥数等差数列练习及答案【三篇】

小学奥数等差数列练习及答案【三篇】

小学奥数等差数列练习及答案【三篇】【篇一】知识点:1、数列:按一定顺序排成的一列数叫做数列。

数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。

数列中共有的项的个数叫做项数。

2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。

3、常用公式等差数列的总和=(首项+末项)项数2项数=(末项-首项)公差+1末项=首项+公差(项数-1)首项=末项-公差(项数-1)公差=(末项-首项)(项数-1)等差数列(奇数个数)的总和=中间项项数【篇二】典例剖析:例(1)在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)公差+1,便可求出。

(2)根据公式:末项=首项+公差(项数-1)解:项数=(201-3)3+1=67末项=3+3(201-1)=603答:共有67个数,第201个数是603练一练:在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?答案:第48项是286,508是第85项例(2)全部三位数的和是多少?分析::所有的三位数就是从100~999共900个数,观察100、101、102、……、998、999这个数列,发现这是一个公差为1的等差数列。

要求和能够利用等差数列求和公式来解答。

解:(100+999)9002=10999002=494550答:全部三位数的和是494550。

练一练:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。

答案:1000例(3)求自然数中被10除余1的所有两位数的和。

分析一:在两位数中,被10除余1最小的是11,的是91。

从题意可知,本题是求等差数列11、21、31、……、91的和。

它的项数是9,我们能够根据求和公式来计算。

解一:11+21+31+……+91=(11+91)92=459【篇三】1、有10只金子,54个乒乓球,能不能把54个乒乓球放进盒子中去,使各盒子的乒乓球数不相等?2、小明家住在一条胡同里,胡同里的门牌号从1号开始摸着排下去。

小学生奥数等差数列练习题及答案

小学生奥数等差数列练习题及答案

小学生奥数等差数列练习题及答案1. 对于下列等差数列,求出其公差并继续列出下一个项:a) 3, 5, 7, 9, ...解答:a) 公差为2。

下一个项为11。

2. 给定等差数列的首项和公差,求出前n项的和。

a) 首项为2,公差为3,求前5项的和。

解答:a) 首项为2,公差为3。

前5项的和为2 + 5 + 8 + 11 + 14 = 40。

3. 给定等差数列的前n项和以及首项,求公差。

a) 前6项的和为42,首项为3,求公差。

解答:a) 前6项的和为42,首项为3。

根据等差数列求和公式,可得到以下方程:(6/2) * (2 * 3 + (6 - 1) * d) = 4218 + 15d = 4215d = 24d = 24/15公差为8/5。

4. 在下列等差数列中,求第n项:a) 1, 4, 7, 10, ...解答:a) 第n项可表示为1 + (n - 1) * 3。

例如,第5项为1 + (5 - 1) * 3 = 13。

5. 已知等差数列的首项和第n项,求公差。

a) 首项为5,第6项为20,求公差。

解答:a) 第n项可表示为首项加上公差乘以(n - 1)。

根据已知条件,可得到以下方程:5 + 5(n - 1) = 205n - 5 = 205n = 25n = 5公差为5。

6. 在下列等差数列中,求第n项的值:a) -2, -5, -8, -11, ...解答:a) 第n项可表示为-2 - (n - 1) * 3。

例如,第6项为-2 - (6 - 1) * 3 = -17。

7. 对于下列等差数列,求出给定的项:a) 2, 5, 8, 11, ...求第10项。

求第20项。

解答:a) 第n项可表示为首项加上公差乘以(n - 1)。

例如,第10项为2 + 3 * (10 - 1) = 29。

第20项为2 + 3 * (20 - 1) = 59。

8. 已知等差数列的首项和公差,求出前n项中大于m的项的个数。

(完整版)四年级奥数混合运算(等差数列的项)

(完整版)四年级奥数混合运算(等差数列的项)

家庭教育心得作文400字(精选8篇)家庭教育心得作文400字篇1父母与子女之间存在着血浓于水的亲情,与子女间的情感体验当然也是无时无刻的。

家长的兴趣习惯,常常也决定了子女的.行为举止,所以,在教育子女时,父母更是模范和表率。

随着孩子年龄的增长,世界观价值观也在不断地完善。

孩子会从父母为其建造的象牙塔里走出来,接触外面更加纷繁的世界。

社会中的真善美与假丑恶也将给孩子带来更加直观的感受。

孩子心智不成熟,家庭教育尤为重要。

对于不可避免的社会丑陋现象,家长要给予及时的指导,不能一味地逃避,要提高孩子的鉴别能力,同时也要随时注意自己的言行举止,树立榜样。

古语有云:“身修而后家齐,家齐而后国治,国治而后天下平”的“齐家、治国、平天下”是指只有家庭好了,国家才会更加繁荣昌盛。

我们家长要与学校积极配合,与学校形成帮助孩子成长的最大合力,才能让孩子得到最大程度的发展。

孩子的性格各异,爱好不同,缺乏耐心,发掘不出孩子的潜能。

我们要用心引导,尽心培养,不急躁,不强求,孩子孩子总会有绽放优秀的一天。

每个孩子都会是一朵灿烂绽放的花朵,让我们静待花开!家庭教育心得作文400字篇2今天,媛媛老师又曾破天荒地给我们玩了三场游戏,和之前不一样的是,这次游戏和之前比,都知道会更吓人,有一个男生和女生都哭了!好了,我给你讲吧,不知道你会不会看的吓人呀。

第一场游戏开始了,请读者做好心理准备,现在请你闭上眼睛想像你在一片草原上,你突然发现了一条石子路,出乎好奇,你步上了石子路,你走呀走,过了一条小河,在到了一座,美得要人发出声音的城堡,你把大门给打开了,到里面后,有一个镜子,你在镜子里看到了什么。

我可以告诉你,我在里面看到了什么,我感觉后面总是有人在看我一样,镜子里三条可爱的的小猫和一只生气的大老虎,想想都觉得可怕。

第两次游戏开始了也请你闭上眼睛,这是有着华丽的房间的城堡,你正有其中的一个房间里,里面有一个婴儿床,里面有一个婴儿,它的脸蛋是什么样的呢?这次可不一样,有一个男生等老师一说完,就哭了起来,可怜的老师都去抱了抱他,其实我也不知道他讲了什么,可是,有许多人都说:那个婴儿脸上全是伤,那全班是不是只我和一个男生、媛媛老师是一张笑的脸吧?你们说这次的游戏可不可怕?家庭教育心得作文400字篇3通过学习家庭教育促进法,我更深刻地了解到,祖国要强大,孩子的教育是重中之重!首先作为父母,我们有义务去引导孩子建立健全正确的人生观,世界观,价值观。

小学生奥数等差数列练习题及答案

小学生奥数等差数列练习题及答案

小学生奥数等差数列练习题及答案1.小学生奥数等差数列练习题及答案1、下面是按规律排列的一串数,问其中的第1995项是多少?解答:2、5、8、11、14、……。

从规律看出:这是一个等差数列,且首项是2,公差是3,这样第1995项=2+3×(1995-1)=59842、在从1开始的自然数中,第100个不能被3除尽的数是多少?解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149。

3、把1988表示成28个连续偶数的和,那么其中的那个偶数是多少?。

解答:28个偶数成14组,对称的2个数是一组,即最小数和数是一组,每组和为:1988÷14=142,最小数与数相差28-1=27个公差,即相差2×27=54,这样转化为和差问题,数为(142+54)÷2=98。

4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:34×29+29=35×2934×30+30=35×3034×31+31=35×3134×32+32=35×3234×33+33=35×33以上数的和为35×(29+30+31+32+33)=54255、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。

小学奥数《等差数列公式》及其练习

小学奥数《等差数列公式》及其练习

小学奥数《等差数列公式》及其练习等差数列练习知识点1、数列定义:若干个数排成一列,像这样一串数,称为数列。

数列中的每一个数称为一项,其中第一个数称为首项(我们将用 1a 来表示),第二个数叫做第二项ΛΛ以此类推,最后一个数叫做这个数列的末项(我们将用n a 来表示),数列中数的个数称为项数,我们将用 n 来表示。

如:2,4,6,8,Λ,1002、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。

我们将这个差称为公差(我们用d 来表示),即:1122312----=-==-=-=n n n n a a a a a a a a d Λ例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。

(省略号表示什么)练习1:试举出一个等差数列,并指出首项、末项、项数和公差。

3、计算等差数列的相关公式:(1)通项公式:第几项=首项+(项数-1)×公差即:d n a a n ?-+=)1(1(2)项数公式:项数=(末项-首项)÷公差+1即:1)(1+÷-=d a a n n(3)求和公式:总和=(首项+末项)×项数÷2即:()21321÷?+=+++n a a a a a a n n Λ在等差数列中,如果已知首项、末项、公差。

求总和时,应先求出项数,然后再利用等差数列求和公式求和。

例1:求等差数列3,5,7,Λ的第 10 项,第 100 项,并求出前100 项的和。

【解析】我们观察这个等差数列,可以知道首项1a =3,公差d=2,直接代入通项公式,即可求得21293)110(110=?+=?-+=d a a ,2012993)1100(1100=?+=?-+=d a a . 同样的,我们知道了首项3,末项201以及项数100,利用等差数列求和公式即可求和:3+5+7+Λ201=(3+201)?100÷2=10200.解:由已知首项 1a =3,公差d=2,所以由通项公式 d n a a n ?-+=)1(1,得到21293)110(110=?+=?-+=d a a2012993)1100(1100=?+=?-+=d a a 。

等差数列五年级奥数练习题

等差数列五年级奥数练习题

等差数列五年级奥数练习题等差数列是数学中常见的一种序列形式,它的每一个元素与前一个元素之间具有相等的差值。

在五年级奥数练习题中,等差数列也是一个常见的考点。

下面我们将介绍几个与等差数列相关的五年级奥数练习题。

练习题一:已知等差数列的前四项依次是2,5,8,11,求这个等差数列的通项公式。

解析:我们可以观察到这个等差数列的公差是3,第一项是2。

根据等差数列的通项公式:an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。

代入已知条件可得:an = 2 + (n-1)3。

简化后得到通项公式为:an = 3n-1。

练习题二:已知等差数列的前五项依次是1,4,7,10,13,求这个等差数列的第十项。

解析:我们可以观察到这个等差数列的公差是3,第一项是1。

根据等差数列的通项公式:an = a1 + (n-1)d,代入已知条件可得:a10 = 1 + (10-1)3。

简化后得到第十项为:a10 = 28。

练习题三:已知等差数列的第五项是13,公差是4,求这个等差数列的前十项的和。

解析:我们可以观察到这个等差数列的公差是4,第五项是13。

根据等差数列的求和公式:Sn = (n/2)(a1 + an),其中Sn表示前n项的和,a1表示第一项,an表示第n项。

代入已知条件可得:S10 = (10/2)(13 + a10)。

由于已知条件中只给出了第五项,我们需要根据公差和第五项求得第十项a10。

根据等差数列的通项公式:an = a1 + (n-1)d,代入已知条件可得:13 = a1 + (5-1)4。

解方程得到第一项a1为1。

将a1和公差d代入求和公式,得到S10 = (10/2)(13 + (1 + (10-1)4))/2。

简化后得到前十项的和为:S10 = 265。

练习题四:已知等差数列的前三项之和是12,公差是2,求这个等差数列的前十项的和。

解析:我们可以观察到这个等差数列的公差是2,前三项之和是12。

小学奥数等差数列公式

小学奥数等差数列公式

小学奥数等差数列公式公式1:求和公式:等差数列求和=(首项+末项)×项数÷2,即:Sn=(a1+an)×n÷2;公式2:通项公式:第n项=首项+(n-1)×公差,即:an=a1+(n-1)×d;公式3:项数公式:项数=(末项-首项)÷公差+1,即n=(an-a1)÷d+1。

上述三个公式必须掌握此外,还有一个中项定理,也掌握:中项定理:对于作意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

例1:建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?解:如果我们把每层砖的块数依次记下来,2,6,10,14,…容易知道,这是一个等差数列.方法1:a1=2,d=4,利用公式求出an=2106,则:n=(an-a1)÷d+1=527这堆砖共有则中间一项为a264=a1+(264-1)×4=1054.方法2:(a1+an)×n÷2=(2+2106)×527÷2=555458(块).则中间一项为(a1+an)÷2=1054a1=2,d=4,an=2106,这堆砖共有1054×527=555458(块).此题利用中项定理和等差数列公式均可解!例2:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.解:根据题意可列出算式:(2+4+6+8+...+2000)-(1+3+5+ (1999)解法1:能够看出,2,4,6,…,2000是一个公差为2的等差数列,1,3,5,…,1999也是一个公差为2的等差数列,且项数均为1000,所以:原式=(2+2000)×1000÷2-(1+1999)×1000÷2=1000.解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即原式=1000×1=1000.例3:100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第1个,第3个…第99个,再把剩下的50个数相加,得多少?解:方法1:要求和,我们能够先把这50个数算出来.100个连续自然数构成等差数列,且和为8450,则:由题可知:(首项+末项)×100÷2=8450,求出:(首项+末项)=169。

小学奥数教程-等差数列计算题.教师版(11)全国通用(含答案)

小学奥数教程-等差数列计算题.教师版(11)全国通用(含答案)

2a ba 22ab b 2.为便于记忆,可形象的叙述为:首平方,尾平方,2倍乘积在中央、常用技巧1. abcabc abc 1001 ;2. ababab ab 10101 ;3. 1 0.142857 , 2 0.285714 , 30.428571 ,7 7 7 4 1 5 1 6—0.571428 , — 0.714285 , — 0.857142 ; 7 7 7 4. %驰 %邨 123|||n||(321 ,其中 n 9.n 个1n 个1且隹例题精讲一'、前n 项和 【例 1】12 32 52"192【考点】公式法之求和公式 【解析】12 32 52 "I 192(12 22 32 ||| 192) (221 /2 2 —19 20 39 4 (1 2 6自tut/、常用公式1.2 3III2. 12 22 323. 13 23 334.5.6. 7.知识点拨IIIIll 10 n (n 1) 2n 等比数列求和公式: 平方差公式: b2n (n 1) (2n 1)S n II IIl la〔q1a 〔q公式法计算22n (n 1) a 〔qn n 1III a 1(q n1)(q 3 2 1 n2;1);完全平方公式: 用文字表述为:2ab b 2,2 一2a 2ab b两数和(或差)的平方,等于这两个数的平方和, 加上(或者减去)这两个数的积的2倍,两条公式也可以合写在一起:【难度】2星42 || 182)III 92) 【题型】计算57600 门平 c2 ---- 2 7 8 4 8128【答案】81281 2 23333-100 101 21 2 501 2 2 3 1 2 2 —100 101 2 50 51 4 42470 2470【答案】21851—9 10 19 6285 2185 222222【巩固】124 5 7 8 【考点】公式法之求和公式【解析】原式(12 22 I0 162) (12 22 ||| 162) 2222210 11 13 14 16【难度】3星 (32 62 92 122 152)32 (12 2232 4252) 【题型】计算16 17 33 5 6 11--------- 9 ---------6 61496 495 1001【答案】1001[例 2 ] 计算:36 49 64 81 III 400 【考点】公式法之求和公式 【难度】3星【解析】原式62 72 82 H 2021222 32 ” 20212 2 2 32 42 521 120 21 41 5 6 11 6 6 2870 55 2815【答案】2815【题型】计算【例3】 计算:13 33 53 73 【考点】公式法之求和公式 33339 11 13 15【难度】3星【题型】计算【解析】原式13 23 33 432215 15 1 ---------- 8 III 143 13 23 153 III 23 73 43 III314【巩固】计算:13 33 53 \\\ 【考点】公式法之求和公式 【解析】 与公式13 23\\\ n 3先补上偶数项. 3991 2【难度】3星212n n m -------- 相比,4【题型】填空13 33 53”993缺少偶数项,所以可以原式 13 23 33 \\\ 100323 43 \\\ 1003_2 _2_ 2502 1012 2 512 12497500 【答案】124975001 23 33 20063【例4 ] 计算:------------------------------ 11 2 3 2006【关键词】西城实验 2003 2 2001 22 13 5 I]) 2001 2 1 2003 1002 2 2008008其中也可以直接根据公式 1 3 5 7 “ 2n 1 n 2得出1 3 5 ” 2001 2003 10022【答案】2008008 【例 6】计算:1 22 2 32 3 42 \[[ 18 192 19 202 【考点】公式法之求和公式 【难度】3星【题型】计算【解析】 分拆(21) 22 23 22 (3 1 ) 32 33321HHi 再用公式4 川丁( I( (J (II ( ( ( ( ( ( \J I ) 。

小学三年级奥数专项训练题《等差数列(二)》

小学三年级奥数专项训练题《等差数列(二)》

等差数列(二)【知识要点屋】1.等差数列:①相邻两项差值相等;②要么递增,要么递减。

2.公式:项数=(末项-首项)÷公差+13.小兔子跳台阶,首尾配对思想。

4.熟记:1+2+3+4+5+6+7+8+9+10=______;1+2+3+4+……+98+99+100=______。

【铺垫】(★★★)请求出下面每组等差数列的平均数。

⑴1,2,3,4,5 的平均数=______。

⑵2,4,6,8,10的平均数=______。

⑶3,7,11,15,19的平均数=______。

(★★★)阳光小学三年级五个班的人数分别为31人,34人,28人,37人,40人。

那么,这五个班级的平均人数=____人。

(★★★)下面等差数列的平均数=_____。

3,7,11,15,19,23,27,31【知识要点屋】(★★★)5个连续的偶数的和是120,那么最大的偶数是_____。

【拓展】10个连续的偶数的和是230,那么最大的偶数是_____。

已知一个等差数列的前11项的和是231,前21项的和是756。

请问:这个数列的公差是_______,首项是______。

已知一个等差数列的前15项之和为450,前20项的和为750。

请问:这个数列的公差是____,首项是_____。

【超常大挑战】 在1~100这一百个自然数中,所有不能被9整除的数的和是多少?【知识大总结】等差数列1.关于平均数①平均数=(首+末)÷2②奇数项,平均数=中间数③平均数=总数÷个数2.首尾配对思想3.提公因数9+18+27+……+99=9×(1+2+3+ (11)(★★★) (★★★) (★★) (★★★)。

用图片详细讲小学奥数题-等差数列

用图片详细讲小学奥数题-等差数列
6
等差数列变形
例题:
计算: 1+3+4+6+7+9+10+12 +……+37+39+40
【项数 = (末项 – 首项) ÷ 公差 + 1 】
1+4+7+10+……+40
3+6+9+……+39
【和 = (首项 + 末项) × 项数 ÷ 2 】
思考:
通过观察题目中数列的规律,可以发现可以拆分成2个等差数列,如上面所示:
4
等差数列应用(一)
例题:
幼儿园 378 个小朋友围成若干个圆(一圈套一圈)做游戏,已知最内圈 22 人,最外圈 62 人,如果相邻两圈相差的人数相等,那 么相邻的两圈相差多少人?
思考:
该题目需要求公差,公差的公式为 【公差 = (末项 – 首项) ÷ (项数 - 1)】 已知:首项->22,末项->62,但缺少公式中的“项数”条件。 我们要先想办法把“项数”求出来,题目中还有一个条件,和:378 根据求和公式:【和 = (首项 + 末项) × 项数 ÷ 2 】
项数 = (145 - 5) ÷ 4 + 1 = 36。
(4)求数列和作为练习。【和 = (首项 + 末项) × 项数 ÷ 2 】
3
等差数列基本公式(二)
例题:
(1)1~100 中是 5 的倍数的数的和是多少? (2)1~100 中除以 5 余 2 的数的和是多少?
题目解析:
(1) 1~100 中是 5 的倍数: 最小的5的倍数是5,最大的5的倍数是100; 可以这样理解5,10,15,20……100的等差数列,其中:5是首项,100是末项,公差为5。 根据求和公式:【和 = (首项 + 末项) × 项数 ÷ 2 】 可得1~100 中是 5 的倍数的和为:( 5 + 100 ) × (100 ÷5 ) ÷ 2 = 105 × 20 ÷ 2 = 1050。

小学奥数 等差数列的认识与公式运用 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  等差数列的认识与公式运用 精选练习例题 含答案解析(附知识点拨及考点)

本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。

要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。

一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。

项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其知识点拨教学目标等差数列的认识与公式运用实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。

奥数练习-等差数列(三年级)

奥数练习-等差数列(三年级)

数学练习(等差数列)
等差数列的和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
末项=首项+(项数-1)×公差
例1、计算2+5+8+11+17+20+23 例2、8+10+12+14+16+18+20
例3、5+6+7+8+9+10+9+8+7+6+5 例4、9+11+13+15+17+19+22
例5、小明为了买书自己存钱,2003年元月存1元钱,以后每月都比前一个月多存1元钱,那么2003年这一年里一共可以存多少钱?
例6、三年级第一小组有8名同学,开学时,老师要求该小组每人都握一次手,共握多少次手?
例7、11+14+17+……+101 例8、 297+293+289+……+209
练习1、计算1+2+3+5+7+9+11+13+15+17+19 练习2、3+6+9+12+15 3、20+17+14+11+8+5+2 4、12+13+14+15+16+18+20+22+24+26
5、一辆公共汽车空车出发,第一站上1位乘客,第二站上2位,第三站上3位,以此类推,到第11站后,公共汽车上的座位正好坐满。

问这辆汽车有多少个座位?
6、在1到100这100个自然数中,所有个位数字是8的自然数之和是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列练习
知识点
1、数列定义:若干个数排成一列,像这样一串数,称为数列。

数列中的每一个数称为一项,其中第一个数称为首项(我们将用 1a 来表示),第二个数叫做第二项 以此类推,最后一个数叫做
这个数列的末项(我们将用 n a 来表示),数列中数的个数称为项数,我们将用 n 来表示。

如:2,
4,6,8, ,100
2、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。

我们将这个差称为公差(我们用 d 来表示),即: 1122312----=-==-=-=n n n n a a a a a a a a d
例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。

(省略号表示什么)
练习1:试举出一个等差数列,并指出首项、末项、项数和公差。

3、 计算等差数列的相关公式:
(1)通项公式:第几项=首项+(项数-1)×公差
即:d n a a n ⨯-+=)1(1
(2)项数公式:项数=(末项-首项)÷公差+1
即:1)(1+÷-=d a a n n
(3)求和公式:总和=(首项+末项)×项数÷2
即:()21321÷⨯+=+++n a a a a a a n n
在等差数列中,如果已知首项、末项、公差。

求总和时,应先求出项数,然后再利用等差数列求和公式求和。

例1:求等差数列3,5,7, 的第 10 项,第 100 项,并求出前 100 项的和。

【解析】我们观察这个等差数列,可以知道首项 1a =3,公差d=2,直接代入通项公式,即可求得
21293)110(110=⨯+=⨯-+=d a a ,2012993)1100(1100=⨯+=⨯-+=d a a . 同样的,我们知道了首项3,末项201以及项数100,利用等差数列求和公式即可求和:3+5+7+ 201=(3+201)⨯100÷2=10200.
解:由已知首项 1a =3,公差d=2,
所以由通项公式d n a a n ⨯-+=)1(1,得到21293)110(110=⨯+=⨯-+=d a a
2012993)1100(1100=⨯+=⨯-+=d a a 。

同理,由已知,1a =3,100a =201,项数n=100
代入求和公式得3+5+7+ 201=(3+201)⨯100÷2=10200.
练习2:1、求出你已经写出的等差数列的各项和。

2、有一个数列,4、10、16、22……52,这个数列有多少项
3、一个等差数列,首项是3,公差是2,项数是10。

它的末项是多少
4、求等差数列1、4、7、10……,这个等差数列的第30项是多少
例2:在211、2
12两数之间插入一个数,使其成为一个等差数列。

解:根据第几项=首项+(项数-1)×公差,
那么第三项 3a =1a +2d ,即:212=2
11+2d ,所以d=0.5 故等差数列是,211、2、212。

拓展:1、在12 与 60 之间插入3个数,使这5个数成为一个等差数列。

2、在6和38 之间插入7个数,使他们成为等差数列,求这9 个数的和是多少
例3:有10个朋友聚会,见面时如果每人都要和其余的人握一次手,那么共握了多少次手
练习:1、某班有51个同学,毕业时每人都要和其他同学握一次手,那么这个班共握了多少次手
2、有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次
例4:4个连续整数的和是94,求这4个数。

解:由于4个数是连续的整数,那么这4个数就是公差d=1的等差数列,不妨设第一个数为1a ,那么第二个数就是1a +1,
同理:第3个数,第4个数分别是1a +2,1a +3那么由已知,这四个整数的和是94,所以1a +(1a +1)+(1a +2)+(1a +3)=94,因此1a =22,所以这4个连续分别是22、23、24、25.
练习:1、3连续整数的和是20,求这3个数。

2、5个连续整数的和是180,求这5个数。

3、6个连续偶数中,第一个数和最后一个数的和是78,求这6个连续偶数各是多少
例5:丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学会1个,最后一天学会了16个。

丽丽在这些天中共学会了多少个单词
解:因为丽丽从第二天开始,每天都比前一天多学会1个单词,因此丽丽每天学会的单词个数是一
个等差数列,并且这个等差数列的首项
a=6, 公差d =1,末项n a=16,若想求和,必须先算出项
1
数n,根据公式项数=(末项-首项)÷公差+1 ,即n=(16-6)÷1+1=11
那么丽丽在这些天中共学会的单词个数为:6+7+8+……+16 = (6+16) 11÷2=121
练习:有一家电影院,共有30排座位,后一排都比前一排多两个位置,已知第一排有28个座位,那么这家电影院共可以容纳多少名观众
2、一个家具厂生产书桌,从第二个月起,每个月增加10件,一年共生产了1920件,那么这一年的12月份共生产了多少书桌
巩固练习:
1、6+7+8+9+……+74+75=()
2、2+6+10+14+……+122+126=()
3、已知数列2、5、8、11、14……,47应该是其中的第几项
4、有一个数列:6、10、14、18、22……,这个数列前100项的和是多少
5、在等差数列1、5、9、13、17……401中,401是第几项第50项是多少
6、1+2+3+4+……+2007+2008=()
7、(2+4+6+……+2000)-(1+3+5+……+1999)=
8、1+2-3+4+5-6+7+8-9+……+58+59-60=
9、有从小到大排列的一列数,共有100项,末项为2003,公差为3,求这个数列的和。

10、求1——99个连续自然数的所有数字的和。

11.在等差数列5、10、15、20中,155是第几项350是第几项
12、在等差数列6、13、20、27……中,第几个数是1994
13、一个剧场设置了22排座位,第一排有36个座位,往后没排都比前一排多2个座位,这个剧场共有多少个座位
14、求所有除以4余1的两位数的和是多少
15、 3、12、21、30、39、48、57、66……
(1)第12个数是多少
(2)912是第几个数
16、已知等差数列5,8,11…,求出它的第15项和第20项。

17、按照1、4、7、10、13…,排列的一列数中,第51个数是多少
18、求首项是5,末项是93,公差是4的等差数列的和。

19、3+7+11+ (99)
20、省工人体育馆的12区共有20排座位,呈梯形,第1排有10个座位,第2排有11个座位,第3排有12个座位……这个体育馆的12区共有多少个座位21、在等差数列2、4、6、8中,48是第几项168是第几项。

相关文档
最新文档