数值分析课后答案_华中科技大出版社

合集下载

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

数值分析课后习题答案

数值分析课后习题答案

0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0

1 2
0 0 0 1 1 0
1 2

1 2


1 2
1
0 0 0 1 0

1 2

1 2


0
1 2

1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3

16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5

2 A 1
1 3
1 2


2 11
22
1
5 2
1

3 21来自,所以 A12
1
2 1 1



5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6

3 2 6 4 10 7 0 7 10 7 0 7

r1r2
消元

10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623

华中科技大学出版社—数值分析第四版—课后习题及答案

华中科技大学出版社—数值分析第四版—课后习题及答案

14. 由于 x1 , x 2 , , x n 是 f ( x ) 的 n 个互异的零点,所以 f ( x) a 0 ( x x1 )( x x 2 ) ( x x n )
a 0 ( x xi ) a 0 ( x x j ) ( x xi ),
i 1 i 1 i j n n
4 7 h 3 时,取得最大值 max | l 2 ( x ) |
10 7 7 x 0 x x3 27 . k x , x , , x n 处进行 n 次拉格朗日插值,则有 6. i) 对 f ( x) x , (k 0,1, , n) 在 0 1 x k Pn ( x ) Rn ( x ) l j ( x) x k j

14.
1000000000 999999998 x1 1.000000, x2 1.000000 999999999 999999999 方程组的真解为 ,
x 1.00, x2 1.00 , 而无论用方程一还是方程二代入消元均解得 1 结果十分可 靠。 s b sin ca a sin cb ab cos cc a b c tan c c s ab sin c a b c 15.
可 得


( f1 ) ln(1
( f 2 ) ln(1

x x 1
2
) )
1 ( x x 2 1) 60 104 3 103 2 x x 1 ,
2


x x 1
2

x x 1
2

1 1 104 8.33 107 60 2

(Y100 ) 100

数值分析 李庆扬 王能超 易大义著华中科技大学出版社第5版 答案

数值分析 李庆扬 王能超 易大义著华中科技大学出版社第5版 答案

第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。

解:近似值*x 的相对误差为*****r e x x e x x δ-===而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。

解:设()n f x x =,则函数的条件数为'()||()p xf x C f x =又1'()n f x nx-= , 1||n p x nx C n n-⋅∴==又((*))(*)r p r x n C x εε≈⋅ 且(*)r e x 为2((*))0.02nr x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字;*20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。

解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯***123*********123231132143(2)()()()()1111.10210.031100.031385.6101.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈ **24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x εεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C VRππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -=-(n=1,2,…)计算到100Y 。

数值分析课后习题答案

数值分析课后习题答案

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.141592653.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字: 因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。

数值分析课程第五版课后习题答案(李庆扬等)

数值分析课程第五版课后习题答案(李庆扬等)

数值分析课程第五版课后习题答案(李庆扬等)数值分析课程第五版课后习题答案(李庆扬等)第一章:数值分析导论1. 解答:数值分析是一门研究如何使用计算机来解决数学问题的学科。

它包括了从数学理论到计算实现的一系列技术。

数值分析的目标是通过近似的方式求解数学问题,其结果可能不是完全精确的,但是能够满足工程或科学应用的要求。

2. 解答:数值分析在实际应用中起着重要的作用。

它可以用于求解复杂的数学方程、计算机模拟及建模、数据的统计分析等等。

数值分析是科学计算和工程计算的基础,对许多领域都有着广泛的应用,如物理学、经济学、生物学等。

3. 解答:数值方法指的是使用数值计算的方式来求解数学问题。

与解析方法相比,数值方法一般更加灵活和高效,可以处理一些复杂的数学问题。

数值方法主要包括了数值逼近、插值、数值积分、数值微分、线性方程组的求解、非线性方程的求根等。

4. 解答:计算误差是指数值计算结果与精确解之间的差异。

在数值计算中,由于计算机的有限精度以及数值计算方法本身的近似性等因素,都会导致计算误差的产生。

计算误差可以分为截断误差和舍入误差两种。

第二章:数值误差分析1. 解答:绝对误差是指实际值与精确值之间的差异。

例如,对于一个计算出的数值近似解x和精确解x_0,其绝对误差为| x - x_0 |。

绝对误差可以衡量数值近似解的精确程度,通常被用作评估数值计算方法的好坏。

2. 解答:相对误差是指绝对误差与精确解之间的比值。

对于一个计算出的数值近似解x和精确解x_0,其相对误差为| (x - x_0) / x_0 |。

相对误差可以衡量数值近似解相对于精确解的精确度,常用于评估数值计算方法的收敛速度。

3. 解答:舍入误差是由于计算机的有限精度而引起的误差。

计算机中使用的浮点数系统只能表示有限的小数位数,因此在进行数值计算过程中,舍入误差不可避免地会产生。

舍入误差会导致计算结果与精确结果之间存在差异。

4. 解答:误差限度是指对于给定的数值计算问题,所能容忍的误差范围。

数值分析课后部分习题答案

数值分析课后部分习题答案


x * = 2.00021 = 0.200021 × 101 ,即 m = 1
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 2 ; y* = 0.032 = 0.32 × 101 ,即 m = 1
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 4 ; z * = 0.00052 = 0.52 × 10−3 ,即 m = −3
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 0 .
1 1 × 10m − n = × 10−3 ,Fra bibliotek2 2=
f [x1 , x2 ,⋯ , x n ]-f [ x0 , x1 ,⋯ , x n−1 ] g[ x1 , x2 ,⋯ , x n ] − g[ x0 , x1 ,⋯ , x n−1 ] + x n − x0 x n − x0
( x − 1)( x − 2)( x − 3) 1 =- ( x − 1)( x − 2)( x − 3) , (0 − 1)(0 − 2)(0 − 3) 6
x ( x − 2)( x − 3) 1 = x ( x − 2)( x − 3) , (1 − 0)(1 − 2)(1 − 3) 2 x( x − 1)( x − 3) 1 =- x( x − 1)( x − 3) , (2 − 0)(2 − 1)(2 − 3) 2 x( x − 1)( x − 2) 1 = x ( x − 1)( x − 2) , (3 − 0)(3 − 1)(3 − 2) 6

数值分析第五版答案(全)

数值分析第五版答案(全)

第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。

解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。

解:设()nf x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。

解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=%1故度量半径R 时允许的相对误差限为εr (V ∗)=13∗1%=13006.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=-10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。

数值分析课后习题答案

数值分析课后习题答案

7、计算的近似值,取。

利用以下四种计算格式,试问哪一种算法误差最小。

〔1〕〔2〕〔3〕〔4〕解:计算各项的条件数由计算知,第一种算法误差最小。

解:在计算机上计算该级数的是一个收敛的级数。

因为随着的增大,会出现大数吃小数的现象。

9、通过分析浮点数集合F=〔10,3,-2,2〕在数轴上的分布讨论一般浮点数集的分布情况。

10、试导出计算积分的递推计算公式,用此递推公式计算积分的近似值并分析计算误差,计算取三位有效数字。

解:此算法是数值稳定的。

第二章习题解答1.〔1〕 R n×n中的子集“上三角阵〞和“正交矩阵〞对矩阵乘法是封闭的。

〔2〕R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。

设A是n×n的正交矩阵。

证明A-1也是n×n的正交矩阵。

证明:〔2〕A是n×n的正交矩阵∴A A-1 =A-1A=E 故〔A-1〕-1=A∴A-1〔A-1〕-1=〔A-1〕-1A-1 =E 故A-1也是n×n的正交矩阵。

设A是非奇异的对称阵,证A-1也是非奇异的对称阵。

A非奇异∴A可逆且A-1非奇异又A T=A ∴〔A-1〕T=〔A T〕-1=A-1故A-1也是非奇异的对称阵设A是单位上〔下〕三角阵。

证A-1也是单位上〔下〕三角阵。

证明:A是单位上三角阵,故|A|=1,∴A可逆,即A-1存在,记为〔b ij〕n×n由A A-1 =E,那么〔其中 j>i时,〕故b nn=1, b ni=0 (n≠j)类似可得,b ii=1 (j=1…n) b jk=0 (k>j)即A-1是单位上三角阵综上所述可得。

R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。

2、试求齐次线行方程组Ax=0的根底解系。

A=解:A=~~~故齐次线行方程组Ax=0的根底解系为,3.求以下矩阵的特征值和特征向量。

数值分析第四版课后习题答案

数值分析第四版课后习题答案

第一章习题解答1、 在下列各对数中,x 是精确值 a 的近似值。

3.14,7/100)4(143.0,7/1)2(0031.0,1000/)3(1.3,)1(========x a x a x a x a ππ试估计x 的绝对误差和相对误差。

解:(1)0132.00416.01.3≈=≈−=−=aee x a e r π (2)0011.00143.0143.07/1≈=≈−=−=a ee x a e r (3)0127.000004.00031.01000/≈=≈−=−=aee x a e r π (4)001.00143.03.147/100≈=≈−=−=aee x a e r2、已知四个数:001.0,25.134,0250.0,3.264321====x x x x 。

试估计各近似数的有效位数和误差限,并估计运算3211x x x =μ和1431/x x x =μ的相对误差限。

解:21111121101901.0,1021,3,10263.06.23−−⨯≈=⨯==⨯==x x x x n x r δδδ22214212102.0,1021,3,10250.00250.0−−−⨯≈=⨯==⨯==x x x x n x r δδδ 43332333103724.0,1021,5,1013425.025.134−−⨯≈=⨯==⨯==x x x x n x r δδδ 5.0,1021,1,101.0001.04443424==⨯==⨯==−−x x x x n x r δδδ 由相对误差限公式:i r ini n in ni i ir x x fx x f x x x f x x f u δδδ∂∂=∂∂=∑∑==1111),,(),,()(所以有:232123113211103938.0)(1)(−⨯≈++=x x x x x x x x x r δδδμμδ4971.0)(1)(4133141214311≈++−=x x x x x x x x x x r δδδμμδ 3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。

数值分析参考答案_第一章第二章

数值分析参考答案_第一章第二章

数值分析参考答案第一章数值分析与科学计算引论3、下列各数都是经过四舍五入得到的近似数,即,误差限不超过最后一位的半个单位,试指出它们是几位有效数字:* 11.1021x=,*20.031x=,*3385.6x=,*456.430x=,*57 1.0x=⨯解:法1:按p5的公式(2.1)展开法2:从左到右第一位非零开始数* 11.1021x=有5位有效数字,* 20.031x=有2位有效数字,* 3385.6x=有4位有效数字,* 456.430x=有5位有效数字,* 57 1.0x=⨯有1位有效数字(科学记数法)。

6 设028Y=,按递推公式11,2,n nY Y n-== ,计算到100Y。

若取27.982≈(5位有效数字),试问计算100Y将有多大误差?解:精确值Y=*27.983Y=从而,**30001102Y Yε-=-≤⨯第一次迭代:***111011282827.983100100Y Yεε⎛⎛⎫=-=--⨯≤⎪⎝⎝⎭第二次迭代:()()***22211*****1100000127.9831001112100100100100Y Y Y YY Y Y Yεεεε⎛⎛⎫=-=---⨯⎪⎝⎝⎭=---≤+=按规律递推得:***100n n nnY Yεε=-≤所以有:***310010010001001101002Y Yεε-=-≤=⨯因此,计算100Y 的误差限不超过31102-⨯7、求方程25610x x -+=的两个根,使它至少具有427.982)解:由求根公式得2828x ===±27.982≈具有5位有效数字,则有1282827.98255.982x =≈+=21280.0178655.982x ==≈=11、序列{}n y 满足递推关系:1101,1,2,n n y y n -=-= ,若0 1.41y =≈(3位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?解:0y =*0 1.41y =,则有**20001102y y ε-=-≤⨯ 按迭代公式有:()*****111000001011011010y y y y y y εε=-=---=-≤ ()****2*222111101011011010y y y y y y εε=-=---=-≤由递推式,可得()***10*10*101010990001011011010y y y y y y εε=-=---==-≤因此,此计算过程不稳定。

《数值分析》所有参考答案

《数值分析》所有参考答案

习题11 -以下各表示的近似数,问具有几位有效数字?并将它舍入成有效数(1)% = 451.023(2)x;=-0.045 113(3)x3 = 23.421 3,* 1(4)x4=3(5)x5 = 23.496,* /-(6)x6= 96x 10 ,(7)x;= 0.000 96,(8)x8 =-8 700, 解:(1) x;=451.023x1= 451.01;x2=—0.045 18;x3= 23.460 4;x4= 0.333 3;x5= 23.494;x6= 96.1 x 105;x;= 0.96X 10 'x8= —8 7003 x^ 451.01* 1 _1 一#x1—= 0.013兰一汇10 —, x1具有4 位有效数字。

%t451.02(2) x;二-0.045 113 x2二-0.045 18=0.045 1 8- 0.045113 =0.000 067 - 10 _32X2具有2位有效数字,x^ -0.045⑶x3 =23.4213 x3= 23.4604*X3— X3 = 23.4213 - 23.4604 = 23.4604 — 23 .4213 = 0.0391 X3具有3位有效数字,X3 > 23 .4 (不能写为23.5)* 1⑷ x4二,x4二0.3333 J 10_1 23二 23 .496 - 23.494 二 0.002X 6具有2位有效数字,75x 6 =0.9610= 96 102•以下各数均为有效数字:(1) 0.1062 + 0.947;(2)23.46— 12.753;(4) 1.473 / 0.064。

问经过上述运算后,准确结果所在的最小区间分别是什么? 解:(1) X i =0.1062, X 2 =0.947, X i +X 2 =1.05321e( )+ e(x 2 )兰 e( )+ e(x 2)兰一汉 10*X 4=0.000033::: -10 一4 2,X 4具有4位有效数字,X 4 二0.3333(5) x 5 = 23.496, x 5 = 23.494X5具有4位有效数字,x 5 > 23.50 不能写为 23.49)(6)*57X 6 = 96100.96 10 57X 6=96.1 10 =0.96110*X6=0.001 10 _7< -10 ° 10 一7 2X 7 = 0.00096X 7 -0.9610° *X7-0.96 10’*X7=0X 7精确(8)二 -8700 x8二 -8 7 0.3*X8-X 81 = 0.3102X 8具有4位有效数字,X 8二-8700 精确e(xd| 兰丄。

数值分析课后习题答案

数值分析课后习题答案

x2 6.6667x2 8.205
再解
1
15 56
x31.785,7得 x35.769
1 25069x4 0.47847x4 1.4872
1 x5 5.3718 x5 5.3718
2-10.证明下列不等式:
(1)x-yx-z+z-y; (2)|x-y|x-y;
证明 (1)x-y=(x-z)+(z-y)x-z+z-y
b.用Gauss消元法
102 x y 1 x y 2
回代得解: y=1, x=0.
102 x Байду номын сангаасy 1
100y 100
再用列主元Gauss消元法
102 x y 1 x y 2
回代得解: y=1, x=1.
x y
y 1
2
2-8.用追赶法求解方程组:
4 1
x1 100
1 4 1
x2 0
3-8.判定求解下列方程组的SOR方法的收敛性.
2 1 0 0 x1 1
1
0 0
2 1 0
1 2 1
0 12
x2 x3 x4
0 00
解 直接可验证系数矩阵A是负定矩阵,所以-A是对称
1-3.为了使101/2的相对误差小于0.01%,试问应取几位 有效数字?
解 因为101/2=3.162…=0.3162…10,若具有n位有效 数字,则其绝对误差限为0.5 101-n ,于是有
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
1 2
0
12 1,
1 2
1 2
0
12

(完整版)数值分析第五版答案(全)

(完整版)数值分析第五版答案(全)

第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。

解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。

解:设()nf x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。

解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=%1故度量半径R 时允许的相对误差限为εr (V ∗)=13∗1%=13006.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=-10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。

(完整版)数值分析课后习题答案

(完整版)数值分析课后习题答案

第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4.近似数x*=0.0310,是 3 位有数数字。

5.计算取,利用:式计算误差最小。

四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。

线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。

数值分析课后习题部分参考答案.

数值分析课后习题部分参考答案.

数值分析课后习题部分参考答案Chapter 1(P10)5. 求2的近似值*x ,使其相对误差不超过%1.0。

解: 4.12=。

设*x 有n 位有效数字,则n x e -⨯⨯≤10105.0|)(|*。

从而,1105.0|)(|1*nr x e -⨯≤。

故,若%1.0105.01≤⨯-n,则满足要求。

解之得,4≥n 。

414.1*=x 。

(P10)7. 正方形的边长约cm 100,问测量边长时误差应多大,才能保证面积的误差不超过12cm 。

解:设边长为a ,则cm a 100≈。

设测量边长时的绝对误差为e ,由误差在数值计算的传播,这时得到的面积的绝对误差有如下估计:e ⨯⨯≈1002。

按测量要求,1|1002|≤⨯⨯e 解得,2105.0||-⨯≤e 。

Chapter 2(P47)5. 用三角分解法求下列矩阵的逆矩阵:⎪⎪⎪⎭⎫ ⎝⎛--=011012111A 。

解:设()γβα=-1A。

分别求如下线性方程组:⎪⎪⎪⎭⎫ ⎝⎛=001αA ,⎪⎪⎪⎭⎫ ⎝⎛=010βA ,⎪⎪⎪⎭⎫ ⎝⎛=100γA 。

先求A 的LU 分解(利用分解的紧凑格式),⎪⎪⎪⎭⎫ ⎝⎛-----3)0(2)1(1)1(2)0(1)1(2)2(1)1(1)1(1)1(。

即,⎪⎪⎪⎭⎫ ⎝⎛=121012001L ,⎪⎪⎪⎭⎫⎝⎛---=300210111U 。

经直接三角分解法的回代程,分别求解方程组,⎪⎪⎪⎭⎫ ⎝⎛=001Ly 和y U =α,得,⎪⎪⎪⎭⎫ ⎝⎛-=100α;⎪⎪⎪⎭⎫ ⎝⎛=010Ly 和y U =β,得,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=323131β;⎪⎪⎪⎭⎫ ⎝⎛=100Ly 和y U =γ,得,;⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=313231γ。

所以,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=-3132132310313101A。

(P47)6. 分别用平方根法和改进平方根法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----816211515311401505231214321x x x x 解:平方根法:先求系数矩阵A 的Cholesky 分解(利用分解的紧凑格式),⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----1)15(2)1(1)5(3)3(3)14(2)0(1)1(1)5(2)2(1)1(,即,⎪⎪⎪⎪⎪⎭⎫⎝⎛--=121332100120001L ,其中,TL L A ⨯=。

数值分析教材第五版习题答案(李庆扬等)

数值分析教材第五版习题答案(李庆扬等)

数值分析教材第五版习题答案(李庆扬等)本文档是《数值分析》(第五版)的题答案,由李庆扬等人编写。

共分为13章,每章包括了若干题和题答案。

第一章介绍了数值分析的基本概念和一些数学基础知识。

其中的题主要涉及数值计算的舍入误差和截断误差的计算。

第二章讨论了插值与拟合问题,题主要集中在各种插值方法和曲线拟合问题的应用。

第三、四章分别介绍了数值积分和数值微分的计算。

这些章节提供了多种数值积分、数值微分算法的细节,以及贯穿其中的误差分析。

第五章是线性方程组的数值解法,主要介绍了直接法、迭代法以及常见的一些稀疏矩阵的解法。

第六章涉及到了非线性方程的求解,重点探讨了二分法、牛顿法、割线法等解法的理论和应用。

第七、八章介绍了特征值与特征向量、矩阵的奇异值与奇异向量的计算。

这两章的题主要考察了特征值的计算方法和矩阵奇异值分解的原理和实现。

第九章讲解了最小二乘问题,包括线性最小二乘问题的求解、非线性最小二乘问题的求解、以及曲线拟合的一些应用。

第十章介绍了常微分方程数值解的一些方法,包括欧拉法、龙格-库塔法等。

第十一章是偏微分方程数值解的方法。

该章节中的题除了基于差分格式的显式解法外,还包括了一些基于有限元方法、谱方法的数值求解思路。

第十二章讨论了随机数与随机过程的数值模拟方法。

这一章节的题较为简单,主要考察了生成随机数的方法和统计性质。

第十三章介绍了复数及其函数的数值计算方法。

题主要涵盖了复数函数的解析和逼近,以及量子力学中常用的算符的数值求解。

本文档共收录了近1000道习题及其答案,对于求解数值分析问题的读者来说有很好的参考作用。

需要注意的是,本文档中的答案仅供参考,读者应该结合自身的情况进行判断和验证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档