药物化学重点构效关系
药物化学构效关系
![药物化学构效关系](https://img.taocdn.com/s3/m/d21efc86a0116c175f0e48ca.png)
苯乙醇胺类和芳氧丙醇胺类
可以是苯,萘,杂环,稠环和脂肪性的不饱和杂环.可以有甲基,氯,硝基,甲氧基等取代基,在2,4和2,3,6位取代时活性最佳.
用S,-CH2,-NCH3取代时,活性降低.
S-构型异构体活性增加,R-构型异构体活性降低或消失.
R-构型异构体活性增加,S-构型异构体活性降低或消失
B-碳上通常连有羟基.其绝对构型以R-构型为活性体.
局麻药的构效关系.(图自己想)
邻对位给电子基取代,有利于两性离子的形成,活性增强.若有吸电子存在则活性下降.
可以为芳环,芳杂环,此部分的修饰对活性的影响较大,活性顺序为苯环>吡咯>噻吩>呋喃
通常以2-3个碳原子为最好
有仲胺,叔胺或吡咯烷,哌啶.吗啉等,以叔胺最为常见.
青霉烷酸分子中三个手性碳的构型对其活性至关重要.但青霉素的噻唑环上的两个甲基不是活性的必要因素.
半合成头孢菌素的构效关系
在7位侧链引入亲脂性的基团,如苯基,环稀基,噻吩和含氮的杂环.可增强抗菌活性,扩大其抗菌谱.同时改变3位取代基,引入杂环,可改进口服吸收分布也可扩大其抗菌谱.
在7位酰胺的a位引入亲水性的-SO3H,-NH2,-COOH,等极性基团.可扩大抗菌谱同时改变3位取代基,引入-Cl,CH3,和含氮的杂环,可增强口服吸收扩大抗菌谱.
油水分配系数:药物既可以在体液中转运,又可以透过血脑屏障到达作用部位.
该类药物5位上有两个取代基才有活性,当两个取代基的碳原子总数在4到8之间时,分配系数适中,活性最好.当碳原子总数超过8时,产生作用过强,易产生惊厥作用.结构中酰亚胺上的N原子上有甲基取代时可降低酸性和增加脂溶性,起效快.将C-2位的O用S替代时.脂溶性增加,易透过血脑屏障,起效快.
药物的化学结构和药效的关系药物化学
![药物的化学结构和药效的关系药物化学](https://img.taocdn.com/s3/m/4c17f5828ad63186bceb19e8b8f67c1cfbd6ee4b.png)
总结词
计算机辅助药物设计利用计算机模拟 技术来预测和优化药物与靶点的相互 作用。
详细描述
这种方法通过建立药物与靶点相互作 用的数学模型,对大量化合物进行虚 拟筛选,快速找出具有潜在活性的化 合物。这大大缩短了新药研发的时间 和成本,提高了成功率。
先导化合物的优化
总结词
先导化合物优化是在找到具有初步活性的先 导化合物后,通过对其化学结构进行修饰和 优化,提高其药效、降低副作用的过程。
总结词
药物分子的极性影响其在体内的吸收、分布和代谢,从而影响药效。
详细描述
药物分子的极性与其化学结构密切相关,极性大小直接影响分 子在体内的溶解度和渗透性。一般来说,极性适中的药物分子 具有较好的水溶性和脂溶性,有利于其在体内的吸收和分布。 此外,药物的代谢过程也与其化学结构有关,某些结构特征可 以促进或抑制代谢酶的活性,从而影响药物的代谢速度和药效 持续时间。例如,某些药物分子中含有羟基或羧基等极性基团, 可以增加其在体内的溶解度和渗透性,从而提高药物的生物利 用度。
总结词
药物分子的电子分布影响其与靶点的相互作 用,从而影响药效。
详细描述
药物分子中的电子分布决定了其与靶点分子的相互作用方式, 如静电、共价键等。药物分子中的电子分布与其化学结构密切 相关,通过改变药物分子的电子分布,可以调整其与靶点的相 互作用,从而优化药效。例如,某些药物分子中的特定基团可 以通过电子转移与靶点分子形成共价键,从而提高药物的稳定 性。
氢键
总结词
氢键是一种相对较弱的相互作用力,但对药物与靶点的结合和药效的发挥具有重要影响。
详细描述
氢键的形成是由于药物分子中的氢原子与靶点分子中的电负性原子(如氧或氮)之间的 相互作用。这种相互作用虽然较弱,但能够使药物与靶点结合更加稳定,从而影响药物 的吸收、分布和代谢等过程。例如,某些药物通过与蛋白质的特定氨基酸残基形成氢键,
药物化学结构和药效的关系
![药物化学结构和药效的关系](https://img.taocdn.com/s3/m/9fb2487c580216fc700afd7f.png)
例:
资料仅供参考,不当之处,请联系改正。
2.6 药物的电子云密度分布对药效的影响
如果药物分子中的电荷分布正好和其特定 受体相适应,药物与受体通过形成离子键、偶 极-偶极相互作用、范德华力、氢键等分子间引 力相互吸引,就容易形成复合物,而具有较高 活性。
资料仅供参考,不当之处,请联系改正。
下例为苯甲酸酯类局麻药分子与受体通过形成 离子键,偶极-偶极相互作用,范德华力相互作 用形成复合物的模型。
资料仅供参考,不当之处,请联系改正。
(2)增加药物分子的位阻:
抵抗青霉素酶得水解
资料仅供参考,不当之处,请联系改正。
(3)电性的影响:
资料仅供参考,不当之处,请联系改正。
2.卤素对药物生物活性的影响
强吸电子基,影响电荷分布
3.羟基、醚键对药物生物活性的影响
-OH增强与受体的结合力(氢键),增加水溶性,改变生物活性 -O-有利于定向排布,易于通过生物膜
资料仅供参考,不当之处,请联系改正。
药物的化学结构与生物活性(药效)间 的关系,通常称为构效关系(Structureactivity relationships, SAR),是药物化 学研究的主要内容之一。
资料仅供参考,不当之处,请联系改正。
本章内容
药物作用机制 受体学说 影响药物产生作用的主要因素 药物结构的官能团对药效的影响 药物的理化性质对药效的影响 药物的电子云密度分布对药效的影响 药物的立体结构对药效的影响
4.磺酸基、羧基与酯对药物生物活性的影响
-SO3H、-COOH使水溶性、解离度增大,不易通过生物膜, 生物活性减弱;
-COOR使脂溶性增大,生物活性增大
5.酰胺基与胺基对药物生物活性的影响
药物化学构效关系
![药物化学构效关系](https://img.taocdn.com/s3/m/3b05215b842458fb770bf78a6529647d272834b7.png)
药物化学构效关系1.局部麻醉药的构效关系:①亲脂性部分:可变范围较大,可为芳环或芳杂环,但以苯环的作用较强,是局麻药物的必需部位。
当酯类药物苯环的邻位或对位引入给电子集团,如氨基、烷氧基时,局麻作用均较未取代得苯甲酸衍生物强;对氨基苯甲酸酯类苯环的邻位上若再有其他取代基如氯、氨基、烷氧基时,由于位阻作用而延长了酯的水解,因此活性增强,作用时间延长。
②中间连接部分:由羰基部分和烷基部分共同组成。
羰基部分与麻醉药持效时间及作用强度有关,作用持续时间为:酮﹥酰胺﹥硫代酯﹥酯;麻醉作用强度:硫代酯﹥酯﹥酮﹥酰胺。
烷基部分碳原子数以2~3个为好,当烷基部分为—CH2CH2CH2—时,麻醉作用最强。
③亲水性部分:大多数为叔胺,易形成可溶性的盐类。
氮原子上取代基的碳原子总和以3~5时作用最强,也可为酯环胺,其中以哌啶的作用最强。
2. 苯二氮卓类药物的构效关系:① 1、2位拼入三氮唑环,使代谢稳定性增加,提高与受体的亲和力,活性显著增加;② 3位引入手性碳,分子构想更稳定,对受体亲和力增强;③ 4、5位引入恶唑环,增强稳定性;④7位有吸电子取代基时,药物活性明显增强,且吸电子性越强,活性增加越明显,NO2>Br>CF3>Cl;⑤ 5位苯环的2’位引入体积较小的吸电子基团如F、Cl,可使活性增强。
①镇静作用的强度和起效快慢,与药物的理化性质有关。
【酸性解离常数pKa】巴比妥酸和5位取代的巴比妥类有较强的酸性,在生理pH=7.4几乎全都电离成离子状态,不易透过血脑屏障,无镇静催眠作用;5,5-二取代的巴比妥类,酸性减弱,生理pH条件下不易电离,易进入脑中发挥作用,显效快,作用强。
【脂水分配系数】5位无取代基时,分子有一定极性,亲脂性强,不易透过血脑屏障,无镇静催眠作用;5位取代基碳原子总数在7~8之间作用最强,若亲脂性过强,作用下降甚至出现惊厥。
药物有最适当的的脂溶性,有利于药物透过细胞膜和血脑屏障,起效快,作用强。
药物化学构效关系
![药物化学构效关系](https://img.taocdn.com/s3/m/449a41c42cc58bd63186bdf0.png)
局部麻醉药构sheng效关系1.分类芳酸酯类、酰胺类、氨基醚类、氨基酮类、其他类2.构效关系亲酯部分中间链亲水部分⑴亲脂部分:芳烃或芳杂环,这一部分修饰对理化性质变化大,但苯环作用较强。
苯环上引入给电子取代基,麻醉作用增强,而吸电子取代基则作用减弱。
⑵中间部分:此部分决定药物稳定性,和局麻作用持续时间有关⑶亲水部分:常为仲胺和叔胺,仲胺刺激性较大;烃基链3~4个碳原子作用最强,杂环以哌啶环作用最强巴比妥类药构效关系(1)、分子中5位上应有两个取代基。
(2)、5位上的两个取代基的总碳数以4—8为最好(3)、5位上的两个取代基的总碳数以4—8为最好. (4)、在酰亚胺氮原于上引入甲基,可降低酸性和增加脂溶性。
(5)、将C2上的氧原子以硫原子代替,则脂溶性增加,起效快,作用时间短。
苯二氮卓类药物的构效关系(1)1,3-二氢-5-苯基-2H-1,4-苯二氮卓-2-酮是此类药物基本结构;(2)环A7位引入吸电子取代基活性增加(3)环B为七元亚胺-内酰胺结构是产生药理作用的必要结构(4)5位苯环上的取代基时产生药效的重要结构之一,(5)1,2位的酰胺键和4,5位的亚胺键在酸性条件下易水解开环.吩噻嗪类药构效关系R1 部分必须由三个成直链的碳原子组成,若为支链,与多巴胺受体B 部分立体上不匹配,抗精神病活性明显下降,抗组胺作用增强。
顺式吩噻嗪类药物与多巴胺的优势构象能部分重叠,活性高(当侧链与氯取代的苯环同侧时,成为顺式构象)。
丁酰苯类药物的构效关系(1)丁酰苯基为必需的基本骨架(2)侧链末端连一碱性叔胺(3)苯环的对位一般具有氟取代(4)侧链湠基于碱基之间以三个碳原子最好镇痛药的一般特征(1)分子中具有一个平坦的芳香结构(2)有一个碱性中心能在生理PH条件下大部分电离为阳离子(3)含有哌啶或类似于哌啶的空间结构吗啡的构效关系(半合成类镇痛药)叔胺是镇痛活性的关键基团,氮原子引入不同的取代基可使μ 受体激动剂转变为拮抗剂。
药物化学重点__名词解释_
![药物化学重点__名词解释_](https://img.taocdn.com/s3/m/50d2d573f46527d3240ce040.png)
1、药物(drug):药物是人类用来预防、治疗、诊断疾病、或为了调节人体功能,提高生活质量,保持身体健康的特殊化学品。
2、药物化学(medicinal chemistry):药物化学是一门发现与发明新药、研究化学药物的合成、阐明药物的化学性质、研究药物分子与机体细胞(生物大分子)之间相互作用规律的综合性学科.3、锥体外系反应(effects of extrapyramidal system,EPS):指震颤麻痹,静坐不能、急性张力障碍和迟发性运动障碍等神经系统锥体外系的症状,常是抗精神病药物的副反应。
4、构效关系(structure- activity relationship,SAR):在同一基本结构的一系列药物中,药物结构的变化,引起药物活性的变化的规律称该类药物的构效关系。
其研究对揭示该类药物的作用机制、寻找新药等有重要意义。
5、血脑屏障(blood-brain barrier;BBB):为保护中枢神经系统,使其具有更加稳定的化学环境,脑组织具有特殊的构造,具有选择性的摄取外来物质的能力,被称作血脑屏障。
通常脂溶性高的药物易通过血脑屏障,而离子化的药物不能通过。
6、拟胆碱药(cholinergic drugs):是一类具有与乙酰胆碱相似作用的药物。
按作用环节和机制的不同,主要可分为胆碱受体激动剂和乙酰胆碱酯酶抑制剂两种类型。
7、乙酰胆碱酯酶抑制剂(AChE inhibitors):通过对乙酰胆碱酯酶的可逆性抑制,增强乙酰胆碱的作用。
不与胆碱受体直接作用,属于间接拟胆碱药。
在临床上主要用于治疗重症肌无力和青光眼,及抗早老性痴呆。
溴新斯的明。
8、局部麻醉药(local anesthetics):在用药局部可逆性地阻断感觉神经冲动的发生和传导,在意识清醒的条件下引起感觉消失或麻醉的药物。
普鲁卡因。
9. 钙通道阻滞剂(calcium channel blocker):钙通道阻滞剂是一类能在通道水平上选择性地阻滞Ca2+经细胞膜上钙离子通道进入细胞内,减少细胞内Ca2+浓度,使心肌收缩力减弱、心率减慢、血管平滑肌松弛的药物。
药物化学药物功能及构效关系
![药物化学药物功能及构效关系](https://img.taocdn.com/s3/m/9ff4bdf10875f46527d3240c844769eae009a32e.png)
药物化学药物功能及构效关系1.左旋多巴:理化:白色或类白色的结晶性粉末,无臭无味;在水中微溶,在乙醇、氯仿或乙醚中不溶,在稀酸中易溶。
儿茶酚结构极易被空气氧化变色。
水溶液久置后,可变黄、红紫、直至黑色。
高温、光、碱和重金属离子可加速变化。
注射液常加入L-半胱氨酸盐酸盐作为抗氧化剂,变黄不能使用。
功能:治疗各型PD,轻症及较年轻的患者,肌肉强直及运动困难疗效较好,对重症年老体衰及肌肉震颤者疗效较差,起效慢,但是疗效持久,去随着用药时间延长而递增,对其他原因引起的帕金森综合征也有效,但对抗精神病药引起的锥体外系反应无效。
药物相互作用:维生素B6:多巴脱羧酶辅基,增加多巴脱羧酶活性,增加外周多巴胺含量,外周副作用增强,进入脑组织量减少。
不良反应增加,不能合用。
抗精神病药:对抗左旋多巴作用,慎服或不用。
不良反应:胃肠道反应、心血管反应、不自主异常运动、开-关现象、精神障碍:2、对乙酰氨基酚(扑热息痛)在热水或乙醇中易溶,在丙酮溶解,在冷水中略溶,弱酸性,在空气中稳定,水溶液的稳定性与溶液的ph 有关pH 6时最稳定,半衰期可达21.8年(25°C) 在酸及碱性条件下,稳定性较差在潮湿的条件下易水解成对氨基酚,进一步发生氧化降解,生成亚胺醌,颜色逐渐变深,在贮存及制剂过程要特别注意。
检验:对氨基酚是制备过程的中间体,也是贮存过程中的水解产物。
由于对氨基酚毒性较大,故药典规定应检查其含量。
检查原理:对氨基酚为芳香伯胺,与亚硝基铁氰化钠在碱性条件下生成蓝紫色配位化合物代谢:对乙酰氨基酚的体内代谢主要受YP450酶系催化。
正常情况下代谢产物可与内源性的谷胱甘肽结合而解毒,但在大量或过量服用对乙酰氨基酚后,肝脏内的谷胱甘肽被耗竭,N-乙酰亚胺醌会进一步与肝蛋白的亲核基团(如-SH)结合引起肝坏死。
这是过量服用对乙酰氨基酚会导致肝坏死、低血糖和昏迷的主要原因。
解毒剂:各种含巯基的化合物可用于对乙酰氨基酚过量的解毒。
药物化学中构效关系的教学方法研究
![药物化学中构效关系的教学方法研究](https://img.taocdn.com/s3/m/10dbb934a66e58fafab069dc5022aaea998f411c.png)
药物化学中构效关系的教学方法研究摘要:构效关系是先导化合物修饰、新型药物设计的基础,在药物化学教学中具有至关重要的作用。
由于其多样性和复杂性,学生的掌握情况不理想。
本文针对这一问题对药物的构效关系进行归纳分类,总结为“三部分一核心多构型”三类,每一类都进行举例讲解,为学生更好地理解与掌握药物化学的构效关系提供一种可行的方式。
关键词:药物化学;构效关系;三部分;一核心;多构型药物是一类特殊的有机化合物,对应的化学结构反应了药物的本质[1],药物的化学结构对其生理功能和效应起决定性作用[2]。
药物化学是一门着重研究药物的构效关系,并通过研究生物体与化合物之间的相互作用过程,从分子水平上解析药物作用方式和作用机理的学科[3~5],为药剂学、药理学、药物分析等提供理论支撑[6,7]。
因此,掌握各大类化学药物的构效关系是制药工程专业本科生学习药物化学的基本要求[3]。
药物的构效关系是探寻药物的生物活性与其化学结构间依赖关系规律的依据。
通过研究药物(包括激动剂和拮抗剂,底物和抑制剂)的构效关系,来推测药物的作用机制和受体(及酶)的结构,并在此基础上进行合理的药物设计,从而提高研究药物的成功率[8]。
除了生物活性与化学结构存在关系,药物的体内吸收、分布、排泄等药物动力学性质[8],药物的体内代谢和药物的毒副作用方面与化学结构也存在着密切的关系。
例如,药物的化学结构与药物动力学性质具有一定的关联,药物分子进入体内先进行氧化、还原、水解、羟基化,而引入或使分子暴露极性基团(羟基、羧基、巯基、氨基等),再与内源性分子(葡萄糖醛酸、硫酸、甘氨酸、谷胱甘肽等)共价键结合生成水溶性的物质,排出体外。
因此,药物功效与结构之间的一一对应关系,在药物的研发与应用中具有重要作用[9~11]。
依据文献报道以及同行之间的交流发现,在国内各大高校的药物化学教学过程中,由于课时较少、课程内容较多等原因,药物的构效关系的讲解时间不足,本科生的药物专业知识有限,学生只能死记硬背,经常出现不同药物的构效关系混淆的情况。
构效关系总结
![构效关系总结](https://img.taocdn.com/s3/m/d64852d9195f312b3169a561.png)
O O
N H
引入双键后,成平 面环,保持活性
换成-PO3H2、-CONHOH等 基团,活性有所减弱,酯化 后酯溶性增强,有利于吸收
OH
引入亲脂取代基,增强 活性,延长作用时间
16.AngⅡ受体拮抗剂的构效关系
5
17.天然及半合成强心苷类药物构效关系 地高辛 digoxin
18.他汀类药物的构效关系 洛伐他汀 lovastatin
R构型异构体活性强, S构型异构体活性降低 或消失
13.二氢吡啶类钙拮抗剂构效关系
N H H OH
CH3 CH3
4
3,5位取代酯基不同, 为手性中心,酯基大小 对活性影响不大,但不 对称酯基影响作用部位
取代基与活性关系 依次为(增加): H<甲基<环烷基< 苯基或取代苯基
H N
O O
O ONO2
为活性必需,变 成吡啶环或六氢 吡啶环活性消失
6.吗啡类 Morphine
A-D(N)为基本结构
7.胆碱酯类 M 受体激动剂的构效关系
2
8.合成 M 受体拮抗剂的构效关系
----R1 和 R2 部分为较大基团,通过疏水性力或范德华力与 M 受体结合,阻碍乙酰胆碱与受 体的接近和结合。当 R1 和 R2 为碳环或杂环时,可产生强的拮抗活性,两个环不一样时活 性更好。R1 和 R2 也可以稠合成三元氧蒽环。但环状基团不能过大,如 R1 和 R2 为萘基时 则无活性。 ----R3 可以是 H,OH,CH2OH 或 CONH2。由于 R3 为 OH 或 CH2OH 时,可通过形成氢键 使与受体结合增强,比 R3 为 H 时抗胆碱活性强,所以大多数 M 受体强效拮抗剂的 R3 为 OH。 ----氨基部分通常为季铵盐或叔胺结构。R4、R5 通常以甲基、乙基或异丙基等较小的烷基为 好。N 上取代基也可形成杂环。 ----环取代基到氨基氮原子之间的距离,以 n=2 为最好,碳链长度一般在 2~4 个碳原子之间, 再延长碳链则活性降低或消失。 9.苯乙醇胺类拟肾上腺素药物的构效关系
药物化学的构效关系
![药物化学的构效关系](https://img.taocdn.com/s3/m/8cb15b8d52ea551811a68737.png)
H N
O O
O O NO2
为活性必需,变 成吡啶环或六氢 吡啶环活性消失
为活性必需,若为乙酰 基或氰基活性降低,若 为硝基则激活钙通道
邻、间位有吸电子基团时活 性较佳,对位取代活性下降
Penicillins青霉素的构效关系
6位侧链是结构修饰 的主要部位,能产 生各式各样的作用
C-7应为L-构型,而酰胺侧链为 b-构型,C-6、C-7的氢为-构 型,绝对构型为6R,7R C-7为同向(Syn-)肟型或较大的取 代基侧链时,对b-内酰胺酶有较 大稳定性,C-7对向构(Anyi-)型时 则不耐酶
四元环与六元环不在同一 平面,在C-6-N-1处折合
R NH
H
S
O NH
O OH
若以氧原子或亚甲基取 代,不降低活性而得到 另一类型b内酰胺抗生素
b受体阻滞剂(普萘洛尔)结构与活性关系
用S,CH2或NCH3取代, 作用降低
可以是苯、萘、杂环、稠环 和脂肪性不饱和杂环等,可 有甲基、氯、甲氧基、硝基 等取代基,2,4-或2,3,6-同 时取代时活性最佳
S构型异构体活性强, R构型异构体活性降低 或消失
O
N H
CH3 CH3
H OH
以叔丁基和异丙基取代活性最高,
维生素A的构效关系
被甲基、氯原子或含氮 杂环取代,活性增强或 OAc 改变体内药代动力学
双键移位则无活性
磺胺类药物的构效关系
其它芳环或引入其它 基团,活性降低或丧失
H2N
OO SNR H
单取代活性增加,杂环取 代更好,双取代活性丧失
以其它基团取代或置换 可保持或丧失活性,氨 基的游离或潜在的游离 状态是活性的关键
药物化学结构与药效的关系
![药物化学结构与药效的关系](https://img.taocdn.com/s3/m/2a3a643c16fc700abb68fc3a.png)
化学结构相似的药物,能与同一受体结合,引起相似 作用(激动药,拟似药)或相反的作用(拮抗药,阻断药).
例:
乙酰胆碱
(神经递质)
氨甲酰胆碱
(拟胆碱药)
D=药物;R=受体;DR=药物-受体复合物 E=药理效应;
药物-受体复合物的键合方式包括:共价键、 氢键、离子键、离子-偶极和偶极-偶极作用、 范德华力等。
5. 受体激动药与受体拮抗药
根据药物与受体结合后所产生效应的不同,将药 物分为受体激动药与受体拮抗药
激动药(agonist):对受体既有亲和力又有内在 活性的药物,它们与受体结合并激活受体产生效 应。
2.2 受体学说
1. 受体的概念
受体(Receptor,R)是指对生物活性物质具有 识别能力,并选择性与之结合,传递信息,引起 特定效应的生物大分子。
受体存在于细胞内,具有一定坚固性的三维结 构. 各种药物的受体是不相同的, 但是它们可能 都具有:
(1) 一个高度折叠的近似球状的肽链; (2) 有一个空穴,此空穴至少部分被多肽区域 所 包围.
2.1 药物的作用机制:
药物的作用机制(mechanism of drug action)是研究药物如何与机体不 同靶细胞结合,又如何发挥作用的。
一.药物的作用机制简介:
1、理化作用 2、参与或干扰细胞代谢 3、影响酶的活性 4、影响生理物质的合成、释放与转运 5、影响离子通道 6、影响核酸代谢 7、影响免疫机制 8、作用于受体
2.7 药物的立体结构对药效的影响
1.官能团间的距离对药效的影响
第二章 药物的构效关系 药物化学 课件
![第二章 药物的构效关系 药物化学 课件](https://img.taocdn.com/s3/m/0acdccdfd4d8d15abf234e2b.png)
第二章 药物的构效关系
第四节 药物其它特性对药效的影响
二、电子云密度对药效的影响
各种元素的原子核对其核外电子的吸引力各不相同而显示 电负性的差异。由电负性不同的原子组成的化合物分子就存在 电子密度分布不均匀状态。药物分子的电子密度分布如果和酶 蛋白分子的电荷分布恰好相反,则有利于相互作用而结合,形 成复合物。
化学工业出版社
第二章 药物的构效关系
第一节 药物的基本结构和药效的关系
药物作用过程的三个阶段
过程分类 发生过程 研究目的
药剂相
药物的释放
优化处方和 给药途径
药物动力学
药效相
吸收、分布和消除 药物-受体在靶 (代谢及排泄) 组织的相互作用
优化生物利用度
优化所需的 生物效应
化学工业出版社
化学工业出版社
P=CO/CW
化学工业出版社
第二章 药物的构效关系
第二节 药物的理化性质和药效的关系
二、药物的解离度对药效的影响 多数药物为弱酸、弱碱及其盐类,体液中部分解离,
以离子型和非离子型(分子型)同时存在。药物常以分子型 通过生物膜,在膜内的水介质中解离成离子型,再起作用。 因此药物需有适宜的解离度。
胃肠道各部分的pH不同,不同pKa药物在胃肠道各部分 的吸收情况也就有差异。
化学工业出版社
第二章 药物的构效关系
第一节 药物的基本结构和药效的关系
三、药物的特异结构与非特异结构 (一)结构非特异性药物
药物活性主要取决于药物分子的各种理化性质,与化学结 构的关系不大。临床应用的非特异性药物较少,主要有全身吸 入麻醉药,酚类和长链季铵盐的杀菌药以及巴比妥的催眠药等。 (二)结构特异性药物
药物化学构效关系(第二版尤启冬主编)
![药物化学构效关系(第二版尤启冬主编)](https://img.taocdn.com/s3/m/439c0f0c53ea551810a6f524ccbff121dd36c5d4.png)
药物化学构效关系(第二版尤启冬主编)主要药物的构效关系应用抗肿瘤作用机理:1、药物在体内能形成缺电子活泼中间体(碳正离子)或其他具有活泼的亲电性基团的化合物,进而与肿瘤细胞的生物大分子(DNA,RNA,酶)中富电子基团(氨基,巯基,羟基等)发生共价结合,使其丧失活性,致肿瘤细胞死亡。
2、属细胞毒类药物,在抑制和毒害增生活跃的肿瘤细胞的同时,对其它增生较快的细胞产生抑制。
如骨髓细胞、肠上皮细胞、毛发细胞和生殖细胞等。
副作用大:影响造血功能和机体免疫功能,恶心、呕吐、骨髓抑制、脱发等。
氮芥类药物脂肪氮芥:氮原子的碱性比较强,在游离状态和生理PH(7.4)时,易和β位的氯原子作用生成高度活泼的亚乙基亚胺离子,为亲电性的强烷化剂,极易与细胞成分的,亲核中心发生烷基化反应。
脂肪族氮芥:烷化历程是双分子亲核取代反应(SN2),反应速率取决于烷化剂和亲核中心的浓度。
脂肪氮芥属强烷化剂,对肿瘤细胞的杀伤能力也较大,抗肿瘤谱较广;但选择性比较差,毒性也较大。
芳香族氮芥:氮原子与苯环共轭,减弱了碱性,碳正离子中间体,单分子的亲核取代反应。
氮芥类药物及大多数烷化剂主要是通过和,DNA上鸟嘌呤或胞嘧啶碱基发生烷基化,产生DNA链内、链间交联或DNA蛋白质交联而抑制,DNA的合成,阻止细胞分裂。
β-内酰胺类抗生素的化学结构特点:1分子内有一个四元的β-内酰胺环,除了单环β-内酰胺外,该四元环通过N原子和邻近的第三碳原子与另一个五元环或六元环相稠合。
2除单环β-内酰胺外,与β-内酰胺环稠合的环上都有一个羧基。
3所有β-内酰胺类抗生素的β-内酰胺环羰基α-碳都有一个酰胺基侧链。
4β-内酰胺环为一个平面结构,但两稠环不共平面β-内酰胺类药物可抑制粘肽转肽酶的活性和青霉素结合蛋白青霉素构效关系(1)6位的侧链酰胺基团决定其抗菌谱。
改变其极性,使之易于透过细胞膜可以扩大抗菌谱。
例如,在芳环乙酰氨基的α位上引入-NH2、-COOH、和-SO3H等亲水性基团,可以扩大抗菌谱,增强亲水性有利于对革兰阴性菌的抑制作用并能增强对青霉素结合蛋白的亲和力。
药学综合考研之药物化学构效关系总结
![药学综合考研之药物化学构效关系总结](https://img.taocdn.com/s3/m/de0d053d59fafab069dc5022aaea998fcc224037.png)
药学综合考研之药物化学构效关系总结一、概述药物化学构效关系,即药物化学结构与生物活性之间的关系,是药学领域的重要研究方向之一。
在药学综合考研中,药物化学构效关系的学习和理解对于理解药物作用机制、药物设计与优化、新药研发等方面具有至关重要的意义。
药物化学构效关系研究主要关注药物分子结构与其生物活性之间的相互影响和关联。
通过系统研究药物化学结构的变化如何影响其生物活性,我们可以更好地理解药物作用的本质,为新药的设计和研发提供理论基础和实践指导。
药物化学构效关系不仅涉及到化学结构的知识,还需要深入理解生物学、生理学、病理学等领域的知识,是一个多学科交叉的领域。
随着现代科学技术的发展,尤其是计算机技术和生物技术的不断进步,药物化学构效关系的研究方法也在不断发展和完善。
从传统的合成、提取、筛选等实验方法,到现代的计算机模拟、大数据分析等高科技手段,药物化学构效关系的研究正在逐步深入。
对药物化学构效关系的考研复习者来说,不仅需要掌握基础的理论知识,还需要具备跨学科的综合能力,以适应这个领域的研究和发展。
药物化学构效关系是药学研究的重要基础,对于指导新药设计、优化药物作用机制等方面具有重要意义。
本文旨在对药学综合考研中的药物化学构效关系进行总结,以期为考研学生提供系统的学习资料和复习指导。
1. 简述药物化学构效关系的重要性。
药物化学构效关系,作为药物设计与研发领域中的核心原理,具有极其重要的地位。
其重要性主要体现在以下几个方面:药物化学构效关系是药物研发的基础。
药物的疗效与其化学结构之间有着密切的联系,通过对药物分子结构的深入研究,可以预测和优化药物的生物活性,从而有针对性地设计合成新药物。
构效关系研究有助于提高药物研发的效率。
随着现代医药产业的飞速发展,药物研发已经进入了一个竞争激烈的时代,如何快速、高效地发现和优化具有优良药效的药物成为了一个重要的挑战。
而药物化学构效关系的研究,可以指导科研人员快速筛选出具有潜力的药物分子,从而大大提高药物研发的效率。
药物化学药物的化学结构与药效的关系
![药物化学药物的化学结构与药效的关系](https://img.taocdn.com/s3/m/8cff272e3186bceb18e8bb36.png)
CH3
利多卡因
达克罗宁
普鲁卡因
H N
H
δ
CO
Oδ
CH2CH2
C 2H 5 H
N
C 2H5
V
V
V
D
E
O
C 2H5
N O
CO O
CH2CH2
N C 2H5
无局麻作用
O
O
N .HCl
H2N
普鲁卡因的局麻作用似与分子极化有平行关系:
◆供e基甲氧基、乙氧基、二甲氨基取代-NH2, ED50减小 ◆吸e基硝基取代-NH2,ED50增大 ◆在苯环和碳基间嵌入乙撑基, 共轭效应被阻, ED50增大 ◆在苯环和碳基间嵌入乙烯基, 共轭效应不变, ED50不变
N-甲 酰 溶 肉 瘤 素
H
ClCH2CH2
N
Np O
C lC H 2C H 2
N
HO
尿嘧啶氮芥
ClCH2CH2
O
环磷酰胺
二、结构改造
结构变化带来新的物理性质,也改 变了分子化学反应性,可导致药物在细 胞与组织中分布的改变,进而改变对酶 及受体作用部位的结合,改变对这些部 位的反应速率及排泄方式。
四价
=C= =N+= =P+= =As+= =Sb+=
环 内 等 价 -CH =CH - -S- -O - -NH -
a. 一 价 原 子 或 基 团 的 取 代
H2N
S O2NHCONHC4H9 丁 磺 酰 脲
H3C
S O2NHCONHC4H9 甲 磺 丁 脲
氯磺丁脲
Cl
S O2NHCONHC4H9
延长半衰期
减低毒性
b. 二 价 原 子 或 基 团 的 交 换